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To cite this version:
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Image Reconstruction in Optical Interferometry
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Abstract: Inverse problem approach is a suitable framework to analyze the challenging
issues in image reconstruction from interferometric data. It can be exploited to describe
and formally compare the new methods specifically developed for optical interferometry.
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OCIS codes: 100.0100, 100.3175.

1. Optical Interferometry

Optical multi-telescope interferometers provide sparse measurements of the Fourier transform Îλ(ν) of Iλ(θ ),
the specific brightness distribution of the observed object in angular direction θ and at wavelength λ. Indeed, at
instant t, the complex visibility of the fringe pattern of interferences between the telescopes j1 and j2 is:

Vj1, j2(t) = g?j1(t) g j2(t) Îλ
�

ν j1, j2(t)
�

with ν j1, j2(t) =
r j2(t)− r j1(t)

λ
, (1)

with g j(t) and r j(t) the complex amplitude transmission and the projected position (on a plane perpendicular
to the line of sight) of the j-th telescope. Averaging during an exposure (assumed short enough to neglect the
Earth rotation) yields:

Vj1, j2,m = 〈Vj1, j2(t)〉m ' 〈g
?
j1
(t) g j2(t)〉m Îλ(ν j1, j2,m) with ν j1, j2,m = 〈ν j1, j2(t)〉m , (2)

where 〈〉m denotes time averaging during m-th exposure. At optical wavelengths, the optical path variations
due to the turbulence involve that 〈g?j1(t) g j2(t)〉m ' 0. In other words, complex visibilities cannot be directly
measured. To overcome this issue, other quantities such as the powerspectrum and the bispectrum are measured:

S j1, j2,m = 〈|Vj1, j2(t)|
2〉m 'ρ j1,mρ j2,m | Îλ(ν j1, j2,m)|2 , (3)

B j1, j2, j3,m = 〈Vj1, j2(t)Vj2, j3(t)Vj3, j1(t)〉m 'ρ j1,mρ j2,mρ j3,m Îλ(ν j1, j2,m) Îλ(ν j2, j3,m) Îλ(ν j3, j1,m) , (4)

where ρ j,m = 〈|g j(t)|2〉m 6= 0 can be calibrated from photometric channels and a reference source. Of particular
interest is the phase of the bispectrum, the so-called phase closure, since it is more robust to calibration errors.

2. Image Synthesis

The first problem in image reconstruction from interferometric data is to cope with voids in the sampled spatial
frequencies (see Fig. 1a for a typical coverage of the measured spatial frequencies). At optical wavelengths,
working with the powerspectrum and bispectrum data gives less Fourier phase information and introduces non-
linearities and degeneracies which make the image synthesis problem much more difficult. Nevertheless and
without loss of generality, image synthesis from interferometric data is an inverse problem [1] that can be restated
as a constrained minimization [2,3] to find the best image parameters, e.g. the pixel intensities, x :

x+ = argmax
x∈X

¦

fdata(x , y)+ fprior(x )
©

with, e.g., X =
n

x |x ≥ 0,
∑

k
xk = 1

o

(5)

with fdata(x , y) a likelihood term (usually derived from the statistics of the noise) which enforces agreement with
the measurements y , and fprior(x ) a regularization term which imposes some regularity, e.g. smoothness, for the
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Fig. 1: (a) Spatial frequency coverage. (b) Original object smoothed to the resolution of the interferometer
(FWHM∼ 15mas). (c) Image reconstruction without any Fourier phase information. Image reconstruction with
various types of regularization: (d) reconstruction with maximum entropy regularization as in Eq. (6); (e) re-
construction with edge-preserving regularization as in Eq. (7); (f) reconstruction with a quadratic regularization
given by Eq. (8) and which imposes a compact field of view. All reconstructions by algorithm MiRA [4] and from
the powerspectrum and the phase closures.

sought image. Other strict constraints such as the non-negativity and normalization are imposed by requiring
that x belongs to a feasible set X .

In this general framework, an image reconstruction algorithm is specified by: (i) the image representation (e.g.
pixels, building-blocks [5], . . . ) and its Fourier transform; (ii) the approximation of the likelihood (e.g. [6]); (iii)
the imposed constraints (type of regularization, non-negativity, normalization, etc.); and (iv) the optimization
strategy. Different choices for these ingredients have led to a variety of algorithms. For instance, Maximum
Entropy Methods (MEM) [7] readily solve a problem like the one Eq. (5) with a regularization:

fprior(x ) =
∑

n

�

xn log(xn/ x̄n)− xn+ x̄n
�

(6)

with x̄ the default image (cf. Fig. 1d). BSMEM [8] is a version of MEM applied to bispectral data. CLEAN [9] uses
a matching-pursuit algorithm to minimize the number of point-like sources that compose the image. This is very
like the sparsity constraints used in Compressive Sensing [10] and expressed as: fprior(x ) = ‖x‖1 to minimize the
`1-norm of the parameters. The building-block method [5] can be seen as an adaptation of CLEAN to bispectral
data. Imposing the sparsity of the spatial gradient of the image, a method known as Total Variation (TV) [11], or
an edge preserving smoothness regularization is obtained with:

fprior(x ) =
∑

n

h
p

‖∇nx‖2+ε2 −ε
i

, (7)

with ε = 0 for TV, ε > 0 otherwise and ‖∇nx‖ the image gradient at n-th pixel. When ε→∞, Eq. (7) yields



quadratic smoothness which is the regularization used by WIPE [12]. More recently, a simple separable quadratic
regularization has proven to be successful for optical interferometry imaging [13]:

fprior(x ) =
∑

n
wn x2

n , (8)

with the weights wn ≥ 0 set so as to favor the concentration of the light near the center of the field of view and
hence the smoothness of Îλ(ν). This flexibility is exploited by versatile algorithms like MiRA [4] or WISARD [14]
which implement various kind of regularizations and can therefore emulate other algorithms (their however
differ in their optimization strategies). Comparing the results obtained with different regularizations (cf. Fig. 1d-
f) shows that the reconstructed images are very similar and close to the true object. This consistency is reassuring
but deserves a quantitative comparison on the impact of the type of regularizations on a variety of cases.

An other advantage of the inverse approach is that the problem in Eq. (5) yields a solution whatever is the
amount of missing data (though the less data the less information is gained with respect to the priors). For
instance, apart for a 180◦ ambiguity in the orientation, an image may be synthesized without any measured
Fourier phase information (see Fig. 1c for an example of reconstruction).

For the moment, no algorithms really exploit the full potential of the multi-spectral data provided by opti-
cal interferometers. Either the object is considered as gray with the same distribution at all wavelengths, or a
monochromatic image is synthesized for each spectral channel independently [15]. The most exciting develop-
ments in image reconstruction algorithms for the years to come will be to use the spectral continuity of the sought
brightness distribution to globally process all available data to produce a full 3-D distribution Iλ(θ ).
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