
(M,p,k)-friendly points: a table-based method for

trigonometric function evaluation

Nicolas Brisebarre, Milos Ercegovac, Jean-Michel Muller

To cite this version:

Nicolas Brisebarre, Milos Ercegovac, Jean-Michel Muller. (M,p,k)-friendly points: a table-
based method for trigonometric function evaluation. 2012 IEEE 23rd International Conference
on Application-Specific Systems, Architectures and Processors, Jul 2012, Delft, Netherlands.
IEEE Computer Society, p. 46-52, ISBN: 978-1-4673-2243-0, 2012, <10.1109/ASAP.2012.17>.
<ensl-00759912>

HAL Id: ensl-00759912

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00759912

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract—We present a new way of approximating the sine
and cosine functions by a few table look-ups and additions. It
consists in first reducing the input range to a very small interval
by using rotations with “(M, p, k) friendly angles”, proposed
in this work, and then by using a bipartite table method in
a small interval. An implementation of the method for 24-
bit case is described and compared with CORDIC. Roughly,
the proposed scheme offers a speedup of 2 compared with an
unfolded double-rotation radix-2 CORDIC.

I. INTRODUCTION

We propose and investigate a new way of reducing the

input argument, so that a bipartite method and networks of

redundant adders can be employed for evaluating trigono-

metric functions with a reasonably large precision. We have

illustrated the method applicability by describing a fully

combinational scheme for computing 24-bit cos and sin
functions.

A. The bipartite method

Sunderland et al. [1] considered approximating the sine of

a 12-bit number x less than π/2 using tables. They proposed

to split the binary representation of x into three 4-bit words,

and to approximate the sine of x = A + B + C, where

A < π/2, B < 2−4π/2 and C < 2−8π/2, using

sin(A + B + C) ≈ sin(A + B) + cos(A) sin(C). (1)

By doing that, instead of one table with 12 address bits

(i.e., with 212 elements), one needed two tables (one for

sin(A + B) and one for cos(A) sin(C)), each of them with

8 address bits only. In 1995, DasSarma and Matula [2]

introduced a new method for evaluation of reciprocals by

table look-up and addition, and used it to generate seed

values for computing reciprocals using the Newton–Raphson

iteration. They named it the bipartite method. Generalized

to other functions [3], [4], the bipartite method turned out,

when applied to the trigonometric functions, to be the same

as Sunderland et al. method.

Although the bipartite method is a fairly general method

of approximating functions by table lookup and addition, in

this section, we only focus on the problem of approximating

sin(θ) and cos(θ), where θ is a small (p− j)-bit value less

than 2−j :

θ = 0.0000 · · · 0θj+1θj+2θj+3 · · · θp, θi = 0, 1.

To simplify the presentation, assume that p − j is a

multiple of 3, say p − j = 3q (typical practical values are

p = 24 and q = 6), and write θ = ρ1 + ρ2 + ρ3, with

ρ1 =

j bits
︷ ︸︸ ︷

0.0 · · · 0
q bits

︷ ︸︸ ︷

θj+1 · · · θj+q,

ρ2 =

j bits
︷ ︸︸ ︷

0.0 · · · 0
q bits

︷ ︸︸ ︷

0 · · · · · · 0
q bits

︷ ︸︸ ︷

θj+q+1 · · · θj+2q,

and

ρ3 =

j bits
︷ ︸︸ ︷

0.0 · · · 0
q bits

︷ ︸︸ ︷

0 · · · · · · 0
q bits

︷ ︸︸ ︷

0 · · · · · · 0
q bits

︷ ︸︸ ︷

θj+2q+1 · · · θp .

We have:

sin(θ) = sin(ρ1 + ρ2) cos(ρ3) + cos(ρ1 + ρ2) sin(ρ3)
≈ sin(ρ1 + ρ2) + cos(ρ1) sin(ρ3),

(2)

and

cos(θ) ≈ cos(ρ1 + ρ2) − sin(ρ1) sin(ρ3). (3)

Define four tables T1, T2, T3, and T4, each one with 2q
address bits, as

T1(ρ1, ρ2) = sin(ρ1 + ρ2),
T2(ρ1, ρ3) = cos(ρ1) sin(ρ3),
T3(ρ1, ρ2) = cos(ρ1 + ρ2),
T4(ρ1, ρ3) = − sin(ρ1) sin(ρ3).

(4)

Then, according to the bipartite method,

sin(θ) ≈ T1(ρ1, ρ2) + T2(ρ1, ρ3),
cos(θ) ≈ T3(ρ1, ρ2) + T4(ρ1, ρ3).

(5)

Elementary calculation shows that the error of the first

approximation is bounded by 3 · 2−3j−3q−1 + 2−3j−4q−1,

and the error of the second approximation is bounded by

2−2j−3q + 2−2j−4q−1 + 2−4j−4q−1. Of course, tables T1,



T2, T3, and T4 store their values with limited precision:

functions sin(ρ1 + ρ2), cos(ρ1) sin(ρ3), cos(ρ1 + ρ2), and

sin(ρ1) sin(ρ3) are rounded to some precision, and these

rounding errors must be added to the approximation errors

given above. For instance, if j = q = 6 and if each value in

the tables T1, T2, T3 and T4 is rounded to the nearest 28-bit

number, then the error on sin(θ) is bounded by 0.0313·2−24

and the error on cos(θ) is bounded by 0.047 · 2−24.

The major advantage of the bipartite method, compared

to a straightforward tabulation of sin(θ) and cos(θ) is that

instead of two tables with 3q address bits, we need four

tables with 2q address bits only. Also, no multiplication

is required: the bipartite method just uses tabulation and

addition.

However, unless j is large (that is, unless θ is small), we

cannot tackle large precisions (i.e., large values of p) with

this method. Variants have been suggested (see, e.g., [5]),

and yet, since the bipartite method is intrinsically a linear-

approximation method, it has an inherent limitation: to be

able to evaluate functions with large precisions, we need to

reduce the input arguments to very small values.

Recently, Matula and Panu suggested to “prescale” the

input value before using the bipartite algorithm to obtain

a single-precision ulp accurate reciprocal [6]. Concerning

trigonometric functions, a prescaling (i.e., a preliminary

multiplication by some value) would not help. However,

given an input value x, subtracting from x an adequately

chosen value x̂ could make it possible to use the bipartite

method for single-precision evaluation of sines and cosines.

This is what we address in Section II.

B. Canonical recoding

To simplify implementation of the proposed sin/cos com-

putation, we minimize the number of non-zero digits in

table entries by using the canonical recoding [7]. It has the

property that any n-bit integer D ∈ {0, . . . , 2n−1} in radix

2 can be recoded into its canonical form:

D = fnfn−1 · · · f0, fi = ±1 or 0,

such that the number of non-zero digits is n/3 on average.

Moreover, there can be no two consecutive non-zero digits,

so that the maximum number of nonzero digits is always

less than or equal to
⌈

n+1

2

⌉
. The canonical recoding is an

improvement of the Booth recoding [8] (where a string of v
consecutive 1s, starting in position u, is replaced by a pair

(1 · 2u+v, (−1)2u)).
From an input binary number dn−1dn−2 · · · d0, we obtain

its canonical representation fnfn−1 · · · f0 using the follow-

ing expressions [7], where fn = cn, with c0 = 0 and dn = 0:

ci+1 = ⌊(di+1 + di + ci)/2⌋
fi = di + ci − 2ci+1

(6)

or, in a tabular form as shown Fig. 1.

ci di+1 di fi ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

Figure 1. Canonical recoding.

II. (M,p, k)-FRIENDLY POINTS AND ANGLES

Assume an input angle x between 0 and π/2. We wish to

evaluate sin(x) and cos(x). Ideally, we would like to write

x = x̂ + θ, where θ is small enough, so that sin(θ) and

cos(θ) are easily approximated, with high accuracy, using

the bipartite method, and where c = cos(x̂) and s = sin(x̂),
which would be tabulated, fit in a very small number of bits

only, so that multiplications by c and s are reduced to a very

small number of additions. We would then obtain cos(x) and

sin(x) as c · cos(θ) − s · sin(θ) and s · cos(θ) + c · sin(θ),
respectively. However, such values x̂ do not exist: one easily

shows that the only numbers whose sine and cosine fit in a

finite number of bits are the multiples of π/2.

Hence, we propose to do something slightly different.

We will look for numbers x̂ such that cos(x̂) and sin(x̂)
are of the form a · z and b · z, respectively, where a and

b are small integers (so that a multiplication by a and

b reduces to a very small number of additions—that can

be performed in carry save or borrow save), and so that

a multiplication by z = 1/
√

a2 + b2 can be performed

approximately, with a very good approximation, by a very

small number of additions or subtractions. More precisely,

if we aim at implementing precision-p arithmetic, we will

require that z could be rewritten

2e · 1.z1z2z3 · · · zpzp+1zp+2 · · · =
∑

zi2
e−i,

with zi = 0 or ±1 and z1 6= −1, where the number of

nonzero values zi for i ≤ p is less than some very small

bound k. Hence, multiplying by z with relative error less

than 2−p will require less than k additions/subtractions. An

adequate value of k is found by a trial-and-error process: if k
is too large, the multiplications by z will be costly, and if k is

too small, there won’t be many (M,p, k)-friendly points, so

that the largest distance between two consecutive (M,p, k)-
friendly points (which directly determines the accuracy of

the algorithm) will be too large.

Hence, we are interested in pairs of integers (a, b) that

satisfy the following definition.

Definition 1: A pair of integers (a, b) is an (M,p, k)-
friendly point if:



1) 0 ≤ a ≤ M and 0 ≤ b ≤ M ;

2) the number

z =
1√

a2 + b2

can be written

2e · 1.z1z2z3 · · · zpzp+1zp+2 · · · =
∑

zi2
e−i,

where e is an integer, zi ∈ {−1, 0, 1}, z1 6= −1, and

the number of terms zi such that 1 ≤ i ≤ p and zi 6= 0
is less than or equal to k.

An example of (M, p, k)-friendly point is the following.

Assume M = 255, p = 24, k = 7, and consider a = 72 and

b = 106. We have

z =
1√

a2 + b2
= 0.0000000111111111011100000011110 · · · ,

which can be recoded into its canonical form:

z = 0.0000001000000000100100000100010,

where “1” stands for the digit “−1”. A multiplication by z
reduces to 3 subtractions and one addition. Hence (a, b) is

a (255, 24, 7)-friendly point (even more: it is a (127, 24, 5)-
friendly point).

Definition 2: The number α, 0 ≤ α ≤ π/2 is an

(M,p, k)-friendly angle if either α = 0 or

α = arctan
b

a
,

where (a, b) is an (M, p, k)-friendly point.

For instance, Figure 2 presents the (M, p, k)-friendly

points, with M = 64, p = 24, and k = 7, and Figure 3

presents the (M, p, k)-friendly points, with M = 256,

p = 24, and k = 5.

Figure 2. The (M, p, k)-friendly points, with M = 63, p = 24,
and k = 7. The maximum distance between two consecutive angles is
0.0156237 · · · < 2−6.00011.

Figure 3. The (M, p, k)-friendly points, with M = 255, p = 24,
and k = 5. The maximum distance between two consecutive angles is
0.0130652 · · · < 2−6.258.

III. THE ALGORITHM

A. General sketch of the algorithm

Following the previous discussion, our algorithm, given an

input angle x and parameters p, k and M , with (M,p, k)-
friendly points precomputed and stored in a table, consists

of:

• looking up in a table, addressed by a few leading bits

of x, an (M,p, k)-friendly angle x̂ and the associated

values a, b, and z (in canonical form);

• computing, using the bipartite method, sin(θ) and

cos(θ), according to Eqs. (4) and (5), where θ = x− x̂;

• computing C = a cos(θ)− b sin(θ) and S = b cos(θ)+
a sin(θ) using a very few additions/subtractions—since

a and b are less than M , multiplying by a and b requires

at most 1

2
⌈log2 M⌉ additions/subtractions, that can be

performed without carry propagation using redundant

(e.g., carry-save) arithmetic;

• finally, multiplying C and S by z by adding a very few

(at most k) multiples of C (S), using [k : 2] adders

followed by a carry-propagate adder (which may be

omitted if the results can be used in redundant form).

The efficiency of the method essentially relies on how

small θ can be for not-too-large values of the parameters

M and k. An asymptotic study when p grows remains to

be done, but we can see through some examples that it can

work well.

B. Choosing adequate parameters

Consider the case, exemplified by Figure 3, where M =
255, p = 24, and k = 5. First, we have generated all

(M,p, k)-friendly angles. Then, for any 7-bit number, less



than π/2:

x0.x1x2x3x4x5x6

we have stored in a table T0 the angle that is closest to

x0.x1x2x3x4x5x61. We will name T0(x0, x1, · · ·x6) that

closest value (in fact, we have also stored the corresponding

values of a, b, and 1/
√

a2 + b2 in canonical form). The first

and last entries of Table T0 are given in Figure 4. The largest

distance between x0.x1x2x3x4x5x61 and T0(x0, x1, · · ·x6)
is 2−7.82181. Therefore, for any number x = x0.x1x2 · · ·x24,

x will be at a distance less that

2−7 + 2−7.82181 < 2−6.353

from T0(x0, x1, · · ·x6). We will choose

x̂ = T0(x0, x1, · · ·x6),

so that the corresponding value of θ will have absolute value

less than 2−6.353: we can then use the bipartite method

shown above with k = q = 6 for evaluating cos(θ) and

sin(θ), where θ = x − x̂. The largest value of 1/
√

a2 + b2

stored in the table is around 0.01562.

C. Error bounds

Let us assume that M = 255, p = 24, and k = 5, and let

us assume that we use the bipartite algorithm, with (as we

did in the introduction) j = q = 6. From the error of the

bipartite algorithm (0.047 ·2−24 for cos θ, and 0.0313 ·2−24

for sin θ) one easily deduces that if a and b are the values

selected in Table T0, and if z = 1/
√

a2 + b2, the difference

between the exact and the computed value of cos(x) or

sin(x) is upper-bounded by

2−25 + h(a, b, z),

where the 2−25 comes from the last rounding, and

h(a, b, z) = 0.047 · 2−24 · z · (a+ b)+ (a+ b · 2−6) · 2−24 · z.

The largest value of h(a, b, z) for the 100 entries of the table

is less than 1.049 × 2−24, so that the total (absolute) error

of the algorithm is less than 1.549 × 2−24.

D. Critical path

Assuming M = 255, p = 24, and k = 5, we have on the

critical path:

• lookup in a 7-address bit table (that contains 100
elements), to obtain x̂, a, and b;

• computation of θ = x̂ − x;

• bipartite method for sin(θ) and cos(θ): 1 table lookup

in a 12-address-bit table followed by an addition;

• multiplication by a (and b: done in parallel), followed

by one addition (e.g., for a cos(θ)− b sin(θ)). This can

be done with 4 carry save additions in the critical path

followed by one carry-propagate addition;

• final multiplication by z: 3 CS additions followed by

one carry-propagate addition.

In the proposed implementation, we consider variants in the

reductions and use of redundant representations until the end

of computation thus avoiding carry-propagate additions until

the end of the algorithm.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

An implementation of the method is shown in Fig. 5.

It consists of several modules which we now describe

in some detail. The modules correspond to the steps of

the algorithm. The argument is x = x0.x1 . . . x24. The

outputs are SIN = sin(x) and COS = cos(x): 24 bits,

rounded. For (M,p, k) = (255, 24, 5), the main modules

are characterized as follows.

T0

a

b

x

BT

CS

OUT

z
x̂

cos(x) sin(x)

(Θ)cos (Θ)sin

C = (CC, CS)

xT

T
3 T

4

T
1

T
2

S = (SC, SS)

Figure 5. Overall block diagram.

Module T0: A look-up table (Fig. 6), requiring 100

words, is addressed by the 7-bit truncated argument xT =
(x0, x1, . . . , x6). The memory stores: a, b (8-bit wide, stored

recoded to radix-4 with digit set {-2,-1,0,1,2} using a total

of 2+4×3= 14 bits for each), the angle x̂ (24 bits), and

z represented with five fields F0, F1, F2, F3, F4, each

field (except the first one) consisting of a sign and an

index of 4 bits, for a total of 2 + 4×5 =22 bits. The

index with value j indicates the position of a non-zero

zj bit. Consequently, a field Fi defines a signed multiple

Mi = C × 2−j , for i = 0, 1, 2, 3, 4, generated in Module

OUT with barrel shifters and complementers. Each field has

an offset 2−offset so that the shifts within a field are relative

to the offset. For example, field F0 covers positions 6, 7, and



x0x1 · · ·xt a b x̂ |x̂ − x0x1 · · ·xt1| z

0 128 1 .7812341e − 2 .159e − 6 0.0000001000000000000001000000000
1 128 3 .2343321e − 1 .429e − 5 0.0000001000000000001001000000001

10 130 5 .3844259e − 1 .620e − 3 0.0000001000001000010000000010100
11 255 14 .5484690e − 1 .159e − 3 0.0000000100000000101000100001000

100 204 14 .6852002e − 1 .179e − 2 0.0000000101000000100000000100010
101 255 22 .8606141e − 1 .124e − 3 0.0000000100000000000100101000000
110 226 23 .1014207 .142e − 3 0.0000000100100000100000100000001
111 127 15 .1175656 .378e − 3 0.000000100000000010001000001010

1000 255 34 .1325515 .261e − 3 0.00000001000000010100000000100100
1001 126 19 .1496660 .123e − 2 0.000000100000001001010000000001
1010 245 40 .1618374 .223e − 2 0.0000000100001000000000001010010
1011 247 45 .1802098 .522e − 3 0.0000000100000101000010000000001
1100 251 50 .1966293 .132e − 2 0.0000000100000000000100101000000
1101 125 27 .2127318 .179e − 2 0.000000100000000010001000001010
1110 247 57 .2267988 .236e − 3 0.0000000100000010100010001000000
1111 221 55 .2439137 .173e − 2 0.0000000100100000010001000001000

10000 231 62 .2622183 .441e − 2 0.0000000100010010000000100000001
10001 246 69 .2734610 .235e − 4 0.0000000100000000100000100010001
10010 162 48 .2880554 .101e − 2 0.0000001010000100001000000001000

· · · · · · · · · · · · · · · · · ·
1010010 38 131 1.288468 .594e − 3 0.0000001000100000100010000000010
1010011 67 247 1.305915 .123e − 2 0.0000000100000000000101010000001
1010100 63 248 1.322026 .171e − 2 0.0000000100000000001000001000010
1010101 60 249 1.334340 .160e − 2 0.00000001000000000010000010001010
1010110 56 252 1.352127 .565e − 3 0.00000001000000100010000100100000
1010111 53 253 1.364296 .289e − 2 0.00000001000000101000100001000000
1011000 44 237 1.387232 .442e − 2 0.0000000100010000001000001010000
1011001 39 224 1.398417 .204e − 4 0.0000000100100000010001000100000
1011010 39 251 1.416650 .259e − 2 0.0000000100000010000000010001010
1011011 35 246 1.429468 .219e − 3 0.0000000100001000010000000010100
1011100 32 254 1.445472 .160e − 3 0.00000001000000000000001000000000
1011101 25 227 1.461106 .169e − 3 0.0000000100100001000010000100000
1011110 24 255 1.476955 .393e − 3 0.00000001000000000010000010001010
1011111 19 254 1.496132 .394e − 2 0.0000000100000001010101000000000
1100000 16 255 1.508133 .321e − 3 0.0000000100000000100000000010001
1100001 3 64 1.523956 .518e − 3 0.000001000000000100100000100010
1100010 2 64 1.539556 .494e − 3 0.000001000000000010000000000101
1100011 2 126 1.554925 .237e − 3 0.000000100000100000010000010001
1100100 0 254 1.570796 .484e − 3 0.0000000100000010000001000000100

Figure 4. The first and last values of Table T0, for M = 255, p = 24, and k = 5. There are 100 entries in the table. For each entry
(x0, x1, x2, x3, x4, x5, x6), the distance between x̂ and x0.x1x2 · · · x61 is less than 2−7.82181.

8. Consequently, its offset is 6 and relative shifts within the

field are 0, 1, and 2. The offsets for fields F1, F2, F3, F4
are 9, 11, 15, and 18, respectively. Shift value j selects a

multiplicand shifted right j places using a barrel shifter. The

offsets are done by wiring. Note that any field can represent

any bit position, i.e., the order is irrelevant. This is used

to minimize the width of the fields. We illustrate the z
fields (before encoding) for the first 5 words of Table T0

in Fig. 7. The field value (0,0), (0,j), and (1,j) indicate that

no multiple, a positive multiple, or a negative multiple is

selected, respectively.

The total width of T0 word is 2×14+24+22 = 64 bits and

the size of the memory is 27 × 26 = 8K bits. The effective

use is less since only 100 out of 128 words are needed.

Module BT : It consists of four (212×28−bit) tables, for

a total of 16K×28 bits, which are used to produce sin(θ) =
(T1, T2) and cos(θ) = (T3, T4) in redundant form according

to Eqs. (4, 5). This is shown in Fig. 8. Leaving the outputs

in redundant form reduces the overall delay at expense of

doubling the number of rows to be reduced in Module CS.

Alternatively, two CPAs can be used to produce sin(θ) and

cos(θ) in conventional form. A direct table lookup would



Table T0

x0 ... x6

a b zx̂

7

(2+4x3) 2414 14

(2+4x(1,4))

22

Figure 6. Table T0.

Address F0 F1 F2 F3 F4

0 (0, 7) (1, 22) (0, 0) (0, 0) (0, 0)
1 (0, 7) (1, 22) (1, 19) (0, 31) (0, 0)
2 (0, 7) (1, 13) (1, 18) (0, 27) (0, 29)
3 (0, 8) (1, 17) (1, 19) (1, 23) (0, 28)
4 (0, 8) (0, 17) (0, 10) (0, 26) (0, 30)

Figure 7. Illustration of fields. (The fields store binary encodings relative
to offsets.)

require two tables of 224 × 28 bits for a total of 32M × 28
bits which is 211 times larger than the tables in the proposed

method.

T
1

T
2

T3 T
4

6 6 6

28 28 28 28

ρ1 ρ2 ρ3

(θ)sin (θ)cos

x

θ = x - x̂

x̂24 24

T
1

T
2

T
3

T
4

Figure 8. Module BT : Bipartite tables Table T1, T2, T3, T4.

Module CS: It produces

C = a cos(θ) − b sin(θ)
= (T3, T4) × a − (T1, T2) × b
= (CC , CS)

S = b cos(θ) + a sin(θ)
= (T3, T4) × b + (T1, T2) × a
= (SC , SS)

in redundant form where index C and S denotes carry and

sum bit-vectors. The short operands a, b are stored in T0, re-

coded in 5 radix-4 digits {-2,-1,0,1,2}. Module BT produces

cos(θ) and sin(θ) in redundant form (T3, T4) and (T1, T2),
respectively. The multiplication a cos(θ) = (T3, T4) × a
is performed as reductions by two [5:2] adders in parallel

followed by a [4:2] adder. Similarly, for s
¯
in(θ), c

¯
os(θ), and

a sin(θ). Then the outputs C = (CC , CS) and S = (SC , SS)
in redundant form are obtained with another [4:2] adder,

respectively. The overall scheme of the module is shown in

Fig. 9.

2+4x3 (θ)sin(θ)cos

a (recoded) 

28

28

28

28

2 x 

[5:2]

[4:2]

2 x 

[5:2]

[4:2]

[4:2]

CC

2 x 

[5:2]

[4:2]

2 x 

[5:2]

[4:2]

[4:2]

b (recoded) 

2+4x3

CS SC SS

Figure 9. Module CS: Computation of C = (CC , CS) and S =
(SC , SS) .

Module OUT : This module produces the final results

cos(x) = C × z and sin(x) = S × z, rounded to 24 bits.

Instead of performing multiplications of C and S by z by

multipliers, we propose to use reduction networks on up

to five shifted/negated multiples of C and S, respectively.

The shift distances are stored in T0 as fields F0, . . . , F4.

Multiples of C (S) to two bit-vectors, followed by fast

carry propagate adders (CPA). The inputs are in redundant

form, produced by Module CS as C = (CC , CS) and

S = (SC , SS). So we perform CC × z and CS × z to obtain

redundant output of cos(x) as shown in Fig 10. There are

four blocks identical to the block shown in the figure. Each

block consists of one 2-stage barrel shifter BS2 that shifts

(with respect to the wired-in offset) 0,1, or 2 positions to

the right. The four remaining barrel-shifters BS2, . . . , BS4
are four-stage shifters, shifting 0, 1, ..., up to 15 positions

relative to the offset of a field. The barrel shifters consists

of 2-input multiplexers for each position in each stage.

These are controlled directly (no decoding) by the index



bits in the corresponding field. If a field indicates a negative

shifted multiple, the corresponding complementer CMPL
is activated and the related LSB carries are inserted into the

reduction network. The reduction is performed using [5:2]

adders, followed by a [4:2] adder. If the result is needed in

a conventional form, a CPA is used.

BS2+ 
CMPL

[4:2]

BS4+ 
CMPL

BS4+ 
CMPL

BS4+ 
CMPL

BS4+ 
CMPL

F0

2

F1

(1,4)

F2

(1,4)

F3

(1,4)

(F0,F1,F2,F3,F4)

(1,4)

[5:2] cin

cin

BLOCK

CPA cin

24

24

cos(x)

(sign bits 

of Fi’s)

(sign bits 

of Fi’s)

(sign bits 

of Fi’s)

CS

CC

CS *z

Figure 10. Computation of cos(x). BSv denotes v-level barrel shifter.
(Similar block computes sin(x) ).

We now estimate the delay of the implementation. Fol-

lowing the path through the main modules, we have

TCOS−SIN ≈ tT0

+ tBT

+ tCS

+ tOUT

+ tCPA

≈ tROM (27) + tROM (212)
+(tmgen + tbuff + t5:2 + 2 × t4:2)
+(tbuff + 4 × tmux2 + tXOR + t5:2 + t4:2)
+tCPA

An optimized [5:2] adder has a critical path equivalent

4tXOR ≈ 2tFA [9]. A [4:2] adder has a critical delay

of about 3tXOR ≈ 1.5tFA. We assume that tbuff , tmgen

and tmux2 are roughly 0.5tFA, tROM (27) ≈ tFA, and

tROM (212) ≈ 2tFA. The carry-propagate adder of parallel-

prefix type over 24 bits is estimated to have a delay of 4tFA.

Then we get

TCOS−SIN ≈ tFA(1 + 2 + 0.5 + 0.5 + 2 + 2 × 1.5
+0.5 + 4 × 0.5 + 0.5 + 2 + 1.5) + 4

= 19.5tFA

A rough comparison with a fully-unfolded CORDIC

scheme [10] for computing cos and sin functions, using

double rotations, and having a stage delay of about 2TFA,

indicates that the proposed method is roughly twice as fast

for 24-bit case. We make no comments on relative cost at

this time.

V. SUMMARY AND FUTURE WORK

We have introduced a new way of reducing the input

argument, so that a bipartite method can be employed for

evaluating trigonometric functions with a reasonably large

precision. We have investigated its properties in special

cases. We have illustrated the methods applicability by

describing a fully combinational scheme for computing 24-

bit cos and sin functions. The method can be implemented in

several alternative ways to achieve desired delay-cost trade-

offs. More detailed implementations and their realizations

in particular technologies remain to be done. A preliminary

rough comparison with a CORDIC approach indicates a

potential speedup of 2. In general, we would like to be

able to predict values of M and k, as well as number

of bits of address for the first table T0, that will be of

interest for a given precision p. This requires solving several

theoretical problems such as predicting the gap between

two consecutive friendly angles, which is linked to the

probability that a p-bit chain can be recoded into canonical

form with at most k nonzero digits. We plan to address these

problems in the near future.
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