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V. Ballenegger
Institut UTINAM, Université de Franche-Comté, UMR CNRS 6213,
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(Dated: September 3, 2012)

We compute thermodynamical properties of a low-density hydrogen gas within the physical pic-
ture, in which the system is described as a quantum electron-proton plasma interacting via the
Coulomb potential. Our calculations are done using the exact Scaled Low-Temperature (SLT) ex-
pansion, which provides a rigorous extension of the well known virial expansion – valid in the fully
ionized phase – into the Saha regime where the system is partially or fully recombined into hydrogen
atoms. After recalling the SLT expansion of the pressure [A. Alastuey et al, J. Stat. Phys. 130,
1119 (2008)], we obtain the SLT expansions of the chemical potential and of the internal energy,
up to to order exp(|EH|/kT ) included (EH ' −13.6 eV). Those truncated expansions describe the
first five non-ideal corrections to the ideal Saha law. They account exactly, up to the considered
order, for all effects of interactions and thermal excitations, including the formation of bound states
(atom H, ions H− and H+

2 , molecule H2, ...) and atom-charge and atom-atom interactions. Among
the five leading corrections, three are easy to evaluate, while the remaining ones involve well de-
fined internal partition functions for molecule H2 and ions H− and H+

2 , for which no closed-form
analytical formula exist currently. We provide accurate low-temperature approximations for those
partition functions by using known values of rotational and vibrational energies. We compare then
the predictions of the SLT expansion with the OPAL EOS and data of path integral quantum Monte
Carlo (PIMC) simulations. In general, a good agreement is found. At low densities, the simple an-
alytical SLT formulae reproduce the values of the OPAL tables up to the last digit in a large range
of temperatures, while at higher densities (ρ ∼ 10−2 g/cm3), some discrepancies between the SLT,
OPAL and PIMC results are observed.
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I. INTRODUCTION

As the lightest and most simple element, hydrogen is important both theoretically and for
practical applications. It is also the most abundant element in the universe, and a precise knowledge
of its thermodynamical properties is needed by astrophysicists over a wide range of pressures and
temperatures. In that context, the derivation of accurate tables for thermodynamical functions is
quite useful. This motivated the celebrated OPAL program, which in addition provides tabulations
of the opacity as a function of temperature and density, a key ingredient for astrophysical diagnosis.

The OPAL tables [4] have been derived from the so-called ACTEX approach, first introduced in
Ref. [5] and implemented through successive papers [6]. That approach is built within the physical
picture, where hydrogen is described in terms of a quantum plasma made with protons and electrons
interacting via the 1/r-Coulomb potential. For a given set of thermodynamical parameters, one
proceeds to suitable estimations of the expected relevant contributions in the activity expansions
determined by simple physical arguments. This allows one to account for complex phenomena
arising from the formation of chemical species and their interactions. The resulting OPAL tables
are very reasonably accurate over a wide range of temperatures and densities, as checked through
comparisons to quantum Monte Carlo simulations [7] and to high-pressure shock experiments [8].

Aside from the OPAL tables, exact asymptotic expansions can be used to provide reliable nu-
merical data. It turns out that such an expansion, the so-called Scaled Low Temperature (SLT)
expansion, has been recently derived in the Saha regime [9], where hydrogen reduces to a dilute
partially-ionized atomic gas. That regime is of particular astrophysical interest since it is observed
for instance in the Sun interior. The main purpose of that paper is to derive, from the SLT expan-
sion, simple and very precise estimations of the contributions of all the mechanisms at work in the
Saha regime to any thermodynamical function. Our calculations avoid approximations introduced
in the ACTEX approach, is written in terms of tractable analytic formulae which are quite easy
to handle for determining the quantities of interest at any temperature and any density, and no
interpolation has to be performed as in other purely numerical tables like OPAL. The correspond-
ing high-accuracy and thermodynamically-consistent calculations should be quite useful for various
applications, in particular the interpretation of recent seismology measurements in the Sun [10].

In the physical picture, the equation of state is studied by applying methods of quantum sta-
tistical mechanics to Coulombic matter. Various analytical methods have been developed for
this purpose, such as Morita’s effective potential method [11, 12], many-body perturbation the-
ory [13, 14] and Mayer diagrams in the polymer representation of the quantum system [15–17].
Numerical techniques have also been elaborated, in particular density functional theory molecular
dynamics [18–20] and path-integral Monte Carlo (PIMC) simulations [21]. In the present work,
we use a suitable extension [22] — needed for dealing with a partially recombined phase — of the
quantum Mayer diagrams method introduced previously to derive in particular the virial expan-
sion of the equation of state up to order ρ5/2 in the density, both in the absence [15, 23, 24] and
presence [33] of a magnetic field. This framework avoids the problems associated with the more
widely used chemical approach [25–30] in which bound states (atoms H, molecules H2, ions H−,
H+

2 , ...) are treated as preformed constituents that are assumed to interact via some given effec-
tive potentials [31, 32] with the ionized charges and between themselves. The SLT expansion [9]
solves the difficult problem of dealing consistently and exactly with screening and bound states
in the Saha regime within the physical picture. Effect of atom-atom interactions and (screened)
interactions between ionized charges and atoms appear for instance in our calculations, without
introducing any intermediate modelization, as a consequence of the basic Coulombic interactions
between the electrons and protons, and are embedded in functions h2(β) and h4(β) defined in
Sct. II.D. In the SLT expansion, the internal partition functions of all bound entities are finite
thanks to a systematic account of collective screening effects, and the expansion exhibits no double
counting (for instance between contributions associated to a hydrogen molecule or to two hydrogen
atoms, despite the latter may form a molecule at short distances) nor missing term.

The Saha regime corresponds to low-temperature and sufficiently low-densities, so the most
abundant chemical species are ionized protons, ionized electrons and hydrogen atoms in their
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groundstate. The corresponding thermal ionization equilibrium H � e + p is well described in first
approximation by the mass-action law for ideal mixtures [34]

ρid
at

ρid
p ρ

id
e

=

(
2π~2β

m

)3/2

e−βEH , (1)

which relates the number density ρid
at of hydrogen atoms in their ground state with energy EH =

−me4/(2~2) ' −13.6 eV, to the number densities ρid
p and ρid

e of ionized protons and electrons with

ρid
p = ρid

e because of charge neutrality. In ionization equation (1), β is the inverse temperature,
while mp and me are the proton and electron masses, and m = mpme/(mp + me) is the mass of
the reduced particle. All ideal densities can be computed in terms of the sole total electron or
proton density ρ = ρid

e + ρid
at = ρid

p + ρid
at and of the temperature-dependent density

ρ∗ =
exp(βEH)

2(2πλ2
pe)3/2

with λpe = (β~2/m)1/2 (2)

which naturally emerges in ionization equation (1). The resulting Saha equation of state (EOS)
follows from adding the partial pressures of the three ideal gases in the mixture, and it reads

βPSaha = ρ+ ρ∗[
√

1 + 2ρ/ρ∗ − 1] . (3)

Temperature-dependent density ρ∗ controls the cross-over between full ionization and full recom-
bination, as illustrated by the respective behaviors βPSaha ∼ 2ρ for ρ � ρ∗, and βPSaha ∼ ρ for
ρ � ρ∗. As recalled in Section II, within the physical picture, the Saha predictions have been
proved to be asymptotically valid in a suitable scaling limit in the grand-canonical ensemble [35],
where temperature T is decreased while chemical potentials µp and µe go to EH with a linear
dependence in T . The corresponding density decreases exponentially fast with T , in order to keep
the same energy-entropy balance and hence the same ionization degree. The identification of that
scaling limit opened up the possibility to construct systematic expansions beyond Saha theory [9].
The structure of the corresponding SLT expansion of the density in terms of the chemical potential
is described in Section II. The successive terms depend on temperature-dependent functions hk(β)
which decay exponentially fast when T → 0 with increasing decay rates. Their physical content is
discussed in relation with the formation of chemical species, interaction and screening effects.

In Section III, starting from the SLT expansion of density and using standard thermodynamical
identities, we derive the SLT expansions of chemical potential, pressure and internal energy. By
construction, all expressions are thermodynamically consistent, and similar expressions for other
thermodynamical quantities can be easily derived along similar lines. In those SLT expansions,
beyond the leading terms given by Saha theory, each correction reduces to an algebraic function of
ratio ρ/ρ∗ times a temperature-dependent function which decays exponentially fast when T → 0.
We give the expressions of all corrections up to order exp(βEH) included. Such corrections account
for various phenomena such as plasma polarization, thermal atomic excitations, shift of the atomic
energy levels, formation of hydrogen molecules H2, ions H− and H+

2 , and interactions between
ionized charges and atoms.

As usual for asymptotic expansions, and aside from the question of convergence in a strict
mathematical sense, the truncation of SLT expansions can be reasonably expected to provide
reliable quantitative informations on thermodynamics. Here, since the characteristic energy scale
|EH| involved in SLT expansions is rather large, the corresponding calculations should be reliable
up to temperatures of the order 104 Kelvins for which the condition kBT � |EH| is indeed fulfilled.
Furthermore, we stress that, though the SLT expansion is built by considering a low-density and
low-temperature scaling, it can provide actually accurate predictions in a rather large range of
densities and temperatures that cover the fully ionized, partially ionized and the atomic phases
of the hydrogen gas. Indeed, the SLT expansion reduces by construction to the standard virial
expansion when ρ � ρ∗ at fixed T [9]. Thus, the SLT formulae remain valid in the fully ionized
regime where one may have T > TRydberg = |EH |/k = 157 801 K, as long as the density is not too
high, namely the coupling parameter Γ = βe2/a must remain small.
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If we keep all corrections to Saha leading terms up to order exp(βEH) included, as provided
by the SLT formulae, the knowledge of the first four functions h1(β), h2(β), h3(β) and h4(β) is
required. If functions h1(β) and h3(β) are explicitly known in closed elementary forms and can
be calculated exactly at any temperature, no similar formulae for functions h2(β) and h4(β) are
available since analytical results on the three- and four-body quantum problem are very scarce.
In Section IV, we propose simple approximations of those functions which account for their exact
low-temperature forms on the one hand, and incorporate the usual reliable descriptions of the
spectra of ions H−, H+

2 and of molecule H2 on the other hand. Those approximations are sufficient
for computing thermodynamical properties of a partially ionized hydrogen gas for temperatures
up to about 30 000 K. More refined calculations of functions h2(β) and h4(β) would be required at
higher temperatures, in particular for state points where recombination into hydrogen molecules
or ions give a significant contribution.

In Section V, within previous simple representations of the hk(β)’s, we study the importance of
the various non-ideal corrections to Saha pressure and internal energy along various isotherms and
isochores. The predictions of our analytical SLT formulae are compared to the OPAL tables which,
up to now, are expected to provide the most reliable numerical data in the considered regimes. A
very good agreement is found at low densities, for all temperatures, if one corrects the OPAL tables
by using the exact ground-state energy of the hydrogen atom with the reduced mass m in place of
me [36]. When the density is increased, our predictions differ somewhat from those of the OPAL
tables. We compare also our predictions to data of quantum Monte Carlo simulations [7]. These
comparisons, together with a simple semi-empirical criterion, allow us to determine the validity
domain of the SLT expansion in the temperature-density plane (see Fig. 12). Final comments and
possible extensions are given in Section VI.

II. THE SCALED LOW TEMPERATURE EXPANSION

A. The Saha regime in the grand-canonical ensemble

Within the physical picture, a hydrogen gas is viewed as a system of quantum point particles
which are either protons or electrons, interacting via the instantaneous Coulomb potential v(r) =
1/r. Protons and electrons have respective charges, masses, and spins, ep = e and ee = −e, mp

and me, σp = σe = 1/2. In the present non-relativistic limit, the corresponding Hamiltonian for
N = Np +Ne particles reads

HNp,Ne
= −

N∑
i=1

~2

2mαi

∆i +
1

2

∑
i6=j

eαi
eαj

v(|xi − xj |) (4)

where αi = p, e is the species of the ith particle and ∆i is the Laplacian with respect to its position
xi. The system is enclosed in a box with volume Λ, in contact with a thermostat at temperature
T and a reservoir of particles that fixes the chemical potentials equal to µp and µe for protons and
electrons respectively. Because the infinite system maintains local neutrality ρp = ρe in any fluid
phase, the bulk equilibrium quantities depend in fact solely on the mean

µ = (µp + µe)/2, (5)

while the difference ν = (µe−µp)/2 is not relevant, as rigorously proved in Ref. [37]. Consequently,
the common particle density ρ = ρp = ρe depends only on T and µ.

In the present framework, EOS (3) has been proved to become exact in some limit introduced by
Macris and Martin, who extended Fefferman’s work on the atomic phase of the hydrogen plasma [38]
to a partially ionized phase [35]. In that limit, the temperature T goes to zero while the average
chemical potential µ of protons and electrons approaches the value EH with a definite slope [35].
More precisely, let γ be the dimensionless parameter defined through the parametrization

µ = EH + kBT [ln(γ) + ln((m/M)3/4/4)] (6)
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with M = mp + me. Then, the state of the system is equivalently defined by either the usual
set (T, µ) of thermodynamical parameters in the grand-canonical ensemble, or the set (T, γ), since
both sets are univocally related. As proved in ref. [35], in the limit T → 0 at fixed γ, density ρ
and pressure P behave as (c > 0)

ρ = (ρid
p + ρid

at)(1 +O(e−cβ)) = (ρid
e + ρid

at)(1 +O(e−cβ)) (7)

and

βP = (ρid
p + ρid

e + ρid
at)(1 +O(e−cβ)), (8)

where ideal densities reduce to

ρid
p = ρid

e = ρ∗γ (9)

and

ρid
at = ρ∗

γ2

2
. (10)

Notice that ideal densities (9) and (10) do satisfy the Saha ionization equation (1) for the total
proton/electron density ρ = ρ∗γ(1+γ/2). Moreover the leading contribution to pressure in formula
(8) indeed describes an ideal mixture of free protons, free electrons and hydrogen atoms in their
groundstate, which can be rewritten in the form (3). Thus, discarding exponentially vanishing
terms embedded in O(e−cβ), Saha predictions are rigorously recovered in the scaling limit of
Macris and Martin T → 0 at fixed γ. The parameter γ may be fixed at an arbitrary positive
value; it controls the density and also the ionization ratio since ρid

p /ρ = 1/(1 + γ/2). Contrary
to the zero-temperature limit at fixed chemical potential used in the atomic and molecular limit
theorem [16, 38, 39] (see also Ref. [40] for further physical considerations around that limit), we
consider γ fixed and a chemical potential that varies as T → 0 according to (6) so that the e-p
plasma tends in the limit T → 0 to a partially ionized hydrogen gas with a well defined ionization
ratio.

The Saha regime corresponds to quite diluted conditions, since the densities of ionized particles
and of atoms vanish exponentially fast when β → ∞, with a rate determined by the ground-
state energy of the hydrogen atom EH ' −13.6 eV. The low-temperature condition, namely
kT � |EH |, ensures that atoms can form, while they maintain their individuality thanks to
a � aB , where a = (3/(4πρ))1/3 is the mean inter-particle distance and aB = ~2/(2me2) is
the Bohr radius. Because of the high dilution, the system is both weakly coupled and weakly
degenerate. In particular, the ionized charges are almost classical, and the corresponding screening
length reduces to its Debye expression κ−1 = (4πβe2(ρid

p + ρid
e ))−1/2.

According to the above rigorous derivation, corrections to Saha theory decay exponentially fast
in the scaled limit T → 0 at fixed γ. Nevertheless, they cannot be explicitly computed within the
corresponding mathematical techniques, so one has to use different tools as described further.

B. About the interplay between recombination and screening

In the Saha regime, in addition to atoms, recombination processes lead to the formation of
molecules H2, ions H− and H+

2 , and also more complex entities like H−2 , H+
3 , H3, etc... A con-

trolled analysis of the corresponding contributions is the central problem for deriving systematic
corrections to Saha theory. The well-known difficulty lies in a suitable account of the individual
contribution of a single chemical species at finite temperature, which is free from the divergences
arising from Rydberg states. In the literature, in general, that problem has been tackled within
phenomenological prescriptions, in particular those leading to the so-called Brillouin-Planck-Larkin
formula for atomic contributions [41], [42]. The physical idea underlying that phenomenological
approach, is that the divergent contributions of Rydberg states are in fact screened by the free
charges present in the system. Accordingly, the estimation of contributions from recombined enti-
ties cannot be disentangled from that of screened interactions between ionized charges.
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A systematic procedure for dealing simultaneously with recombination and screening has been
constructed through the combination of path integral and diagrammatical methods [22]. This
provided some kind of cluster representation for equilibrium quantities in the grand canonical
ensemble. In the quite diluted Saha regime, the statistical weight of a given cluster made with Np

protons and Ne electrons, involves the cluster partition function

Z(Np, Ne) = 2πλ2
Np,Ne

lim
Λ→∞

1

Λ
Tr[exp(−βHNp,Ne

)]TMayer, (11)

which is a truncated trace of Gibbs operator exp(−βHNp,Ne
) built with bare Coulomb Hamil-

tonians, while λNp,Ne
= (β~2/(Npmp + Neme))

1/2 is the thermal de Broglie wave length of the
cluster. The trace in (11) converges despite the long range of the Coulomb interaction, thanks to a
systematic truncation procedure which accounts for the screening by ionized charges [22]. Roughly
speaking, that procedure amounts to subtract and add counter-terms to the genuine Gibbs opera-
tors, which involve non-traceable operators built with the Coulomb potential. The Gibbs operator
and the subtracted counter-terms give rise to the finite partition function (11) which only depends
on T and no longer on γ. The added counter-terms are recombined together with other divergent
contributions via chain resummations, which ultimately provide finite contributions involving the
screening length κ−1 associated with the ionized charges present in the medium.

Remarkably, the familiar chemical species naturally emerge from cluster partition function
Z(Np, Ne), which is intrinsic to the considered cluster in the vacuum. A given chemical species
made with Np protons and Ne electrons, is associated with bound states of bare Hamiltonian
HNp,Ne . In the zero-temperature limit, it provides the leading contribution to Z(Np, Ne) which
behaves as

exp(−βE(0)
Np,Ne

) (12)

apart from possible integer degeneracy factors, and where E
(0)
Np,Ne

is the groundstate energy of

Hamiltonian HNp,Ne
. At finite temperatures, Z(Np, Ne) involves not only contributions from ther-

mally excited bound states, but also contributions from diffusive states describing the dissociation
of the considered chemical species.

Cluster partition functions Z(Np, Ne) can be viewed as generalizations of Ebeling virial coeffi-
cients [12] introduced for dealing with contributions from two-particle clusters. The contributions
of interactions between chemical species can be expressed also in terms of cluster functions sim-
ilar to Z(Np, Ne), so all contributions related to the formation of complex entities are properly
taken into account. We stress that, as far as thermodynamical properties are concerned, only the
full contribution of Z(Np, Ne) and of its related screened counter terms makes an unambiguous
sense. The considered formalism [22] avoids both arbitrary and uncontrolled definitions of internal
partition functions for chemical species, which are key ingredients in phenomenological chemical
approaches [1].

C. Systematic corrections to Saha theory

Within the combination of path integral and diagrammatical methods evoked above [22], system-
atic corrections to Saha theory have been explicitly computed in Ref. [9]. A pedagogical summary
of both rather long papers is given in Ref. [44]. Here, leaving aside the tedious technical details in-
volved in the derivation, we can guess and explain the mathematical structure of the corresponding
expansion through simple arguments based on the considerations exposed just ealier.

In the so-called screened cluster representation of particle density ρ [22], any contribution re-
duces to a graph made with particle clusters connected by screened bonds. The statistical weight
of a cluster made with Np protons and Ne electrons, reduces to, roughly speaking, the product
exp(β(Np +Ne)µ) of the particle fugacity factors, times the cluster partition function Z(Np, Ne),
and times some dressing factor which accounts for collective polarization effects. The integra-
tion over the relative distances between particle clusters generate powers of the Debye screening
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wavenumber κ, while dressing factors can be also expanded in powers of κ. Since exp(βµ) is pro-
portional to both γ and exp(−β|EH|), while κ is proportional to both γ1/2 and exp(−β|EH|/2),
any contribution reduces to some integer or half-integer power of γ times a temperature-dependent
function. The low-temperature behavior of that function results from the competition between
factors varying exponentially fast, namely positive powers of exp(−β|EH|) arising from fugacity
factors, positive or negative powers of exp(−β|EH|/2) arising from screened interactions and po-

larization effects, and exploding Boltzmann factors exp(−βE(0)
Np,Ne

) arising from the contribution

of bound entities with groundstate energy E
(0)
Np,Ne

< 0 in cluster partition functions. In the Saha

regime, namely T → 0 with γ fixed, the order of a given contribution is determined by subtle

inequalities involving E
(0)
Np,Ne

and EH. The leading contributions to density ρ are easily identified

as arising from graphs made with single clusters carrying either one particle (one proton or one
electron) or two particles (one proton and one electron), and they are of order exp(−β|EH|). All
the other contributions decay exponentially faster in agreement with the rigorous estimation of
order O(e−cβ) for the full deviation to Saha theory. Accordingly, the corresponding scaled low
temperature (SLT) expansion for the dimensionless density ρ/ρ∗ takes the following mathematical
form [9]

ρ/ρ∗ = γ +
γ2

2
+

∞∑
k=1

γnkhk(β) . (13)

In eq. (13), the leading first two terms are the ideal contributions predicted by Saha theory,
while the sum accounts for the corrections. In each correction with order k, power nk is integer
or half-integer while γnk may be multiplied by logarithmic terms. Furthermore function hk(β)
decays exponentially fast in the zero-temperature limit, hk(β) ∼ exp(−βδk) when β →∞, except
for possible multiplicative powers of β. We stress that expansion (13) is not ordered with respect
to powers of γ, i.e. the nk’s do not necessarily increase with k, but is is ordered with respect to
increasing decay rates, 0 < δ1 < δ2 < ..., of functions hk(β). In other words, instead of γ which
is kept fixed here, the small parameter is built with the temperature which is sent to zero. That
small parameter may be identified with exp(−β|EH|), so the leading low-temperature behavior of
each correction of order k reduces to some positive real power δk/|EH| of that parameter. Notice
that each function hk(β) does not reduce to its leading low-temperature form in general, but it
also involves contributions which decay exponentially faster than exp(−βδk).

The SLT expansion (13) provides an exact relationship between the density and the chemical
potential [recall definition (6) of γ] that is very useful in the Saha regime because the series
converges then rapidly and can be safely truncated. We comment the mathematical form and the
physical content of the first four corrections hk(β) in the next subsection. It will then be shown in
Sct. III how eq. (13) can be used to compute explicitly in the Saha regime any thermodynamical
quantity as function of the natural physical variables ρ and T .

D. First corrections and their physical content

The first four functions hk(β) as well as the corresponding nk’s, k = 1, 2, 3, 4, are explicitely
computed in Ref. [9], where it is also shown that all other hk’s with k ≥ 5 decay faster than
exp(βEH), i.e. δk > |EH | for k ≥ 5. Thus, if we truncate expansion (13) up to order exp(βEH)
included, it is consistent to only retain contributions which are at most of that order, in the first
four hk’s. In the following, we recall the corresponding expressions and we discuss their physical
content.

1. Term k = 1 : plasma polarization around ionized charges

That correction arises from a single cluster with one proton (electron) where dressing many-body
effects on its statistical weight are computed at leading order. This provides the fugacity factor
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exp(βµ) multiplied by the Debye screening factor κ. Accordingly, we find n1 = 1 + 1/2 = 3/2 and
δ1 = −(EH +EH/2−EH) = |EH|/2, once ρ has been expressed in units of temperature-dependent
density ρ∗ ∼ exp(−β|EH|). The precise form of function h1(β) reads

h1(β) =
(β|EH|)3/4

π1/4
exp(βEH/2) , (14)

since Z(1, 0) = Z(0, 1) = 2 for a single proton or a single electron, for which no truncation occurs,
namely [exp(−βH1,0)]TMayer = exp(−βH1,0) and [exp(−βH0,1)]TMayer = exp(−βH0,1).

The present correction accounts for the familiar polarization of the plasma surrounding an ionized
charge. In the litterature, that mechanism was taken into account for the first time in Ref. [45]
through a suitable modification of Saha ionization equilibrium (1). We have checked that the
corresponding correction to Saha theory can be exactly recovered by keeping only the first term
k = 1 in SLT expansion (13).

2. Term k = 2 : formation of molecules and atom-atom interactions

That correction arises from a single cluster made with two protons and two electrons, and from
two interacting neutral clusters where each of them is made with one proton and one electron. At
leading order, dressing collective effects in statistical weights can be neglected, while screening of
interactions between neutral clusters can be also omitted since the corresponding bare interactions
are integrable. Then, power n2 is merely determined by the product of four fugacity factors
exp(βµ), which provides n2 = 4. Function h2(β) reduces to

h2(β) =
1

64
(
2m

M
)3/2Z(2, 2) exp(3βEH) +W (1, 1|1, 1) exp(3βEH) , (15)

where W (1, 1|1, 1) is a suitable trace analogous to expression (11) which now involves two Gibbs
operators exp(−βH1,1) associated with two proton-electron pairs, as well as their bare Coulomb
interactions. Factors exp(3βEH) arise from the product of the four fugacity factors exp(βµ) and the
rewriting of ρ in units of ρ∗. In the zero-temperature limit, the leading contribution in expression

(15) is that of the molecular groundstate in Z(2, 2) with energy EH2 = E
(0)
2,2 . Notice that, because

of inequality 3EH < EH2
< 2EH, function h2(β) indeed decays exponentially fast with the rate

δ2 = |3EH−EH2
| ' 9.1 eV. That inequality ensures that molecules H2 are very scarce in the Saha

regime compared to atoms H, despite they are more stable energetically, Moreover, δ2 is indeed
larger than δ1 = |EH|/2 ' 6.8 eV.

Molecular contributions are embedded in Z(2, 2) which is indeed finite thanks to the trunca-
tion procedure inherited from screening, as well as the short-range part of atom-atom interac-
tions. Long-range atom-atom interactions, including familiar van der Waals interactions, appear
in W (1, 1|1, 1). Notice that, the screened counter terms related to the truncations involved here,
provide contributions to expansion (13) which decay faster than exp(βEH), and they arise in
terms with k ≥ 5. We stress that both molecular formation and atom-atom interactions are prop-
erly taken into account, without any a priori modelizations like in usual chemical approaches.
Here the corresponding contributions are expressed in terms of the associated few-body Coulomb
Hamiltonians, and they naturally emerge through the fundamental quantum mechanisms at work.
In particular, the quantum mechanical operators involved in both Z(2, 2) and W (1, 1|1, 1) auto-
matically and correctly take care of the unavoidable mixing between the contributions from two
interacting atoms on the one hand, and from a single molecule on the other hand.

3. Term k = 3 : atomic excitations and charge-charge interactions

That correction arises from single clusters made with either one or two particles. Contributions
of two-particle clusters are controlled by the product of two fugacity factors exp(βµ) and of two-
body cluster partition functions Z(2, 0), Z(0, 2) and Z(1, 1), while contributions from the one-
particle clusters reduce to one fugacity factor exp(βµ) multiplied by a factor κ2 which accounts
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for polarization effects beyond the Debye mean-field result of order κ. This leads to n3 = 1 + 1 =
1 + 2× 1/2 = 2 and

h3(β) = −1

2
+ [1 +

1

12
ln(

4m

M
)]

(β|EH|)3/2

π1/2
exp(βEH)

+
1

8π1/2
{2Q(xpe) + (

2m

mp
)3/2[Q(−xpp)− 1

2
E(−xpp)]

+ (
2m

me
)3/2[Q(−xee)]− 1

2
E(−xee)]} exp(βEH), (16)

where the two-particle partition functions, Z(2, 0), Z(0, 2) and Z(1, 1) have been rewritten in terms
of Ebeling’s functions Q(x) and E(x) [12] with xpe = 2(β|EH|)1/2, xpp = (2mp/m)1/2(β|EH|)1/2

and xee = (2me/m)1/2(β|EH|)1/2. The groundstate contribution has been extracted from Z(1, 1)
and it provides the leading atomic contribution γ2/2 in (13). Consequently, the leading low-
temperature behavior of h3(β) arises from the contribution to Q(xpe) of the first excited state of
an atom H with energy EH/4, so δ3 reduces to δ3 = −EH/4 + EH = −3EH/4. That decay rate
δ3 ' 10.2 eV is indeed larger than δ2 ' 9.1 eV.

The present correction involves contributions of the atomic excited states, as well as of interac-
tions between two ionized charges. The screened long-range part of such interactions are precisely
the counter terms related to the truncations ensuring the finiteness of Z(2, 0), Z(0, 2) and Z(1, 1),
or equivalently of Ebeling function Q.

4. Term k = 4 : formation of ions and atom-charge interactions

That correction arises from single three-particle clusters, a two-particle cluster interacting with
a one-particle cluster, and a single two-particle cluster dressed by many-body effects. All contri-
butions provide the same power n4 = 3 of γ, as resulting from either the product of three fugacity
factors exp(βµ) or the product of two fugacity factors exp(βµ) times a factor κ2 arising from po-
larization effects, namely n4 = 1 + 1 + 1 = 1 + 1 + 2× 1/2 = 3. The corresponding function h4(β)
reads

h4(β) =
3

64
[(
me(M +mp)

M2
)3/2Z(2, 1) + (

mp(M +me)

M2
)3/2Z(1, 2)] exp(2βEH)

+ S3(1, 1) exp(2βEH) +
3

2
[W (1, 1|1, 0) +W (1, 1|0, 1)] exp(2βEH). (17)

The leading low-temperature behavior of h4(β) arises from the groundstate contribution of ion H+
2

in Z(2, 1), so δ4 = EH+
2
− 2EH ' 11.0 eV which is indeed larger than δ3 ' 10.2 eV.

Several phenomena contribute to the present correction. First, formation of ions H+
2 and H−

are embedded in partition functions Z(2, 1) and Z(1, 2) respectively. Second, contributions of bare
interactions between an atom H and a single ionized charge are described by functions W (1, 1|1, 0)
and W (1, 1|0, 1). Third, function S3(1, 1) accounts for modifications of the atomic groundstate due
to the polarization of the surrounding plasma, beyond the familiar Debye shift.

III. THERMODYNAMICAL FUNCTIONS

A. Chemical potential as a function of density

In physical systems, the natural thermodynamical parameters are the temperature and the
density. Thus, it is quite useful to invert the SLT expansion (13), namely to determine γ(ρ, T ).
Then, by using standard thermodynamical identities, we are able to compute consistently all
thermodynamical quantities as functions of T and ρ. In the present low-temperature limit, the
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inversion can be performed in a perturbative way as follows. First, if we neglect all the exponentially
small corrections embedded in the hk’s, the density reduces to its Saha expression

ρ/ρ∗ = γ +
γ2

2
. (18)

The inversion of that relation, which amounts here to solve a simple second order equation for γ,
gives

γSaha(ρ, T ) = γS(ξ) =
√

1 + 2ξ − 1 with ξ = ρ/ρ∗ , (19)

which is the leading form of γ(ρ, T ) in the Saha regime. The inversion of the full relation (13) is then
achieved by writing γ(ρ, T ) = γSaha(ρ, T ) plus a small correction which is treated perturbatively.
This leads to

γ(ρ, T ) =
√

1 + 2ρ/ρ∗ − 1 +

∞∑
k=1

ak(ρ/ρ∗)gk(β) , (20)

where ak depends only on ξ = ρ/ρ∗, while gk depends only on temperature. The ak’s can be
determined in terms of γS(ξ) and of its derivatives with respect to ξ. Each gk reduces to a
polynomial in the hl’s with 1 ≤ l ≤ k. Thus, the gk’s decay exponentially fast when β →∞, and
they are ordered with respect to increasing decay rates. The first five terms in (20) are

a1 = − γ
3/2
S

1+γS
; a2 = − γ4

S

1+γS
; a3 = − γ2

S

1+γS
; a4 = − γ3

S

1+γS
; a5 =

γ2
S(2γS+3)
2(1+γS)3 (21)

g1 = h1 ; g2 = h2 ; g3 = h3 ; g4 = h4 ; g5 = h2
1 (22)

where γS is given by the simple algebraic function (19) of ρ/ρ∗. All gk’s with k ≥ 6 decay
exponentially faster than exp(βEH).

Similarly to SLT expansion (13), the small parameter in series (20) is the temperature, or
equivalently the exponentially small factor exp(−β|EH|). Now, the fixed parameter is the ratio
ξ = ρ/ρ∗ which can take arbitrary values. The corresponding expansion of chemical potential
µ straightforwardly follows by inserting series (20) into relation (6). Other thermodynamical
functions can be expanded in a similar way by using thermodynamical identities, as explicited
further for pressure and internal energy.

B. Pressure

We start from the standard relation in the grand canonical ensemble which expresses the density
as the derivative of the pressure with respect to the fugacity z = exp(βµ). According to the
variable change defined through relation (6), that identity can be rewritten as

ρ =
γ

2

∂βP

∂γ
(23)

where the partial derivative is taken at fixed β. Replacing ρ by its SLT expansion (13) into the
r.h.s. of identity (23), we easily obtain

βP/ρ∗ = 2γ +
γ2

2
+

∞∑
k=1

2γnk

nk
hk(β) , (24)

where we have used that ρ∗ depends only on β, while βP/ρ∗ vanishes for infinite dilution, namely
for γ = 0. Replacing each factor γ by the SLT inverted series (20), we recast expression (24) as
the SLT expansion of the pressure at fixed ratio ρ/ρ∗, namely

βP/ρ∗ = βPSaha/ρ
∗ +

∞∑
k=1

βPk/ρ
∗ . (25)
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The leading term is nothing but we the well-known Saha pressure (3) in units of ρ∗. The general
structure of the kth correction reads

βPk/ρ
∗ = bk(ρ/ρ∗)αk(β) . (26)

where αk is a polynomial in the hl(β)’s with l ≤ k. Therefore, for a fixed ratio ρ/ρ∗, corrections
βPk/ρ

∗ decay exponentially fast when β →∞, while the corresponding decay rates increase with
k. The functions (bk(ρ/ρ∗), αk(β)) involved in the first five corrections read

b1 =
γ
3/2
S (γS−2)

3(1+γS) ; b2 = −γ
4
S(γS+3)
2(1+γS) ; b3 = − γ2

S

1+γS
; b4 = −γ

3
S(γS+4)
3(1+γS) ; b5 =

γ2
S(2−γ2

S)
2(1+γS)3 (27)

α1 = h1 ; α2 = h2 ; α3 = h3 ; α4 = h4 ; α5 = h2
1 , (28)

while next correction βP6/ρ
∗ decays faster than exp(βEH).

C. Internal energy

In the grand canonical ensemble and for a finite volume Λ, we set 〈N〉 = (〈Np〉+ 〈Ne〉)/2 for the
average common number of protons and electrons. Then we define in the thermodynamic limit, the
internal energy per particles pair u = limTL U/〈N〉. Standard thermodynamical identities provide
the relation

u =
∂

∂β
(2βµ− βP

ρ
) , (29)

where the partial derivative with respect to β is taken at fixed density ρ. Inserting into identity
(29) the expression (6) of the chemical potential in terms of γ and β, we find

u =

(
2− βP

ρ

)
EH +

3P

2ρ
+ 2

∂

∂β
ln γ − ρ∗

ρ

∂

∂β

βP

ρ∗
, (30)

where we have also used

∂

∂β
ρ∗ = (EH − 3kBT/2)ρ∗ (31)

inferred from definition (2) of ρ∗. The insertion of expansions (20) and (25) of γ and βP/ρ∗ into
relation (30) provide the corresponding SLT expansion of u. The partial derivatives with respect to
β give rise to functions h′k(β) = dhk/dβ, which decay exponentially fast at low temperatures with
the same decay rates as the hk(β)’s. Moreover, since ρ∗ depends on β, coefficients ak(ρ/ρ∗) and
bk(ρ/ρ∗) also provide contributions to the partial derivatives with respect to β at fixed ρ. After
straightforward algebraic calculations, we eventually obtain

u = uSaha +

∞∑
k=1

uk (32)

with

uSaha = (1 + γSξ
−1)3kBT/2 + (1− γSξ

−1)EH , (33)

and

u1 = −γ1/2
S (1 + γS)−1

[
(1 + γSξ

−1)kBT + 2(1− γSξ
−1)EH

]
h1(β), (34)

u2 = −γ4
Sξ
−1h′2(β)/2 + γ3

S(1 + γS)−1(1 + γSξ
−1/2)(EH − 3

2kBT )h2(β), (35)

u3 = −γ2
Sξ
−1h′3(β) + γ2

Sξ
−1(1 + γS)−1(EH − 3

2kBT )h3(β), (36)

u4 = −2γ3
Sξ
−1h′4(β)/3 + 2(1 + γSξ

−1)γ2
S(1 + γS)−1(EH − 3

2kBT )h4(β)/3, (37)

u5 = (1 + γS)−3
(
3ξ kBT + γ2

S(3γS + 4)(2 + γS)−1EH

)
[h1(β)]2. (38)
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Expression (33) of Saha internal energy can be easily interpreted as follows. Let xid
p = ρid

p /ρ,

xid
e = ρid

e /ρ and xid
at = ρid

at/ρ be the respective molar fractions of ionized protons, ionized electrons
and hydrogen atoms. We can rewrite formula (33) as

uSaha = (xid
p + xid

e )3kBT/2 + xid
at(EH + 3kBT/2), (39)

so each ionized charge does provide a classical kinetic contribution 3kBT/2, while each atom
does provide the kinetic contribution 3kBT/2 associated with motion of its mass center plus the
groundstate energy EH, as it should. Notice that the low-temperature behavior of corrections (35)
and (37) can be similarly interpreted in terms of the contributions of molecules H2 and ions H−,
H+

2 respectively.

Other equilibrium quantities can also be derived from previous expansions via thermodynamical
identities, like the specific heats, or the isentropic compressibility which determines the sound
speed. Such derivations are of course consistent within the general framework of thermodynamics:
a given quantity can be computed following different routes which all do lead to the same expression.

IV. REPRESENTATIONS OF TEMPERATURE-DEPENDENT FUNCTIONS

For practical applications of SLT expansions, we need simple representations of functions hk(β)
at finite temperatures. Though asymptotic low-temperature behaviors of such functions are ex-
actly known for k = 1, 2, 3, 4, explicit analytic expressions at finite temperature are available only
for h1(β) and h3(β), thanks to our exact knowledge of the whole spectrum of two-body Coulomb
Hamiltonians (see Section IV A). For functions h2(β) and h4(β), we construct simple approxima-
tions which are expected to be sufficiently accurate for temperatures up to 30000 K (see Section
IV B). Eventually, we provide the corresponding numerical tables and plots for all those functions.

A. Analytical expressions for one- and two-body functions

Function h1(β) is given by the simple formula (14) which reduces to an elementary function
of dimensionless parameter βEH. Function h3(β) is given by expression (16) in terms of Ebeling
virial functions Q(x) and E(x), which have been widely studied in the literature. In particular,
entire series expansions in powers of x have been derived [46], [47],

Q(x) = −1

6
x−
√
π

8
x2 − 1

6
(
C

2
+ ln 3− 1

2
)x3 +

∞∑
n=4

qnx
n, qn =

√
π

ζ(n− 2)

2nΓ(n2 + 1)
(40)

where C = 0.57721... is the Euler-Mascheroni constant and ζ(s) is Riemann’s function, while

E(x) =
1

2
+

√
π ln 2

4
x2 +

π2

72
x3 +

∞∑
n=4

enx
n , en =

√
π(1− 22−n)

ζ(n− 1)

2nΓ(n2 + 1)
(41)

with x replaced by either xpe = 2(β|EH|)1/2, −xpp = −(2mp/m)1/2(β|EH|)1/2 or −xee =

−(2me/m)1/2(β|EH|)1/2. Since x is proportional to 1/
√
T , such series can be viewed as high-

temperature expansions. A controversy has arisen recently on eq. (40), with Kraeft [48] and
Kremp, Schlanges and Kraeft [14] maintaining that no linear term −x/6 should be present. Start-
ing from the definition of function Q(x) [see for instance eq. (7.1) in ref. [24]], one can calculate
quite easily its high-temperature behavior by using the Feynman-Kac representation [49] of the
density matrix 〈

r|e−βh|r
〉

=
1

(2πλ2)3/2

∫
D(ξ) eβe

2
∫ 1
0

ds v(|r+λξ(s)|) , (42)

where h is the Hamiltonian of a particle of mass m in the attractive Coulomb potential −e2/r
and ξ(s) is a Brownian bridge distributed according to the Wiener measure DW (ξ). At high
temperatures, the exponential can be linearized, and a straightforward calculation confirms that
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FIG. 1. Plot of Ebeling direct and exchange functions Q(x) and E(x).

the leading behavior is indeed given by Ebeling’s result −x/6. Asymptotic large-x, i.e. low-
temperature, expansions read

Q(x) = 2
√
π

[ ∞∑
n=1

n2

(
ex

2/(4n2) − 1− x2

4n2

)
− x2

8

]
− x

3

6
(lnx+2C+ln 3− 11

6
)− x

12
− 1

60x
+O(

1

x3
)

(43)
for x > 0 (attractive case), and

Q(x) = −x
3

6
(ln |x|+ 2C + ln 3− 11

6
)− x

12
− 1

60x
+O(

1

x3
) (44)

for x < 0 (repulsive case). When x → −∞, a semi-classical calculation [50] shows that exchange
function E(x) decays exponentially fast as

E(x) ' 4√
3π
|x| exp

(
−3

2
(π2x

2

2
)1/3

)
. (45)

As far as numerical calculations are concerned, high-temperature series (40) and (41) are quite
useful because their radius of convergence is infinite. When x becomes very large, calculations
using large-x expansions (43), (44) and (45) are of course faster. Those low-temperature expan-
sions can be used in fact to compute h3(T ) from formula (16), up to the Rydberg temperature
|EH|/k '157 800 K since |xab|, for ab = ep, pp, ee, remains larger than 1. Fig. 1 shows a plot of
functions Q(x) and E(x).

Notice that the first sum in the r.h.s. of expression (43) is nothing but the so-called Brillouin-
Planck-Larkin partition function

ZBPL(T ) =

∞∑
n=1

n2

(
e−βEH/n

2

− 1 +
βEH

n2

)
, (46)

which was introduced in the 30’s on the basis of heuristic arguments as discussed in Refs. [51], [52].
It turns out that Q(xpe) = Q(T ) may be approximated by ZBPL(T ) if the temperature is not too
high [51, 53]. Notice that the leading asymptotic behavior of Q(T ) and ZBPL(T ) are identical

as T → 0, whereas one has Q(T ) ∼ 1/
√
T versus ZBPL(T ) ∼ 1/T 2 at high temperatures. The

quality of that approximation, and of two even simpler approximations, is shown in Fig. 2. The
relative error when approximating Q(T ) by ZBPL(T ) is less than 3% for T ≤ 25 000 K, while it
reaches 30% at 50 000 K. Truncating the sum in ZBPL(T ) at n = 1 provides actually a better
approximation that exhibits an accuracy of 8% at 50 000 K (see Fig. 2). The latter approximation
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FIG. 2. Comparison of the Brillouin-Planck-Larkin partition function (red dashed curve) to the exact
virial function Q(xpe(T )) (black line) for temperatures up to 100 000 K. Truncating the sum in ZBPL after
the first term yields a quite good approximation (dot-dashed curve). The dotted line (constant value 1)
corresponds to keeping only the groundstate contribution exp(−EH/kT ).

is quite successful because contributions from diffusive states and from terms associated with
screening effects in Q(T ), more or less cancel out the contributions from excited bound states at the
considered temperatures. We stress that our further calculations do not use those approximations,
but the exact expressions for Q(x) recalled earlier.

B. Simple approximations for three- and four-body functions

Because of our rather poor knowledge of the whole spectrum of three- and four-body Coulomb
Hamiltonians, closed analytical expressions for h2(β) and h4(β) cannot be derived at the moment.
So here, we proceed to simple estimations of those functions, inspired by the above considerations
on Z(1, 1), which should work reasonably well in the temperature range considered here.

1. Case of h2(β)

The relative importance of the contributions of the various operators involved in [exp(−βH2,2)]TMayer,

the trace of which defines partition function Z(2, 2), can be readily estimated by using the ground
state energies of Hamiltonians H2,2, H2,1, H1,2, H1,1, H1,0 and H0,1. Up to 30000 K, it is suf-
ficient to retain only contributions from exp(−βH2,2) and from subtracted operators involving
exp(−βH1,1) exp(−βH1,1). All other combinations of Gibbs operators associated with products
of molecular dissociation different from two atoms, like exp(−βH1,0) exp(−βH1,2) associated with
(p,H−) or exp(−βH0,1) exp(−βH2,1) associated with (e,H+

2 ), can be safely neglected. After adding
to Z(2, 2) the contribution of W (1, 1|1, 1) in the expression (15) of h2(β), we find that terms which
involve imaginary-time evolutions of Vat,at, V

2
at,at and V 3

at,at cancel out. This provides a simple
estimation of h2(β) as arising entirely from operator [exp(−βH2,2)− exp(−βH1,1) exp(−βH1,1)].

Similarly to the case of Z(1, 1), in the considered temperature range, the main contributions from
[exp(−βH2,2) − exp(−βH1,1) exp(−βH1,1)] can be reasonably expected to arise from the lowest-
energy molecular boundstates. In addition, we describe such states within the familiar picture
where the electrons are in their groundstate, while global rotations and vibrations of the molecule
are taken into account within a rigid-rotator model and an harmonic oscillator respectively. This
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H H− H2 H+
2 H−

2 H+
3

E(0) -0.5 −0.527733147 −1.164663172 −0.597139063 −1.048274 −1.323± 0.002

T (rot)

/ /
85.26 41.87 50.42

(not useda)
T (vib) 5986.98 3150.78 2228.32
Ref. [57] [58] [59] b [60]

a for the ro-vibrational partition function of H+
3 , see Ref. [56].

b calculated by V. Robert using a Coupled Cluster (CCSD(T)) approach including an extended basis set for
hydrogen atoms (4s3p2d1f).

TABLE I. Spectroscopic data of some hydrogen bound states: ground-state energy E(0) (in atomic units)
and rotational/vibrational temperatures (in K). The values do not include relativistic nor radiative cor-
rections.

leads to the approximation

h2(β) '
√

2m3/2

32M3/2
ZH2 exp(3βEH) , (47)

where the molecular partition function ZH2 factorizes into [54]

ZH2
= exp(−βEH2

)Z
(rot)
H2

Z
(vib)
H2

(48)

with the vibrational part

Z
(vib)
H2

=
1

1− exp(−βε(vib)
H2

)
(49)

and the rotational part

Z
(rot)
H2

=

[ ∞∑
l=0

(4l + 1) exp(−2l(2l + 1)βε
(rot)
H2

) + 3

∞∑
l=0

(4l + 3) exp(−(2l + 1)(2l + 2)βε
(rot)
H2

)

]
. (50)

In formula (50), the first sum runs over rotational states of para-hydrogen and the second sum

over rotational states of ortho-hydrogen. The energy quanta ε
(vib)
H2

= kBT
(vib)
H2

and ε
(rot)
H2

= kBT
(rot)
H2

associated to proton vibrations and global rotations are listed in Table I. We recall that the
rotational partition function reduces to the classical result

Z
(rot)
H2

∼ 2T

T
(rot)
H2

(51)

when T � T
(rot)
H2

. Notice that more precise descriptions of the lowest-energy excited states of
H2, which do not neglect rotation-vibration coupling as the rigid rotor approximation (48), are
available in the literature [55], but are not required for our purpose.

Approximation (47) can be viewed as a suitable extrapolation of the the exact low-temperature
behaviour of h2(β), which includes both leading and sub-leading terms. Up to 30000 K, contribu-
tions of electronic excitations can be omitted because the corresponding energy gaps are of order
10 eV at least. Moreover, and similarly to the case of Z(1, 1), either diffusive states like those
associated with the dissociation of the molecule into two atoms, or substracted terms involved in
the truncated operator [exp(−βH2,2)]TMayer like exp(−βH1,1) exp(−βH1,1), provide contributions
which can be safely neglected in that relatively low-temperature range. As detailed in Appendix
A, this has been checked within a simplified model which is oftenly used for describing the energy
levels of the molecule H2 [? ].
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2. Case of h4(β)

Function h4(β), defined by formula (17), can be approximated within a construction similar to
the above derivation for h2(β). This provides

h4(β) ' 3m
3/2
e (M +mp)3/2

64M3
ZH+

2
exp(2βEH) +

3m
3/2
p (M +me)3/2

64M3
ZH− exp(2βEH)

+
cat

8π3/2(β|EH|)1/2
exp(2βEH) , (52)

which is the analog of expression (47) for h2(β). Here, internal partition functions for ions H+
2 and

H−, which arise from Z(2, 1) and Z(1, 2), read

ZH+
2

= 2 exp(−βEH+
2

)Z
(rot)

H+
2

Z
(vib)

H+
2

(53)

and

ZH− = 2 exp(−βEH−) , (54)

where the required spectroscopic data are given in Table I, while the contribution of S3(1, 1) exp(2βEH)
has been replaced by its low-temperature form with constant cat ' 10.065 [9].

Similarly to formula (47), approximate expression (52) incorporates both leading and sub-leading
contibutions to the low-temperature representation of h4(β). A similar accuracy for that approx-
imation can be reasonable expected up to a few thousands Kelvins, where ionic groundstate con-
tributions dominate. However, when temperature is increased up to 30000 K, approximation (52)
becomes surely less accurate than its counterpart (47) for h2(β). Indeed, the binding energies of
ions H+

2 and H− are of order 2.6 eV and 0.7 eV respectively, so contributions of all terms which
arise either from diffusive states, or truncations defining Z(2, 1) and Z(1, 2), or interactions in-
volved in W (1, 1|1, 0) and W (1, 1|0, 1), can no longer be neglected for T > 10000 K. Nevertheless,
the accuracy of approximation (52) should be sufficient for our purpose, because contributions to
thermodynamics associated with h4(β), remain quite small in the considered density-temperature
range.

C. Numerical values and plots

Using the exact representations for h1(β) and h3(β), as well as the approximate forms of h2(β)
and h4(β), we can compute those functions easily and quickly. The corresponding plots, in loga-
rithmic units, are shown in Fig. 3, while numerical values at some specific temperatures are given in
Table II. Functions h2(β) and h4(β) are computed only up to 30000 K, because their approximate
expressions introduced in Sct. IV B are expected to become inaccurate at higher temperatures.

T [K] h1(β) h2(β) h3(β) h4(β)

2,000 1.46 · 10−16 2.89 · 10−28 3.99 · 10−26 1.00 · 10−31

6,000 1.70 · 10−5 2.73 · 10−12 6.08 · 10−9 3.01 · 10−12

10,000 2.23 · 10−3 7.40 · 10−9 2.11 · 10−5 4.94 · 10−8

20,000 6.84 · 10−2 5.12 · 10−6 8.09 · 10−3 9.26 · 10−5

30,000 1.88 · 10−1 6.41 · 10−5 4.24 · 10−2 1.35 · 10−3

TABLE II. Numerical values of functions hk(β) (k = 1, 2, 3, 4) at different temperatures.

At low temperatures, all functions are positive and increase monotonously with T up to 30 000 K.
Function h3 changes sign near 90 000 K, while a change of sign in functions h2 and h4 might also
happen at temperatures above 30 000 K. In function h4, the contributions arising from ions H+

2

and H− have the same order of magnitude, and are much larger than the third contribution in
eq. (52) which accounts for a shift in the atomic ground state. For T < 30 000 K, all functions
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FIG. 3. Plot of functions hk(β). The scale for β is in Rydberg.

remain quite small in relation with their exponential decay in the zero-temperature limit. The
hierarchy h1(β) � h2(β) � h3(β) � h4(β) is satisfied at very low temperature, in agreement
with the ordering of the corresponding low-temperature decay rates δ1 < δ2 < δ3 < δ4. When
the temperature is increased, the relative differences between those functions are reduced. In
particular, h3 overcomes h2 near 1000 K, and h4 overcomes h2 near 5900 K.

The ordering of the hk functions is connected to the relative importance of the corresponding
corrections to the ideal Saha equation in the SLT limit T → 0. At finite temperature and density,
the ordering of the various corrections can differ from the low-temperature ordering, not only due
to the temperature dependence of the hk functions, but also because those corrections involve also
functions of ratio ρ/ρ∗ which depends on both temperature and density as shown by formula (26).
For instance, the corrections associated with h2 describing molecular formation and atom-atom
interactions, will dominate in a sufficiently dense atomic phase, despite that function h2 is much
smaller than h1 (see section V A).

V. COMPARISONS TO OPAL TABLES AND PIMC DATA

We compute numerically the various corrections to the ideal Saha equation of state that appear
in the SLT expansion of the pressure [eq. (25)] and of the internal energy [eq. (32)], and compare
the predictions to the most accurate current tabulations of those thermodynamical functions. The
present calculations correct[2] and complement the initial results for the pressure published in
ref. [61].

A. General properties of the isotherms

We start by studying general properties of isotherms that follow from the structure of the terms
in SLT expansion (25). Along a given isotherm, the various corrections to Saha pressure depend on
the ratio ρ/ρ∗ where the crossover density ρ∗ is kept fixed. Because of the non-linear dependence
in ρ/ρ∗ of coefficients bk(ρ/ρ∗), their relative importance changes drasticaly from low densities
ρ � ρ∗ to high densities ρ � ρ∗. For ρ � ρ∗, each bk(ρ/ρ∗) can be expanded in powers of
ρ/ρ∗, as well as Saha pressure (3) itself. This leads to the well-kown virial expansion of βP in
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powers of ρ at fixed T [12, 24, 46, 62, 63], as shown in Ref. [64]. The corresponding leading term
entirely arises from Saha pressure and describes full ionization of the plasma. First correction of
order ρ3/2, entirely provided by βP1, is the familiar Debye contribution for a classical plasma of
ionized protons and electrons with density ρ. Saha pressure (3), βP3 and βP5 contribute to second
correction of order ρ2, which accounts for atomic recombination as well as two-body interactions
between ionized charges. Ionic contributions embedded in βP4 are of order ρ3, while molecular
ones embedded in βP2 are of order ρ4, in agreement with the numbers of protons and electrons
involved in ions H+

2 , H− and molecule H2.

For ρ of order ρ∗, beyond the leading contribution of Saha pressure (3), the ranking of the various
corrections is essentially that of temperature-dependent functions hk(β). However, notice that the
a priori first correction βP1 vanishes at ρ = 4ρ∗ and becomes positive for ρ > 4ρ∗. Therefore,
βP1 reduces to the familiar Debye contribution βPDebye = −κ3/(24π) only in the fully ionized
region ρ� ρ∗, while its structure becomes quite different in the atomic region ρ > ρ∗ as a subtle
consequence of recombination processes. In the region close to ρ = 4ρ∗, the first correction to Saha
pressure is then given by βP3 as illustrated below.

For ρ � ρ∗, Saha pressure reduces to the ideal pressure of an atomic gas with density ρ since
almost all charges are recombined. According to the large-ρ/ρ∗ behavior of coefficients bk(ρ/ρ∗), the
first correction to Saha pressure is now given by βP2 which describes both molecular recombination
and atom-atom interactions. Since it increases as ρ2, that correction would overcome Saha pressure
at sufficiently high densities. In fact, and as discussed further, this provides an upper density for
the validity of SLT expansion. Notice that if βP4 also increases faster than βPSaha ∼ ρ, i.e. as ρ3/2,
all other considered corrections increase slower than ρ. This can be easily interpreted by noting
that such corrections, namely βP1, βP3 and βP5 are related to the presence of ionized protons and
electrons which tend to disappear at high densities.

The previous analysis of the behavior of the pressure along a given isotherm is summarized in
Table III. Similar results hold for the behavior of the internal energy per particle given by its SLT
expansion (32) together with the expressions (33-38). In particular, at low densities, we find that
the first correction to the classical thermal energy 3kBT of the fully ionized plasma is indeed the
Debye contribution which arises entirely from u1. For densities ρ � ρ∗, u2 becomes the leading
correction to uSaha, since it increases as ρ while u4 grows only as ρ1/2, u3 tends to a constant and
both u1 and u5 vanish. If we replace h′2(β) by its low-temperature form (3EH −EH2

)h2(β), while
we introduce the molar fraction of molecules H2 defined by xid

H2
= ρid

H2
/ρ, the sum of leading and

subleading contributions in (32) can then be rewritten as

(xat + xid
H2

)
3kBT

2
+ xatEH + xid

H2
EH2 , (55)

where molar fraction xat of atoms H accounts for the partial recombination of protons and electrons
into molecules H2, i.e xat = xid

at − 2xid
H2

. Expression (55) shows that, for kBT � |EH| and ρ� ρ∗,
the system reduces to an ideal mixture, made of a small fraction of molecules H2 diluted in a gas
of atoms H, in their molecular and atomic groundstates respectively.

Density First correction Physical origin
ρ� ρ∗ βP1 Debye plasma polarization
ρ ' ρ∗ βP3 (e,p)-interactions/excited H-states
ρ� ρ∗ βP2 H2/(H,H) interactions

TABLE III. First correction to ideal Saha pressure along a low-temperature isotherm.

B. Isotherms at a few thousands Kelvins

Because of the relatively large value of temperature scale |EH|/kB ' 150000K and of the oc-
currence of exponentially decaying factors, crossover density ρ∗ is extremely small below a few
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thousand Kelvins. For instance, at T = 300K, we find ρ∗ ' 3.4× 10−204 m−3, which corresponds
to tremendously diluted conditions that are not physically accessible. This means that a stable
partially ionized atomic phase, which exists when ρ is of the order of ρ∗, cannot be realized in
practice for hydrogen at such low temperatures. For instance, under the standard conditions of
Earth atmosphere, density ρ ' 1026 m−3 is so large with respect to ρ∗ that SLT expansion breaks
down, due to correction βP2 being too large, in agreement with the emergence of molecules H2

as the most important species. Even at T = 2000 K, ρ∗ = 6.1 × 10−9 m−3 still corresponds
to quite diluted conditions. Interesting physical systems with similar temperatures in the range
1000 K < T < 2000 K are the atmospheres of Brown Dwarfs. The corresponding densities lie in
the range 1025 m−3 < ρ < 1027 m−3, so they are too large compared to the corresponding ρ∗’s for
using SLT expansions. In fact, like for Earth atmosphere, hydrogen is there essentially recombined
into molecules. Thus, we will not consider isotherms below T = 2000 K within SLT expansions,
because the corresponding density ranges of validity do not correspond to known physical systems
of interest. We note that the standard virial expansion cannot provide as well any useful informa-
tion on the hydrogen gas when T < 2000 K, for the very same reason that the fully ionized phase
is not thermodynamically stable at low temperatures for physically accessible densities.

When T increases up to a few thousands Kelvins, atomic crossover density ρ∗ reaches higher
values which are encountered in some systems. For fixing ideas, we consider isotherm T = 6000 K
which is typical of Sun photosphere, and for which ρ∗ ' 2.12 × 1015 m−3. In Fig. 4, we plot
deviation δP = P − PSaha along that isotherm in the range 109 m−3 < ρ < 1027 m−3, where δP
does not exceed a few per cent of PSaha. When ρ/ρ∗ ≤ 105, the dominant contribution is due to the
polarization of the plasma around ionized charges, embedded in correction P1. For ρ/ρ∗ ≤ 10−2,
that contribution is negative and reduces to the familiar Debye expression −κ3/(24π) that appears
in the virial expansion. At ρ/ρ∗ = 4, correction P1 changes sign, as seen on expression (28) for
coefficient b1(ρ/ρ∗). The plasma-polarization correction is thus not given at high densities by the
Debye formula with a modified Debye length computed with the density of ionized charges, as it
could naively be expected in a phenomenological approach. At densities ρ/ρ∗ ≥ 105, molecular
contributions embedded in term P2 become the most important correction, as expected at high
densities. Since the formation of molecules reduces the pressure, δP then becomes again negative.
When ρ/ρ∗ ≥ 1011, the SLT expansion fails to converge because molecular recombination cannot
be treated perturbatively anymore.

Contributions of first excited atomic state, embedded in correction P3, and contributions of ions
H+

2 , H− embedded in P4, are essentially negligible along the whole isotherm. For completeness,
we mention that it’s only near the special density 4ρ∗ that P3 turns out to provide the dominant
correction, while P4 is the dominant correction near the density 105ρ∗ where corrections P1 and
P2 compensate each other and where P3 is negligible since there are almost no ionized charges. At
these special densities, the deviation to the Saha pressure is about 10−9.

We can compare our results to those of the OPAL tables [4], which are shown as crosses in Figs. 4.
A very good agreement is found for densities ρ/ρ∗ > 104. At lower densities, the discrepancies are
certainly due to the fact that extracting a deviation to Saha pressure from the OPAL tables is a
difficult task when the deviation is of the order of 10−6. Indeed, the values in the OPAL tables are
given with at most six digits, and a slight difference in the values of the fundamental constants,
like in the ground-state energy EH, can induce a small variation of the Saha pressure PSaha that
is comparable to the deviation δP = P − PSaha itself.

A change of sign of δP is observed in the OPAL EOS around density ρ/ρ∗ ' 105 at 6 000 K, in
agreement with our SLT EOS: this sign change is induced by negative contributions in P2 associated
with molecular recombination overcoming the plasma polarization correction P1. Notice that the
non-trivial variations of δP with two sign changes are enlighten by simple physical interpretations
within our approach. At the point with density ρ ' 1.47×1023 m−3 typical of the Sun photosphere
shown in Figs. 4, electrons and protons are almost fully recombined into hydrogen atoms since

ρ � ρ∗, and the various corrections to Saha pressure, which is itself close to P
(id)
at , are given

in Table IV. The full pressure is below P
(id)
at because of molecular recombination. Moreover,

contributions of ions H+
2 and H− are still smaller than the positive polarization contribution due

to the ionized protons and electrons despite their dilution is quite large. Such subtle effects cannot
be anticipated nor accurately described with phenomenological approaches.
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FIG. 4. Logarithmic plot of deviations to Saha pressure for pure hydrogen along isotherm T = 6 000 K.
(ρ∗ = 2.12 × 1015 m−3). Crosses correspond to tabulated points of the OPAL equation of state [4] (with
corrected ground-state energy [36]).

Pressure
βPSaha/ρ 1 + 1.70 · 10−4

βP1/ρ 1.04 · 10−7

βP2/ρ −3.79 · 10−4

βP3/ρ −1.03 · 10−12

βP4/ρ −2.36 · 10−8

βP5/ρ −2.44 · 10−14

TABLE IV. Pressure at typical temperature and density of Sun photosphere.

C. Isotherms between ten and thirty thousands Kelvins

We consider various isotherms above T = 10000 K up to T = 30000 K. The corresponding δP ’s
are plotted in Fig. 5, while the respective values of ρ∗ are given in Table V. The OPAL values of δP
are shown moreover on the plots with symbols. As discovered in ref. [36], the OPAL tables were
computed using the value EH = 1 Ry ' −13.60569 corresponding to an infinitely heavy nucleus,
instead of the correct value EH = −me4/(2~2) ' −13.59829 eV. That inaccuracy in EH induces
variations of the Saha pressure that can be larger by an order of magnitude than the deviation δP
itself for state points in the cross-over region between the ionized and atomic phases. The OPAL
deviations δP shown in all figures of the present paper were determined by subtracting from the
OPAL values the ideal pressure PSaha computed with EH = 1 Ry.

At the low temperatures 10 000 K and 15 000 K, we find excellent agreement between our analyt-
ical SLT EOS and the tabulated OPAL EOS in the considered density range. A small discrepancy
is observed only for the last highest-density point on each of these two curves. This discrepancy
at high density (massic density 0.1 g/cc) and low temperatures is due to the fact that the system
is close to being in a molecular phase.

At low densities ρ/ρ∗ < 1, the agreement between both equations of state is also excellent, even
at rather high temperatures. We note that the deviation δP is dominated in that region by the
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Debye plasma polarization correction P1. Although that correction changes sign at ρ/ρ∗ = 4,
deviation δP changes sign, for isotherms with T > 10 000 K, at a density ρ/ρ∗ slightly higher than
4 because of negative contributions arising from correction P3, which describes excited atoms and
charge-charge interactions.

We observe in Fig. 5 discrepancies in region ρ/ρ∗ ' 102 and T ≥ 20 000 K. Those discrepancies
are due to the negative corrections P2 and P4 which shrinks more strongly, in our calculations, the
region where deviation δP is positive than in the OPAL EOS. We note that those corrections may
be somewhat overestimated since we computed in the present work an approximation to functions
h2 and h4 in which only molecular and ionic bound state contributions are kept. The discarded
truncation terms in h2 can provide positive contributions at high temperatures, which describe in
particular atom-atom interactions. An accurate calculation of functions h2 and h4 at temperatures
higher than 20 000 K is needed to provide fully reliable results at such temperatures and densities.
Tests have shown that the OPAL deviations δP around ρ/ρ∗ ' 102 are in fact fully explained by
retaining solely the Debye plasma polarization effect P1.

10-6 10-4 10-2 100 102 104 106 108

 ρ/ρ∗

10-5

10-4

10-3

10-2

10-1

   
   

   
   

   
   

   
   

   
  |
δ

P 
| /

(ρ
kT

)

15 000 K

10 000 K

20 000 K
25 000 K
30 000 K

FIG. 5. Logarithmic plots of deviations to Saha pressure along isotherms from 10 000 K up to 30 000 K
according to the SLT EOS (solid and dashed lines) and to the tabulated OPAL EOS (symbols).

T [K] ρ∗ [m−3] ρ∗ [g/cc]

10000 1.69× 1020 2.83× 10−10

15000 5.98× 1022 1.00× 10−7

20000 1.28× 1024 2.14× 10−6

25000 8.65× 1024 1.54× 10−5

30000 3.26× 1025 5.45× 10−5

TABLE V. Atomic recombination density ρ∗ in m−3 and in g/cc at various temperatures.

Deviations δu = u − uSaha of the internal energy per proton are shown along several isotherms
in Fig. 6. The variations of δu at temperatures up to 10 000 K are fully controlled by the two
terms u1 and u2. At low densities (ρ/ρ∗ � 1), the plasma polarization term u1 is dominant and
negative. That correction changes sign when the condition

ρ

ρ∗
= 4ε

1 + ε

(1− ε)2
, ε =

kT

2|EH |
(56)



22

is met, as can be seen from eq. (34). At high densities (ρ/ρ∗ ' 104), δu becomes negative again
because the term u2 becomes dominant and the formation of molecules indeed lowers the energy.
When T > 10 000 K, term u3 comes into the game and has the effect of enlarging the domain
where the deviations δu are positive, similarly to the case of the pressure deviations δP .
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FIG. 6. Deviations to Saha internal energy for isotherms between 10 000 K and 30 000 K according to the
SLT EOS. Points of the (corrected) OPAL EOS are shown by symbols (up to density 0.1 g/cc).

D. Low density isochores

A plot of pressure deviations δP along two low-density isochores is displayed in Fig. 7 for
temperatures between 2000 K and 100 000 K. The predictions of the OPAL tables, which are
available for many temperature points, are also shown in those plots. At very low densities (isochore
10−8 g/cc), our calculations agree very well with the OPAL tables. When the temperature is high,
the system is fully ionized and the dominant correction to Saha pressure arises from the Debye
plasma polarization correction P1 which behaves as −κ3/(24π) ∝ T−3/2 when T → ∞. Upon
decreasing the temperature, correction P1, and hence also δP , changes sign when the condition
ρ/ρ∗ = 4 is met. The deviation δP displays a second change of sign at a lower temperature, because
the correction P2 becomes dominant due to the formation of hydrogen molecules in the system.
That correction P2 grows quickly when the temperature is further lowered, and a point is reached
where P2 is not a small correction anymore. This signals the formation of the molecular phase,
which is outside the scope of the present calculations. Since the pressure of the ideal molecular gas
is ρkT/2 and that of the ideal atomic gas is ρkT , the pressure deviation |P −PSaha|/(ρkT ) should
tend to 0.5 at low temperatures and low densities, as is indeed observed for the OPAL deviations
in Fig. 7.

Along isochore 10−3 g/cc shown in Fig. 7, we can observe some discrepancies between our
predictions for the deviations δP and those of the OPAL tables. When T < 10 000 K, the differences
are due to the formation of the molecular phase. In region 20 000 < T < 30 000 K, deviation δP
is positive and is somewhat larger in the OPAL tables than predicted by the SLT EOS. In that
region, deviation δP is the result of the sum of the first four SLT terms, with P2 and P4 partially
compensating P1 and P3. While the latter two terms are known exactly, the former two terms
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are currently estimated in our calculations by keeping only molecular and ionic bound states
(see Sct. IV.B). Not surprisingly, accurate calculations of the corresponding functions h2 and h4

in the temperature range 20 000−70 000 K, are required for a fully reliable description. When
T ≥ 80 000 K, the SLT and OPAL predictions coincide. At such high temperatures, the deviation
δP is due to the sum of the SLT terms P1, P3 and P5 associated with ionized protons and electrons,
and it reduces to the predictions of the standard virial expansion.
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FIG. 7. Deviations to Saha pressure along isochores 10−8 g/cc (black line) and 10−3 g/cc (red solid line)
according to the SLT EOS. Crosses correspond to values of the (corrected) OPAL EOS. The dashed line
shows the effect of neglecting term P4 in the SLT EOS.

A low-density isochore of the internal energy is shown in Fig. 8, where the SLT EOS is compared
to other equations of state. At high temperatures, the system is fully ionized and the variations of
the internal energy per proton are mainly controlled by the average thermal kinetic energy 3kT/2
of the particles (dot-dashed line). When the temperature is reduced to 10 000 K, a sharp drop of
the internal energy is observed due to the formation of the atomic phase. Reducing further the
temperature, a second drop in the potential energy occurs when the molecular phase is formed.
Since the SLT EOS accounts perturbatively for all deviations to the ideal Saha equation of state
that describes the transition between the ionized and the atomic phase, its validity domain is limited
at low temperature by the formation of the molecular phase, which is a non-perturbative effect
(see deviations at low temperatures in Fig. 8). On the scale of Fig. 8, the deviations δu = u−uSaha

between the SLT EOS or the OPAL EOS, and the ideal Saha values are almost indiscernible.
Those deviations are shown in Fig. 9 for two isochores, 10−8 and 10−3 g/cc. The agreement on
deviations δu between our analytical calculations and the OPAL tables is impressively good. As in
the case of the pressure isotherms (see Fig. 5), δu changes sign twice: once in the ionized/atomic
transition, when condition (56) is met, and once in the atomic/molecular crossover region. The
only significant disagreement between the SLT and OPAL EOS along the very low density isochore
(10−8 g/cc) occurs at low temperatures due to the formation of the molecular phase, where the
OPAL deviation δu tends to the difference in energy per proton between the atomic and the
molecular phase [log10(EH2

/2 − EH) ' 0.35. Along isochore 10−3 g/cc, rather small differences
are observed only near the two sign changes of δu, similarly to the deviations δP along the same
isochore. Term u5 contributes sensitively to δu only when T ≥ 30 000 K.
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FIG. 8. Internal energy per proton along isochore 10−8 g/cc according to SLT EOS (black line), OPAL
EOS (crosses) and Saha EOS (dashed line). For the difference between the two former and the latter
curves, see Fig. 9. All energies are shifted upwards by |EH2 |/2. The plot shows also curves |EH2 |/2 + 3kT
(red dot-dashed line) and 3kT (dotted line).
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FIG. 9. Deviations to Saha internal energy for isochores 10−8 g/cc (black line) and 10−3 g/cc (red line)
according to the SLT EOS. Crosses denote tabulated points of the (corrected) OPAL EOS.

E. Comparison to PIMC data

Results of quantum Path Integral Monte Carlo (PIMC) simulations of a dilute e-p gas are
available at 6 densities between 10−3 g/cc and 0.15 g/cc and 8 temperatures between 5000 K
and 250 000 K [7] (see state points in Fig. 12). Very low densities, such as 10−6 g/cc as in the
Sun photosphere, are not within reach of PIMC simulations because sufficient statistics cannot
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be collected in very diluted conditions. Fortunately, the SLT expansion converges quickly at such
low densities, and it has been shown in the previous section that the predictions of the SLT EOS
coincide in this regime with those of the (corrected) OPAL tables, if we exclude the molecular
phase which is outside the validity domain of the SLT expansion.

Comparison of our results with the PIMC data is instructive along the moderate density isochore
10−3 g/cc, see Fig. 10. The decrease of the pressure as the temperature is lowered is shown in
plot (a) of Fig. 10, with P varying from 2ρkT at high temperature (fully ionized gas) to ρkT
(atomic gas at around 15 000 K), and eventually down to ρkT/2 (molecular phase). A small
plateau corresponding to the atomic phase can also be identified on plot (b) for the internal
energy, though it is much less visible than on isochore 10−8 g/cc (see Fig. 8). The deviations δP
and δu from the ideal Saha values are shown in plots (a’) and (b’). The various sign changes of
these deviations predicted by the SLT formulae can indeed be observed in the simulations. The
uncertainties of the simulation data at temperatures T ≤ 15 000 K are quite large, especially in
the case of the pressure. Notice that δP/(ρkT ) tends trivially to −1/2 in a dilute molecular phase,
so the simulation data do not contain much information in that regime. In the crossover region
between the atomic phase and the fully ionized phase, the agreement on δP and δu between the
simulation data and the SLT and OPAL equations of state is rather good. In temperature range
10 000−25 000 K, the predictions of the SLT EOS are within the error bars of the PIMC results.
At very high temperatures T > 100 000 K, the PIMC results for the energy deviation δu do not
agree fully with the SLT nor the OPAL EOS. The uncertainties in the simulation results are maybe
underestimated. When T = 62 500 K, and to a lesser extent when T = 31 250 K, the OPAL EOS
agrees slightly better with the PIMC data than the SLT EOS. This might be due to our inaccurate
description of functions h2 and h4 for such temperatures.
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FIG. 10. Pressure (a) and internal energy (b) per electron-proton pair as a function of temperature along
isochore 10−3 g/cc, according to SLT EOS (red line), OPAL EOS (dashed line), and ideal Saha EOS
(dotted line). Points are simulation results of Ref. [7]. Plots (a’) and (b’) show deviations to the ideal
Saha values along the isochore.

In Fig. 11, we compare our results along a denser isochore at massic density 0.0125 g/cc (for
which rs = a/aB = 6), where significant differences between the predictions of the 3 approaches
(SLT EOS, OPAL EOS and PIMC simulations) can be observed, especially in the case of the
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pressure deviations. Disregarding the molecular phase at low temperatures, deviations δP and
δu remain small (less than 10%) along this isochore, so the SLT expansion should still apply.
Since the OPAL EOS agrees quite well with the PIMC data for the energy deviations δu and
the OPAL EOS is thermodynamically consistent, the disagreement on the OPAL pressures with
the PIMC data when T ≤ 30 000 K, i.e. in the crossover region between the atomic and the
molecular phase, indicates probably that the errors on the PIMC pressures are underestimated.
Some disagreement between the OPAL (and SLT) equations of state and the PIMC results is also
observed at 31 250 K and at high temperatures for T ≥ 100 000 K. As for the above lower-density
isochore, some discrepancies between the SLT EOS and the other data might be due to inaccuracies
in the calculation of functions h2(T ) and h4(T ) for temperatures above 30 000 K.
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FIG. 11. Deviations (with respect to ideal Saha values) of pressure (a) and internal energy per electron-
proton pair (b) as a function of temperature along isochore 0.0125 g/cc, according to SLT EOS (red line)
and OPAL EOS (dashed line). Points are simulation results of Ref. [7].

F. Validity domain

As exemplified in the previous sections, truncation of the SLT expansion (25) at k = 5 gives

accurate results as long as the corresponding deviations δP =
∑5
k=1 Pk or δu =

∑5
k=1 uk remain

small compared to their ideal Saha value. The validity of the SLT expansion is limited at high
densities along an isotherm, respectively at low temperatures along an isochore, by the formation
of the molecular phase, where βP2 becomes then larger than PSaha itself. We can estimate the
borderline of the validity domain by introducing the empirical criterion |δP (Tv, ρ)| = PSaha/10. At
high densities, or low temperatures, ρ� ρ∗ so P2 becomes the leading correction in δP . Criterion
|P2|/PSaha = 0.1 then gives

ρc(T ) =
ρ∗(T )

20|h2(T )|
(57)

as a borderline for the validity domain in the (ρ, T ) plane. If the temperature is low, function
h2(T ) behaves as

h2(T ) ∼ 1

64
(
2m

M
)3/2 exp((3EH − EH2

)/(kBT )), (58)

and ρc(T ) reduces to a straight line in the (log ρ, β) plane (see Fig. 12). The curve ρc(T ) defines
quite precisely the borderline of the validity domain in a large part of the phase diagram, as checked
by the comparison with the data of the PIMC simulations. In particular, this is illustrated by the
plots in section IV.E and the state points denoted by crosses in Fig. 12. At a given density, the
SLT expansion converges only for temperatures that are sufficiently high to avoid the formation of
the molecular phase. Some of the lower-temperature state points in the PIMC simulations are for
instance outside of the validity domain of the SLT expansion, while others, like those to the left of
line ρc(T ) in Fig. 12, are within the validity domain. When the density increases, the minimum
temperature required for the SLT expansion to converge also increases. At density 0.1 g/cc, the
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temperature must be higher than 30 000 K. Since the precise behavior of function h2(T ) is currently
not known exactly when T is greater than 30 000 K, the precise position of the borderline of the
validity domain in the region of high densities and temperatures is not fully known yet.

The crossover density ρ∗(T ) [eq. (2)] between the fully ionized and the atomic phase is also
shown in Fig 12. That line gives essentially the borderline of the validity domain of the standard
virial expansion, which holds only in the weakly coupled (Γ� 1) fully ionized phase. The dashed
line in Fig 12 shows state points where the coupling parameter Γ = β2/a is equal to 0.5. That line
lies quite close to ρ∗(T ). In the narrow strip at high densities and temperatures in-between the
lines Γ = 0.5 and ρ∗(T ), the SLT expansion is expected to converge only slowly because Γ is close
to 1 (Γ ≤ 0.7 in that region).

Fig. 12 shows that the SLT expansion provides an accurate analytical knowledge of the ther-
modynamics of the quantum e-p gas in a rather large range of densities and temperatures that
includes the fully ionized phase (ρ � ρ∗), the partially ionized phase (ρ ∼ ρ∗) and the atomic
phase (ρ∗ � ρ < ρc).
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FIG. 12. Phase diagram of a pure hydrogen gas at low densities. The crosses denote state points where
simulation results are available [7]. The crossover density ρ∗(T ) between the plasma and the atomic phase
(dot-dashed line) gives essentially the borderline of the validity domain of the standard virial expansion,
which applies only in the plasma phase. The dashed line corresponds to a plasma coupling parameter
Γ = 0.5. The SLT expansion is valid in both the plasma and atomic phases, up to the blue line ρc(T )
[eq. (57)] which locates the cross-over to the molecular phase. The state point of the Sun photosphere,
and the track of the Sun adiabat (dotted line) are also shown.

VI. CONCLUDING COMMENTS

In this work, we extend the exact analytical knowledge on the thermodynamics of hydrogen at
low densities by deriving the first five terms in the SLT expansion of the internal energy [eq. (32)], a
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result that complements the corresponding expansions for the pressure [eq. (25)] and the chemical
potential [eq. (20)]. Similar expansions for any thermodynamical quantity can be easily derived
without any loss of thermodynamic consistency. We performed also extensive numerical calcula-
tions of isotherms and isochores, and compared in details the predictions of the SLT formulae with
the numerical OPAL EOS and data of PIMC simulations. Our analytical SLT formulae for the
deviations to the ideal Saha law can be evaluated numerically very easily and quickly. As applying
the SLT EOS is straightforward, no extensive tabulation, with the associated loss of accuracy due
to interpolation, is required. A plot and a tabulation of functions hk(β) (k = 1, 2, 3, 4) have been
provided as guide to help the user in applying numerically our formulae.

We emphasize the following points:

� The exact SLT expansion overcomes the restriction ρ� ρ∗(T ) of the standard virial expan-
sion, and has a validity domain that extends up to the density ρc(T ) in the atomic phase
(see Fig. 12).

� At low densities (ρ < 10−5 g/cc), an excellent agreement is found between the predictions of
the SLT EOS for the pressure and the internal energy and the values in the OPAL tables for
pure hydrogen. Notice that if the density is very low, the OPAL tables need to be corrected
as explained in ref. [52]. As several important ingredients in the OPAL EOS, which is
available only in the form of pre-computed tables, are unknown, attempts have been made
to emulate this equation of state [66]. It is very satisfactory to see that the OPAL EOS for
pure hydrogen can be fully reproduced at low densities by our simple analytical formulae.
Furthermore, the physical content of the various corrections of interest is enlighten, as well as
subtle cancellations between some contributions. No PIMC simulation results are available
at such low densities because the statistics becomes poor.

� At higher densities, some small discrepancies can be observed between the SLT EOS, the
OPAL EOS and the simulation results. We plotted the pressure deviations δP = P − PSaha

and the energy deviations δu = u − uSaha to the ideal Saha law to extract the variations
of those thermodynamical quantities that are due to non-ideality. Those deviations δP and
δu show two sign changes, which are also seen in the simulation data and which are fully
explained by our analytical formulae. For densities up to 10−3 g/cc and temperatures up
to 30 000 K, the SLT EOS and the OPAL EOS are both within the error bars of the PIMC
simulations.

� At densities around 10−2 g/cc and above, and for temperatures above 30 000 K, there are
some discrepancies between the deviations, especially δP , calculated from the PIMC data and
those of the SLT and OPAL EOS. In that range of temperatures, our present approximate
expressions for h2(β) and h4(β) are not reliable. Better estimations of those functions,
based on a numerical evaluation of path integral formulae for the internal partition functions
Z(2, 2), Z(2, 1), and Z(1, 2), would provide an interesting improvement of our calculations,
in particular in the region ρ ≥ 10−3 g/cc and T ≥ 30 000 K.

As shown in Ref. [36], expansion (13) of particle density in terms of chemical potential should
remain valid in the molecular regime, i.e. for ρ ≥ ρc, provided the density is not too high. The
accurate knowledge of Z(2, 2), Z(2, 1) and Z(1, 2) within numerical path integration, together with
a numerical inversion of eq. (13), should therefore provide a precise description of the crossover
transition from the atomic gas to the molecular gas, much beyond the level of accuracy of current
calculations, including PIMC simulations [36]. The accurate calculations of Z(2, 2), Z(2, 1) and
Z(1, 2) via numerical path integrations would include in particular the contributions of atom-
atom interactions. Such contributions are not easy to determine within simple modelizations
because of the difficulty, intrinsic to quantum mechanics, in separating them from purely molecular
contributions[3]. The accurate knowledge of Z(2, 2), Z(2, 1) and Z(1, 2) might also be useful for
improving chemical approaches, like the Saumon-Chabrier theory [67], the MHD model [25] or the
SAHA-S model [68].

The track of the Sun adiabat [69] stays well within the validity domain of the SLT expansion.
The presents results are therefore of interest for astrophysics, where a very accurate EOS is needed
for instance to interpret recent seismology measurements in the Sun [10, 69]. The SLT expansion
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of other thermodynamical properties, such the adiabatic exponent and the sound speed, can be
derived along similar lines. For real applications to helioseismology, the present calculations must
be generalized to the case of a hydrogen-helium mixture within similar tools, an a priori feasible
task. The contributions of other heavier elements might be determined within simple ideal ap-
proximations since their dilution is very high. Notice that relativistic effects associated with the
electrons should be also incorporated as discussed in Refs. [70, 71].

Appendix A: A simplified model

Let us consider a simple model which is often used for describing the H2 molecule [72]. In that
model, the two protons separated by a distance R interact via a potential Veff(R) which is inferred
from the electronic groundstate wavefunction for that fixed protonic configuration. The potential
Veff(R) is repulsive at short distances, attractive at large distances, and is minimum at R = R0

with Veff(R0) < 0. A plot of that potential, obtained by fitting the data of Ref. [72] to the formula

Veff(R) = (1 + aR+ bR2 + cR3)
exp(−R/dA)

R
− 6.5

d6
B +R6

(A1)

is shown in the inset of Fig. 13, while the values of the fitted coefficients are given in Table VI.
The zero of energy corresponds here to the state with two hydrogen atoms infinitely far apart. The
minimum of the potential is located R0 = 1.3924 (in atomic units) with value V (R0) = −V0 =
−0.175629 Hartree. The dissociation energy of the hydrogen molecule is Tdiss = V0/k = 55 459 K.
For our purpose, it is sufficient to consider that the protons are spinless. A proper account of the

Coefficient Value (in a.u.)
a −0.52906
b −0.60479
c −0.37294
dA 0.64160
dB 2.64591

TABLE VI. Parameters of potential (A1) that best fit the data of ref. [72] for the hydrogen molecule.

spins would lead to the usual coupling between spin and position variables, which in turn induce
a different counting of ortho- and para-hydrogen contributions, see for instance formula (50).

The Hamiltonian of the relative particle with mass m∗ = mp/2 submitted to Veff(R) reads

Heff = − ~2

2m∗
∆R + Veff(R) . (A2)

Within that simplified model, the analog of the contribution of [exp(−βH2,2)−exp(−βH1,1) exp(−βH1,1)]
to h2(β) is the truncated trace

Zeff = Tr [exp(−βHeff)− exp(−βH0)] , (A3)

where H0 is the kinetic part of Heff .

Let E0 = EH2
− 2EH ' −0.94188V0 be the groundstate energy of Heff . Instead of determining

exactly all boundstate energies of Heff by solving the corresponding radial Schrodinger equation
for various values of orbital number l, we consider the usual rigid-rotor and harmonic well approx-
imations for describing global rotations and vibrations. Then, on the one hand, the approximation
analoguous to (47) for h2(β) becomes here

Zeff ' exp(−βE0)
1

1− exp(−βε(vib)
eff )

∞∑
l=0

(2l + 1) exp(−l(l + 1)βε
(rot)
eff ) , (A4)

where ε
(rot)
eff = kT

(rot)
eff and ε

(vib)
eff = kT

(vib)
eff are the rotational and vibrational quanta which can

be determined respectively from R0 and from the shape of Veff(R) around its minimum at R =
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R0: T
(rot)
eff = 88.7 K and T

(vib)
eff = 6524 K. On the other hand, we have performed a numerical

calculation of Zeff within path integral Monte Carlo methods applied to its Feynman-Kac path
integral representation [49]

Zeff =
1

(2π(λ∗)2)3/2

∫
dR

∫
DW(ξ)

[
exp

[
−β
∫ 1

0

dsVeff(R + λ∗ξ(s))

]
− 1

]
, (A5)

where ξ(s) is a Brownian bridge such that ξ(1) = ξ(0) = 0, DW(ξ) is the normalized Wiener
measure and λ∗ = (β~2/m∗)1/2. At low temperatures (T � Tdiss), the truncated trace Zeff is
dominated by the contributions arising from bound states with negative energies since the corre-
sponding contributions grow exponentially fast when β →∞. Fig. 13 shows that the approximation
(A4) (which amounts to keeping only bound state contributions evaluated within the rigid rotor
model) represents quite well the Monte Carlo values for Zeff up to T ' 30000 K. Thus, we can
reasonably expect a similar accuracy for approximation (47). We note that Irwin’s partition func-
tion [65], which accounts for rotational-vibration coupling in molecule H2 by summing explicitly
on calculated ro-vibrational energy levels, provides a better fit to the Monte Carlo data for this
simplified model, but Irwin’s partition function is available only up to 16 000 K. At high temper-
atures (30 000 K and above), a precise evaluation of the contributions besides those of the bound
states, i.e. contributions arising from diffusive states as well as those due to the truncation terms
in h2(β), becomes mandatory.
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[10] W. Däppen, The equation of state for the solar interior, J. Phys. A: Math. Gen. 39, 4441 (2006)
[11] T. Morita, Equation of State of High Temperature Plasma, Prog. Theor. Phys. 22:757 (1959)
[12] W. Ebeling, Ann. Phys. Leipzig 19, 104 (1967)
[13] H.E. DeWitt, M. Schlanges, A.Y. Sakakura, and W.D. Kraeft, Low density expansion of the equation

of state for a quantum electron gas, Phys. Lett. A 197:326-329 (1995)
[14] D.Kremp, M.Schlanges, and W.-D.Kraeft, Quantum Statistics of Nonideal Plasmas, (Springer, Berlin)

(2005).
[15] A. Alastuey, F. Cornu and A. Perez, Phys. Rev. E 49, 1077 (1994)
[16] D.C. Brydges and Ph.A. Martin, Coulomb systems at low density: a review, J. Stat. Phys. 96, 1163

(1999)
[17] V. Ballenegger, Ph.A. Martin and A. Alastuey, Quantum Mayer graphs for Coulomb systems and the

analog of the Debye potential, J. Stat. Phys. 108:169 (2002)



31

1 10 100
β V

0
 = T

diss
/T

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Z
ef

f e
xp

(-
βV

0 
)

Path Integral Monte Carlo data
Rigid rotor model
Irwin's partition function

0 2 4 6
r  (a

B
)

-1

0

1

2

V
ef

f(r
) 

/ V
0

FIG. 13. The truncated trace Zeff = Tr[exp(−βHeff)− exp(−βH0)] for a quantum particle in the effective
proton-proton potential of the H2 molecule (shown in the inset), as obtained from a numerically exact
Path Integral Monte Carlo calculation (crosses), from the rigid rotor approximation (A4) (solid line) and
from Irwin’s partition function [65] (dashed curve). The dissociation temperature of the H2 molecule is
Tdiss = V0/k = 55 459 K.

[18] F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. E 52, 5352 (1995)
[19] T. J. Lenosky, S. R. Bickam, J. D. Kress and L.A. Collins, Phys. Rev. B 61, 1 (2000)
[20] W. Lorenzen, B. Holst and R. Redmer, Phys. Rev. Lett. 102, 115701 (2009)
[21] C. Pierleoni, D. Ceperley, B. Bernu and W. Magro, Phys. Rev. Lett. 73, 2145 (1994)
[22] A. Alastuey, V. Ballenegger, F. Cornu and Ph.A. Martin, Screened cluster expansions for partially

ionized gases, J. Stat. Phys. 113, 455-503 (2003)
[23] A. Alastuey, F. Cornu and A. Perez, Phys. Rev. E 51, 1725 (1995)
[24] A. Alastuey and A. Perez, Phys. Rev. E 53, 5714 (1996)
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Celebonovic, W. Däppen, D. Gough, AIP Conference proceedings 731, 147 (2004).

[71] A. N. Starostin and V. C. Roerich, Bound states in nonideal plasmas: formulation of the partition
function and application to the solar interior, Plasma Sources Sci. Technol. 15, 410 (2006)

[72] W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1964)


	Thermodynamics of atomic and ionized hydrogen : analytical results versus OPAL tables and Monte Carlo data
	Abstract
	Introduction
	The Scaled Low Temperature expansion
	The Saha regime in the grand-canonical ensemble
	About the interplay between recombination and screening
	Systematic corrections to Saha theory
	First corrections and their physical content
	Term k=1 : plasma polarization around ionized charges
	Term k=2 : formation of molecules and atom-atom interactions
	Term k=3 : atomic excitations and charge-charge interactions
	Term k=4 : formation of ions and atom-charge interactions


	Thermodynamical functions
	Chemical potential as a function of density
	Pressure
	Internal energy

	Representations of temperature-dependent functions 
	Analytical expressions for one- and two-body functions
	Simple approximations for three- and four-body functions
	Case of h2()
	Case of h4()

	Numerical values and plots

	Comparisons to OPAL tables and PIMC data
	General properties of the isotherms
	Isotherms at a few thousands Kelvins
	Isotherms between ten and thirty thousands Kelvins 
	Low density isochores
	Comparison to PIMC data
	Validity domain

	Concluding comments
	A simplified model
	References


