
Comparison and tuning of MPI implementation in a grid

context

Ludovic Hablot, Olivier Glück, Jean-Christophe Mignot, Stéphane Genaud,

Pascale Vicat-Blanc Primet

To cite this version:

Ludovic Hablot, Olivier Glück, Jean-Christophe Mignot, Stéphane Genaud, Pascale Vicat-
Blanc Primet. Comparison and tuning of MPI implementation in a grid context. Proceedings
of 2007 IEEE International Conference on Cluster Computing (CLUSTER), Sep 2007, Austin,
United States. pp.458-463, 2007. <hal-00767663>

HAL Id: hal-00767663

https://hal.inria.fr/hal-00767663

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00767663

Comparison and tuning of MPI implementations in
a grid context

Ludovic Hablot #1, Olivier Glück #, Jean-Christophe Mignot #, Stéphane Genaud ∗, Pascale Vicat-Blanc Primet #

#Université de Lyon, INRIA, LIP (Laboratoire de l’Informatique du Parallélisme), ∗LSIIT-IPCS, UMR #7005 CNRS-ULP
1ludovic.hablot@ens-lyon.fr

Abstract— Today, clusters are often interconnected by long
distance networks to compose grids and to provide users with a
huge number of available ressources. To write parallel applica-
tions, developers are generally using the standard communication
library MPI, which has been optimized for clusters. However, two
main features of grids - long distance networks and technological
heterogeneity - raise the question of MPI efficiency in grids.

This paper presents an evaluation and tuning of four recent
MPI implementations (MPICH2, MPICH-Madeleine, OpenMPI
and YAMPII) in a research grid: Grid’5000. The comparison is
based on the execution of pingpong and NAS Parallel Bench-
marks. We show that these implementations present several
performance differences. We show that YAMPII performs better
results than the others. But we argue that executing MPI appli-
cations on a grid can be beneficial if some specific parameters
are well tuned. The paper details, for each implementation, the
tuning leading the best performances.

I. INTRODUCTION

Today, clusters are often interconnected by long distance
networks within grids to provide users with a huge number of
available ressources.

Users want to execute their applications, written for clus-
ters, on grids to get better performance by simply using
more resources. For example, geophysical applications like
ray2mesh [1], a seismic ray tracing in a 3D mesh of the Earth,
or medical applications like Simri [2], a 3D Magnetic Reso-
nance Imaging (MRI) simulator, have been executed on grids
with quite success and but generally with a sublinear speedup.
Indeed, MPI, the standard communication library used to
write such parallel applications has been initially implemented
and optimized for clusters. Most of implementations used in
grids do not consider the specificities of grid interconnections,
leading to suboptimal performance.

The grid raises mainly three problems to execute MPI appli-
cations. First, MPI implementations have to manage efficiently
the long-distance between sites. Actually, the high latency
between sites is very costly, especially for little messages.
Inter-sites communications take more time than intra-sites
ones. On an other hand, inter-sites links may offer higher
capacities than cluster links.

Secondly, MPI implementations have to manage heterogene-
ity of the different high speed networks composing the grids.
Intra-site communications like for example, through a Myrinet
interconnect and an Infiniband cluster on the same site and
also inter-sites communications through a WAN (Wide Area
Network) have to interoperate.

Finally, the CPUs heterogeneity has an impact on the overall
application performance execution. Indeed, it could be of
interest to take into account this heterogeneity in the task
placement phase. We do not address these two last problems
here. In our experiments, all the communications use TCP and
homogeneous CPU architectures.

We consider here several MPI implementations taking some
grid characteristics into account to improve the execution of
MPI applications in these environments. The MPICH2 [3],
GridMPI [4], MPICH-Madeleine [5], OpenMPI [6] implemen-
tations can be used on a grid but are not similarly optimized to
this specific context. The goal of this paper is to identify which
are efficient on a real grid and in which conditions. An other
question is to define how to configure these implementations
to achieve the best performance on the grid. Finally, it could
be usefull to have a better view of which communication
patterns better fits grid context. To answer these questions,
we conduct experiments in Grid’5000 [7] a french research
grid platform gathering more than 3000 processors. Nine
sites are connected by a dedicated WAN at 1 or 10 Gbps.
This architecture provides a fully reconfigurability feature to
dynamically deploy and configure any OS on any host.

This paper is organised as follows. Section II presents a state
of the art of MPI implementations usable in a grid context.
In Section III, we describe the experimental protocol. Section
IV presents the results of our experiments and the necessary
optimizations required to achieve good performances. Finally,
we conclude and present future work.

II. MPI IMPLEMENTATIONS FOR THE GRID

This section presents the following implementations that im-
prove either network heterogeneity or long-distance commu-
nications: GridMPI, OpenMPI, MPICH-Madeleine. We first
describe MPICH2 because it is a largely used implementation.
Moreover, a lot of MPI implementations are based on it.

1) MPICH2[3]: This implementation is the successor of
MPICH[8], used by a lot of people. It is not a grid implemen-
tation but could be used in a grid if all the communications
use TCP. It has a four layered architecture which could be
quite easily modified. Results with this implementation are
well-known that is why we use it as a reference in our tests.

2) MPICH-Madeleine[5]: This implementation is based
both on MPICH[8] and Madeleine[9], a communication library
which allows communications between several commonly

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

used high speed networks. Thus, MPICH-Madeleine supports
efficiently networks heterogeneity between TCP, SCI, VIA,
Myrinet MX/GM and Quadrics. MPICH-Madeleine uses a
gateway between two clusters interconnected by different
networks. For example, if you have a cluster A using Myrinet,
a cluster B using SCI and a node shared by the two clus-
ters, messages can be sent between them directly through
Madeleine and without using TCP. It can be used in a grid
context using TCP for long-distance communications.

3) OpenMPI[6]: OpenMPI is an open source MPI-2 com-
pliant implementation built from scratch combining strong
points and resources from earlier projects as well as new
concepts.

In the OpenMPI library, progression of communications is
handled by the PML (Point-to-point Management Layer) mod-
ule. This module can use different BTL (Byte Transfer Layer),
one for each protocol, hence providing network heterogeneity.
Supported protocols are TCP, Myrinet MX/GM, Infiniband
OpenIB/mVAPI. Long distance networks characteristics are
not particularly taken into account.

The OpenMPI library automatically handles grid specific
configurations. For example, clusters portals and cluster spe-
cific network fabrics are automatically detected. Nevertheless,
specific tunings are still required to achieve optimal perfor-
mance of long and fast networks of clusters in most cases.

4) GridMPI[4]: This implementation is specifically de-
signed to be executed in a grid environnement. There is
two parts in GridMPI: one dedicated to communications,
named YAMPII and the other part is the implementation of
IMPI (Interoperable MPI) protocol to handle the heterogeneIty.
YAMPII is a communication library. IMPI is an overlay over
other MPI implementations. Each cluster could use a dedicated
VendorMPI to exploit available high speed interconnects and
GridMPI is doing the link between them using IMPI. GridMPI
has been designed to optimize long-distance communications
in MPI applications. Modifications are done at two levels, in
the TCP layer and in MPI collective communications level.
First, at start time, GridMPI designers propose to modify TCP
as follow:

• adding pacing mechanism to avoid burst effects
• reducing RTO (Retransmit Timeout)
• using two different congestion window sizes for collective

and point-to-point communications
• bypassing the socket layer

From our knowledge, the public distribution of GridMPI,
provides only the pacing mechanism.

Secondly, YAMPII integrates modifications of algorithms
for collective operations (see [10]): in a grid context, com-
munications between clusters have a higher bandwidth than
intra-cluster once. YAMPII uses a modified MPI Bcast and
MPI Allreduce functions to take this into account. These
improvements have not been released yet.

5) Synthesis: Table I summarizes the main features of
each MPI implementation. Two of these implementations
can manage network heterogeneity efficiently using gateways

(MPICH-̃Madeleine and OpenMPI). For GridMPI , the man-
agement of the heterogeneity is done using IMPI and an ap-
propriate VendorMPI. This may introduce a large overhead in
latency. For long-distance communications, the optimizations
are done at two levels. First, YAMPII optimize some collective
operations to be efficient on the grid. Secondly, it modifies the
TCP behavior to adapt it to the high long-distance latency.

We choose MPICH2 as a reference, and YAMPII for its opti-
mizations on long distance communications. Finally, our study
is based on these four implementations: MPICH2, YAMPII,
MPICH-Madeleine and OpenMPI.

Some works have been done to compare features of MPI
implementations. In [11], the authors compare different meth-
ods used in MPI implementations (PACX-MPI, MPICH-G2,
Stampi and MagPIe) to communicate between a private and a
public network. Performance measurement aims at evaluating
these different approaches. MPI experiments are done with
PACX-MPI. They do not compare the performances of each
MPI implementations together.

III. EXPERIMENTAL PROTOCOL

A. Goals and Methodology

There are two main goals of our experiments. First, we want
to execute different MPI implementations in a real grid context
and to see their efficiency on the Grid’5000 grid platform.
Then, we want to study the advantages of executing real MPI
applications on the grid instead of a cluster.

To compare the different implementations, we run between
two sites of the grid a simple MPI pingpong with the default
configuration of each implementation. We compare the results
obtained to those obtained between two nodes on the same
cluster. We have also run a TCP pingpong to evaluate the
MPI overhead of each implementation.

Since the MPI pingpong can not represent the behavior of
real applications, we also run experiments with the NPB (NAS
Parallel Benchmarks [12]).

Pingpong is our own program. One processus sends MPI
messages with the MPI Send primitive to another one which
does a MPI Recv and sends the message back. The size of the
messages range from one byte to 64 MBytes. For each size,
we obtain the round-trip latency. Then, we can plot the MPI
bandwidth available between the two nodes.

The NPB are a set of eight programs (BT, CG, EP, FT,
IS, LU, MG and SP) that gives a good panel of the different
parallel applications that could be executed on a cluster or a
grid. The NPB have been designed to compare performances
of MPI implementations and clusters. The NPB use several
classes (S, W, A, B, C, D) to represent the size of the problem.
We have done our experiments with the B class on four or
sixteen nodes. They have different kind of communication
schemes. We can see in [13] that all of them are symmetric
excepted CG and EP. In [14], the authors give the type of
communications (point-to-point or collective) and the number
of messages for each NAS for the class A on 16 nodes. We
have run each NAS with a modified MPI implementation
to find their communication pattern. Table II summarizes

2

TABLE I

COMPARISON OF MPI IMPLEMENTATION FEATURES

Long-distance optimizations Network heterogeneity management First / Last publication
MPICH2 None None 2002 / 2006

Optimization of TCP Heterogeneity using IMPI above TCP
GridMPI Optimization of Bcast and All reduce but no support of low latency 2004 / 2006

high-speed networks
MPICH- Gateway between high-speed networks
Madeleine None Support of TCP, SCI, VIA, Myrinet 2003 / 2007

MX/GM, Quadrics
Gateway between high-speed networks

OpenMPI None Support of TCP, Myrinet MX/GM, 2004 / 2007
Infiniband OpenIB/mVAPI

TABLE II

NPB FEATURES

Type of Size and number of messages
comm.

EP P. to P. 192 * 8 B + 68 * 80 B
CG P. to P. 126479 * 8 B + 86944 * 147 kB
MG P. to P. 50809 * various sizes from 4 B to 130 kB
LU P. to P. 1200000 * 960 B<msg<1040 B
SP P. to P. 57744 * 45 kB<msg<54 kB

+ 96336 * 100 kB<msg<160 kB
BT P. to P. 28944 * 26 kB

+ 48336 * 146 kB<msg<156 kB
IS Collective 176 * 1 kB + 176 * 30 MB
FT Collective 320 * 1 B + 352 * 128 kB

the communication features of NAS parallel benchmarks. EP
mostly computes and sends very few data. CG communi-
cates with little and big messages. MG sends varing size of
messages. LU sends medium size messages and is the most
communicating. BT and SP send a lot of big messages. Finally,
IS and FT communicate using collective operations with very
big messages for IS. FT uses the primitive MPI Alltoall and
IS uses MPI Allreduce and MPI Alltoallv.

B. Testbed description

Our experiments are conducted on Grid’5000, which links
nine sites in France, having from 5 ms to 21 ms of RTT
TCP latency. Each site is composed of an heterogeneous set
of nodes and local networks (Infiniband, Myrinet, Ethernet
1 or 10 Gbs). Sites are connected by a dedicated WAN
operated by RENATER at 1 or 10 Gbps. This architecture
provides researchers with a fully reconfigurability feature to
dynamically deploy and configure any OS on any host. This
feature allows them to have administrator rights to change TCP
parameters for instance.

Figure 1 shows the description of our testbed. We use
between 1, 2 or 8 nodes on each cluster (Nancy and Rennes)
depending on the experiment (execution of pingpong or NPB).
Each node is connected to a switch with a 1 Gbps Ethernet
card. Thus, the maximum bandwidth available between one
process in Rennes and one process in Nancy is 1 Gbps. The
RTT TCP latency is about 11.6 ms.

Fig. 1. Configuration used

TABLE III

HOSTS SPECIFICATIONS

Rennes Nancy
AMD Opteron 248 AMD Opteron 246

Processor 2.2 GHz 2GHz
Motherboard Sun Fire V20z HP ProLiant DL145G2
Memory 2 GB
NIC 1Gbps Eth
OS Debian
Kernel 2.6.18
TCP version BIC + Sack

Table III shows the hardware and software specifications of
the nodes.

We have used the following versions of MPI implementa-
tions: MPICH2 is the 1.0.5 release using default parameters.
GridMPI is 1.1. We do not use the IMPI support as all the
communications (intra and inter sites) are achieved by TCP
and YAMPII is self-sufficent. The overhead may be important
using IMPI. MPICH-Madeleine is the svn version of the 6th of
December 2006. It uses thread (-lib=-lpthread) and fast
buffering --with-device= ch mad:--fast-buffer.
Finally, OpenMPI version is 1.1.4.

IV. RESULTS OF EXPERIENCES AND OPTIMIZATIONS

A. First ping-pong results

The experiments within a cluster are done between two
nodes of the Rennes cluster corresponding to PR1 and PR2

on Figure 1 and within the grid between PR1 and PN1.
Pingpong results are done with 200 round-trips with the default

3

configuration of MPI implementations. Then, we take the
minimum result (among the 200) for the latency and the
maximum for the bandwidth in order to eliminate perturbations
due to other Grid’5000 users.

Table IV shows the latency comparison between the dif-
ferent MPI implementations in the Rennes cluster or in the
grid (between Rennes and Nancy). The overhead of MPI
implementations is almost the same in a cluster or in a
grid excepted for MPICH-Madeleine. MPICH-Madeleine has
a lower overhead in the grid. These figures confirm the long-
distance overhead which corresponds to the network latency
(11600 μs of RTT ping corresponding to 5800 μs one way).

TABLE IV

COMPARISON OF LATENCY IN A CLUSTER AND IN A GRID (IN US)

In the Rennes In the grid:
cluster btwn Rennes

and Nancy
TCP 41 5812
MPICH2 46 (+5) 5818 (+6)
YAMPII 46 (+5) 5819 (+7)
MPICH-Madeleine 62 (+21) 5826 (+14)
OpenMPI 46 (+5) 5820 (+8)

Figure 2 shows the bandwidth obtained on a cluster with the
default parameters. All the implementations reach 940 Mbps
that is the maximum goodput of TCP on a 1 Gbps link.
Each implementation has a threshold around 128 kB excepted
YAMPII. These thresholds are due to the different MPI modes
(eager and rendez-vous).

Figure 3 represents the results of the same experiment on the
grid. Results are very bad. None of the implementations nor
direct TCP implementation of the pingpong reached a higher
bandwidth than 120 Mbps. These behaviors are due to both bad
TCP and MPI configuration. We describe in the next section
how to tune them.

B. Tuning to be done on the grid

In TCP, communications are done through sockets. TCP
uses a congestion window to limit the number of ’on the fly’
packets that are sent but not acknowledged. The sender does
not know that a packet is received until being acknowledged,
so it must keep this packet in a buffer to restransmit it if
needed. Hence, the TCP socket buffers must be able to contain
at least a congestion window. The size of these buffers has to
be set at least at the product of RTT * bandwidth [15].

Two linux kernel variables allow to modify the size of these
buffers.

• The first value specifies the maximum size that a socket
can allocate to its buffer: /proc/sys/net/core/rmem max
and wmem max have to be increased (see [16]).

• The linux kernel can adapt these values dynam-
ically with a mechanism called auto-tuning. The
first and last value of /proc/sys/net/ipv4/tcp rmem and
/proc/sys/net/ipv4/tcp wmem represent the bounds of
auto-tuning in the linux kernel. The middle value is the

size given initially by the kernel when a socket is created.
The last value has to be increased to RTT * bandwidth.

With the first method, we have to modify the code of each
implementation to set the initial size of the socket. With the
second, the size is set automatically.

In our experiments, between Rennes and Nancy, the socket
buffer has to be set to at least at 1.45 MB (RTT=11.6 ms,
bandwidth=1 Gbps). However, for compatibility with the rest
of the grid, we set it at 4 MB. This tuning is self-sufficient
for MPICH2 and MPICH-Madeleine but not for YAMPII and
OpenMPI. In YAMPII, the middle value of TCP socket buffer
has to be increased. In OpenMPI, the size of the buffers is
specified when a socket is created. This size is 128 kB by
default. The modification of this size is done dynamically,
passing two parameters to mpirun: -mca btl tcp sndbuf
4194304 -mca btl tcp rcvbuf 4194304

Figure 4 shows the new pingpong results after TCP tun-
ing. The maximum MPI bandwidth available is now around
910 Mbps in the grid which is a good result regarding the
940 Mbps in the Rennes cluster. However, the half bandwidth
is only reached around 1 MB in the grid against 8 kB in the
cluster. This big difference is not surprising and is explained by
the fact that the latency in the Rennes cluster is around 40 μs
whereas the grid latency is about 5800 μs. TCP and YAMPII
have the same behavior. YAMPII clearly reaches a higher
bandwidth for messages bigger than 64 kB. We currently
investigate why.

C. NAS Parallel Benchmarks

The two goals of the next experiments are to compare the
performances of each implementation on the grid (Figure 5)
and to see if the grids can well execute MPI applications
(Figures 6 and 7).

In the next experiments, we execute the NPB 2.4. We used
two different configurations: on the same cluster (using PR1 to
PR16 see 1) or between two clusters joined by a WAN (using
PR1 to PR8 and PN1 to PN8) We execute each NPB 5 times
and take the better time of these experiments.

Figure 5 shows the NAS execution time comparison of each
MPI implementation. MPICH2 is taken as the reference im-
plementation. The performance of the other implementations
are relative to MPICH2.

The relative time variation of YAMPII is very important for
the applications that communicate with collective operations
(FT and IS). This is due to the fact that YAMPII uses
better algorithms for them. On MG, the performances are
quite similar for each implementation excepted for MPICH2.
However, the performances of MPICH2 are better on LU.
Finally, execution time of BT and SP is only a little bit better
with YAMPII. BT and SP applications timeout when executing
with MPICH-Madeleine.

The next experiment aims at evaluating the overhead the
grid introduces compared to the execution on a cluster. As
Fig. 5 shows that YAMPII has a better behavior for each
application, we choose it to compare the NPB on the grid.

4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1k 2k 4k 8k 16k 32k 64k 128k256k512k 1M 2M 4M 8M 16M 32M 64M

M
P

I B
an

d
w

id
th

 (
M

b
p

s)

Size (bytes)

TCP
MPICH on TCP
YAMPII on TCP

MPICH-Madeleine on TCP
OpenMPI on TCP

Fig. 2. Comparison of MPI bandwidth of the different MPI implementations
on a local network (cluster) with the default parameters

 0

 20

 40

 60

 80

 100

 120

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M 32M 64M

M
P

I B
an

d
w

id
th

 (
M

b
p

s)

Size (bytes)

TCP
MPICH on TCP
YAMPII on TCP

MPICH-Madeleine on TCP
OpenMPI on TCP

Fig. 3. Comparison of MPI bandwidth obtained with different MPI
implementations on a distant network (grid) with the default parameters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1k 2k 4k 8k 16k 32k 64k 128k256k512k 1M 2M 4M 8M 16M 32M 64M

M
P

I B
an

d
w

id
th

 (
M

b
p

s)

Size (bytes)

TCP
MPICH on TCP
YAMPII on TCP

MPICH-Madeleine on TCP
OpenMPI on TCP

Fig. 4. Comparison of MPI bandwidth of the different MPI implementations
on a distant network (grid) after TCP tuning

Figure 6 represents the relative performance of 16 nodes
divided in two groups by a WAN to 16 nodes on the same
cluster. This figure shows the impact of the latency for each
kind of applications. EP has few communications thus the
relative performance is close to 1. CG and MG bad perfor-
mance because they communicate with little messages. The
latency has a most important impact on little messages. LU’s
performance is good because of the message sizes. SP and BT
communicate with big messages, thus the high latency does
not impact them so much. The performance of IS is quite
bad because the IS algorithm is affected by long distance. FT
takes advantage of the optimization done on the MPI Alltoall
primitive in YAMPII.

If we compare strictly the grid and the cluster with the same
number of nodes, there is always an overhead. This overhead is
less than 20% for half of the NAS. However, the main interest
of the grids is to find resources that are not available on the
cluster that’s why Figure 7 represents the relative performance
of 4 nodes in the same cluster to 16 nodes on two clusters.

The results for the performances of each application on the
grid are quite similar of the last experiment. In this experiment,
the speed-up should be equal to four if the grid had no impact.
For CG and MG, even if we raise up the computing power four
times, there is few speed-up. The long distance is very costly
on applications with little messages. LU and BT have a very
good speed-up near of 4 on the grid. FT and SP performances
are quite good (the speed-up is at least 3).

These results confirm that it is efficient to execute an
MPI application on the grid because there is a speed up for
each application. However, applications with little messages
have very bad performance due to high latency. Collective
operations have then to be highly optimized to be efficient.

EP CG MG LU SP BT IS FT
0

0.5

1

1.5

2

2.5

3

3.5

↓ Reference

MPICH2
YAMPII
MPICH−Mad.
OpenMPI

Fig. 5. Comparison of the different MPI implementations: relative (Ref.
MPICH2) execution time of NPB on the grid (8-8 nodes on two different
clusters)

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a study of different MPI
implementations in a grid context. We aimed at finding a
good implementation to execute an application in this context.
We also wanted to identify which application types and
communication patterns are best suited to grids.

5

YAMPII
0

0.2

0.4

0.6

0.8

1
↓ Ref.

EP

CG

MG

LU

SP BT

IS

FT

Fig. 6. Comparison of YAMPII on one cluster (16 nodes) and on the grid
(8-8 nodes on two different clusters): relative (Ref. is one cluster) execution
time of the NPB

YAMPII
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

↓ Ref.

EP

CG
MG

LU

SP

BT

IS

FT

Fig. 7. Comparison of YAMPII on one cluster (4 nodes) and on the grid
(8-8 nodes on two different clusters): relative (Ref. is one cluster) execution
time of the NPB

Our experiments are based on four MPI implementations
(MPICH2, YAMPII, MPICH-Madeleine and OpenMPI). They
show that TCP tuning and optimization in MPI implementation
are necessary to obtain reasonable performances. After tuning,
each MPI implementation can reach as good performance as
TCP. To complete our study, we evaluate each implementation
with the NPB. Results show that YAMPII behaves better than
the others on Grid’5000 due to its optimizations of collective
operations and of a simple implementation of its TCP version.
However, YAMPII can not manage heterogeneity. Execution of
an application on a grid is efficient for applications with quite
big messages for point to point communications. Collective
operations have to be improved to be efficient.

In a near future, we will pursue our experiments with other
Grid-aware implementations like MPICH-G2 and with other
real MPI applications. Our results have shown problems with
the slowstart and the congestion avoidance mechanisms of
TCP when executing an application on the grid. We want to
further explore these issues and study optimizations within
TCP. Finally, we will test the network heterogeneity manage-
ment of each implementation with different high performance
interconnects. Using these networks for local communications

can be efficient to improve performance but has to remain
simple. The overhead introduced by the management of het-
erogeneity has to be less important than the TCP cost.

ACKNOWLEDGMENT

This work has been funded by the French ministry of
Education and Research, the ANR HIPCAL project, INRIA
GridNet-FJ associated team and the EU IST FP6 EC-GIN
Project. Experiments presented in this paper were carried
out using the Grid’5000 experimental testbed, an initiative
from the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other
contributing partners (see https://www.grid5000.fr).

REFERENCES

[1] S. Genaud, M. Grunberg, and C. Mongenet, “Experiments in running a
scientific MPI application on Grid’5000,” in 4th High Performance Grid
Computing International Workshop, IPDPS conference proceedings.
Long beach, USA: IEEE, March 2007.

[2] H. Benoit-Cattin, F. Bellet, J. Montagnat, and C. Odet, “Magnetic
Resonance Imaging (MRI) simulation on a grid computing architecture,”
in Proceedings of IEEE CGIGRID’03-BIOGRID’03, Tokyo, 2003.

[3] W. Gropp, “MPICH2: A New Start for MPI Implementations,” in Recent
Advances in PVM and MPI: 9th European PVM/MPI Users’ Group
Meeting, Linz, Austria, Oct. 2002.

[4] GridMPI Project, http://www.gridmpi.org/gridmpi.jsp.
[5] G. Aumage, Olivier et Mercier, “MPICH/MADIII : a Cluster of Clusters

Enabled MPI Implementation,” in Proceedings of CCGrid, Tokyo, 2003.
[6] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementa-
tion,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97–104.

[7] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lantéri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and T. Iréa, “Grid’5000:
a large scale and highly reconfigurable experimental grid testbed.”
International Journal of High Performance Computing Applications,
vol. 20, no. 4, pp. 481–494, Nov. 2006, https://www.grid5000.fr/.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “High-performance,
portable implementation of the MPI Message Passing Interface Stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.

[9] O. Aumage, “Heterogeneous multi-cluster networking with the
Madeleine III communication library,” in 16th International Parallel and
Distributed Processing Symposium, Florida, USA, 2002.

[10] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and Y. Ishikawa,
“Efficient MPI Collective Operations for Clusters in Long-and-Fast
Networks,” in Proceedings of Cluster06, Barcelona, Spain, Sept. 2006.

[11] M. Müller, M. Hess, and E. Gabriel, “Grid enabled MPI solutions
for Clusters,” in CCGRID ’03: Proceedings of the 3st International
Symposium on Cluster Computing and the Grid. Washington, DC,
USA: IEEE Computer Society, 2003, p. 18.

[12] D. Bailey, E. Barscz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The NAS Parallel
Benchmarks,” NASA Ames Research Center, Moffett Field, California,
USA, Tech. Rep. RNR-94-007, 1994.

[13] J. Subhlok, S. Venkataramaiah, and A. Singh, “Characterizing NAS
Benchmark Performance on Shared Heterogeneous Networks,” in IPDPS
’02: Proc. of the 16th International Parallel and Distributed Processing
Symposium. Washington, DC, USA: IEEE Computer Society, 2002.

[14] A. Faraj and X. Yuan, “Communication Characteristics in the NAS
Parallel Benchmarks.” in IASTED PDCS, 2002, pp. 724–729.

[15] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,”
in Proceedings of the ACM SIGCOMM ’98. New York, NY, USA:
ACM Press, 1998, pp. 315–323.

[16] M. Mathis and R. Reddy, “Enabling High Performance Data Transfers
on Hosts,” Pittsburgh Supercomputer Center, Tech. Rep., 1999.

6

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
