Reeb periodic orbits after a bypass attachment

Anne Vaugon

To cite this version:

Anne Vaugon. Reeb periodic orbits after a bypass attachment. 2012. <ensl-00768825>

HAL Id: ensl-00768825

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00768825
Submitted on 24 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT

ANNE VAUGON

Abstract

On a 3-dimensional contact manifold with boundary, a bypass attachment is an elementary change of the contact structure consisting in the attachment of a thickened half-disc with a prescribed contact structure along an arc on the boundary. We give a model bypass attachment in which we describe the periodic orbits of the Reeb vector field created by the bypass attachment in terms of Reeb chords of the attachment arc. As an application, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori.

1. Introduction

We describe the effect on Reeb dynamics of an elementary change of the contact structure on a 3-manifold with boundary known as a bypass attachment. Our study is based on the explicit construction of a bypass. We encode the dynamics of the associated Reeb vector field and give a symbolic representation of the new periodic orbits. As an application, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori.

Honda [27] introduced bypass attachments to classify contact structures on solid tori, thickened tori, and lens spaces. Bypasses may be seen as basic building-blocks of contact structures. In particular, cobordisms are constructed out of bypasses as contact structures on a thickened surface are obtained from an invariant contact structure and a finite number of bypass attachments and removals (see [26, Section 11.1]).

Describing new periodic orbits after a bypass attachment is the first step toward computing the contact homology of the new contact manifold. Introduced in the vein of Floer homology by Eliashberg, Givental, and Hofer [11] in 2000, contact homology is an invariant of a contact structure on a closed manifold defined through a Reeb vector field. Colin, Ghiggini, Honda, and Hutchings [6] generalised it to an invariant of contact structures on manifolds with boundary called sutured contact homology. The simplest associated complex is the \mathbb{Q}-vector space generated by Reeb periodic orbits and the differential "counts" pseudo-holomorphic cylinders in the symplectisation of the contact manifold. Gromov [21] introduced pseudoholomorphic curves in symplectic geometry in 1985. Hofer [22] generalised them to symplectisations in 1993. Our theorem is similar to a theorem of Bourgeois, Ekholm, and Eliashberg [2] describing the new Reeb periodic orbits after a surgery along a Legendrian sphere Λ in terms of Reeb chords of Λ. In addition, the authors deduce exact triangles between contact homology, symplectic homology and Legendrian contact homology. Finding an analogous triangle would be a natural extension to this paper.

The computation of contact homology hinges on finding periodic orbits and solving elliptic partial differential equations and thus is usually out of reach. To our knowledge, Golovko's work [19, 20] contains the only explicit computations in the sutured case. Actual computations are of importance to clarify our intuition
and understand connections between sutured Heegaard-Floer homology and sutured embedded contact homology. Sutured embedded contact homology is a variant of sutured contact homology introduced in [6] in the vein of Hutchings' work [28]. Taubes [37] proved that it is an invariant of the manifold. In the closed case, Kutluhan, Lee, and Taubes [30] and, independently, Colin, Ghiggini, and Honda [5] announced an isomorphism between the two homologies. In addition, computations can be of use to understand the algebraic structures associated to sutured contact homology and obtain a comprehensive gluing theorem from the partial theorem in [6].

Outline. This paper is derived from the PhD thesis of the author [38]. It is organised as follows. In Section 2, we present our main theorems. In Section 3, we recall some usual definitions in contact geometry and contact homology that will be used in the sequel. In Section 4, we apply our main theorem to the simplest manifold with boundary: the product neighbourhood of a convex surface. In Section 5, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori. The proof of our main theorem (Theorem 2.1) is technical. We give a sketch of proof in Section 6 and a detailed proof in Section 7. Section 8 is devoted to the proof of Theorem 2.6 which describe the Conley-Zehnder index of the new Reeb periodic orbits.

2. Main Results

2.1. Bypasses. Let us review some basic definitions (see Section 3 for more details). Let M be a 3 -manifold. A 1 -form α on M is called a contact form if $\alpha \wedge \mathrm{d} \alpha$ is a volume form. A contact structure ξ is a plane field locally defined as the kernel of a contact form. To any contact form α, we associate the vector field, called the Reeb vector field, such that $\iota_{R_{\alpha}} \alpha=1$ and $\iota_{R_{\alpha}} \mathrm{d} \alpha=0$. A Reeb chord of an arc γ_{0} is a Reeb arc with endpoints on γ_{0}. A curve tangent to ξ is called Legendrian. In a contact manifold, "pleasant" surfaces are convex surfaces (see Section 3.1 for a precise definition). In a neighbourhood of a convex surface S, the contact structure is encoded by a smooth multi-curve Γ, the dividing set, separating S into positive and negative regions (Giroux [16]). In what follows we specify the dividing set associated to a convex surface S by the pair (S, Γ). Convexity is a natural condition to impose to the boundary of a contact manifold. To deal with contact forms as opposed to contact structures, for instance to define sutured contact homology, one usually refines this condition as follows. A contact form α is adapted to a convex surface (S, Γ) if Γ is the set of tangency points between R_{α} and S and, along Γ, the vector field R_{α} points toward the sub-surface S_{+}where R_{α} is positively transverse to S. On a manifold with convex boundary, the dividing set of the boundary is a suture as defined by Gabai [14].

An attaching arc of the convex boundary (S, Γ) of (M, ξ) is a Legendrian arc which intersects the dividing set Γ in precisely three points, namely, its two endpoints and one interior point. A bypass attachment along an attachment arc γ_{0} is the gluing of a half-disc D with a prescribed continuation of ξ along γ_{0}. We get a new manifold with boundary by thickening (D, ξ).
2.2. Main theorem. Let $I_{b}=\left[-\frac{3 \pi}{4}, \frac{11 \pi}{4}\right]$. Let (M, α) be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attachment arc on S. We assume that
(C1) there exists a neighbourhood Z of γ_{0} with coordinates $(x, y, z) \in I_{b} \times$ $\left[-y_{\max }, 0\right] \times I_{\max }$ where $I_{\max }=\left[-z_{\max }, z_{\max }\right]$ such that

- $\alpha=\sin (x) \mathrm{d} y+\cos (x) \mathrm{d} z$;
- $\gamma_{0}=[0,2 \pi] \times\{0\} \times\{0\}$;
- $S_{Z}=I_{b} \times\{1\} \times I_{\max }=S \cap Z$
(C2) α is adapted to $S \backslash S_{Z}$.
Fix $K>0$. Let $\delta_{K}\left(\gamma_{0}\right)$ denote the image of $\gamma_{0} \backslash \Gamma$ on S by the Reeb flow for times smaller than K. Additionally, we assume that
(C3) $\delta_{K}\left(\gamma_{0}\right)$ is transverse to γ_{0}.
Condition (C3) is generic and ensures that the number of Reeb chord of γ_{0} with period smaller than K is finite. We denote by $a_{1}, \ldots a_{N}$ these chords. Let $l\left(a_{i_{1}} \ldots a_{i_{k}}\right)=$ $T\left(a_{i_{1}}\right)+\cdots+T\left(a_{i_{k}}\right)$ where $T\left(a_{i}\right)$ is the period of the Reeb chord a_{i}.
Theorem 2.1. Under conditions (C1), (C2) and (C3), there exists a contact manifold $\left(M^{\prime}, S^{\prime}, \alpha^{\prime}\right)$ obtained from (M, S, α) after a bypass attachment along γ_{0}, such that
- S^{\prime} is convex;
- α^{\prime} is adapted to S^{\prime} and arbitrarily close to α in M;
- Reeb periodic orbits of period smaller than K intersecting the bypass correspond bijectively to words \mathbf{a} on the letters a_{1}, \ldots, a_{N} such that $l(\mathbf{a})<K$ up to cyclic permutation.
In addition, the periodic orbit $\gamma_{\mathbf{a}}$ associated to $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ intersects S_{Z} in $2 k$ points denoted by $p_{1}^{-}, p_{1}^{+}, \ldots, p_{k}^{-}, p_{k}^{+}$and is arbitrarily close to the chord a_{j} between p_{j}^{-}and p_{j}^{+}.

Therefore, if the contact form α is non-degenerate on M, the Reeb periodic orbits of period smaller than K on M^{\prime} are exactly the Reeb periodic orbits of M of period smaller than K and the orbits described in Theorem 2.1. This theorem is proved in Sections 6 and 7 . We will see in the proof that the condition " α ' is adapted to $S^{\prime \prime}$ is crucial to obtain this symbolic representation of the new periodic orbits. The following proposition ensures that conditions (C1) and (C2) are satisfied for any contact manifold after an isotopy.
Proposition 2.2. Let (M, ξ) be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attaching arc. There exists a contact structure ξ^{\prime} isotopic to ξ and a contact form α of ξ^{\prime} satisfying conditions (C1) and (C2).

This proposition derives from Giroux theory of convex surfaces (Sections 3 and 4) and the explicit construction of Proposition 5.1.
2.3. Computations of contact homology. We now apply Theorem 2.1 to compute some sutured contact homologies. The sutured contact homology is an invariant associated to a contact structure with boundary (M, ξ, Γ) where Γ is the dividing set of the boundary. Though commonly accepted, existence and invariance of contact homology remain unproven. In what follows this assumption will be called Hypothesis H (see Section 3.3.3 for more details).

Let S be a convex surface and $\Gamma=\bigcup_{i=0}^{n} \Gamma_{i}$ be a dividing set of S without contractible components. Let $M=S \times[-1,1]$ be the product neighbourhood of S with invariant contact structure ${ }^{1}$.

Proposition 2.3. There exists a contact form α without contractible Reeb periodic orbits such that the cylindrical sutured contact homology of $(M, \alpha, \Gamma \times\{ \pm 1\})$ is the \mathbb{Q}-vector space generated by $n+1$ periodic orbits homotopic to $\Gamma_{k} \times\{0\}, k=0, \ldots, n$ and by their multiples.
Theorem 2.4. Let γ_{0} be an attachment arc in S intersecting three distinct components of Γ. Let Γ_{0} be the component intersecting the interior of γ_{0}. We denote by $\left(M^{\prime}, \xi^{\prime}\right)$ the contact manifold obtained from (M, ξ) after a bypass attachment

[^0]along $\gamma_{0} \times\{1\}$ and by Γ^{\prime} a dividing set of ∂M^{\prime}. Then, under Hypothesis H, the cylindrical sutured contact homology of $\left(M^{\prime}, \xi^{\prime}, \Gamma^{\prime}\right)$ is the \mathbb{Q}-vector space generated by n periodic orbits homotopic to $\Gamma_{k} \times\{0\}, k=1, \ldots, n$ and by their multiples.

Thus, a bypass attachment removes Γ_{0} and its multiples from the generators of the sutured contact homology.

Contact structures with longitudinal dividing set on the boundary are characterised by the dividing set of any convex meridian disc [27]. Golovko [20] computed the contact homology in the case where the dividing set of a meridian discs consists of segments parallel to the boundary. He also computed contact the homology of solid tori with non-longitudinal boundary dividing set [19]. We extend his computations to contact structures such that (see Figure 1)
(C4) the boundary dividing set Γ has $2 n$ longitudinal components;
(C5) if ($D, \Gamma=\bigcup_{i=0}^{n} \Gamma_{i}$) is the dividing set of a convex meridian disc D there exists a partition of ∂D in two sub-intervals I_{1} and I_{2} such that

- ∂I_{1} is contained in two bigons (called extremal bigons);
- if $I=\left\{i, \partial \Gamma_{i} \subset I_{1}\right.$ or $\left.\partial \Gamma_{i} \subset I_{2}\right\}$ then any connected component of $D \backslash\left(\bigcup_{i \notin I} \Gamma_{i}\right)$ contains at most one component of Γ.

Figure 1. A chord diagram satisfying condition (C5)

Theorem 2.5. Let ξ be a contact structure on $M=D^{2} \times S^{1}$ satisfying conditions (C4) and (C5) above. Under Hypothesis H, the sutured contact homology of (M, ξ, Γ) is the \mathbb{Q}-vector space generated by n_{+}curves homotopic to $\{*\} \times S^{1}, n_{-}$ curves homotopic to $\{*\} \times\left(-S^{1}\right)$ and by their multiples where

$$
n_{ \pm}=\chi\left(S_{ \pm}\right)+\#\{\mp \text { non-extremal bigons }\}-\#\{ \pm \text { bigons }\} .
$$

2.4. Two improvements to the main theorem. We now describe the ConleyZehnder index $\mu\left(\gamma_{\mathbf{a}}\right)$ of the periodic orbit $\gamma_{\mathbf{a}}$ from Theorem 2.1. This index gives the graduation in contact homology and is associated to a trivialisation of the normal bundle of the orbit. We first construct a "nice" trivialisation extending trivialisations along the Reeb chords. In the setting of Theorem 2.1, we denote by a^{-}and a^{+}the inward and outward endpoints of a Reeb chord a, by $\left[p, p^{\prime}\right]$ the segment between p and p^{\prime} in the chart associated to Z and, if p and p^{\prime} are on $\gamma_{\mathbf{a}}$, by $\left[p, p^{\prime}\right]_{\mathbf{a}}$ the arc of $\gamma_{\mathbf{a}}$ between p and p^{\prime}. For each $i=1, \ldots, N$, choose a collar neighbourhood S_{i} of $a_{i} \cup\left[a_{i}^{+}, a_{i}^{-}\right]$. We obtain a collar neighbourhood S_{a} of the periodic orbit $\gamma_{\mathbf{a}}$ corresponding to $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ by gluing together

- collar neighbourhoods of $\left[p_{i_{j}}^{-}, p_{i_{j}}^{+}\right]_{\mathbf{a}} \cup\left[p_{i_{j}}^{-}, p_{i_{j}}^{+}\right]$given by a small perturbation of $S_{i_{j}}$,
- and an immersed disc in the bypass with boundary $\bigcup_{j}\left[p_{i_{j}}^{+}, p_{i_{j+1}}^{-}\right]_{\mathbf{a}} \cup\left[p_{i_{j}}^{+}, p_{i_{j}}^{-}\right]$, embedded near its boundary.
For all i, the annulus S_{i} gives a symplectic trivialisation $\left(e_{1}, e_{2}\right)$ of ξ along a_{i}. Let $\left(R_{t}\right)_{t \in\left[0, T\left(a_{i}\right)\right]}$ denote the path of symplectic matrices induced by the differential of the Reeb flow along a_{i}. For all $t \in\left[0, T\left(a_{i}\right)\right]$, we denote by θ_{t} the angle between
e_{1} and $R_{t}\left(e_{1}\right)$. Let $\tilde{\mu}\left(a_{i}\right)$ be the integer such that $\theta_{T\left(a_{i}\right)} \in\left(\pi \tilde{\mu}\left(a_{i}\right), \pi\left(\tilde{\mu}\left(a_{i}\right)+1\right)\right]$. Then $\tilde{\mu}\left(a_{i}\right)$ depends only on the homology class of S_{i}.

Theorem 2.6. If $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ is a word such that $l(\mathbf{a}) \leq K$, then $\mu\left(\gamma_{\mathbf{a}}\right)=$ $\sum_{j=1}^{k} \tilde{\mu}\left(a_{i_{j}}\right)$ in the trivialisation $S_{\mathbf{a}}$.

In addition, our explicit construction of bypasses allows us to control all the new periodic orbits after a bypass attachment but with less precision. This property is used in our actual computations of contact homology. Let (M, α) be a contact manifold with convex boundary (S, Γ) and γ_{0} an attachment arc satisfying conditions (C1) and (C2). We assume that
(C6) there exists $\lambda_{0}>0$ such that for all $\varepsilon>0$ and for any small enough perturbation of α, the distance between the dividing set and the endpoints of the Reeb chords of $[0,2 \pi] \times\{1\} \times I_{\max }$ is either smaller that ε or greater than λ_{0}.

Theorem 2.7. Under conditions (C1), (C2) and (C6), there exists a contact manifold ($M^{\prime}, S^{\prime}, \alpha^{\prime}$) obtained from (M, S, α) after a bypass attachment along γ_{0}, such that

- S^{\prime} is convex;
- α^{\prime} is adapted to S^{\prime} and arbitrarily close to α in M;
- if $\psi:\left[\pi+\lambda_{0}, 2 \pi-\lambda_{0}\right] \times I_{\max } \rightarrow\left[\lambda_{0}, \pi-\lambda_{0}\right] \times I_{\max }$ is the partial function induced by the Reeb flow in M and φ is the map induced by the Reeb flow in the bypass then every periodic orbit intersecting S_{Z} intersects S_{Z}^{-}on a periodic point of $\varphi \circ \psi$.

If the hypotheses of Theorem 2.1 and Theorem 2.7 are simultaneously satisfied, the associated constructions coincide. In addition, the periodic orbit $\gamma_{\mathbf{a}}$ associated to $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ corresponds to the unique fixed point of $\varphi \circ \psi_{i_{k}} \circ \ldots \circ \varphi \circ \psi_{i_{1}}$ where $\psi_{i_{j}}$ is the restriction of ψ to the connected component of $\operatorname{dom}(\psi)$ containing $a_{i_{j}}^{-}$.

3. Contact geometry

3.1. Contact geometry and convex surfaces. A more detailed presentation can be found in [15]. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold. A vector field whose flow preserves ξ is said to be contact. A fundamental step in the classification of contact structures in dimension 3 was the definition of tight and overtwisted contact structures given by Eliashberg [9] in the line of Bennequin's work [1]. A contact structure ξ is overtwisted if there exists an embedded disc tangent to ξ on its boundary. Otherwise ξ is said to be tight.

Eliashberg's work [9, 10] initiated the study of surfaces in contact manifolds. The characteristic foliation \mathscr{F} of a surface S is the singular 1-dimensional foliation of S such that

- x is a singular point if $\xi_{x}=T_{x} S$;
- $\mathscr{F}_{x}=\xi_{x} \cap T_{x} S$ if x is non-singular.

If ω is a volume form on S and $i: S \rightarrow M$ is the inclusion, \mathscr{F} is defined by the vector field X satisfying $\iota_{X} \omega=i^{*} \alpha$. The characteristic foliation determines the germ of ξ near S [16, Proposition II.1.2].

The development of convexity by Giroux [16] following Eliashberg and Gromov's definition [12] represents a major progress in the study of contact geometry. A surface S is convex if there exists a contact vector field transverse to S. If S has a boundary, we require it to be Legendrian. Closed convex surfaces are generic [16, Proposition II.2.6]. The convexity of a surface is equivalent to the existence of a dividing set for the characteristic foliation (Giroux, [16, Proposition II.2.1]). A
multi-curve Γ on S is a dividing set for a singular 1-dimensional foliation \mathscr{F} of S if there exist two sub-surfaces $S_{ \pm}$of S, a vector field Y and a volume form ω on S such that

- $\partial S_{ \pm}=\Gamma$;
- $\operatorname{div}_{\omega} Y>0$ on S_{+}and $\operatorname{div}_{\omega} Y<0$ on S_{-};
- Y points toward S_{+}along Γ.

The dividing set Γ inherits the orientation of ∂S_{+}. All dividing sets of a given foliation are isotopic. If X is a contact vector field transverse to S, the set of tangency points between X and ξ along S is a dividing set. The dividing set Γ encodes ξ near S as any foliation divided by Γ can be realised as the characteristic foliation of a perturbed surface. This property is due to Giroux [16, Proposition II.3.6] and known as the realisation lemma. In favourable situations, the Reeb vector field provides us with a dividing set.

Lemma 3.1. Let S be a compact surface in (M, α). If R_{α} is tangent to S along a smooth curve Γ and if, along Γ, the characteristic foliation of S points toward S_{+}, the sub-surface where R_{α} is positively transverse to S, then S is convex and Γ is a dividing set.

Proof. In the definition of dividing set, choose any volume form ω of S and Y such that $\iota_{Y} \omega=i^{*} \alpha$ where $i: S \rightarrow M$ is the inclusion.
3.2. Bypasses. Let S be a closed convex surface without boundary in a contact manifold. A bypass for S is an embedded half-disc D in M such that

- D is transverse to S;
- D has a Legendrian boundary denoted by $\gamma_{1} \cup \gamma_{2}$ and $D \cap S=\gamma_{1}$;
- the singularities of the characteristic foliation of D are (see Figure 2)
- a negative elliptic singularity in the interior of γ_{1};
- two positive elliptic singularities at the endpoints of γ_{1};
- positive singularities along γ_{2} alternating between elliptic and hyperbolic singularities.
The arc γ_{1} is called the attaching arc of the bypass.

Figure 2. The characteristic foliation of a bypass
Proposition 3.2 (Honda [27]). Let D be a bypass for S with attaching arc γ_{1}. There exists an neighbourhood of $S \cup D$ diffeomorphic to $S \times[0,1]$ such that

- $S \simeq S \times\{\varepsilon\} ;$
- the contact structure is invariant in $S \times[0, \varepsilon]$;
- the surfaces $S \times\{0\}$ and $S \times\{1\}$ are convex with dividing sets Γ and Γ^{\prime} where Γ and Γ^{\prime} are identical except in a neighbourhood of γ_{1} on which the arrangements are shown in Figure 3.

Let (M, ξ) be a contact manifold with convex boundary S. Let Γ be a dividing set of S and γ_{1} be an attaching arc. A bypass attachment along γ_{1} is a contact manifold $\left(M^{\prime}, \xi^{\prime}\right)$ with convex boundary S^{\prime} extending (M, ξ) such that there exists a neighbourhood $S \times[0,1]$ of S^{\prime} satisfying

Figure 3. Dividing sets Γ and Γ^{\prime}

- $S^{\prime} \simeq S \times\{1\}$;
- $S \times\{0\}$ is convex and is the image of S by the flow of an inward contact vector field;
- there exists a contact retraction of $S \times[0,1]$ on an arbitrarily small neighbourhood of $S \times\{0\} \cup D$ where D is a bypass for $S \times\{0\}$ with attaching arc the image of γ_{1} on $S \times\{0\}$.
The differences between the dividing sets of S and S^{\prime} are shown on Figure 3. Honda [27] constructed an explicit bypass attachment on a convex boundary satisfying condition (C1) (see Section 7.1).

There exist two degenerate bypass attachments: the trivial one that does not change the contact structure up to isotopy and the overtwisted one that creates an overtwisted contact structure (see Figure 4).

Figure 4. Trivial (left) and overtwisted (right) bypasses
Giroux [17] and Honda [27] independently classified contact structures on solid tori. Honda's proof hinges on bypasses. We follow Mathews' presentation [33]. A chord diagram is a finite set of disjoint properly embedded arcs in the disc D^{2} up to isotopy relative to the boundary.

Theorem 3.3 (Giroux [17], Honda [27]). Let $F \subset S^{1}$ be a set with $2 n$ elements and \mathscr{F} be a singular foliation on T^{2} divided by $\Gamma=F \times S^{1}$ and containing a meridian leaf which intersects Γ in $2 n$ points. Tight contact structures on $D^{2} \times$ S^{1} with characteristic foliation \mathscr{F} on the boundary up to isotopy relative to the boundary correspond bijectively to chord diagrams of n chords with boundary in F. In addition, the associated chord diagram is the dividing set of any convex meridian disc intersecting Γ in $2 n$ points.

By the realisation lemma, we can assume that the characteristic foliation of the boundary satisfies the hypothesis of Theorem 3.3.

Proposition 3.4 (Honda [27]). Let ξ be a contact structure on $D^{2} \times S^{1}$ such that the boundary dividing set Γ has $2 n$ longitudinal components. Let D^{\prime} be a convex meridian disc intersecting Γ in $2 n$ points. Fix an attaching arc $\gamma \subset \partial D^{\prime}$. Then, the contact structure ξ^{\prime} on $D^{2} \times S^{1}$ obtained after a bypass attachment along γ has a boundary dividing set with $2(n-1)$ longitudinal components. In addition, the chord diagram associated to ξ^{\prime} is obtained from the diagram associated to ξ by gluing the endpoints of the two chords intersecting ${ }^{2} \gamma$ (see Figure 5).

[^1]

Figure 5. Effect of a bypass attachment on solid torus
3.3. Sutured contact homology. We consider the generalisation of contact homology to manifolds with boundary called sutured contact homology and introduced by Colin, Ghiggini, Honda and Hutchings [6]. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold.
3.3.1. Holomorphic cylinders. The differential of contact homology "counts" pseudoholomorphic curves in the symplectisation of the contact manifold. One can refer to [35] for more information. The symplectisation of $(M, \xi=\operatorname{ker}(\alpha))$ is the noncompact symplectic manifold $\left(\mathbb{R} \times M, \mathrm{~d}\left(e^{\tau} \alpha\right)\right)$ where τ is the \mathbb{R}-coordinate. An almost complex structure on a even-dimensional manifold M is a map $J: T M \rightarrow T M$ preserving the fibres and such that $J^{2}=-\mathrm{Id}$. An almost complex structure J on $\mathbb{R} \times M$ is adapted to α if J is τ-invariant, $J \frac{\partial}{\partial \tau}=R_{\alpha}, J \xi=\xi$ and $\omega(\cdot, J \cdot)$ is a Riemannian metric. A map $u:\left(M_{1}, J_{1}\right) \rightarrow\left(M_{2}, J_{2}\right)$ is pseudo-holomorphic if $\mathrm{d} u \circ J_{1}=$ $J_{2} \circ \mathrm{~d} u$. Here we consider pseudo-holomorphic cylinders $u:\left(\mathbb{R} \times S^{1}, j\right) \rightarrow \mathbb{R} \times M$. The simplest non-constant pseudo-holomorphic maps are trivial cylinders:

$$
\begin{array}{ccc}
\mathbb{R} \times S^{1} & \longrightarrow & \mathbb{R} \times M \\
(s, t) & \longmapsto & (T s, \gamma(T t)) .
\end{array}
$$

where γ is a T-periodic Reeb orbit. Note that there also exist trivial pseudoholomorphic maps over any Reeb orbit. For every non-constant map

$$
u:\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(R \times M, J)
$$

which is not a trivial cylinder, the points (s, t) such that $\mathrm{d} u=0$ or $\frac{\partial}{\partial \tau} \in \operatorname{im}(\mathrm{d} u(s, t))$ are isolated (see [35, Lemma 2.4.1]).

The map $u=(a, f): \mathbb{R} \times S^{1} \rightarrow \mathbb{R} \times M$ is positively asymptotic to a T-periodic orbit γ at $+\infty$ if $\lim _{s \rightarrow+\infty} a(s, t)=+\infty$ and $\lim _{s \rightarrow+\infty} f(s, t)=\gamma(-T t)$. It is negatively asymptotic to γ at $-\infty$ if $\lim _{s \rightarrow-\infty} a(s, t)=-\infty$ and $\lim _{s \rightarrow-\infty} f(s, t)=$ $\gamma(+T t)$. It is a theorem of Hofer [22, Theorem 31] that holomorphic curves u : $\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, J)$ with finite Hofer energy are asymptotic to a Reeb periodic orbit at $\pm \infty$ if the contact form α is non-degenerate.
3.3.2. Conley-Zehnder index. The Conley-Zehnder index gives the graduation in contact homology. Consider $(M, \xi=\operatorname{ker}(\alpha))$ a contact manifold, γ a T-periodic Reeb orbit and $p \in \gamma$. If φ_{t} denote the Reeb flow, the map $\mathrm{d} \varphi_{T}(p):\left(\xi_{p}, \mathrm{~d} \alpha\right) \rightarrow$ ($\xi_{p}, \mathrm{~d} \alpha$) is a symplectomorpism. A non-degenerate periodic orbit γ is called even if $\mathrm{d} \varphi_{T}(p)$ has two real positive eigenvalues and odd if $\mathrm{d} \varphi_{T}(p)$ has two complex conjugate or two real negative eigenvalues. In addition, if $\mathrm{d} \varphi_{T}(p)$ has real eigenvalues, the orbit is said hyperbolic. If it has two complex conjugate eigenvalues, the orbit is called elliptic. Let γ_{m} be the m-th multiple of a simple orbit γ_{1}. Then γ_{m} is said to be good if γ_{1} and γ_{m} have the same parity, otherwise γ_{m} is said to be bad.

The Conley-Zehnder index was introduced in [7] for paths of symplectic matrices. Our short presentation follows [31]. Let $\mathrm{Sp}(2)$ denote the set of symplectic matrices in $\mathcal{M}_{2}(\mathbb{R})$. The open set $\mathrm{Sp}^{*}=\{A \in \mathrm{Sp}(2), \operatorname{det}(A-I) \neq 0\}$ has two connected components and they are contractible. Any path $R:[0,1] \rightarrow \mathrm{Sp}(2)$ such that
$R_{0}=I$ and $R_{1} \in \mathrm{Sp}^{*}(2)$ can be extended by a path $\left(R_{t}\right)_{t \in[1,2]}$ in Sp^{*} such that

$$
R_{2}=W_{+}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \text { or } R_{2}=W_{-}=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Using polar decomposition, we write $R_{t}=S_{t} O_{t}$ where S_{t} is positive-definite and O_{t} is a rotation of angle θ_{t}. The Conley-Zehnder index of R is $\mu(R)=\frac{\theta_{2}-\theta_{0}}{\pi}$. It is an integer and does not depend on the choice of an extension of R.

As $\mathrm{d} \varphi_{t}(p):\left(\xi_{p}, \mathrm{~d} \alpha\right) \rightarrow\left(\xi_{\varphi_{t}(p)}, \mathrm{d} \alpha\right)$ is a symplectomorpism, a trivialisation of ξ along γ provides us with a path of symplectic matrices. If γ is non degenerate, its Conley-Zehnder index is well defined. It gives a relative (depending on a choice of trivialisation) grading of Reeb periodic orbits. Its parity matches with the above definition.
3.3.3. Sutured contact homology. We now assume that (M, ξ) has a convex boundary (S, Γ) and that α is a non-degenerate contact equation adapted to the boundary. We sketch the construction of cylindrical sutured contact homology chain complex $\left(C_{*}^{\text {cyl }}(M, \Gamma, \alpha), \partial\right)$ defined in $[6]$. The chain complex $C_{*}^{\text {cyl }}(M, \Gamma, \alpha)$ is the \mathbb{Q}-vector space generated by good Reeb periodic orbits (here we consider simple periodic orbits and their good multiples). Choose an almost complex structure J adapted to the symplectisation. To define $\partial \gamma$, consider the set $\mathcal{M}_{[Z]}\left(J, \gamma, \gamma^{\prime}\right)$ of equivalence classes (modulo reparametrisation) of solutions of the Cauchy-Riemann equation with finite energy, positively asymptotic to γ, negatively asymptotic to γ^{\prime} and in the relative homotopy class $[Z]$. The \mathbb{R}-translation in $\mathbb{R} \times M$ induces a \mathbb{R}-action on $\mathcal{M}_{[Z]}\left(J, \gamma, \gamma^{\prime}\right)$. Due to severe transversality issues for multiply-covered curves, there is no complete proof that $\overline{\mathcal{M}}_{[Z]}\left(J, \gamma, \gamma^{\prime}\right)=\mathcal{M}_{[Z]}\left(J, \gamma, \gamma^{\prime}\right) / \mathbb{R}^{\text {admits a smooth }}$ structure. We use Hypothesis H to make this assumption.

Hypothesis H. There exists an abstract perturbation of the Cauchy-Riemann equation such that $\overline{\mathcal{M}}_{[Z]}\left(J, \gamma, \gamma^{\prime}\right)$ is a union of branched labelled manifolds with corners and rational weights whose dimensions are given by $[Z]$ and the ConleyZehnder indices of the asymptotic periodic orbits.

There exists several approaches to the perturbation of moduli spaces due to Fukaya and Ono [13], Liu and Tian [32], Hofer, Wysocki and Zehnder [23, 25, 24] or Cieliebak and Oancea in the equivariant contact homology setting [3, 4]. There also exist partial transversality results due to Dragnev [8].

The differential of a periodic orbit γ is

$$
\partial \gamma=\sum_{\gamma^{\prime}} \frac{n_{\gamma, \gamma^{\prime}}}{\kappa\left(\gamma^{\prime}\right)} \gamma^{\prime}
$$

where $\kappa\left(\gamma^{\prime}\right)$ is the multiplicity of γ^{\prime} and $n_{\gamma, \gamma^{\prime}}$ denote the signed weighted counts of points in 0-dimensional components of $\overline{\mathcal{M}}_{[Z]}\left(J, \gamma, \gamma^{\prime}\right)$ for all relative homology classes [Z]. In particular, the differential of an even (resp. odd) periodic orbit contains only odd (resp. even) periodic orbits.

Under Hypothesis H , it is reasonable to expect the following: if there exists an open set $U \subset \mathbb{R} \times M$ containing all the images of J-holomorphic curves positively asymptotic to γ, negatively asymptotic to γ^{\prime}, then U contains the images of all solutions of perturbed Cauchy-Riemann equations with the same asymptotics for all small enough abstract perturbations.

Hypothesis H is the key ingredient to prove the existence and invariance of contact homology. The condition " α adapted to the boundary" implies that a family of holomorphic cylinders stays in a compact subset in the interior of M.

Theorem 3.5 (Colin-Ghiggini-Honda-Hutchings). Under Hypothesis H,
(1) $\partial^{2}=0$;
(2) the associated homology ${H C_{*}^{c y l}}^{c y}(M, \xi, \Gamma)$ does not depend on the choice of the contact form, complex structure and abstract perturbation.
If $\partial^{2}=0$ for some contact form α, we denote $H C_{*}^{\text {cyl }}(M, \Gamma, \alpha, J)$ the associated homology.

Theorem 3.6 (Golovko [20]). Let ξ be a contact structure on $D^{2} \times S^{1}$ such that the boundary dividing set has $2 n$ longitudinal components and the dividing set of a meridian disc has n components parallel to the boundary. Then the sutured cylindrical contact homology is the \mathbb{Q}-vector space generated by $n-1$ orbits homotopic to $\{*\} \times S^{1}$ and by their multiples.
3.3.4. Positivity of intersection. In dimension 4, two distinct pseudo-holomorphic curves C and C^{\prime} have a finite number of intersection points and that each of these points contributes positively to the algebraic intersection number $C \cdot C^{\prime}$. This result is known as positivity of intersection and was introduced by Gromov [21] and McDuff [34]. In this text we will only consider the simplest form of positivity of intersection: let M be a 4-dimensional manifold, C and C^{\prime} be two J-pseudo-holomorphic curves and $p \in M$ so that C and C^{\prime} intersect transversely at p. Consider $v \in T_{p} C$ and $v^{\prime} \in T_{p} C^{\prime}$ two non-zero tangent vectors. Then $\left(v, J v, v^{\prime}, J v^{\prime}\right)$ is a direct basis of $T_{p} M$ (J induces a natural orientation on $T_{p} M$). In the symplectisation of a contact manifold, positivity of intersection of a pseudo-holomorphic curve with a trivial holomorphic map results in the following lemma.

Lemma 3.7. Let (M, ξ) be a contact manifold, α be a contact form and J be an adapted almost complex structure. Consider U an open subset of $\mathbb{C}, u=(a, f)$: $U \rightarrow \mathbb{R} \times M$ a J-pseudo holomorphic curve and $p \in U$ such that $\mathrm{d} f_{p}$ is injective and transverse to $R(f(p))$.Then, $R(f(p))$ is positively transverse to $\mathrm{d} f_{p}$.

The hypothesis " $\mathrm{d} f_{p}$ injective and transverse to $R(f(p))$ " is generic. We will use positivity of intersection in the following situation to carry out explicit computations of sutured contact homology in Sections 4 and 5. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold with convex boundary and α be a contact form. We assume there exist two sets of Reeb chords of ∂M, denoted by X_{+}and X_{-}, with non-empty interior. Let J be an almost complex structure adapted to α.
Lemma 3.8. Let $u:\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, J)$ be a J-holomorphic cylinder asymptotic to γ_{+}and γ_{-}. Assume that for any Reeb chord $c \in X_{ \pm}$there exists a path of properly embedded arcs in $M \backslash\left(\gamma_{+} \cup \gamma_{-}\right)$connecting c and a Reeb chord in $\operatorname{int}\left(X_{\mp}\right)$ with reversed orientation. Then $\operatorname{im}(u)$ is disjoint from $\operatorname{int}\left(X_{+}\right) \cup \operatorname{int}\left(X_{-}\right)$.
Proof. Generically a Reeb chord is transverse to u. Let c_{+}be a Reeb chord in X_{+} transverse to u. There exists c_{-}in X_{-}transverse to u and connected to $-c_{+}$by a path of properly embedded arcs in $M \backslash\left(\gamma_{+} \cup \gamma_{-}\right)$. By positivity of intersection, $c_{ \pm} \cdot u \geq 0$. Yet $c_{+} \cdot u=-c_{-} \cdot u$ and c_{+}does not intersect $\operatorname{im}(u)$.

4. Thickened convex surfaces

In this section we study the simplest example of contact manifold with boundary. We compute its sutured contact homology and apply our main theorem. Let S be a convex surface and $\Gamma=\bigcup_{i=0}^{n} \Gamma_{i}$ be a dividing set of S. Assume Γ has no contractible component. Let $M=S \times[-1,1]$ be the product neighbourhood of S with invariant contact structure. This contact structure is tight [18, Théoreme 4.5a]. Let γ_{0} be an attachment arc. The multi-curve $\Gamma \times\{ \pm 1\}$ is a dividing set of the boundary. Giroux [16, Proposition 2.1] proved that there exists a contact form α_{0} such that
(C7) for all $n=1, \ldots, n$, there exists a neighbourhood U_{i} of Γ_{i} with coordinates

$$
(x, y, z) \in\left[-x_{\max }, x_{\max }\right] \times[-1,1] \times S^{1}
$$

such that

- $S \cap U_{i} \simeq\left[-x_{\max }, x_{\max }\right] \times\{0\} \times S^{1}$;
- $\Gamma_{i} \simeq\{0\} \times\{0\} \times S^{1}$;
- $\alpha_{0}=f(x) \mathrm{d} y+\cos (x) \mathrm{d} z$ where $f:\left[-x_{\max }, x_{\max }\right] \rightarrow \mathbb{R}$ is non-decreasing, $f= \pm 1$ near $\pm x_{\text {max }}$ and $f=\sin$ near $0 ;$
(C8) $\alpha_{0}=\beta_{ \pm} \pm \mathrm{d} y$ on $S_{ \pm} \times[-1,1] \backslash U$ where $\pm \mathrm{d} \beta_{ \pm}>0$ and $U=\bigcup_{i=0}^{n} U_{i}$.
The Reeb periodic orbits are exactly the curves $\Gamma_{i} \times\{t\}$ for all $t \in[-1,1]$ and $i=0, \ldots, n$ (see Figure 6). The contact form is degenerate and is not adapted to

Figure 6. The vector fields $R_{\alpha_{0}}$ and $R_{\alpha_{p}}$ projected on the (x, y)-plane
the boundary. In U_{i}, near $x=0$, we perturb α_{0} into

$$
\alpha_{p}=\sin (x) \mathrm{d} y+(1+k(x) l(y)) \cos (x) \mathrm{d} z
$$

where
(C9) k is a cut-off function such that $k=1$ near 0 and $k=0$ near $\pm x_{\max }$;
(C10) l is a \mathcal{C}^{∞}-small strictly convex function with minimum 0 at 0 .
The associated Reeb vector field is

$$
R_{\alpha_{p}}=\frac{1}{p(x, y)}\left(\begin{array}{c}
l^{\prime}(y) k(x) \cos (x) \\
p(x, y) \sin (x)-k^{\prime}(x) l(y) \cos (x) \\
\cos (x)
\end{array}\right)
$$

Proposition 4.1. The contact form α_{p} is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are the curves $\Gamma_{i} \times\{0\}$ for $i=0, \ldots, n$. These orbits are even and hyperbolic.

Proof. In $M \backslash U$, the Reeb vector field is $R= \pm \frac{\partial}{\partial y}$. Thus the Reeb periodic orbits are contained in U. In addition, if l is small enough, they are contained in the neighbourhood where $k=1$. In this neighbourhood, the projection of the Reeb vector field in the plane (x, y) is collinear to the Hamiltonian vector field of $(x, y) \mapsto l(y) \cos (x)$. There are no closed levels so the Reeb periodic orbits correspond to critical points of the Hamiltonian (see Figure 6). By linearising the Reeb flow φ_{t} along $\Gamma_{i} \times\{0\}$ we get

$$
\operatorname{tr}\left(\mathrm{d} \varphi_{t}(0,0,0)_{\mid \xi}\right)=2 \cosh \left(\sqrt{t l^{\prime \prime}(0)}\right)>2 .
$$

Thus the Reeb periodic orbits are even and hyperbolic.
Proof of Proposition 2.3. Proposition 2.3 is a corollary of Proposition 4.1. Indeed $\partial=0$ in $C_{*}^{\mathrm{cyl}}\left(M, \Gamma \times\{ \pm 1\}, \alpha_{p}\right)$ as all the orbits are even.

We now apply our main theorem to M. By Proposition 2.2 and [16, Proposition 2.1] there exists an isotopic the contact structure with a contact form satisfying conditions (C1) and (C2) and coordinates in a neighbourhood of Γ, compatible with
the coordinates in Z and satisfying conditions (C7) and (C8). We perturb the contact form into

$$
\alpha_{b}=f(x) \mathrm{d} y+(1+k(x) l(y) m(z)) \cos (x) \mathrm{d} z
$$

where k and l satisfy conditions (C9) and (C10) and
(C11) m is a smooth cut-off function, $m=0$ on $\left[-z_{\max }, z_{\max }\right]$ and $m=1$ outside a small neighbourhood of $\left[-z_{\text {max }}, z_{\text {max }}\right]$.
Let $p(x, y, z)=1+k(x) l(y) m(z)$. The Reeb vector field is

$$
R_{\alpha_{b}}=\frac{1}{p-k^{\prime}(x) l(y) m(z) \cos (x) \sin (x)}\left(\begin{array}{c}
l^{\prime}(y) k(x) m(z) \cos (x) \\
p \sin (x)-k^{\prime}(x) l(y) m(z) \cos (x) \\
\cos (x)
\end{array}\right) .
$$

Proposition 4.2. The contact form α_{b} is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are the curves $\Gamma_{i} \times\{0\}$ for $i=0, \ldots, n$. These orbits are even and hyperbolic.

Proof. As in the proof of Proposition 4.1, for l small enough, the Reeb periodic orbits are contained in the neighbourhood where $k=1$. In this neighbourhood, any Reeb orbit intersecting the set $x y \leq 0$ meets the boundary or is equal to $\Gamma_{i} \times\{0\}$ (see Figure 6). In addition, any Reeb orbit intersecting the set $x y \geq 0$ meets the set $x y \leq 0$. Thus the Reeb periodic orbits are the curves $\Gamma_{i} \times\{0\}$. By linearising the Reeb flow φ_{t} along $\Gamma_{i} \times\{0\}$, we get

$$
\operatorname{tr}\left(\mathrm{d} \varphi_{t}(0,0,0)_{\mid \xi}\right)>\operatorname{tr}\left(\mathrm{d} \varphi_{0}(0,0,0)_{\mid \xi}\right)=2 .
$$

We denote by Γ_{0} the connected component of Γ which intersects the interior of γ_{0}. If γ_{0} intersects three distinct components of Γ, then γ_{0} intersect U_{0} along $\left[-x_{\max }, x_{\max }\right] \times\{1\} \times\{0\}$. If γ_{0} intersects only two distinct components of Γ, there exists $z_{1} \in S^{1}$ such that γ_{0} intersects U_{0} along $\left[-x_{\max }, x_{\max }\right] \times\{1\} \times\{0\}$ and $\left[0, x_{\max }\right] \times\{1\} \times\left\{z_{1}\right\}$ (reverse the orientation of S if necessary). If c is a Reeb chord of γ_{0}, we denote by \bar{c} the union of c and the arc of γ_{0} joining c^{+}and c^{-}. Recall that c^{+}and c^{-}are the endpoints of c.

Proposition 4.3. The contact form α_{b} satisfies condition (C3) for all $K>0$. In addition (see Figure 7),

- if γ_{0} intersects three distinct components of Γ, the set of Reeb chords of γ_{0} is $\left\{c_{k}, k \in \mathbb{N}^{*}\right\}$ and $\left[\overline{c_{k}}\right]=\left[\Gamma_{0}\right]^{k}$;
- if γ_{0} corresponds to a trivial bypass attachment, the set of Reeb chords of γ_{0} is $\left\{c_{k}, d_{k}, k \in \mathbb{N}^{*}\right\}$ where $\left[\overline{c_{k}}\right]=\left[\overline{d_{k}}\right]=\left[\Gamma_{0}\right]^{k}$ and the z-coordinates of c_{k}^{+} and d_{k}^{+}are respectively 0 and z_{1};
- if γ_{0} corresponds to an overtwisted bypass attachment, the set of Reeb chords of γ_{0} is $\left\{d_{0}, c_{k}, d_{k}, k \in \mathbb{N}^{*}\right\}$ where c_{k} and d_{k} are as above for $k \in \mathbb{N}^{*}, \overline{d_{0}}$ is contractible and the z-coordinate of d_{0}^{+}is z_{1}.
In a trivialisation that does not intersect small translations of the Reeb chord along $\frac{\partial}{\partial y}$, we have $\tilde{\mu}\left(c_{k}\right)=1$ and $\tilde{\mu}\left(d_{k}\right)=0$.

Corollary 4.4. We assume that γ_{0} intersects three distinct components of Γ. Let $L>0$. There exists a contact manifold $\left(M^{\prime}, \alpha^{\prime}\right)$ obtained from $\left(M, \alpha_{b}\right)$ after a bypass attachment along γ_{0} such that for all $l<L$ the set of Reeb periodic orbits homotopic to $\left[\Gamma_{0}\right]^{l}$ is

$$
\left\{\kappa=\left(k_{1}, \ldots, k_{m}\right) \in\left(\mathbb{N}^{*}\right)^{l}, l=k_{1}+\cdots+k_{m}\right\} /\{\text { cyclic permutation }\} .
$$

In addition, $\mu\left(\gamma_{\kappa}\right)=m$ if γ_{κ} is the orbit associated to $\kappa=\left(k_{1}, \ldots, k_{m}\right)$.

Figure 7. Reeb chords

Corollary 4.5. An overtwisted bypass attachment creates a contractible Reeb periodic orbit.

Proof of Proposition 4.3. For l small enough the Reeb chords are contained in U_{0} and more precisely in the neighbourhood where $k=1$. Let $z_{0}=\sup \{z, m([0, z])=$ $0\}$. We lift the S^{1}-coordinate in U_{0} to \mathbb{R} and denote by $\delta=\left(x_{S}, z_{S}\right)$ the image of γ_{0} on $\left[-x_{\max }, x_{\max }\right] \times\{1\} \times \mathbb{R}$ (see Figure 7). There exists $s_{\max }<x_{\max }$ such that $\operatorname{dom}(\delta)=\left(-s_{\max }, 0\right)$. In addition $\lim _{s \rightarrow-s_{\max }} z_{S}(s)=+\infty$ and $\lim _{s \rightarrow 0} z_{S}(s)=z_{0}$.

Let $\left(x_{z_{1}}, y_{z_{1}}\right)$ denote the image of γ_{0} by the Reeb flow in the plane $z=z_{1}$. For all $z \geq z_{0}$ and for all small enough $\eta>0, \frac{\mathrm{~d}}{\mathrm{~d} z}\left(x_{z}(s+\eta)-x_{z}(s)\right)$ and $\frac{\mathrm{d}}{\mathrm{d} z}\left(y_{z}(s+\eta)-y_{z}(s)\right)$ are non-negative. It holds that

$$
\begin{equation*}
x_{z}^{\prime}(s) \geq 1 \quad y_{z}^{\prime}(s) \geq \frac{1}{\cos ^{2}\left(x_{0}\right)} z_{0} \tag{1}
\end{equation*}
$$

(renormalise $R_{\alpha_{b}}$ and use condition (C10)). Thus, if $\left(s_{0}, 1,0\right)$ and $(x, 1, z)$ are the endpoints of the lift of a Reeb chord, we have

$$
z_{S}^{\prime}\left(s_{0}\right)=-\frac{1}{\tan \left(x_{z}\left(s_{0}\right)\right)} y_{z}^{\prime}\left(s_{0}\right)<0
$$

and δ intersects the segments $\left[-x_{\max }, x_{\max }\right] \times\{1\} \times\{2 k \pi\}$ exactly for $k \in \mathbb{N}^{*}$. In addition, there is only one intersection point. This point is the endpoint of a Reeb chord. If the bypass is trivial or overtwisted, let z_{1} denote to the smallest positive lift of $z_{1} \in S^{1}$. Then δ also intersects $\left[0, x_{\max }\right] \times\{1\} \times\left\{2 k \pi+z_{1}\right\}$ if and only if $k \in \mathbb{N}^{*}$ and there is exactly one intersection point. This concludes the description of the Reeb chords when γ_{0} intersects three distinct components of Γ.

We now compute $\tilde{\mu}(a)$ for some Reeb chord a. In the coordinates $\left(R, e_{1}, e_{2}\right)$ given by the symplectic trivialisation of ξ along a, let v denote the projection of $\frac{\partial}{\partial y}$ on $\left(e_{1}, e_{2}\right)$. Then $v \neq e_{1}$ and v is positively collinear to e_{2} at $t=0$. Let R_{t} denote the symplectic matrix induced by the differential of the Reeb flow on $\xi_{a(t)}$. The vector $\mathrm{d} R_{t} \cdot e_{1}$ does not cross $\mathbb{R}_{+} v$ as $x_{z}^{\prime}(s) \geq 1$. Write $\mathrm{d} R_{t} \cdot e_{1}=r(t) e^{i \theta(t)}$. If $a=c_{k}$, then v is positively collinear to $-e_{2}$ at $t=T(a)$. The tangent vector to the image of γ_{0} on $\xi_{a^{+}}$at the endpoint of a is

$$
\left(\begin{array}{l}
x_{z_{0}}^{\prime}\left(s_{0}\right) \\
y_{z_{0}}^{\prime}\left(s_{0}\right) \cos ^{2}\left(x_{0}\right) \\
-y_{z_{0}}^{\prime}\left(s_{0}\right) \cos \left(x_{0}\right) \sin \left(x_{0}\right)
\end{array}\right)
$$

where the endpoints of a are $\left(s_{0}, 1,0\right)$ and $\left(x_{0}, 1, z_{0}\right)$. Using (1), we get

$$
\theta(T(a)) \in\left(\pi, \frac{3 \pi}{2}\right)+2 \pi \mathbb{Z}
$$

Thus $\theta\left(T\left(c_{k}\right)\right) \in[\pi, 2 \pi]$ and $\tilde{\mu}\left(c_{k}\right)=1$. If $a=d_{k}$, then v is positively collinear to e_{2} at $t=T(a)$. In addition, it holds that

$$
\theta(T(a)) \in\left(0, \frac{\pi}{2}\right)+2 \pi \mathbb{Z}
$$

Thus, we obtain $\theta\left(T\left(c_{k}\right)\right) \in[0, \pi]$ and $\tilde{\mu}\left(d_{k}\right)=0$.
Proof of Corollary 4.4. There exists $\nu>0$ such that for any small perturbation of α, the Reeb chords of $[-\nu, \nu] \times\{1\} \times I_{\max }$ are arbitrarily close to $\{0\} \times\{1\} \times I_{\max }$. We apply Theorem 2.1 and Proposition 2.7 for $\lambda=\nu$ and K such that $i_{1}+\cdots+i_{k} \leq L$ implies $\Sigma_{j=1}^{k} T\left(c_{i_{j}}\right)<K$.

The set of Reeb periodic orbits homotopic to $\left[\Gamma_{0}\right]^{l}$ in Corollary 4.4 corresponds to Reeb periodic orbits with period smaller that K described in Theorem 2.1. It remains to prove that there are no other Reeb periodic orbits homotopic to $\left[\Gamma_{0}\right]^{l}$. If γ is such a Reeb periodic orbit then γ is associated to a periodic point of $\varphi \circ \psi$ (Proposition 2.7). We decompose ψ into $\left(\Psi_{k}\right)_{k \in \mathbb{N}^{*}}$ so that, if a is a Reeb chord that contributes to Ψ_{k}, then $[\bar{a}]=\left[\Gamma_{0}\right]^{k}$. For $k \leq L$, we have $\Psi_{k}=\psi_{k}$ (see Proposition 2.7). Therefore γ corresponds to a fixed point of $\varphi \circ \Psi_{i_{k}} \circ \cdots \circ \varphi \circ \Psi_{i_{1}}$ and $i_{1}+\cdots+i_{k}=l$ and we obtain $T(\gamma)<K$.

5. Applications to sutured contact homology

In this section we apply Theorem 2.1 and Proposition 2.7 to prove Theorem 2.4 and Theorem 2.5. To compute the contact homology of a convex surface after a bypass attachment and of some contact structures on solid tori, we construct suitable contact structures on the associated manifolds. On a thickened convex surface (Theorem 2.4) we start from the contact form described in Section 4. Theorem 2.5 gives the contact homology of a contact structure ξ on $D^{2} \times S^{1}$ such that
(C4) the boundary dividing set Γ has $2 n$ longitudinal components;
(C5) for a convex meridian disc dividing set $\left(D, \Gamma=\bigcup_{i=0}^{n} \Gamma_{i}\right)$ there exists a partition of ∂D in two sub-intervals I_{1} and I_{2} such that
$-\partial I_{1}$ is contained in two bigons (called extremal bigons);

- if $I=\left\{i, \partial \Gamma_{i} \subset I_{1}\right.$ or $\left.\partial \Gamma_{i} \subset I_{2}\right\}$ then $D \backslash\left(\bigcup_{i \notin I} \Gamma_{i}\right)$ contains at most one component of Γ.
All these contact structures are obtained from the contact structure ($D^{2} \times S^{1}, \xi_{/ /}$) with parallel dividing set on convex meridian discs after a finite number of bypass attachments. In Section 5.1 we compute the sutured contact homology of $\left(D^{2} \times S^{1}, \xi_{/ /}\right)$ and apply Theorem 2.1 and Proposition 2.7 to obtain the Reeb periodic orbits after a finite number of bypass attachments. To compute the contact homology (and prove Theorem 2.5), it remains to control the differential. By Corollary 4.4, a bypass attachment creates many homotopic periodic orbits. This complicates the direct study of the differential. We get round this difficulty in Section 5.2 by proving that all the holomorphic cylinders are contained in a standard neighbourhood. We deduce the differential in this neighbourhood by use of computations of contact homology in simple situations on a solid torus.
5.1. Contact forms on solid tori. For $n \in \mathbb{N}^{*}$ and $0<\eta<\frac{\pi}{4}$, let

$$
D_{n, \eta}=\{(x, y), x \in[-\pi+\eta-h(y), n \pi-\eta+h(y)], y \in[-1,1]\}
$$

where $h:[-1,1] \rightarrow \mathbb{R}$ is a strictly concave function with maximum $h(0)<\eta$, vertical and zero at ± 1 (see Figure 8). On $M_{n, \eta}=D_{n, \eta} \times S^{1}$, we consider the contact form

$$
\alpha=f(x) \mathrm{d} y+\cos (x) \mathrm{d} z+g(x, y) \mathrm{d} x
$$

where

- f is 2π-periodic, $f=(-1)^{k+1}$ in a neighbourhood of $\left[k \pi+\frac{\pi}{4}, k \pi+\frac{3 \pi}{4}\right]$ and $f=\sin$ near $k \pi, k=-1, \ldots, n$;
- g does not depend on y for $y \geq \frac{1}{2}$;
- $g=0$ for $y \leq 0$ and outside a neighbourhood of $x=-\frac{3 \pi}{4}$ where $f=-1$;
- the leaves of the characteristic foliation of $\partial M_{n, \eta}$ are closed.

Then $\left(M_{n, \eta}, \operatorname{ker}(\alpha)\right)$ satisfies property (C 4$)$ and a dividing set $\Gamma_{/ /}$of the boundary is given by the curves $x=-\pi+\eta-h(0), x=k \pi+\frac{\pi}{2}, k=0, \ldots, n-1$ and $x=n \pi-\eta+h(0)$. Let D be a disc in $M_{n, \eta}$ transverse to $\frac{\partial}{\partial z}$ with Legendrian boundary. As $\frac{\partial}{\partial z}$ is a contact vector field, D is convex. A dividing set is given by condition $\frac{\partial}{\partial z} \in \xi$ and is thus composed of the curves $x=k \pi+\frac{\pi}{2}, k=-1, \ldots, n-1$. Therefore $(M, \operatorname{ker}(\alpha))$ is diffeomorphic to $\left(D^{2} \times S^{1}, \xi_{/ /}\right)$(Theorem 3.3).
Proposition 5.1. There exists a contact form α_{p} on $M_{n, \eta}$ without contractible Reeb periodic orbits such that $\left(M_{n, \eta}, \operatorname{ker}\left(\alpha_{p}\right)\right)$ is diffeomorphic to $\left(D^{2} \times S^{1}, \xi_{/ /}\right)$and the sutured contact homology of $\left(M_{n, \eta}, \alpha_{p}, \Gamma_{/ /}\right)$is the \mathbb{Q}-vector space generated by $n_{+}=\left\lceil\frac{n-1}{2}\right\rceil$ curves homotopic to $\{*\} \times S^{1}, n_{-}=n-1-n_{+}$curves homotopic to $\{*\} \times\left(-S^{1}\right)$ and by their multiples.

Proof. As in Section 4, we perturb α into

$$
\alpha_{p}=\sin (x) \mathrm{d} y+(1+k(x) l(y)) \cos (x) \mathrm{d} z
$$

in a neighbourhood of $x=k \pi, k=0, \ldots n-1$ such that $x \mapsto k(x-k \pi)$ satisfies condition (C9) and l satisfies condition (C10). By Proposition 4.1, the contact form α_{p} is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are the curves $\{k \pi\} \times\{0\} S^{1}$ for $k=0, \ldots, n-1$. These orbits are even and hyperbolic. Therefore $\partial=0$.

Let ξ be a contact structure on $M=D^{2} \times S^{1}$ satisfying conditions (C4) and (C5) for some $n_{0} \in \mathbb{N}^{*}$. There exist $n, m>0$, a family of integers $\left\{k_{j}\right\}$ and $\left\{\varepsilon_{j}\right\} \in\{-1,1\}$ for $j=1, \ldots, m$ such that

- $1 \leq k_{j} \leq n-2$ and $k_{j+1}-k_{j} \geq 3$;
- (M, ξ) is diffeomorphic to the contact manifold obtained from $\left(M_{n, \eta}, \operatorname{ker}(\alpha)\right)$ after bypass attachments along the arcs

$$
\gamma_{j}=\left[\left(k_{j}-1\right) \pi,\left(k_{j}+1\right) \pi\right] \times\left\{-\varepsilon_{j}\right\} \times\left\{\frac{2 \pi k_{j}}{n}\right\}
$$

for $j=1, \ldots, m$ (see Figure 8).

Figure 8. Attaching arcs γ_{j}
Let $\delta_{k}=\{k \pi\} \times\{0\} \times S^{1}$. We describe a contact structure on $M_{n, \eta}$ adapted to the bypass attachments along the curves γ_{j}.

Proposition 5.2. Let $L>0$ and $0<x_{\max } \ll 1$. There exists an arbitrarily small perturbation α_{b} of α in $M_{n, \eta}$ such that

- γ_{j} satisfies conditions (C1) and (C3) for all $K>0$ and for all $j=1, \ldots, m$;
- α_{b} is adapted to $S \backslash \bigcup S_{Z_{j}}$;
- $\alpha_{b}=\alpha$ outside $U_{k}=\left[-x_{\max }+k \pi, x_{\max }+k \pi\right] \times[-1,1] \times S^{1}$ for $k=$ $0, \ldots, n-1$;
- the Reeb periodic orbits are the curves δ_{k} for $k=0, \ldots, n-1$, these orbits are even and hyperbolic;
- the set of Reeb chords of γ_{j} is $\left\{c_{l, j}, l \in \mathbb{N}^{*}\right\}$ and $\left[\overline{c_{l, j}}\right]=\left[\{*\} \times S^{1}\right]^{(-1)^{k_{j}} l}$.

Proof of Proposition 5.2. In U_{k}, consider the contact form

$$
\alpha_{b}=f(x) \mathrm{d} y+(1+k(x) l(y) m(z)) \cos (x) \mathrm{d} z
$$

such that $x \mapsto k(x-k \pi)$ satisfies condition (C9), l satisfies condition (C10) and $m=0$ in $Z=\bigcup Z_{j}$ and $m=1$ outside a neighbourhood of Z. By Propositions 4.2 and 4.3 , we obtain the desired conditions.

Let $\sigma_{+}=\left\{k_{j}, k_{j}\right.$ even $\}$ and $\sigma_{-}=\left\{k_{j}, k_{j}\right.$ odd $\}$. As in Corollary 4.4 we apply Theorem 2.1 and Proposition 2.7 to deduce the Reeb periodic orbits after the bypass attachments along the curves $\left(\gamma_{j}\right)_{j=1, \ldots, m}$.

Proposition 5.3. Fix $L>0$. Let $\left(M^{\prime}, \alpha^{\prime}\right)$ be the contact manifold obtained from $\left(M_{n, \eta}, \alpha_{b}\right)$ after bypass attachments along the arcs $\left(\gamma_{j}\right)_{j=1, \ldots, m}$ for K large enough.

- For all $1 \leq l \leq L$, the Reeb periodic orbits homotopic to $\left[S^{1}\right]^{l}$ are the curves $\delta_{2 k}^{l}$ for $1 \leq 2 k \leq n-1$ and the periodic orbits $\gamma_{\mathbf{a}}$ associated to $\mathbf{a}=c_{i_{1}, j} \ldots c_{i_{k}, j}$ with $i_{1}+\cdots+i_{k}=l$ and $k_{j} \in \sigma_{+}$.
- For all $-L \leq l \leq-1$, the Reeb periodic orbits homotopic to $\left[S^{1}\right]^{l}$ are the curves $\delta_{2 k+1}^{l}$ for $1 \leq 2 k+1 \leq n-1$ and the periodic orbits $\gamma_{\mathbf{a}}$ associated to $\mathbf{a}=c_{i_{1}, j \ldots c_{i_{k}, j}}$ with $i_{1}+\cdots+i_{k}=-l$ and $k_{j} \in \sigma_{-}$.

We denote by \mathcal{B}_{j} the bypass attached to the attaching arc γ_{j}.
5.2. Holomorphic cylinders. It remains to control the holomorphic cylinders in the symplectisation of the contact manifold $\left(M^{\prime}, \alpha^{\prime}\right)$ given in Proposition 5.3. Let E_{j}^{l} be the \mathbb{Q}-vector space generated by the periodic orbit $\delta_{k_{j}}$ and by the periodic orbits obtained after the bypass attachment along γ_{j} homotopic to $\left[S^{1}\right]^{l}$. Let E_{+}^{l} and E_{-}^{l} be the \mathbb{Q}-vector spaces generated by the periodic orbits $\delta_{2 k}^{l}$ for $2 k \notin \sigma_{+}$ and $\delta_{2 k+1}^{l}$ for $2 k+1 \notin \sigma_{-}$. The complex of contact homology is written

$$
\begin{aligned}
& C_{*}^{\left[S^{1}\right]^{l}}\left(M^{\prime}, \alpha^{\prime}\right)=\bigoplus_{k_{j} \in \sigma_{+}} E_{j}^{l} \oplus E_{+}^{l} \text { if } l>0 \\
& C_{*}^{\left[S^{1}\right]^{l}}\left(M^{\prime}, \alpha^{\prime}\right)=\bigoplus_{k_{j} \in \sigma_{-}} E_{j}^{l} \oplus E_{-}^{l} \text { if } l<0
\end{aligned}
$$

Let $I_{b}^{j}=\left[k_{j} \pi-\frac{7 \pi}{4}, k_{j} \pi+\frac{7 \pi}{4}\right]$. Consider $I_{\max }^{j}$ such that

$$
S_{Z_{j}}=\left[-x_{\max }+k_{j} \pi, x_{\max }+k_{j} \pi\right] \times\{1\} \times I_{\max }^{j}
$$

Lemma 5.4. For any adapted almost complex structure on the symplectisation of $\left(M^{\prime}, \alpha^{\prime}\right)$

$$
\text { - } \partial_{\mid E_{ \pm}^{l}}=0
$$

- for all $j=1, \ldots, m$, we have $\partial\left(E_{j}^{l}\right) \subset E_{j}^{l}$ and any holomorphic cylinder with finite energy and asymptotics in E_{j} is contained in $\mathcal{U}_{j} \cup \mathcal{B}_{j}$ (see Figure 9) where

$$
\mathcal{U}_{j}=U_{k_{j}-1} \cup U_{k_{j}} \cup U_{k_{j}+1} \cup\left(I_{b}^{j} \times[-1,1] \times I_{\max }^{j}\right)
$$

Figure 9. Neighbourhoods \mathcal{U}_{j}

Proof. Let

$$
\begin{aligned}
\mathcal{U} & =\bigcup_{j=1 \ldots n} U_{k_{j}} \cup \bigcup_{j \in \sigma_{ \pm}}\left(I_{b}^{j} \times[-1,1] \times I_{\max }^{j}\right) \cup \mathcal{B}_{j} \\
\mathcal{W} & =\left([-\pi+\eta, n \pi-\eta] \times[-1,1] \times S^{1}\right) \backslash \mathcal{U}
\end{aligned}
$$

The connected components of \mathcal{U} are the sets U_{l} for $l \notin \sigma_{ \pm} \cup\left(\sigma_{ \pm}-1\right) \cup\left(\sigma_{ \pm}+1\right)$ and \mathcal{U}_{j} for $j=1, \ldots, m$. In \mathcal{W}, all Reeb orbits are Reeb chords joining the planes $y=1$ and $y=-1$. Let γ be a Reeb periodic orbit (see Proposition 5.3). If $\gamma=\delta_{j}^{l}$ let $U_{\gamma}=U_{j}$. If γ is derived from the bypass attachment along γ_{j}, let

$$
U_{\gamma}=U_{j} \cup\left(I_{b}^{j} \times\left\{-\varepsilon_{j}\right\} \times I_{\max }^{j}\right) \cup \mathcal{B}_{j}
$$

In both cases $\gamma \subset U_{\gamma}$. Let γ_{+}and γ_{-}be two homotopic Reeb periodic orbits and $X=\mathcal{W} \backslash\left(U_{\gamma_{+}} \cup U_{\gamma_{-}}\right)$. As γ_{+}and γ_{-}are homotopic and $k_{j+1}-k_{j} \geq 3$, for any Reeb chord c in X there exists a path of properly embedded arcs in X connecting c and a Reeb chord in $\operatorname{int}(X)$ with reversed orientation. Thus, by positivity of intersection (Proposition 3.8), all holomorphic cylinders are contained in \mathcal{U}.

Let $\left(M, \xi_{0}=\operatorname{ker}(\alpha)\right)$ be the contact structure obtained from $\left(M_{4, \eta}, \alpha_{b}\right)$ after a bypass attachment along $\gamma_{1}=[0,2 \pi] \times\{1\} \times\{\pi\}$ (Theorem 2.1). Let Γ an adapted dividing set of the boundary. The dividing set of a convex meridian disc contains exactly three connected components which are parallel to the boundary (Proposition 3.4). By Golovko's result (Theorem 3.6), the contact homology of (M, α, Γ) is generated by two periodic orbits homotopic to S^{1} and by their multiples. We now compare this result with our construction and obtain useful properties of $\partial_{E_{1}^{\prime}}$. There are two periodic orbits of $R_{\alpha^{\prime}}$ homotopic to S^{1} (Proposition 5.3). If $l>0$, we have $C_{*}^{\left[S^{1}\right]^{l}}\left(M^{\prime}, \alpha^{\prime}\right)=E_{+}^{l}$ and $\partial_{E_{+}^{l}}=0$ (Lemma 5.4). If $l<0$, we have $C_{*}^{\left[S^{1}\right]^{l}}\left(M^{\prime}, \alpha^{\prime}\right)=E_{1}^{l}$. Thus $\operatorname{ker}\left(\partial_{E_{1}^{l}}\right) / \operatorname{im}\left(\partial_{E_{1}^{l}}\right)=0$. Let $\overline{\mathcal{U}}$ denote the set \mathcal{U}_{1} given by Lemma 5.4.

Proof of Theorem 2.5. Let ξ be a contact structure on $M=D^{2} \times S^{1}$ satisfying conditions (C4) and (C5). We choose the contact form given by Proposition 5.2.

The neighbourhoods \mathcal{U}_{j} described in Lemma 5.4 are contactomorphic to $\overline{\mathcal{U}}$. Thus $\operatorname{ker}\left(\partial_{E_{j}^{l}}\right) / \operatorname{im}\left(\partial_{E_{j}^{l}}\right)=0$. Therefore $H C^{\left[S^{1}\right]^{ \pm l}}\left(M, \xi_{0}, \Gamma\right)=E_{ \pm}^{l}$ for $l>0$. As

$$
\operatorname{dim}\left(E_{ \pm}^{l}\right)+\#\left\{\sigma_{ \pm}\right\}+\#\{ \pm \text { extremal bigon }\}=\chi\left(S_{ \pm}\right)+\#\left\{\sigma_{\mp}\right\}
$$

we obtain the desired dimension.
We now turn to the case of a thickened convex surface. Let S be a convex surface and $\Gamma=\bigcup_{i=0}^{n} \Gamma_{i}$ be a dividing set of S without contractible components. Let γ_{0} be an attachment arc in S intersecting three distinct components of Γ. Let $M=S \times[-1,1]$ be the product neighbourhood of S and ξ be the associated invariant contact structure. Choose a contact form α_{b} of ξ given in Section 4. We denote by $\left(M^{\prime}, \xi^{\prime}\right)$ the contact manifold obtained from (M, ξ) after a bypass attachment along $\gamma_{0} \times\{1\}$ and by Γ^{\prime} a dividing set of ∂M^{\prime}. Fix $K>0$ and apply Theorem 2.1 to obtain a contact form α^{\prime} of ξ^{\prime}. Let \mathcal{B} denote the attached bypass. The proof of the following lemma is similar to the proof of Lemma 5.4.

Lemma 5.5. For any adapted almost complex structure, the J-holomorphic curves in the symplectisation of $\left(M^{\prime}, \alpha^{\prime}\right)$ are contained in (see Figure 10)

$$
\mathcal{U}=\bigcup_{i=0}^{n} U_{i} \cup\left(I_{b} \times[-1,1] \times I_{\max }\right) \cup \mathcal{B}
$$

In addition, \mathcal{U} is contactomorphic to $\overline{\mathcal{U}}$.

Figure 10. The neighbourhood \mathcal{U} projected on S

Proof of Theorem 2.4. Theorem 2.4 is a corollary of Lemma 5.5. The proof is similar to the proof of Theorem 2.5.

6. Sketch of proof of the bypass attachment theorem

We now sketch the proof of our main theorem (Theorem 2.1). A complete proof is given in Section 7. Fix $K>0$. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attaching arc satisfying condition (C1), (C2) and (C3). To describe the Reeb periodic orbits after a bypass attachment, we study the maps φ_{B} and ψ_{M} induced on S_{Z} by the Reeb flow in the bypass and in M. Their domains and ranges consist of rectangles and these maps contract or expand the associated fibres. The maximal invariant set of the composite function is hyperbolic and this function is similar to a "generalised horseshoe" (see [29, 36]). The Reeb periodic orbits correspond to the periodic points and are given by the symbolic dynamics.

In Section 6.1 we present our notations. We describe the Reeb dynamics in M in Section 6.2 and in the bypass in Section 6.3. In Section 6.4, we prove that these dynamic properties indeed give the symbolic description of Reeb periodic orbits. Finally, in Section 6.5, we sketch the construction of a hyperbolic bypass: a bypass with Reeb dynamics described in Section 6.3.
6.1. Notations. We say that a (partial) function $\varphi: X \rightarrow Y$ is decomposed into $\left(\varphi_{i}\right)_{i \in I}$ if $\operatorname{dom}\left(\varphi_{i}\right)$ is a union of connected components of $\operatorname{dom}(\varphi),\left(\operatorname{dom}\left(\varphi_{i}\right)\right)_{i \in I}$ is a partition of $\operatorname{dom}(\varphi)$ and $\varphi_{i}=\varphi_{\mid \operatorname{dom}\left(\varphi_{i}\right)}$.

In coordinates (x, y, z), let $S_{y_{0}}$ denote the plane $y=y_{0}, X^{\leq y_{0}}=X \cap\{(x, y, z), y \leq$ $\left.y_{0}\right\}, X^{\geq y_{0}}=X \cap\left\{(x, y, z), y \geq y_{0}\right\}$ and $X^{\left[y_{0}, y_{1}\right]}=X^{\leq y_{1}} \cap X^{\geq y_{0}}$. For all $0<\lambda<\frac{\pi}{8}$, we consider the following subsets of S_{Z} (see Figure 11)

$$
\begin{aligned}
R_{\lambda} & =\left(\bigcup_{k=-1}^{4}\left[\frac{k \pi}{2}+\lambda, \frac{(k+1) \pi}{2}-\lambda\right]\right) \times I_{\max } \\
Q_{\lambda} & =\left(\bigcup_{k=0}^{2}\left[k \pi-\frac{\lambda}{2}, k \pi+\frac{\lambda}{2}\right]\right) \times I_{\max } \\
X & =\left(\left[0, \frac{\pi}{4}\right] \times\left[-z_{\max }, 0\right)\right) \cup\left(\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \times I_{\max }\right) \cup\left(\left[\frac{3 \pi}{4}, \pi\right] \times\left(0, z_{\max }\right]\right) \\
Y & =\left(\left[\pi, \frac{5 \pi}{4}\right] \times\left[-z_{\max }, 0\right)\right) \cup\left(\left[\frac{5 \pi}{4}, \frac{7 \pi}{4}\right] \times I_{\max }\right) \cup\left(\left[\frac{7 \pi}{4}, 2 \pi\right] \times\left(0, z_{\max }\right]\right) .
\end{aligned}
$$

For positive $z_{\text {prod }}$ and $y_{\text {std }}$, let $I_{\text {prod }}=\left[-z_{\text {prod }}, z_{\text {prod }}\right], S_{R}=\left[\frac{\pi}{2}, \pi\right] \times\left\{y_{\text {std }}\right\} \times I_{\text {prod }}$

Figure 11. The subsets $R_{\lambda}, Q_{\lambda}, X$ and Y
and $S_{\varepsilon, k}=\left[\frac{k \pi}{2}-\varepsilon, \frac{k \pi}{2}+\varepsilon\right] \times I_{\max }$. A rectangle is a closed set diffeomorphic to $[0,1] \times[0,1]$. This set inherits horizontal and vertical fibres from $[0,1] \times[0,1]$.

In $\left(\mathbb{R}^{2},\langle\cdot, \cdot\rangle\right)$, let D be a straight line and $\nu>0$. The ν-cone centred at D is the set

$$
\mathcal{C}(D, \nu)=\left\{w \in \mathbb{R}^{2},|\langle w, v\rangle|<\nu|\langle w, u\rangle|\right\}
$$

where u is tangent to D and (u, v) is an orthonormal basis. We denote by H and V the horizontal and vertical axes. Let U and V be two open sets in \mathbb{R}^{2} and $f: U \rightarrow V$ be a diffeomorphism. The image of a cone field \mathcal{C} on U is the cone field $f_{*} \mathcal{C}$ on V defined by $\left(f_{*} \mathcal{C}\right)_{p}=\mathrm{d} f_{f^{-1}(p)}\left(\mathcal{C}_{f^{-1}(p)}\right)$. If \mathcal{C} and \mathcal{C}^{\prime} are two cones fields on U we write $\mathcal{C} \subset \mathcal{C}^{\prime}$ if $\mathcal{C}_{p} \subset \mathcal{C}_{p}^{\prime}$ for all $p \in U$. If $z \rightarrow \gamma(z)$ is a smooth curve in \mathbb{R}^{2}, let $\mathcal{C}_{x, z}(\gamma, \varepsilon)=C\left(\gamma^{\prime}(z), \varepsilon\right)$ and $\mathcal{C}_{x, z}\left(\gamma^{\perp}, \varepsilon\right)=C\left(\gamma^{\prime}(z)^{\perp}, \varepsilon\right)$.
6.2. Reeb dynamics in M. We now study the Reeb dynamics is the manifold M with boundary. To attach an adapted bypass we will perturb the contact form α. We want to control the map ψ_{M} induced by the Reeb flow in M for times smaller than K and for the contact form α and perturbations of α. The Reeb chords of S_{Z} that contribute to ψ_{M} for the contact form α are close to the Reeb chords of γ_{0}. Nevertheless, as $\Gamma \cap Z$ is contained in Reeb orbits, this decomposition is not stable by perturbation and some Reeb chords may appear near the dividing set.

Let $\lambda>0$, the pair $\left(S_{Z}, \lambda\right)$ is said to be K-hyperbolic if ψ_{M} can be decomposed into $\left(\psi_{j}\right)_{j=0, \ldots, N}$ and (see Figure 12):
(1) $\operatorname{dom}\left(\psi_{0}\right) \subset Q_{\lambda}$ and $\operatorname{im}\left(\psi_{0}\right) \subset Q_{\lambda}$;
(2) if $x \in\left[k \pi-\frac{\lambda}{2}, k \pi+\frac{\lambda}{2}\right]$ and $(x, z) \in \operatorname{dom}\left(\psi_{0}\right)$ then

- $\left(\psi_{0}\right)_{x}(x, z) \in\left[k \pi-\frac{\lambda}{2}, k \pi+\frac{\lambda}{2}\right]$;
- $\left(\psi_{0}\right)_{z}(x, z)<z$ if k is odd;
- $\left(\psi_{0}\right)_{z}(x, z)>z$ if k is even;
(3) for all $j \in \llbracket 1, N \rrbracket$, $\operatorname{dom}\left(\psi_{j}\right)$ and $\operatorname{im}\left(\psi_{j}\right)$ are rectangles in R_{λ} with horizontal fibres and the ψ_{j} reverse the fibres.
Note that one can have $\operatorname{dom}\left(\psi_{0}\right)=\emptyset$ or $N=0$. Let μ, ν and τ be real positive

Figure 12. A K-hyperbolic surface
numbers. A K-hyperbolic surface is dominated by $\omega=(\mu, \nu, \tau)$ if for $j=1, \ldots, N$ there exist segments $D_{1, j} \subset \operatorname{dom}\left(\psi_{j}\right)$ and $D_{2, j} \subset \operatorname{im}\left(\psi_{j}\right)$ with boundary on $z=$ $\pm z_{\text {max }}$ such that (see Figure 12):
(1) the tangents of the vertical fibres of $\operatorname{dom}\left(\psi_{j}\right)$ and $\operatorname{im}\left(\psi_{j}\right)$ are respectively in $\mathcal{C}\left(D_{1, j}, \nu\right)$ and $\mathcal{C}\left(D_{2, j}, \nu\right)$;
(2) $\left(\psi_{j}\right)_{*} \mathcal{C}(H, \nu) \subset \mathcal{C}\left(D_{2, j}, \mu\right)$ and $\left(\psi_{j}^{-1}\right)_{*} \mathcal{C}(H, \nu) \subset \mathcal{C}\left(D_{1, j}, \mu\right)$;
(3) the return time of ψ_{j} is contained in $\left(T\left(a_{j}\right)-\tau, T\left(a_{j}\right)+\tau\right)$.

Let $\varepsilon>0$. A K-hyperbolic (ω-dominated) surface $\left(S_{\gamma}, \lambda\right)$ is ε-stable if for all ε perturbation of α preserving $\gamma_{0},\left(S_{\gamma}, \lambda\right)$ remains K-hyperbolic (and ω-dominated).

Proposition 6.1. Let $\tau>0$ and $\mu>0$. There exists a contact form arbitrarily close to $\alpha, z_{\text {max }}$ small and some real positive numbers ν, λ and ε such that

- α satisfies conditions (C1), (C2) and (C3);
- $\left(S_{Z}, \lambda\right)$ is K-hyperbolic (μ, ν, τ)-dominated and ε-stable.

Proof. After a small perturbation of α, we can assume that the images of $\gamma_{0} \backslash \Gamma$ on S_{Z} by the Reeb flow and the opposite of the Reeb flow for times smaller that K are transverse to γ_{0}. The intersection points correspond to the endpoints of the Reeb chords a_{1}, \ldots, a_{N}. For $z_{\max }$ small enough, the domain and range of ψ_{M} are contained in a small neighbourhood of the endpoints of the Reeb chords. We choose $\operatorname{dom}\left(\psi_{0}\right)=\emptyset$. Let $D_{1, j}$ and $D_{2, j}$ be the tangent to the image of $\gamma_{0} \backslash \Gamma$ on S_{Z} at the endpoints of the Reeb chords a_{1}, \ldots, a_{N} (see Figure 13). We obtain the vertical fibres of $\operatorname{dom}\left(\psi_{M}\right)$ and $\operatorname{im}\left(\psi_{M}\right)$ as the inverse images and images of the horizontal segments in $\operatorname{im}\left(\psi_{M}\right)$ and $\operatorname{dom}\left(\psi_{M}\right)$. For small enough perturbations of α, the structure of ψ_{M} is preserved outside Q_{λ}. In $Q_{\lambda} \times\left[-y_{\max }, 0\right]$, the component $\left|R_{z}\right|$ is close to 1 and ψ_{0} satisfies the desired conditions.

Figure 13. The segments $D_{2,1}$ and the rectangle structure of $\operatorname{im}\left(\psi_{1}\right)$
6.3. Reeb dynamics in the bypass. We now describe the desired dynamics in the bypass in terms of horizontal rectangles. A hyperbolic bypass in Z is a triple $\left(\mathcal{B}, \alpha_{B}, \lambda\right)$ where $\left(\mathcal{B}, \alpha_{B}\right)$ is a contact manifold in Z and λ is a real positive number such that
(1) $\mathcal{B}^{\leq 0}=Z^{\leq 0}$ and α_{B} is adapted to the boundary in $Z^{\geq 0}$;
(2) the map φ_{B} induced on S_{Z} by the Reeb flow in \mathcal{B} can be decomposed into maps φ_{0} and φ_{1} such that

- $\operatorname{dom}\left(\varphi_{0}\right) \subset Q_{\lambda}$ and $\operatorname{im}\left(\varphi_{0}\right) \subset Q_{\lambda} ;$
- $\operatorname{dom}\left(\varphi_{1}\right) \subset X$ and $\operatorname{im}\left(\varphi_{1}\right) \subset Y$;
- if $x \in\left[k \pi-\frac{\lambda}{2}, k \pi+\frac{\lambda}{2}\right]$ and $(x, z) \in \operatorname{dom}\left(\varphi_{0}\right)$ then
$-\left(\varphi_{0}\right)_{x}(x, z) \in\left[k \pi-\frac{\lambda}{2}, k \pi+\frac{\lambda}{2}\right] ;$
- $\left(\varphi_{0}\right)_{z}(x, z)<z$ if k is odd;
$-\left(\varphi_{0}\right)_{z}(x, z)>z$ if k is even;
(3) the restriction of φ_{1} to R_{λ} can be decomposed into $\left(\varphi_{i, j}\right)_{i, j \in\{0,1\}}$ (see Figure 14) where $\operatorname{dom}\left(\varphi_{i, j}\right)$ and $\operatorname{im}\left(\varphi_{i, j}\right)$ are rectangle as large as R_{λ} with vertical fibres and the $\varphi_{i, j}$ reverse the fibres.

Figure 14. The rectangles $\operatorname{dom}\left(\varphi_{i, j}\right)$ and $\operatorname{im}\left(\varphi_{i, j}\right)$
As in the previous section we want to control the return time and obtain some cone-preservation properties. A hyperbolic bypass $\left(\mathcal{B}, \alpha_{B}, \lambda\right)$ is dominated by $\omega_{B}=$ (ν, τ, A, η) if
(1) $\left(\varphi_{i, j}\right)_{*} \mathcal{C}(V, A) \subset \mathcal{C}(H, \nu)$ and $\left(\varphi_{i, j}^{-1}\right)_{*} \mathcal{C}(V, A) \subset \mathcal{C}(H, \nu)$;
(2) $\left\|\mathrm{d} \varphi_{i, j}(p, v)\right\|>\frac{1}{\eta}\|v\|$ for all $p \in \operatorname{dom}\left(\varphi_{i, j}\right)$ and $v \in \mathcal{C}_{p}(V, A)$;
(3) $\left\|\mathrm{d} \varphi_{i, j}^{-1}(p, v)\right\|>\frac{1}{\eta}\|v\|$ for all $p \in \operatorname{im}\left(\varphi_{i, j}\right)$ and $v \in \mathcal{C}_{p}(V, A)$;
(4) the return time in R_{λ} is bounded by 8τ.

The following theorem is the main ingredient in the proof of Theorem 2.1.

Theorem 6.2. Fix $K>0$. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attaching arc satisfying conditions (C1), (C2) and (C3). For all real positive numbers $\nu, \tau, A, \eta, \varepsilon$ and λ and for $z_{\max }$ small enough there exists a hyperbolic bypass $\left(V_{B}, \alpha_{B}, \lambda\right)$ obtained from $\left(V, \xi_{B}\right)$ after a bypass attachment along γ_{0}, dominated by (ν, τ, A, η) and such that α_{B} is ε-close to α.

If $\left(S_{Z}, \lambda\right)$ is K-hyperbolic, ε-stable and (μ, ν, τ)-dominated, we call the bypass attachment described in Theorem 6.2 a K-hyperbolic bypass attachment.
6.4. Reeb periodic orbits after a bypass attachment. Before turning to the proof of Theorem 6.2, we prove that Theorem 6.2 and Proposition 6.1 imply Theorem 2.1 and Proposition 2.7. We prove this result in two steps:
(1) we obtain a symbolic representation of the Reeb flow in restriction to R_{λ};
(2) we prove that all new Reeb periodic orbits intersect R_{λ}.

Fix $K>0$. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attaching arc satisfying conditions (C1), (C2) and (C3). We assume $K \neq l(\mathbf{a})$ for all words \mathbf{a} on the letters a_{1}, \ldots, a_{N}. Thus, there exists ε_{K} such that $|K-l(\mathbf{a})|>\varepsilon_{K}$ for all words a. Let l_{0} be such that $l\left(a_{i}\right)>l_{0}$ for all $i=1, \ldots, N$. There exists ε_{0} such that these estimations remain satisfied for all $2 \varepsilon_{0^{-}}$ perturbations of α. Without loss of generality $l_{0}<1$ and $\frac{\varepsilon_{K}}{K}<1$. Let $\tau<\frac{l_{0}}{18 K} \varepsilon_{K}$. We apply Proposition 6.1 to obtain a K-hyperbolic surface, (μ, ν, τ)-dominated and ε-stable. Without loss of generality $\varepsilon<\varepsilon_{0}, \nu \leq \mu$ and $\mathcal{C}\left(D_{i, j}, \mu\right) \cap \mathcal{C}(H, \mu)=\{0\}$ for $i=1,2$ and $j=1, \ldots, N$. Choose $A>0$ such that $\mathcal{C}\left(D_{i, j}, \mu\right) \subset \mathcal{C}(V, A)$ and $\mathcal{C}(V, A) \cap \mathcal{C}(H, \mu)=\{0\}$ for $i=1,2$ and $j=1, \ldots, N$ and for all contact forms ε-close to α. Choose $M>0$ such that $\left\|\mathrm{d} \psi_{j}\right\|<M$ and $\left\|\mathrm{d} \psi_{j}^{-1}\right\|<M$ for $j=1, \ldots, N$ and for all ε-perturbations of α. Let $\eta<\frac{1}{3 M}$. Apply Theorem 6.2, to obtain a hyperbolic bypass $\left(M_{B}, \alpha_{B}, \lambda\right)$ dominated by (ν, τ, A, η) and such that α_{B} is ε-close to α.

To obtain a symbolic representation of the new Reeb periodic orbits, we apply a fixed point theorem in hyperbolic situations. The following proposition derives from [36, Theorem 3.2].
Proposition 6.3. Let R and R^{\prime} be two rectangles in $[0,1] \times[0,1]$ such that the vertical boundaries of R are contained in $\{0,1\} \times[0,1]$ and the horizontal boundaries of R^{\prime} are contained in $[0,1] \times\{0,1\}$. Let $F: R \rightarrow R^{\prime}$ be a diffeomorphism such that, for some $A>0, \nu>0$ and $a>2$

- $F_{*} \mathcal{C}(V, A) \subset \mathcal{C}(V, A)$ and $F_{*}^{-1} \mathcal{C}(H, \nu) \subset \mathcal{C}(H, \nu)$;
- $\left\|\mathrm{d} F^{-1}(p, v)\right\| \geq a\|v\|$ for all $p \in R^{\prime}$ and $v \in \mathcal{C}_{p}(H, \nu)$;
- $\|\mathrm{d} F(p, v)\| \geq a\|v\|$ for all $p \in R$ and $v \in \mathcal{C}_{p}(V, A)$.

Then F has a unique fixed point.
Proposition 6.4. Let $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ and $F_{\mathbf{a}}=\psi_{i_{k}} \circ \varphi_{B} \ldots \psi_{i_{1}} \circ \varphi_{B}$ in restriction to R_{λ}. The map $F_{\mathbf{a}}$ has a unique fixed point. The period $T\left(\gamma_{\mathbf{a}}\right)$ of the associated Reeb periodic orbit $\gamma_{\mathbf{a}}$ satisfies $T\left(\gamma_{\mathbf{a}}\right) \in[l(\mathbf{a})-9 k \tau, l(\mathbf{a})+9 k \tau]$.
Proof. By induction on k, the map $F_{\mathbf{a}}$ can be decomposed into $F_{0}^{\mathbf{a}}$ and $F_{1}^{\mathbf{a}}$ such that (see Figure 15) :

- $\operatorname{im}\left(F_{i}^{\mathbf{a}}\right)$ are rectangles as high as R_{λ} with horizontal fibres;
- $\operatorname{dom}\left(F_{i}^{\mathbf{a}}\right)$ are rectangles with vertical fibres contained in two different components of R_{λ} and as large as the associated component;
- $F_{\mathbf{a} *} \mathcal{C}(V, A) \subset \mathcal{C}\left(D_{2, i_{k}}, \mu\right)$ and $F_{\mathbf{a}}^{-1}{ }_{*} \mathcal{C}(H, \nu) \subset \mathcal{C}(H, \nu)$;
- $\left\|\mathrm{d} F_{\mathbf{a}}^{-1}(p, v)\right\| \geq \frac{1}{(\eta M)^{k}}\|v\|$ for all $p \in \operatorname{im}\left(F_{\mathbf{a}}\right)$ and $v \in \mathcal{C}_{p}(H, \nu)$;
- $\left\|\mathrm{d} F_{\mathbf{a}}(p, v)\right\| \geq \frac{1}{(\eta M)^{k}}\|v\|$ for all $p \in \operatorname{dom}\left(F_{\mathbf{a}}\right)$ and $v \in \mathcal{C}_{p}(V, A)$.

Figure 15. The maps $F_{0}^{\mathbf{a}}$ and $F_{1}^{\mathbf{a}}$
To obtain a unique fixed point, we apply Proposition 6.3 to the component of $F_{\mathbf{a}}$ such that $\operatorname{dom}\left(F_{i}^{\mathbf{a}}\right) \cap \operatorname{im}\left(F_{i}^{\mathbf{a}}\right) \neq \emptyset$. The estimates on the period of the associated Reeb periodic orbit derives from the estimates on the return time.

We now turn to the second step of the proof.
Proposition 6.5. Let γ be a Reeb periodic orbit intersecting S_{Z} in p_{γ} and such that $T(\gamma)<K$. Then $p_{\gamma} \notin Q_{\lambda}$.

Proof. We control the Reeb orbits intersecting Q_{λ} and prove that they are not periodic. Let $X_{k}=\left[k \pi-\frac{\lambda}{2}, k \pi+\frac{\lambda}{2}\right]$ and $p_{0}=q_{0} \in \operatorname{im}\left(\psi_{0}\right)$. As long as these expressions are well-defined, let $p_{2 l+1}=\psi_{M}^{-1}\left(p_{2 l}\right), p_{2 l+2}=\varphi_{B}{ }^{-1}\left(p_{2 l+1}\right), q_{2 l+1}=$ $\varphi_{B}\left(p_{2 l}\right)$ and $q_{2 l+2}=\psi_{M}\left(q_{2 l+1}\right)$. Write $p_{l}=\left(x_{l}, y_{l}\right)$ and $q_{l}=\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$. There exists k such that $x_{0} \in X_{k}$. The following implications hold.

- If k is odd and $z_{0} \geq 0$, then $x_{l} \in X_{k}$ and $z_{2 l}<z_{2 l+1}<z_{2 l+2}$.
- If k is even and $z_{0} \leq 0$, then $x_{l} \in X_{k}$ and $z_{2 l}>z_{2 l+1}>z_{2 l+2}$.
- If k is even and $z_{0} \geq 0$, then $x_{l}^{\prime} \in X_{k}$ and $z_{2 l}^{\prime}<z_{2 l+1}^{\prime}<z_{2 l+2}^{\prime}$.
- If k is odd and $z_{0} \leq 0$, then $x_{l}^{\prime} \in X_{k}$ and $z_{2 l}^{\prime}>z_{2 l+1}^{\prime}>z_{2 l+2}^{\prime}$.

We give a detailed proof in the case k odd and $z_{0} \geq 0$. The proof of the other cases is similar. We prove the result by induction. If $x_{2 l} \in X_{k}, z_{2 l} \geq 0$ and $p_{2 l+1}$ is well-defined then $p_{2 l}=\psi_{M}\left(p_{2 l+1}\right)$ and $p_{2 l} \in \bigcup_{j} \operatorname{im}\left(\psi_{i}\right)$. As $p_{2 l} \in Q_{\lambda}$, we have $p_{2 l} \in \operatorname{im}\left(\psi_{0}\right)$. Therefore, $p_{2 l}=\psi_{0}\left(p_{2 l+1}\right)$ and $p_{2 l+1} \in \operatorname{dom}\left(\psi_{0}\right)$. Thus, we obtain $x_{2 l+1} \in X_{k}$ and $z_{2 l+1}>z_{2 l}$. If $x_{2 l+1} \in X_{k}, z_{2 l+1} \geq 0$ and $p_{2 l+2}$ is well-defined, then $p_{2 l+1}=\varphi_{B}\left(p_{2 l+2}\right)$ and $p_{2 l+1} \in Y \cup \operatorname{im}\left(\varphi_{0}\right)$. As k is odd, we obtain $z_{2 l+1} \geq 0$ and $p_{2 l+1} \in Q_{\lambda}$ and therefore $p_{2 l+1} \in \operatorname{im}\left(\varphi_{0}\right)$. Thus, we have $p_{2 l+1}=\varphi_{0}\left(p_{2 l+2}\right)$ and $p_{2 l+2} \in \operatorname{dom}\left(\varphi_{0}\right)$. Consequently, $x_{2 l+2} \in X_{k}$ and $z_{2 l+2}>z_{2 l+1}$.

Let γ be a Reeb periodic orbits intersecting S_{Z} in $p_{\gamma} \in Q_{\lambda}$ and such that $T(\gamma)<K$. If $p_{\gamma} \in S_{-}$, then $\varphi_{B}\left(p_{\gamma}\right) \in S_{+} \cap Q_{\lambda}$. Thus, without loss of generality, we can assume $p_{\gamma} \in S_{+}$. Therefore $p_{\gamma} \in \operatorname{dom}\left(\varphi_{B}\right) \cap \operatorname{im}\left(\psi_{0}\right)$ and $x_{\gamma} \in X_{k}$. If k is odd and $z_{\gamma} \geq 0$, then p_{l} is well defined for all $l \in \mathbb{N}, z_{l}$ in increasing and γ is not periodic. This leads to a contradiction. The proof of the other cases is similar.

Proof of Theorem 2.1. Let $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ be a word such that $l(\mathbf{a})<K$. By definition of l_{0}, we have $k \leq \frac{K}{l_{0}}$. Thus $T\left(\gamma_{\mathbf{a}}\right) \in\left[l(\mathbf{a})-\frac{\varepsilon_{K}}{2}, l(\mathbf{a})+\frac{\varepsilon_{K}}{2}\right]$ and $T\left(\gamma_{\mathbf{a}}\right)<$ K (Proposition 6.4).

Conversely, let γ be a Reeb periodic orbit intersecting S_{Z} and such that $T(\gamma)<$ K. Let p_{1}, \ldots, p_{k} denote its successive intersection points with S_{+}and q_{1}, \ldots, q_{k} its successive intersection points with S_{-}. By Proposition 6.5 , for all $j=1 \ldots k$
there exists i_{j} such that $q_{j} \in \operatorname{dom}\left(\psi_{i_{j}}\right)$ and $p_{j+1}=\psi_{i_{j}}\left(q_{j}\right)$. Let $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$. Then p_{0} is the fixed point of $F_{\mathbf{a}}$. Then $l(\mathbf{a})<K+9 k \tau$ (Proposition 6.4). Thus $k \leq \frac{K+9 k \tau}{l_{0}}$ and $k \leq \frac{2 K}{l_{0}}$. Therefore $l(\mathbf{a})<K+\varepsilon_{K}$ and $l(\mathbf{a})<K$.

Proof of Proposition 2.7. There exists ε such that for any ε-perturbation of α, the map ψ_{M} can be decomposed into ψ_{0} and ψ_{1} such that ψ_{0} has properties similar to those described in the definition of K-hyperbolic surface, $\operatorname{dom}\left(\psi_{1}\right) \subset R_{\lambda_{0}}$ and $\operatorname{im}\left(\psi_{1}\right) \subset R_{\lambda_{0}}$. Apply Theorem 6.2 for $\lambda=\lambda_{0}$ and any ν, τ, A and η. As in Proposition 6.5, if γ is a Reeb periodic orbits intersecting S_{Z} in p_{γ}, then $p_{\gamma} \notin Q_{\lambda}$. Thus any Reeb periodic orbit intersects S_{-}at a periodic point of $\varphi_{B} \circ \psi$.
6.5. Hyperbolic bypasses. We now give an overview of the proof of Theorem 6.2. It is the main and last step in the proofs of Theorem 2.1 and Proposition 2.7. The complete proof is technical and is the subject of Section 7.

Honda's construction (see Sections 3.2 and 7.1) provides us with a bypass attachment $\left(M^{\prime}, \alpha^{\prime}\right)$ along the attaching arc γ_{0} but α^{\prime} is not adapted to the boundary. This attachment, if properly performed, does not create any Reeb periodic orbit. Indeed, near S_{Z}, the Reeb vector field is tangent to the planes $x=$ cst and its slope is $\tan (x)$. Thus, all Reeb orbits intersecting S_{Z} outside a neighbourhood of $x=\frac{\pi}{2}$ or $x=\frac{3 \pi}{2}$ go out of the bypass (see Figure 16). Therefore the domain and

Figure 16. A non-convex bypass attachment
range of the map induced on S_{Z} by the Reeb flow in the bypass are contained in neighbourhoods of $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$. By definition of a K-hyperbolic surface, there is no new Reeb periodic orbit.

To obtain a contact form adapted to the boundary, we use the convexification process described in [6]. It consists in gluing a small "bump" with prescribed contact form along the non-adapted part of the dividing set (see Figure 17). Inside this

Figure 17. The convexification bump
bump the Reeb vector field is nearly tangent to the dividing set. The restriction of φ_{B} to R_{λ} is now non-empty. The path of the associated Reeb chords is the following

Figure 18. Reeb chords of R_{λ}

- they enter the convexification bump and follow the dividing set (see Figure 18 left);
- then, they reach the area in M^{\prime} where the Reeb vector field is nearly tangent to the dividing set $\Gamma_{D} \times\{0\}$ and travel along $\Gamma_{D} \times\{0\}$ (see Figure 18 centre);
- finally, they go out of the bypass in a similar way and intersect R_{λ} again (see Figure 18 right).
To understand the Reeb dynamics and obtain cone-preserving properties, we describe the image of vertical curves on intermediate surfaces (see Figure 19). A

Figure 19. Images of vertical curves in the bypass
vertical curve is stretched into the convexification bump, then transported (and slightly stretched) in the upper part of the bypass. After a last visit to the convexification area, the curve becomes nearly horizontal. The effect on the level of rectangles is shown on Figure 20.

We now translate these intuitive pictures into more explicit conditions on the Reeb flow in the bypass. Section 7 is devoted to the construction of a bypass satisfying these conditions. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attaching arc satisfying conditions (C1), (C2) and (C3). We divide the bypass into two regions, the region $y \leq y_{\text {std }}$ where the contact form is standard and the convexification bump is added and the region $y \geq y_{\text {std }}$ where the contact structure corresponds to a thickened half overtwisted disc. We use the notations from Section 7.1. Fix real positive numbers $K, \nu, \tau, A, \eta, \varepsilon$

Figure 20. Rectangles on intermediate surfaces
and $\lambda<\frac{\pi}{8}$. Let $\left(\mathcal{B}, \alpha_{B}\right)$ be a bypass such that the boundary S_{B} is convex, α_{B} is adapted to S_{B}, α_{B} is arbitrarily close to α and the Reeb flow satisfies the following properties.
Reeb dynamics restricted to R_{λ}. (To reduce the number of compositions we consider the map induced by the Reeb flow between S_{Z} and S_{R}.)
(B1) There exist real positive numbers $\delta_{1}, \varepsilon_{R}$ and A_{R}, two graphs in z denoted δ_{0} and δ_{1} and a decomposition $\left(\varphi_{0}, \varphi_{1}\right)$ of the map induced between S_{Z} and S_{R} for positive time such that

- $\operatorname{dom}\left(\varphi_{i}\right)$ are rectangles with vertical fibres and basis $\left[\frac{\pi}{2}+\lambda, \pi-\lambda\right]$ and $\left[\pi+\lambda, \frac{3 \pi}{2}-\lambda\right]$ (see Figure 20);
- $\operatorname{im}\left(\varphi_{i}\right)$ are rectangles in an ε_{R}-neighbourhood of δ_{i} with horizontal fibres and basis $I_{\text {prod }}$ (see Figure 20);
- φ_{i} preserves the fibres (see Figure 19);
- $\left(\varphi_{i}\right)_{*} \mathcal{C}(V, A) \subset \mathcal{C}\left(\delta_{i}, \varepsilon_{R}\right)$ and $\left(\varphi_{i}^{-1}\right)_{*} \mathcal{C}\left(\delta_{i}^{\perp}, A_{R}\right) \subset \mathcal{C}(H, \nu)$;
- $\left\|\mathrm{d} \varphi_{i}^{-1}(p, v)\right\|>\frac{1}{\sqrt{\eta}}\|v\|$ for all $p \in \operatorname{im}\left(\varphi_{i}\right)$ and $v \in \mathcal{C}_{p}\left(\delta_{i}^{\perp}, A_{R}\right)$;
- $\left\|\mathrm{d} \varphi_{i}(p, v)\right\|>\frac{1}{\sqrt{\eta}}\|v\|$ for all $p \in \operatorname{dom}\left(\varphi_{i}\right)$ and $v \in \mathcal{C}_{p}(V, A)$;
- the return time is bounded by 4τ.
(B2) The map induced between S_{R} and S_{Z} for positive times can be decomposed into φ_{0}^{\prime} and φ_{1}^{\prime} and there exist two graphs δ^{0} and δ^{1} satisfying similar properties.
(B3) $\mathcal{C}\left(\delta_{i}, \varepsilon_{R}\right) \subset \mathcal{C}\left(\delta^{j}, A_{R}\right), \mathcal{C}\left(\delta^{i}, \varepsilon_{R}\right) \subset \mathcal{C}\left(\delta_{j}^{\perp}, A_{R}\right)$ and δ and δ^{\prime} intersect transversely in one point if $d_{\mathcal{C}^{1}}\left(\delta, \delta_{i}\right)<\varepsilon_{R}$ and $d_{\mathcal{C}^{1}}\left(\delta^{\prime}, \delta^{j}\right)<\varepsilon_{R}$.
Reeb dynamics in $\mathcal{B} \geq y_{s t d}$.
(B4) The domain of the map induced by the Reeb flow on $S_{y_{\text {std }}}$ is contained in $\left[\frac{\pi}{2}-\frac{\lambda}{2}, \frac{\pi}{2}+\frac{\lambda}{2}\right] \times I_{\text {prod }}$ and its range in $\left[\frac{3 \pi}{2}-\frac{\lambda}{2}, \frac{3 \pi}{2}+\frac{\lambda}{2}\right] \times I_{\text {prod }}$.
Reeb dynamics in $\mathcal{B}^{\left[0, y_{s t d]}\right]}$.
(B5) There is no return map on $S_{y_{\text {std }}}$.
(B6) The return map on S_{Z} can be decomposed into θ_{0}, θ_{1} and θ_{2} such that
- $\operatorname{dom}\left(\theta_{k}\right) \subset S_{\frac{\lambda}{2}, 2 k}$ and $\operatorname{im}\left(\theta_{k}\right) \subset S_{\frac{\lambda}{2}, 2 k}$;
- $\left(\theta_{k}\right)_{z}(x, z)<z$ if k is odd;
- $\left(\theta_{k}\right)_{z}(x, z)>z$ if k is even.

The Reeb chords which contribute to θ_{k} do not intersect a neighbourhood of $S_{y_{\mathrm{std}}}$.
(B7) The map induced between S_{Z} and $S_{y_{\text {std }}}$ for positive times can be decomposed into two maps with domains in X and $X+2 \pi$ and ranges in $S_{\frac{\lambda}{2}, 1}$ and $S_{\frac{\lambda}{2}, 5}$.
(B8) The map induced between $S_{y_{\text {std }}}$ and S_{Z} for positive times can be decomposed into two maps with domains in $S_{\frac{\lambda}{4}, 3}$ and $S_{\frac{\lambda}{4},-1}$ and ranges in Y and $Y-2 \pi$.

Proposition 6.6. The bypass $\left(\mathcal{B}, \alpha_{B}, \lambda\right)$ is hyperbolic and (ν, τ, A, η)-dominated.
Proof. The map φ_{B} can be decomposed into φ_{0} and φ_{1} where the Reeb chords which contribute to φ_{0} do not intersect $S_{y_{\text {std }}}$ and the Reeb chords which contribute to φ_{1} intersect $S_{y_{\text {std }}}$. The properties of φ_{0} derive from condition (B6). By condition (B5), φ_{1} is the the composite of the maps described in conditions (B7), (B4) and (B8). Thus $\operatorname{dom}\left(\varphi_{1}\right) \subset X$ and $\operatorname{im}\left(\varphi_{1}\right) \subset Y$. By conditions (B4) and (B5), the restriction of φ_{1} to R_{λ} is the composite of the maps described in conditions (B1) and (B2). Conditions (B1) and (B3) ensures that the composite map is a map between rectangles. The hyperbolic properties derive from conditions (B1), (B2) and (B3).

7. Hyperbolic bypasses

In this section we construct a bypass satisfying conditions (B1) to (B8) and thus end the proofs of Theorem 2.1 and Proposition 2.7. Fix some positive numbers $\lambda<\frac{\pi}{8}, y_{\text {std }}, \tau$ and $z_{\text {prod }}<z_{\max }$. In what follows, we have $z_{\max } \ll 1$.

The construction of a hyperbolic bypass is technical. We start from an explicit contact form on a bypass inspired from Honda [27] (Section 7.1). In Section 7.2, we present some preliminary lemmas ensuring a precise control of the Reeb flow. Section 7.3 presents a preparatory perturbation of the contact structure in the bypass called a pre-convex bypass. This pre-convex bypass determines the curves δ_{i} and δ^{j} (condition (B1)). The actual construction begins in Section 7.4 with the description of adapted coordinates. In Section 7.5, we present the convexification contact form in the coordinates described in Section 7.4. In Section 7.6 we prove that our construction satisfies the desired conditions.
7.1. Explicit constructions of bypasses. In this section we present an explicit construction of a bypass attachment. This construction is due to Honda [27] and is the first step of our explicit construction in the proof of Theorem 2.1. We construct a contact structure on the product of a smoothed half overtwisted disc and smoothen the product.

Let (M, α) be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attachment arc satisfying condition (C1). In coordinates $(x, y) \in I_{b} \times \mathbb{R}_{+}$, let $U_{y}=\left[-\frac{\pi}{6}, \frac{13 \pi}{6}\right] \times[y,+\infty)$ and $\gamma_{1}=I_{b} \times\{0\}$. Consider closed set \mathcal{A} diffeomorphic to a square (see Figure 21) such that $\mathcal{A}=I_{b} \times\left[0, y_{0}\right]$ outside U_{0} and

$$
\partial \mathcal{A}=\gamma_{1} \cup\left(\left\{-\frac{3 \pi}{4}\right\} \times\left[0, y_{0}\right]\right) \cup\left(\left\{\frac{11 \pi}{4}\right\} \times\left[0, y_{0}\right]\right) \cup \gamma_{2} .
$$

Choose a 1 -form β on \mathcal{A} such that
(1) there exists $y_{\beta}>2 y_{\text {std }}$ such that $\beta=\sin (x) \mathrm{d} y$ in $\mathcal{A} \backslash U_{2 y_{\text {std }}}$ and β is a positive multiple of $\sin (x) \mathrm{d} y$ for $y \leq y_{\beta}$;
(2) in $U_{y_{\beta}} \cap \mathcal{A}$ the singularities of β are

- a half-elliptic negative singularity in $\left(\pi, y_{\beta}\right)$;
- two half-hyperbolic singularities in $\left(0, y_{\beta}\right)$ and $\left(2 \pi, y_{\beta}\right)$;
- two positive elliptic singularities on $\partial \mathcal{A}$ for $x=0$ and $x=2 \pi$;
- positive singularities on $\partial \mathcal{A} \cap U_{y_{\beta}}$;
(3) there exists a smooth proper multi-curve Γ_{A} dividing \mathcal{A} into two subsurfaces $\mathcal{A}_{ \pm}$such that $\pm \mathrm{d} \beta>0$ on $\mathcal{A}_{ \pm}, \partial A_{+}$is oriented as Γ_{A} and $\beta_{\Gamma_{A}}>0 ;$
(4) if Γ_{D} is the component of Γ_{A} joining $\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{3 \pi}{2}, 0\right)$, there exist coordinates $(r, \theta) \in\left[\frac{3 \pi}{2}-\varepsilon, \frac{3 \pi}{2}+\varepsilon\right] \times\left[0, \theta_{\max }\right]=\mathcal{U}$ near Γ_{D} such that $\Gamma_{D} \simeq$ $\left\{\frac{3 \pi}{2}\right\} \times\left[0, \theta_{\max }\right]$ and $\beta=\sin (r) \mathrm{d} \theta$.

Figure 21. A smoothed half overtwisted disc

Remark 7.1. One can assume that $\left|\int_{\Gamma_{D}} \beta\right|<\tau$ by replacing β by $(1-b(x) c(y)) \beta$ where b and c are suitable cut-off functions.

We now follow [16] to construct an invariant contact structure on $\mathcal{A} \times \mathbb{R}$. Let $\alpha=\beta+f(x, y) \mathrm{d} z$ where

- $f(x, y)=\cos (x)$ for $y \leq \frac{3}{2} y_{\text {std }}$ or $x \notin\left[-\frac{\pi}{3}, \frac{7 \pi}{3}\right]$;
- in \mathcal{U}, the function f depends only on r and is decreasing, in addition $f(r, \theta)=\cos (r)$ near $r=\frac{3 \pi}{2}$;
- in $U_{y_{\beta}} \backslash \mathcal{U}, f= \pm 1$ if $\pm \mathrm{d} \beta>0$;
- elsewhere $f(\cdot, y)$ has the same variations as cos and
- if $y \geq 2 y_{\text {std }}$, the function f does not depend on y and interpolates between cos and 1
- if $y<2 y_{\text {std }}$, the function f interpolates between \cos and $f\left(\cdot, 2 y_{\text {std }}\right)$.

We now smooth $\mathcal{A} \times I_{\text {prod }}$ to glue it on S_{Z}. There are three types of corners: the convex corners $\gamma_{2} \times\left\{ \pm z_{\text {prod }}\right\}$, the concave corners $\gamma_{1} \times\left\{ \pm z_{\text {prod }}\right\}$ and the corners associated to $x=-\frac{3 \pi}{4}$ and $x=\frac{11 \pi}{4}$. We smooth the convex corners using a function

$$
l_{\text {sup }}: I_{b} \times I_{\text {prod }} \rightarrow \mathbb{R}_{+}^{*}
$$

independent of x for $x \notin\left[-\frac{\pi}{6}, \frac{13 \pi}{6}\right]$ and such that $l_{\text {sup }}(\cdot, z)$ is strictly concave with maximum $\gamma_{2}(x)$ at $z=0$ (see Figure 22). Similarly we smooth the concave corners using an even function

$$
l_{\mathrm{inf}}:\left[-z_{\max },-z_{\mathrm{prod}}\right] \cup\left[z_{\mathrm{prod}}, z_{\max }\right] \rightarrow\left[0, y_{\text {smooth }}\right]
$$

decreasing and strictly convex on $\left[z_{\text {prod }}, z_{0}\right]$ and zero on $\left[z_{0}, z_{\text {max }}\right]$. In addition, we assume $y_{\text {smooth }}<y_{\text {std }}<\inf \left(l_{\text {sup }}\right)$ and $\operatorname{im}\left(l_{\text {sup }}\right) \cap\left(\mathcal{U} \times I_{\text {prod }}\right)=\emptyset$. To smooth the

Figure 22. Bypass smoothing
remaining corners, we first perturb the previous smoothing for $z<0$ and x close to $-\frac{\pi}{2}$ so that the perturbed boundary is the graph of a function

$$
h:\left[-\frac{\pi}{2}-\varepsilon_{s},-\frac{\pi}{2}+\varepsilon_{s}\right] \times\left(0, y_{0}\right) \rightarrow\left(-z_{\max }, 0\right)
$$

such that $\frac{\partial h}{\partial y} \geq 0$ on $\operatorname{dom}(h)$ and $\frac{\partial h}{\partial y}(x, y)>\eta>0$ for all $\left|x-\frac{\pi}{2}\right| \leq \frac{\varepsilon_{s}}{2}$. There exists $\varepsilon<\varepsilon_{s}$ such that $\operatorname{cotan}\left(-\frac{\pi}{2}-\varepsilon\right)<\eta$. We smooth the boundary of the bypass for $x \in\left[-\frac{\pi}{2}-\varepsilon,-\frac{\pi}{2}-\frac{\varepsilon}{2}\right]$ so that the new boundary is the graph of

$$
k:\left[-\frac{\pi}{2}-\varepsilon,-\frac{\pi}{2}-\frac{\varepsilon}{2}\right] \times\left[-z_{\max }, z_{\max }\right] \rightarrow\left[0, y_{0}\right]
$$

and

- $k=0$ for x close to $-\frac{\pi}{2}-\varepsilon$;
- $0 \leq \frac{\partial k}{\partial z}<\frac{1}{\eta}$ for all $z<0$;
- $\frac{\partial k}{\partial z} \leq 0$ for all $z \geq 0$.

We smooth the boundary for x close to $\frac{5 \pi}{2}$ with a similar construction and denote by \mathcal{B} the smoothed product. Let $M^{\prime}=M \cup \mathcal{B}$. Then M^{\prime} is a smooth manifold with boundary S^{\prime}.

Proposition 7.2. After an arbitrarily small perturbation of the contact form near $\gamma_{2} \times\{0\}$, the boundary S^{\prime} is convex. A dividing set, denoted by $\Gamma_{\text {smooth }}$, is given by the tangency points between the Reeb vector field and S^{\prime} (see Figure 23).

Figure 23. The dividing set $\Gamma_{\text {smooth }}$

Remark 7.3. The dividing set $\Gamma_{\text {smooth }}$ is disjoint from the graphs of h and k. Indeed, the Reeb vector field is tangent to the graphs of h or k if and only if $\frac{\partial h}{\partial y}(x, y)=\operatorname{cotan}(x)$ or $\frac{\partial k}{\partial z}(x, z)=\tan (x)$.
Proof. By use of the implicit function theorem, the set of tangency points between the Reeb vector field and S^{\prime} is a smooth curve Γ. In addition the characteristic foliation of S^{\prime} is positively transverse to Γ except along $U_{0} \cap\left(\gamma_{2} \times\{0\}\right)$. In a neighbourhood of $U_{0} \cap\left(\gamma_{2} \times\{0\}\right)$, we consider the contact form $\alpha+\varepsilon(x, y) \mathrm{d} x$ where ε is a non-positive, small and smooth function that does not depend on y in a neighbourhood of $\left\{-\frac{\pi}{6}, \frac{13 \pi}{6}\right\} \times\left\{y_{0}\right\}$. This perturbation does not change Γ and the characteristic foliation of S^{\prime} is now positively transverse to Γ everywhere. We apply Lemma 3.1 to obtain the convexity of S^{\prime}.

Proposition 7.4 (Honda [27]). M^{\prime} is obtained from M after a bypass attachment along γ_{1}.

The dividing set is pictured on Figure 23. Figure 24 shows the associated Reeb vector field. In particular, α is not adapted to S^{\prime}.

Figure 24. The Reeb vector field along $\Gamma_{\text {smooth }}$
7.2. Preliminary lemmas. This section can be skipped on first reading. We present bounds on $z_{\max }$ and on the perturbations of the contact form ensuring a precise control of the Reeb flow. Let $\Omega=I_{b} \times\left[0, y_{\text {std }}\right] \times I_{\max }$ and $\alpha=\sin (x) \mathrm{d} y+$ $\cos (x) \mathrm{d} z$.

Lemma 7.5. For small enough perturbations of α, the x-coordinate of any Reeb orbit in Ω covers an interval of length at most $\frac{\lambda}{8}$.

Proof. The x-coordinate of R_{α} is zero and the amount of time spent in Ω by a Reeb orbit is uniformly bounded.

Lemma 7.6. For $z_{\text {max }}$ small enough and for any small enough perturbation of α

- condition (B6) is satisfied;
- for all $0 \leq y \leq \frac{3}{4} y_{\text {std }}$, the map induced between S_{y} and $S_{y_{\text {std }}}$ for positive times can be decomposed into two maps with domains in $S_{\frac{\lambda}{4}, 1}$ and $S_{\frac{\lambda}{4}, 5}$ and ranges in $S_{\frac{\lambda}{2}, 1}$ and $S_{\frac{\lambda}{2}, 5}$;
- the map induced between $S_{y_{\text {std }}}$ and S_{Z} for positive times can be decomposed into two maps with domains in $S_{\frac{\lambda}{4}, 3}$ and $S_{\frac{\lambda}{4},-1}$ and ranges in $S_{\frac{\lambda}{2}, 3}$ and $S_{\frac{\lambda}{2},-1}$;
- the amount of time spent in Ω by a Reeb orbit is bounded by $2\left(y_{s t d}+z_{\max }\right)$.

Proof. For $z_{\max }$ small enough, the domain and range of the map from S_{y} to $S_{y_{\mathrm{std}}}$ are contained in $S_{\frac{\lambda}{4}, 1}$ and $S_{\frac{\lambda}{4}, 5}$ for all $0 \leq y \leq \frac{3}{4} y_{\text {std }}$. Similarly, the domain and range of the map from $S_{y_{\text {std }}}$ to S_{y} are contained in $S_{\frac{\lambda}{4}, 3}$ and $S_{\frac{\lambda}{4},-1}$. Thus the conditions on the map between S_{y} and $S_{y_{\text {std }}}$ are satisfied for any small perturbation of α.

We now prove condition (B6) and the return time condition. For any small perturbation of α

- $\left|R_{y}\right| \geq \frac{1}{2}$ outside $\left(S_{\frac{\lambda}{8}, 0} \cup S_{\frac{\lambda}{8}, 2} \cup S_{\frac{\lambda}{8}, 4}\right) \times\left[0, y_{\text {std }}\right]$;
- $\left|R_{z}\right| \geq \frac{1}{2}$ into $\left(S_{\frac{\lambda}{2}, 0} \cup S_{\frac{\lambda}{2}, 2} \cup S_{\frac{\lambda}{2}, 4}\right) \times\left[0, y_{\text {std }}\right]$;
- the hypotheses of Lemma 7.5 are satisfied.

Thus any Reeb orbit intersecting S_{Z} outside $S_{\frac{\lambda}{4}, 0} \cup S_{\frac{\lambda}{4}, 2} \cup S_{\frac{\lambda}{4}, 4}$ is not a Reeb chord of S_{Z} (Lemma 7.5). Any Reeb chord of S_{Z} stays in $S_{\frac{\lambda}{2}, 2 k}$ for some k. Along any Reeb orbit, $\left|R_{y}\right| \geq \frac{1}{2}$ or $\left|R_{z}\right| \geq \frac{1}{2}$ (Lemma 7.5) and we obtain the desired bound on the amount of time spent in Ω.

Finally, the period of any Reeb chord of S_{Z} is bounded by $2 z_{\max }$. Thus, for small enough perturbations, the y-coordinate covers an interval of length at most $2 z_{\max }$ and $2 z_{\max }<y_{\text {std }}$ for $z_{\max }$ small enough. Thus the Reeb chords which contribute to θ_{k} do not intersect a neighbourhood of $S_{y_{\text {std }}}$ and condition (B6) is satisfied.
Remark 7.7. If the contact form is not perturbed near $x=k \pi$ there is no Reeb chord on S_{Z} or $S_{y_{\mathrm{std}}}$. More precisely, let $y \in\left[0, y_{\mathrm{std}}\right)$ and α^{\prime} be a small perturbation
of α such that $\alpha^{\prime}=\alpha$ in $\left(S_{\frac{\pi}{4}, 0} \cup S_{\frac{\pi}{4}, 2} \cup S_{\frac{\pi}{4}, 4}\right) \times\left[y, y_{\text {std }}\right]$. Then there is no Reeb chord of $S_{y_{\text {std }}}$ contained in $I_{b} \times\left[y, y_{\text {std }}\right] \times I_{\text {max }}$.

We smooth the corners of Ω as described in Section 7.1. The dividing set is given by the smooth curve $\Gamma_{\text {smooth }}$ (see Proposition 7.2). We still denote by $\Gamma_{\text {smooth }}$ its restriction to Ω. The convexification process will take place in a neighbourhood of $\Gamma_{\text {smooth }}$ and will radically change the contact form. To control the new Reeb orbits, we first control the Reeb chord of a neighbourhood of $\Gamma_{\text {smooth }}$.

Lemma 7.8. There exists an arbitrarily small neighbourhood $V_{\text {smooth }}$ of $\Gamma_{\text {smooth }}$ such that, for any small perturbation of α, the Reeb chords joining two distinct connected components of $V_{\text {smooth }}$ are contained in $S_{\frac{\lambda}{4}, 2 k} \times\left[0, y_{\text {std }}\right]$. In addition, the orientation of these Reeb chords is given by the sign of the z-component of R_{α}.

Proof. There exists $\varepsilon<\frac{\lambda}{2}$ such that for any small perturbation of α, any Reeb orbit intersecting $S_{\varepsilon, 2 k+1} \times\left[0, y_{\text {std }}\right] \times\left[z_{\text {prod }}-\varepsilon, z_{\text {max }}\right]$ remains in $S_{\varepsilon, 2 k+1} \times\left[0, y_{\text {std }}\right] \times$ $\left[\frac{z_{\text {prod }}}{2}, z_{\text {max }}\right]$ for $k=-1, \ldots, 2$. In addition, we ask that the x-coordinate of any Reeb orbit in Ω covers an interval of length at most $\frac{\varepsilon}{2}$.

Choose some neighbourhood $V_{\text {smooth }}$ of $\Gamma_{\text {smooth }}$ with radius smaller that $\frac{\varepsilon}{2}$. Any connected component of $V_{\text {smooth }}$ is contained in

$$
\left[\frac{k \pi}{2}-\frac{\varepsilon}{2}, \frac{(k+1) \pi}{2}+\frac{\varepsilon}{2}\right] \times\left[0, y_{\mathrm{std}}\right] \times I_{\max }
$$

for $k=-1, \ldots, 5$. Consider the connected component contained in

$$
\left[l \pi-\frac{\pi}{2}-\frac{\varepsilon}{2}, l \pi+\frac{\varepsilon}{2}\right] \times\left[0, y_{\mathrm{std}}\right] \times I_{\max } .
$$

Any Reeb chord connecting this component to another is contained in $S_{\varepsilon, 2 l-1} \times$ [$\left.0, y_{\mathrm{std}}\right]$ or in $S_{\varepsilon, 2 l} \times\left[0, y_{\mathrm{std}}\right]$. By definition of ε, there is no Reeb orbit in $S_{\varepsilon, 2 l-1} \times$ [$\left.0, y_{\text {std }}\right]$.
Lemma 7.9. Let (\mathcal{A}, β) be a bypass foliation. For $z_{\max }$ small enough, for any smoothing as described in Section 7.1 and for any small perturbation α^{\prime} of α such that $\alpha^{\prime}=\alpha$ in $\left(S_{\frac{\pi}{4}, 0} \cup S_{\frac{\pi}{4}, 2} \cup S_{\frac{\pi}{4}, 4}\right) \times\left[y_{s t d}, 2 y_{\text {std }}\right]$ the condition (B4) is satisfied. In addition, the return time is bounded by $\theta_{\text {max }}$.
Proof. For $y \in\left[y_{\text {std }}, \frac{3}{2} y_{\text {std }}\right]$, we have $\alpha=\sin (x) \mathrm{d} y+\cos (x) \mathrm{d} z$. Thus the domain and range of the return map can be made as close to $x=k \pi$ as desired for $z_{\text {max }}$ small enough. In addition, the only R_{α}-chord is $\Gamma_{D} \times\{0\}$ and the return time is bounded by $\theta_{\text {max }}$.
7.3. Pre-convex bypasses. Let (\mathcal{B}, α) be a bypass as defined in Section 7.1. In what follows we will always assume the the smoothing map l_{inf} is invariant by mirror symmetry along the plane $z-z_{\text {prod }}-y=0$ for $z \geq z_{\text {prod }}$. We assume $y_{\text {smooth }}<\frac{y_{\text {std }}}{2}$. Recall that the Reeb vector field is tangent to the dividing set $\Gamma_{\text {smooth }}$ of $\partial \mathcal{B}=S^{\prime}$ when S^{\prime} is vertical and points toward S_{-}^{\prime} in the concave part of S^{\prime} (Proposition 7.2). To apply the convexification process we first "eliminate" the tangency points between R_{α} and $\Gamma_{\text {smooth }}$ by perturbing α to obtain a pre-convex bypass. We use the symmetries of the bypass to extend local constructions. In particular, if $(x, y, z) \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \times\left[0, y_{\text {std }}\right] \times\left[z_{\text {prod }}, z_{\text {prod }}+y_{\text {std }}\right]$, let

$$
\begin{equation*}
\sigma(x, y, z)=\left(-x+\frac{3 \pi}{2}, z-z_{\mathrm{prod}}, y+z_{\mathrm{prod}}\right) \tag{2}
\end{equation*}
$$

be the rotation of angle π with axis $x=\frac{3 \pi}{4}, y=z-z_{\text {prod }}$. For $(x, y, z) \in\left[-\frac{3 \pi}{4}, \frac{\pi}{4}\right] \times$ $\left[0, y_{\mathrm{std}}\right] \times\left[0, z_{\mathrm{max}}\right]$, let

$$
\begin{equation*}
\tau(x, y, z)=(-x, y,-z) \tag{3}
\end{equation*}
$$

be the rotation of angle π with axis $x=z=0$. Let $\Gamma_{A}^{+}=\Gamma_{A} \times\left\{z_{\text {prod }}\right\}, \Gamma_{A}^{-}=$ $\Gamma_{A} \times\left\{-z_{\text {prod }}\right\}$ and $\Gamma_{A}^{ \pm}=\Gamma_{A}^{-} \cup \Gamma_{A}^{+}$. We use similar notations for Γ_{D}.

A pre-convex perturbation ($k_{\text {sup }}, k_{\mathrm{inf}}$) of a bypass (\mathcal{B}, α) is composed of two smooth maps $\mathcal{B} \rightarrow \mathbb{R}_{+}^{*}$ such that (see Figure 25):

- there exist a neighbourhood V_{+}of the restriction of $\left(\Gamma_{A}^{ \pm}\right)$to $y \geq \frac{y_{\text {std }}}{2}$ and a neighbourhood V_{-}of the restriction of $\left(\Gamma_{A}^{ \pm}\right)$to $y \leq \frac{y_{\text {std }}}{2}$ such that $k_{\text {sup }}=1$ outside V_{+}and $k_{\text {inf }}=1$ outside V_{-};
- $\frac{\partial k_{\text {sup }}}{\partial z}>0$ near Γ_{A}^{+}and $\frac{\partial k_{\text {sup }}}{\partial z}<0$ near Γ_{A}^{-};
- $k_{\text {sup }}$ does not depend on x near $\Gamma_{A} \backslash \Gamma_{D}$ and on r near Γ_{D};
- $k_{\mathrm{inf}}(x, y, z)=\left(1-f_{\mathrm{inf}}(y) \rho z\right)$ near $\Gamma_{D}^{+} \cap\left\{(x, y, z), x \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]\right\}$ where $\rho>0$, $f_{\mathrm{inf}}:\left[0, y_{\mathrm{std}}\right] \rightarrow \mathbb{R}_{+}, f_{\mathrm{inf}}=0$ near 0 and for $y \geq \frac{y_{\text {std }}}{2}, f_{\mathrm{inf}}$ is increasing on $\left[0, y_{\rho}^{-}\right], f_{\mathrm{inf}}=1$ on $\left[y_{\rho}^{-}, y_{\rho}^{+}\right]$and is decreasing on $\left[y_{\rho}^{+}, \frac{y_{\text {std }}}{2}\right]$;
- $k_{\text {sup }}$ is τ-invariant and " π-periodic" for $y \in\left[0, y_{\mathrm{std}}\right]$ and k_{inf} is τ-invariant and " π-periodic".

Figure 25. The neighbourhoods V_{+}and V_{-}
In what follows, we assume $y_{\rho}^{+}<\frac{2 y_{\text {std }}}{5}, y_{\rho}^{-}>y_{\text {smooth }}$, and that the radius of V_{-} is smaller than $\frac{\lambda}{2}$. Let $k_{\text {sup }}^{\prime}=k_{\text {sup }} \circ \sigma$. We extend $k_{\text {sup }}^{\prime}$ in a neighbourhood of \mathcal{B} to obtain a π-periodic, τ-invariant function. We define $k_{\text {inf }}^{\prime}$ similarly. Let

$$
\alpha_{\text {prec }}=\left(k_{\text {sup }} k_{\text {inf }}\right) \sin (x) \mathrm{d} y+\left(k_{\text {sup }}^{\prime} k_{\text {inf }}^{\prime}\right) \cos (x) \mathrm{d} z
$$

For $k_{\text {sup }}$ and k_{inf} close to $1, \alpha_{\text {prec }}$ is a contact form. Let $\eta\left(k_{\text {sup }}\right)$ and $\eta\left(k_{\mathrm{inf}}\right)$ be the radius of the neighbourhoods of $\Gamma_{A}^{ \pm}$where $k_{\text {sup }}$ and k_{inf} do not depends on x or r.
Proposition 7.10. Fix $\eta>0$. Let (\mathcal{B}, α) be a bypass. There exist real positive numbers $\varepsilon_{\text {inf }}$ and $\varepsilon_{\text {sup }}$ such that for any pre-convex perturbation $\left(k_{\text {sup }}, k_{\text {inf }}\right)$ satisfying $\eta\left(k_{\text {sup }}\right) \geq \eta, \eta\left(k_{\text {sup }}\right) \geq \eta,\left\|k_{\text {sup }}-1\right\|<\varepsilon_{\text {sup }}$ and $\left\|k_{\text {inf }}-1\right\|<\varepsilon_{\text {inf }}$ the following holds

- S^{\prime} is convex with dividing set $\Gamma_{\text {prec }}$, the set of tangency points between $R_{\text {prec }}$ and S^{\prime};
- $R_{\text {prec }}$ points toward S_{+}for $y>\frac{y_{\text {std }}}{2}$ and toward S_{-}for $y<\frac{y_{\text {std }}}{2}$.

Note that $\varepsilon_{\mathrm{inf}}>0$ and $\varepsilon_{\text {sup }}>0$ depend on the smoothing of $\mathcal{A} \times I_{\text {prod }}$.
Proof. The tangency condition is open. By Proposition 7.2 and Lemma 3.1 the first condition is satisfied for small enough perturbations of α.

The Reeb vector field R_{α} is transverse to $\Gamma_{\text {smooth }}$ for $x \neq \frac{k \pi}{2}$ as the tangents to $\Gamma_{\text {smooth }}$ have a non-vanishing x-component. Thus, for small enough perturbations, the transversality still holds for $\left|x-\frac{k \pi}{2}\right| \geq \eta$.

We study the case $y<\frac{y_{\text {std }}}{2}$. We prove transversality for $\left|x-\frac{\pi}{2}\right|<\eta$ and extend the result by symmetry. The Reeb vector field is

$$
R_{\alpha}=\frac{1}{k_{\mathrm{inf}}(y, z)}\left(\begin{array}{c}
-\frac{\partial k_{\mathrm{inf}}}{\partial z}(y, z) \sin (x) \tag{4}\\
\sin (x) \\
k_{\mathrm{inf}}(y, z) \cos (x)
\end{array}\right)
$$

and the tangency condition between $R_{\alpha_{\text {prec }}}$ and S^{\prime} is

$$
k_{\mathrm{inf}}(y, z) \cos (x)-L_{\mathrm{inf}}^{\prime}(y) \sin (x)=0
$$

where $L_{\mathrm{inf}}=l_{\mathrm{inf}}^{-1}$ (see Section 7.1). Thus a parametrisation of Γ_{prec} is given by

$$
y \mapsto\left(\left(\frac{\cos }{\sin }\right)^{-1}\left(\frac{L_{\mathrm{inf}}^{\prime}(y)}{k_{\mathrm{inf}}\left(y, L_{\mathrm{inf}}(y)\right)}\right), y, L_{\mathrm{inf}}(y)\right)=(x(y), y, z(y)) .
$$

The tangency condition between $R_{\alpha_{\text {prec }}}$ and $\Gamma_{\text {prec }}$ implies

$$
x^{\prime}(y)+\frac{\partial k_{\mathrm{inf}}}{\partial z}(y, z(y))=0 .
$$

Yet $\frac{\partial k_{\text {inf }}}{\partial z}(y, z(y))<0$ and $x^{\prime}(y)$ has the sign of $-L_{\text {inf }}^{\prime \prime}(y)$. Thus $x^{\prime}(y)<0$ for $k_{\text {inf }}$ close to 1 and $R_{\alpha_{\text {prec }}}$ is not tangent to $\Gamma_{\text {prec }}$.

We now study the case $y>\frac{y_{\text {std }}}{2}$. The tangency condition between $R_{\alpha_{\text {prec }}}$ and S^{\prime} is

$$
k_{\mathrm{sup}}(y, z) \cos (x)-L_{\text {sup }}^{\prime}(y) \sin (x)=0 .
$$

The tangency condition between $R_{\alpha_{\text {prec }}}$ and $\Gamma_{\text {prec }}$ implies

$$
x^{\prime}(y)+\frac{\partial k_{\mathrm{sup}}}{\partial z}(y, z(y))=0 .
$$

Yet $\frac{\partial k_{\text {sup }}}{\partial z}(y, z(y))>0$ and $x^{\prime}(y)$ has the sign of $L_{\text {sup }}^{\prime \prime}(y)$.
The convexification process takes place near $\Gamma_{\text {prec }}$. We carefully choose (\mathcal{B}, α) and a pre-convex perturbation to control the image of the dividing set by the Reeb flow. For $s \in\left[0, \frac{\pi}{2}\right]$, let

$$
\begin{aligned}
& \gamma_{0}(s)=\left(s, 0,-z_{\text {prod }}\right) \\
& \gamma_{1}(s)=\left(\pi-s, 0, z_{\text {prod }}\right) \\
& \gamma^{0}(s)=\left(s+\pi, 0,-z_{\text {prod }}\right) \\
& \gamma^{1}(s)=\left(2 \pi-s, 0, z_{\text {prod }}\right) .
\end{aligned}
$$

We denote by p_{V} and p_{R} the images on S_{Z} and S_{R} by the Reeb flow.
A quadruple ($\mathcal{B}, \alpha, k_{\text {sup }}, k_{\text {inf }}$) is a pre-convex bypass if (\mathcal{B}, α) is a bypass as defined in Section 7.1, $\left(k_{\text {sup }}, k_{\text {inf }}\right)$ is a pre-convex perturbation and there exist positive real numbers ε_{R}, A_{R} and $\varepsilon_{Z}\left(\varepsilon_{Z}\right.$ is arbitrarily small), four z-graphs in S_{R} denoted by $\delta_{0}, \delta_{1}, \delta^{0}$ and δ^{1} and product neighbourhoods

$$
\begin{equation*}
V_{\Gamma_{A}}=V_{x} \times\left[0, \frac{3}{4} y_{\mathrm{std}}\right] \times V_{z} \tag{5}
\end{equation*}
$$

of the restriction of $\left(\Gamma_{A}^{ \pm}\right)$to $y \in\left[0, \frac{3 y_{\text {std }}}{4}\right]$ with $\left|V_{x}\right|=\lambda_{B}<\lambda$ such that
(1) there is no Reeb chord between $V_{\Gamma_{A}}$ and $S_{y_{\mathrm{std}}}$;
(2) if Γ_{B} is the restriction of $\Gamma_{\text {prec }}$ for $x \in\left[\frac{\pi}{2}+\frac{\lambda_{B}}{2}, \pi-\frac{\lambda_{B}}{2}\right]$ then $\left|\int_{\Gamma_{B}} \alpha\right|<\tau$ and $d_{\mathcal{C}^{1}}\left(p_{Z}\left(\Gamma_{B}\right), \gamma_{1}\right)<\frac{\varepsilon_{Z}}{2}$;
(3) δ_{i} is increasing and δ^{i} decreasing, the graphs intersect the segment $r=\frac{3 \pi}{2}$;
(4) $\mathcal{C}\left(\delta_{i}, \varepsilon_{R}\right) \cap \mathcal{C}\left(H, \varepsilon_{R}\right)=\{0\}$ and $\mathcal{C}\left(\delta^{i}, \varepsilon_{R}\right) \subset \mathcal{C}\left(\delta_{j}^{\perp}, A_{R}\right)$ and δ^{i} satisfies symmetric conditions;
(5) if $d_{\mathcal{C}^{1}}\left(\delta, \delta_{i}\right)<\varepsilon_{R}$ and $d_{\mathcal{C}^{1}}\left(\delta^{\prime}, \delta^{j}\right)<\varepsilon_{R}$ then δ and δ^{\prime} intersect transversely in one point ;
(6) if γ is a curve in S_{Z} such that $d_{\mathcal{C}^{1}}\left(\gamma, \gamma_{i}\right)<\varepsilon_{Z}$ or $d_{\mathcal{C}^{1}}\left(\gamma, \gamma^{i}\right)<\varepsilon_{Z}$ then either $d_{\mathcal{C}^{1}}\left(p_{R}(\gamma), \delta_{i}\right)<\varepsilon_{R}$ or $d_{\mathcal{C}^{1}}\left(p_{R}(\gamma), \delta^{i}\right)<\varepsilon_{R} ;$
(7) the return time between S_{Z} and S_{R} is bounded by τ.

Proposition 7.11. Let $(M, \xi=\operatorname{ker}(\alpha))$ be a contact manifold with convex boundary (S, Γ) and γ_{0} be an attaching arc satisfying condition (C1), (C2) and (C3). Let (\mathcal{A}, β) be a bypass foliation (see Section 7.1). For $z_{\max }$ small enough, there exists a pre-convex bypass $\left(\mathcal{B}, \alpha, k_{\text {sup }}, k_{\text {inf }}\right)$ with $k_{\text {sup }}$ and $k_{\text {inf }}$ arbitrarily close to 1 .

The rest of this section is devoted to the proof of Proposition 7.11. Let $\eta<\frac{\lambda}{4}$. Choose $l_{\text {sup }}$ and $k_{\text {sup }}$ such that $\eta\left(k_{\text {sup }}\right) \geq \eta$ and $\left\|k_{\text {sup }}-1\right\|<\varepsilon_{\text {sup }}$.
Lemma 7.12. If $k_{\text {sup }}$ is close to 1 and $z_{\max }$ small enough, then $p_{R}\left(\gamma_{i}\right)$ and $p_{R}\left(\gamma^{i}\right)$ satisfy condition (3).

Proof. For $z_{\max }$ small, the Reeb chords of α that contribute to the map between S_{Z} and S_{R} are contained in the neighbourhood where $\alpha=\sin (r) \mathrm{d} \theta+\cos (r) \mathrm{d} z$ and $k_{\text {sup }}$ does not depend on r. In coordinates (r, θ, z), the image of γ^{1} on S_{θ} is

$$
s \longmapsto\left(2 \pi-s, \theta,-\frac{\cos (s)}{\sin (s)} \theta+z_{\text {prod }}\right) .
$$

For $z_{\max }$ small enough, this curve in a decreasing graph in z and contains $\left(\frac{3 \pi}{2}, \theta, z_{\text {prod }}\right)$. Consider the perturbation $\alpha_{\text {sup }}$ of α associated to $k_{\text {sup }}$. As

$$
R_{\alpha}=\frac{1}{k_{\mathrm{sup}}(y, z)}\left(\begin{array}{c}
-\frac{\partial k_{\text {sup }}}{\partial z}(y, z) \sin (x) \\
\sin (x) \\
k_{\mathrm{sup}}(y, z) \cos (x)
\end{array}\right)
$$

we have $\frac{\partial k_{\text {sup }}}{\partial z}=0$ for $y \leq \frac{y_{\text {std }}}{2}$ and $\frac{\partial k_{\text {sup }}}{\partial z}>0$ for $z>\frac{y_{\text {std }}}{2}$ near Γ_{D}^{+}. Therefore, the curve $p_{R}\left(\gamma^{1}\right)$ intersects the segment $r=\frac{3 \pi}{2}$. The proof is similar in the other cases.

Let $p_{R}\left(\gamma_{i}\right)=\delta_{i}$ and $p_{R}\left(\gamma^{i}\right)=\delta^{i}$. The curves δ_{i} and δ^{j} intersect transversely in exactly one point and there exist ε_{R}, A_{R} and ε_{Z} satisfying conditions (4) and (5) for any small perturbation of $\alpha_{\text {sup }}$. Additionally, all $R_{\alpha_{\text {sup }}}$-orbits intersecting $\left\{\frac{\pi}{2}\right\} \times$ $\left[0, \frac{3}{4} y_{\text {std }}\right] \times\left\{z_{\text {prod }}\right\}$ go out of the bypass. Then, there exists $V_{\Gamma_{A}}$ such that the Reeb vector field of all small perturbation of $\alpha_{\text {sup }}$ satisfies condition (1). We now carefully choose $l_{\text {inf }}$. A parametrisation of Γ_{B} is

$$
\begin{array}{clc}
{\left[\frac{\pi}{2}+\frac{\lambda_{B}}{2}, \pi-\frac{\lambda_{B}}{2}\right]} & \longrightarrow & \mathbb{R}^{3} \\
x & \longmapsto\left(x, l_{\text {inf }}\left(\left(l_{\text {inf }}^{\prime}\right)^{-1}(\tan (x))\right),\left(l_{\text {inf }}^{\prime}\right)^{-1}(\tan (x))\right)
\end{array}
$$

thus $p_{Z}\left(\Gamma_{B}\right)$ is parametrised by

$$
x \longmapsto\left(x, 0,\left(l_{\mathrm{inf}}^{\prime}\right)^{-1}(\tan (x))-\operatorname{cotan}(x) \times l_{\mathrm{inf}}\left(\left(l_{\mathrm{inf}}^{\prime}\right)^{-1}(\tan (x))\right)\right)
$$

and its derivative is

$$
x \longmapsto\left(1,0,-\frac{1}{\sin ^{2}(x)} \times l_{\mathrm{inf}}\left(\left(l_{\mathrm{inf}}^{\prime}\right)^{-1}(\tan (x))\right)\right)
$$

Thus, the second half of condition (2) is satisfied for l_{inf} small. In addition, we have

$$
\int_{\Gamma} \alpha=\int_{\frac{\pi}{2}+\frac{\lambda_{B}}{2}}^{\pi-\frac{\lambda_{B}}{2}} \frac{1}{\sin ^{3}(x)} \times \frac{1}{l_{\mathrm{inf}}^{\prime \prime}\left(\left(l_{\mathrm{inf}}^{\prime}\right)^{-1}(\tan (x))\right)} \mathrm{d} x .
$$

Fix $C>0$ and $c>0$ we chose $l_{\text {inf }}$ such that $l_{\text {inf }}<c$ and $l_{\text {inf }}^{\prime \prime}\left(\left(l_{\text {inf }}^{\prime}\right)^{-1}(y)\right)>C$ for all

$$
y \in\left[\tan \left(\frac{\pi}{2}+\frac{\lambda_{B}}{2}\right), \tan \left(\pi-\frac{\lambda_{B}}{2}\right)\right] .
$$

For C big enough and c small enough, condition (2) is satisfied. Additionally, such a function exists: it is the anti-derivative of a function $f:(0,1] \longrightarrow(-\infty, 0]$ such that

- f is increasing and $\left|\int_{0}^{1} f\right|=c$;
- for all $k \in \mathbb{N}, f^{(k)}(1)=0$ and $\lim _{x \rightarrow 0}\left|f^{(k)}(x)\right|=\infty$;
- $f^{\prime}\left((f)^{-1}(y)\right)>C$ for all $y \in\left[\tan \left(\frac{\pi}{2}+\frac{\lambda_{B}}{2}\right), \tan \left(\pi-\frac{\lambda_{B}}{2}\right)\right]$.

Finally, we choose $k_{\text {inf }}$ small enough. Condition 7 derives from Lemmas 7.6 and 7.9 and Remark 7.1. This concludes the proof of Proposition 7.11.
7.4. Convexification coordinates. In the two following sections, we describe the actual construction of an hyperbolic bypass.

Construction 7.13. There exists a pre-convex bypass ($\mathcal{B}, \alpha, k_{\text {sup }}, k_{\text {inf }}$) adapted to τ and λ (Proposition 7.11). For technical reasons, we also consider a second preconvex bypass ($\mathcal{B}^{\prime}, \alpha, k_{\text {sup }}, k_{\text {inf }}$) extending \mathcal{B} and such that, $d_{\mathcal{C}^{0}}\left(\partial \mathcal{B}^{\prime}, \mathcal{B}\right)>0$ for all $|z| \leq z_{\text {prod }}+y_{\text {std }}$ and $0 \leq y \leq y_{\text {std }}$. We denote by p_{Z}^{\prime} and p_{R}^{\prime} the projections in \mathcal{B}^{\prime}. Without loss of generality $\varepsilon_{Z}<\nu$ and $p_{Z}\left(\operatorname{dom}\left(p_{R \mid \Gamma_{B}}\right) \subset \operatorname{dom}\left(p_{R \mid S_{Z}}^{\prime}\right)\right.$.

We are now in position to apply the convexification process described in [6]. Recall that S^{\prime} is the boundary of $M^{\prime}=M \cup \mathcal{B}, k_{\mathrm{inf}}=1-\rho z$ on $\left[y_{\rho}^{-}, y_{\rho}^{+}\right]$,

$$
y_{\mathrm{smooth}}<y_{\rho}^{-}<y_{\rho}^{+}<\frac{2}{5} y_{\mathrm{std}}
$$

and the upper boundary of $V_{\Gamma_{A}}$ is contained in $y=\frac{3}{4} y_{\text {std }}$. Choose

$$
y_{\rho}^{-}<y^{-}<y^{+}<y_{\rho}^{+} .
$$

Our first step is to obtain nice coordinates near $\Gamma_{\text {prec }} \cap \mathcal{B} \leq y_{\text {std }}$. We construct these coordinates near the connected component Γ_{0} contained in $\left[\frac{\pi}{2}, \pi\right] \times\left[0, y_{\text {std }}\right] \times\left[0, z_{\text {std }}\right]$ and extend them using the symmetries of \mathcal{B}.
Fact 7.14. There exists $\varepsilon_{\text {prec }}$ such that for all $\varepsilon_{\text {prec }}$-perturbation of S^{\prime}, the contact form $\alpha_{\text {prec }}$ is adapted to the new boundary for $y \geq \frac{2}{3} y_{\text {std }}$.
Proposition 7.15. There exists a surface Σ with coordinates $(u, v) \in\left[u_{\min }, u_{\text {max }}\right] \times$ $\left[-v_{\max }, v_{\max }\right]$ such that
(1) Σ is transverse to $R_{\alpha_{\text {prec }}}, \Sigma \cap S^{\prime}=\Gamma_{0}$ and the intersection is transverse;
(2) $\sigma\left(i_{\Sigma}(u, v)\right)=i_{\Sigma}\left(u_{\max }+u_{\min }-u, v\right)$ where $i_{\Sigma}: \Sigma \rightarrow \mathbb{R}^{3}$ is the inclusion and σ is defined by equation (2);
(3) $\frac{\partial}{\partial u}=\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial v}=\frac{\partial}{\partial z}$ for y close to $\left[y^{-}, y^{+}\right]$;
(4) $\alpha_{\text {prec }}=\mathrm{d} t+\left(1-\rho z_{\text {prod }}-\rho v\right) \mathrm{d} u$ in the flow-box coordinates (t, u, v) associated to Σ.

We denote by y_{Σ} the coordinate such that $\left(\frac{\pi}{2}, y_{\Sigma}\right)=i_{\Sigma}\left(u_{\max }, 0\right)$.
Proof. Choose a surface Σ satisfying conditions (1), (2) and (3) and such that $i_{\Sigma}^{*} \alpha_{\text {prec }}=g(u, v) \mathrm{d} v$ and $g(u, 0)=1-\rho z_{\text {prod }}$. Then $g(u, v)=1-\rho z_{\text {prod }}-\rho v$ for y close to $\left[y_{\rho}^{-}, y_{\rho}^{+}\right]$and $\alpha_{\text {prec }}=g(u, v) \mathrm{d} u+\mathrm{d} t$. Moser's trick provides us with a diffeomorphism φ_{1} such that $\varphi_{1}=\operatorname{Id}$ along $\Gamma_{\text {prec }}$ and for y close to $\left[y^{-}, y^{+}\right], \varphi_{1}$ preserves Σ and $\varphi_{1}^{*} \alpha_{\text {prec }}=\mathrm{d} t+\left(1-\rho z_{\text {prod }}-\rho v\right) \mathrm{d} u$ as the two Reeb vector fields coincide. In addition $\varphi_{1} \circ \sigma=\sigma \circ \varphi_{1}$. Thus $\varphi_{1 \mid \Sigma}$ has the desired properties.

Let $u_{\rho}^{ \pm}$and $u^{ \pm}$be the u-coordinates associated to the intersection points between Γ_{0} and $S_{y_{\rho}^{ \pm}}$or $S_{y^{ \pm}}$. Let $\psi=\left(\psi_{x}, \psi_{y}, \psi_{z}\right)$ be the diffeomorphism associated to the change of coordinates. Let $S_{\mathcal{B}}=\psi^{-1}\left(S^{\prime}\right)$. Without loss of generality $\psi: \mathcal{U} \rightarrow \mathcal{V}$ and ${ }^{3}$

$$
\begin{align*}
& \mathcal{U}=I_{t} \times I_{u} \times I_{v}=\left[-t_{\max }, t_{\max }\right] \times\left[u_{\min }, u_{\max }\right] \times\left[-v_{\max }, v_{\max }\right], \tag{6}\\
& \mathcal{V} \subset\left(\left[\frac{\pi}{2}-\frac{\lambda}{8}, \pi+\frac{\lambda}{8}\right] \times\left[0, \frac{3}{4} y_{\mathrm{std}}\right] \times I_{\max }\right) \cap V_{\text {smooth }} \cap \mathcal{B}^{\prime}, \tag{7}\\
& \alpha=(1-\rho z) \sin (x) \mathrm{d} y+\cos (x) \mathrm{d} z \text { on } \psi\left(I_{t} \times\left[u^{-}, u^{+}\right] \times I_{v}\right) . \tag{8}
\end{align*}
$$

[^2]Fact 7.16. For all $(t, u, v) \in I_{t} \times\left[u^{-}, u^{+}\right] \times I_{v}$, it holds that

$$
\begin{aligned}
\sigma(\psi(t, u, v)) & =\psi\left(-t, u_{\max }+u_{\min }-u, v\right) \\
\psi(0, u, v) & =\left(\frac{\pi}{2}, y_{\Sigma}-u_{\max }+u, z_{p r o d}+v\right) \\
\psi(t, u, v) & =\psi(t, 0, v)+\left(0, y_{\Sigma}-u_{\max }+u, 0\right) \\
\psi(-t, u, v) & =\left(\pi-\psi_{x}(t, u, v), 2 \psi_{y}(0, u, v)-\psi_{y}(t, u, v), \psi_{z}(t, u, v)\right)
\end{aligned}
$$

We rewrite our objects and conditions in coordinates (t, u, v). We subdivide [$u_{\text {min }}, u_{\max }$] into $u_{\text {min }}<u_{1}<u_{2}<u_{3}<u_{4}<u_{5}<u_{\max }$ (see Figure 26) such that

$$
\begin{equation*}
\psi\left(I_{t} \times\left[u_{5}, u_{\max }\right] \times I_{v}\right) \subset V_{\Gamma_{A}} \tag{9}
\end{equation*}
$$

$$
\begin{gathered}
{\left[\frac{\pi}{2}, \frac{\pi}{2}+\frac{\lambda}{2}\right] \subset \psi_{x}\left(I_{t} \times\left[u_{4}, u_{\max }\right] \times I_{v}\right)} \\
{\left[\frac{\pi}{2}+\frac{3 \lambda}{4}, \pi-\frac{3 \lambda}{4}\right] \subset \psi_{x}\left(I_{t} \times\left[u_{2}, u_{3}\right] \times I_{v}\right)} \\
{\left[\pi-\frac{\lambda}{2}, \pi\right] \subset \psi_{x}\left(I_{t} \times\left[u_{\min }, u_{1}\right] \times I_{v}\right)}
\end{gathered}
$$

Figure 26. The subdivision u_{i}

Lemma 7.17. Without loss of generality we may assume that (see Figure 29)
(1) $S_{\mathcal{B}}$ is a smooth surface contained in $\dot{I}_{t} \times I_{u} \times\left[0, v_{\max }\right]$ and
(a) its restriction to the plane $u=$ cst is a smooth curve composed of two graphs containing $(0,0)$, one positive and increasing and the other negative and decreasing on ($0, v_{\text {max }}$];
(b) $S_{\mathcal{B}}$ is u-invariant and invariant by the mirror symmetry along the plane $t=0$ for $u \in\left[u^{-}, u^{+}\right]$;
(2) there is no Reeb chord of $\partial \mathcal{V}$ outside \mathcal{V};
(3) $C_{\psi}=\|\psi(t, u, v)-\psi(0, u, 0)\|_{\infty}+\|d \psi(t, u, v)-d \psi(0, u, 0)\|_{\infty} \ll 1:$

Proof. $S_{\mathcal{B}}$ is a smooth surface containing $\{0\} \times\left[u_{\min }, u_{\max }\right] \times\{0\}$, tangent to Span $\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial t}\right)$ along this curve and transverse to $\frac{\partial}{\partial t}=R_{\alpha_{\text {prec }}}$ elsewhere. In addition, $\frac{\partial}{\partial t}$ is positively transverse to $S_{\mathcal{B}}$ for $t<0$ and negatively transverse for $t>0$ (see Figure 27).

To prove condition (2), we first note that there is no Reeb chord of $\Gamma_{\text {prec }}$ in
 $\Gamma_{\text {prec }}$ intersects the planes $x=\mathrm{cst}$ in one point. By symmetry, it remains to prove

Figure 27. The Reeb vector field and $S_{\mathcal{B}}$
the result for x close to $\frac{\pi}{2}$ and $z>0$. In this set, we have $R_{x}>0, R_{y}>0$. The projection of $\Gamma_{\text {prec }}$ on the plane (y, x) is decreasing and there is no Reeb chord of $\Gamma_{\text {prec }}$ in $\mathcal{B}^{<y_{\text {prec }}}$.

If there exists a sequence $\left(\gamma_{n}\right)_{n \in \mathbb{N}^{*}}$ of Reeb chords of $\partial \mathcal{V}_{n}$ where the radius of \mathcal{V}_{n} is smaller that $\frac{1}{n}$, then the endpoints of γ_{n} converge to $\Gamma_{\text {prec }}$. In addition, the period of these chords is bounded (Lemma 7.6) and bounded below by $t_{\text {max }}$ (associated to the maximal t-coordinate in \mathcal{V}_{1}). Thus γ_{n} converges to a Reeb chord of $\Gamma_{\text {prec }}$. This leads to a contradiction and condition 2 is proved.
Lemma 7.18. Without loss of generality we may assume that there exist real positive numbers ε_{B} and B such that for all $t_{\Sigma} \in I_{t}$, the maps φ_{-}and φ_{+}induced by the Reeb flow between $\Sigma=\left\{(t, u, v), t=t_{\Sigma}\right\}$ and S_{Z} and between Σ and S_{R} satisfy:
(1) $\mathcal{C}\left(H, \varepsilon_{B}\right) \cap \mathcal{C}(V, B)=\{0\} ;$
(2) $\left(\varphi_{-}\right)_{*}\left(\mathcal{C}_{p}\left(H, \varepsilon_{B}\right)\right) \subset \mathcal{C}_{\varphi_{-}(p)}(H, \nu)$ and $\left(\varphi_{-}^{-1}\right)_{*}\left(\mathcal{C}_{\varphi_{-}(p)}(V, A)\right) \subset \mathcal{C}_{p}(V, B)$ for all $p \in\left[u_{2}, u_{3}\right] \times I_{v}$;
(3) $\left(\varphi_{+}\right)_{*}\left(\mathcal{C}_{p}\left(H, \varepsilon_{B}\right)\right) \subset \mathcal{C}_{\varphi_{+}(p)}\left(\delta_{1}, \varepsilon_{R}\right)$ and $\left(\varphi_{+}^{-1}\right)_{*}\left(\mathcal{C}_{\varphi_{+}(p)}\left(\delta_{1}^{\perp}, A_{R}\right)\right) \subset \mathcal{C}_{p}(V, B)$ for all $p \in\left[u_{4}, u_{5}\right] \times I_{v}$;
(4) $\varphi_{+}\left(\left[u_{4}, u_{5}\right] \times I_{v}\right) \subset\left\{(x, z),\left|x-\delta_{1}(z)\right|<\varepsilon_{R}\right\}$;
(5) the return time between S_{Z} and Σ is bounded by τ and by 2τ between S_{R} and Σ.
Let L be a bound of $\left\|\mathrm{d} \varphi_{ \pm}\right\|$and $\left\|\mathrm{d} \varphi_{ \pm}{ }^{-1}\right\|$ where $\|\cdot\|$ is defined in the coordinates (x, y, z) in S_{R} and S_{Z} and in the coordinates (t, u, v) in Σ.
Proof. Let $\Gamma_{u}=\Gamma_{\text {prec }} \cap \psi\left(I_{t} \times\left[u_{2}, u_{3}\right] \times I_{v}\right)$. Then $\Gamma_{u} \subset \Gamma_{B}$ and all the Reeb chords between Γ_{B} and S_{Z} have an endpoint in Γ_{u}. There exists $\varepsilon_{B}>0$ such that if $d_{\mathcal{C}^{1}}\left(\gamma, \Gamma_{u}\right)<\varepsilon_{B}$ then $d_{\mathcal{C}^{1}}\left(p_{Z}(\gamma), p_{Z}\left(\Gamma_{u}\right)\right)<\frac{\varepsilon_{Z}}{2}$. Thus the fist half of condition (2) derive from conditions (2) and (6) in the definition of pre-convex bypasses for \mathcal{U} small enough. As $p_{Z}\left(\operatorname{dom}\left(p_{R \mid \Gamma_{B}}\right) \subset \operatorname{dom}\left(p_{R \mid S_{Z}}^{\prime}\right)\right.$, condition (4) and the first part of condition (3) derive from conditions (2) and (6) in the definition of pre-convex bypasses. As $\left(\varphi_{-}^{-1}\right)_{*}(\mathcal{C}(V, A)) \cap \mathcal{C}\left(H, \varepsilon_{B}\right)=\emptyset$ there exists B satisfying the second part of condition (2). The proof of the second part of condition (3) is similar.

We now perturb S^{\prime} to obtain a u-invariant surface.
Construction 7.19. We perturb S^{\prime} (see Figure 28) so that there exists $v_{0} \in$ ($0, v_{\text {max }}$) satisfying

- $S_{\mathcal{B} \mid u}=S_{\mathcal{B} \mid u_{\max }}$ on $\left[0, v_{0}\right]$;
- $S_{\mathcal{B}}$ contains $\{0\} \times\left[u_{\min }, u_{\max }\right] \times\{0\}$ and is tangent to $\operatorname{Span}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial t}\right)$ along this curve;
- the Reeb vector field is positively transverse to $S_{\mathcal{B}}$ for $t<0$, negatively transverse for $t>0$.

Figure 28. The perturbation of S^{\prime}

These condition are automatically satisfied for $u \in\left[u_{\min }, u_{1}\right]$ and $u \in\left[u_{5}, u_{\max }\right]$. Let \mathcal{B} denote the new bypass. For \mathcal{U} small enough, this perturbation is $\varepsilon_{\text {prec }}$-small. In what follows, let $I_{v}=\left[-v_{0}, v_{0}\right]$ and $v_{\max }=v_{0}$.
7.5. Convexification. The convexification process consists in adding a "bump" with prescribed contact structure in a neighbourhood of $\Gamma_{\text {prec }}$. We first describe the new boundary in Section 7.5.1. In Section 7.5.2, we present the contact structure in the convexification and in Section 7.5 .3 we modify this model to obtain the desired cone-preserving properties. Recall that we construct the convexification near the connected component Γ_{0} contained in $\left[\frac{\pi}{2}, \pi\right] \times\left[0, y_{\mathrm{std}}\right] \times\left[0, z_{\mathrm{std}}\right]$.
7.5.1. Perturbed boundary. We perturb the boundary for $y \leq \frac{3}{4} y_{\text {std }}$. For $\left[y^{-}, \frac{3}{4} y_{\text {std }}\right]$, the new boundary is the graph of a function. Let \mathcal{H} be the set of smooth functions

$$
h:\left[\frac{\pi}{2}-\frac{\lambda}{3}, \frac{\pi}{2}+\frac{\lambda}{3}\right] \times\left[y^{-}, \frac{3}{4} y_{\text {std }}\right] \rightarrow \mathbb{R}
$$

such that
(1) $\|h\|_{\mathcal{C}^{\infty}} \ll 1$ (in particular $\|h\|_{\mathcal{C}^{\infty}}<\varepsilon_{\text {prec }}$);
(2) $h=0$ near $x=\frac{\pi}{2} \pm \frac{\lambda}{3}$ and $y=\frac{3}{4} y_{\text {std }}$;
(3) $h(-x, y)=h(x, y)$;
(4) for $y \in\left[y^{-}, \frac{2}{3} y_{\text {std }}\right]$, the map h does not depend on y and there exists $x_{\text {flat }}^{h}$ such that h is increasing for $x<-x_{\text {flat }}^{h}$, constant on $\left[\frac{\pi}{2}-x_{\text {flat }}^{h}, \frac{\pi}{2}+x_{\text {flat }}^{h}\right]$ and decreasing for $x>x_{\text {flat }}^{h}$;
(5) $\tilde{S}_{h}=\left\{\left(x, y, z_{\text {prod }}+h(x)\right), x \in\left[\frac{\pi}{2}-\frac{\lambda}{3}, \frac{\pi}{2}+\frac{\lambda}{3}\right], y \in\left[y^{-}, y^{+}\right]\right\}$is contained in \mathcal{V}.
Let $S_{h}=\psi^{-1}\left(\tilde{S}_{h}\right)$. We denote by v_{h} the maximum of h and $z_{\text {prod }}+v_{h}$ by z_{h}. The minimum of S_{h} on the v-axis corresponds to $t=0$ and $v=v_{h}$ (see Figure 29). In addition $\mathcal{H} \neq \emptyset$. Let $v_{\mathcal{H}}=\sup \{\max (h), h \in \mathcal{H}\}$ then $v_{\mathcal{H}}>0$ and for all $0<v<v_{\mathcal{H}}$ there exists $h \in \mathcal{H}$ such that $v_{h}=v$. Given v_{h} there exists $h \in \mathcal{H}$ with $x_{\text {flat }}^{h}$ arbitrarily small.

Figure 29. The surfaces $S_{\mathcal{B}}$ and S_{h}

Lemma 7.20. The surface S_{h} is u-invariant and its restriction to the plan $u=c s t$ is a smooth curve composed of two symmetric graphs containing $\left(v_{h}, 0\right)$, one positive and increasing and the other negative and decreasing on ($\left.v_{h}, v_{\text {max }}\right]$;

Proof. For h small enough, the tangency points between the Reeb vector field and \tilde{S}_{h} are the segment $\left\{\frac{\pi}{2}\right\} \times\left[y^{-}, y^{+}\right] \times\left\{z_{h}\right\}$. In addition, $\frac{\partial}{\partial t}$ is positively transverse to S_{h} for $t<0$ and negatively transverse for $t>0$. The proof is similar to the proof of Lemma 7.17. The symmetry derives from Fact 7.16.

We extend the surface S_{h} by translation in the coordinates (t, u, v) and still denote by S_{h} the extension. The surface S_{h} also extends $\sigma\left(\tilde{S}_{h}\right)$ as S_{h} is parametrised by $(\pm l(v), u, v)$ and $\sigma\left(\psi(\pm l(v), u, v)=\psi\left(\mp l(v), u_{\max }+u_{\text {min }}-u, v\right)\right.$. The following lemma is a powerful tool to study the Reeb chords in $\mathcal{B} \leq y_{\text {std }}$ (conditions (B6), (B7) and (B8)). We will use its corollary (Corollary 7.37) in Section 7.6.
Lemma 7.21. There exist positive numbers $t_{\text {max }}^{\prime}, v_{\max }^{\prime}, u_{\lambda}, \Delta$ and v_{Δ} such that - $t_{\text {max }}^{\prime}<t_{\max }, v_{\Delta}<v_{\max }^{\prime}<v_{\max }$ and $v_{\Delta}<v_{\mathcal{H}}$;

- $\psi_{x}\left(I_{t}^{\prime} \times\left[u_{\text {min }}, u_{\lambda}\right] \times I_{v}^{\prime}\right) \subset\left[\frac{\pi}{2}+\frac{\lambda}{2}, \pi+\lambda\right]$ where $I_{t}^{\prime}=\left[-t_{\text {max }}^{\prime}, t_{\text {max }}^{\prime}\right]$ and $I_{v}^{\prime}=\left[-v_{\text {max }}^{\prime}, v_{\text {max }}^{\prime}\right]$;
- $\psi_{y}(p)<\psi_{y}\left(p^{\prime}\right)$ and $\psi_{x}\left(p^{\prime}\right)-\psi_{x}(p) \leq \frac{\lambda}{12}$ for all $p=(t, u, v)$ and $p^{\prime}=$ $\left(t^{\prime}, u^{\prime}, v^{\prime}\right)$ in $I_{t}^{\prime} \times\left[u_{\lambda}, u_{\max }\right] \times I_{v}^{\prime}$ such that $t^{\prime}-t>\Delta$ and $u^{\prime} \geq u$;
- the planes $t= \pm \Delta$ intersect $S_{\mathcal{B}}$ for $v \leq v_{\Delta}$.

Proof. Without loss of generality, there exists η such that $\frac{1}{\eta}<k_{\text {inf }}<\eta<2$ and $\eta^{2}-\sin \left(\frac{\pi}{2}+\lambda\right)<\frac{\eta}{32}$. We start with $t_{\max }^{\prime}=t_{\max }$ and $v_{\max }^{\prime}=v_{\max }$ and progressively reduce them. There exists u_{λ} such that for $t_{\max }^{\prime}$ and $v_{\max }^{\prime}$ small enough

$$
\begin{aligned}
& \psi_{x}\left(I_{t}^{\prime} \times\left[u_{\lambda}, u_{\max }\right] \times I_{v}^{\prime}\right) \subset\left[\frac{\pi}{2}-\lambda, \frac{\pi}{2}+\lambda\right] \\
& \psi_{x}\left(I_{t}^{\prime} \times\left[u_{\min }, u_{\lambda}\right] \times I_{v}^{\prime}\right) \subset\left[\frac{\pi}{2}+\frac{\lambda}{2}, \pi+\lambda\right]
\end{aligned}
$$

Let $M=\left\|\frac{\partial \psi_{y}}{\partial v}\right\|_{\infty}+\left\|\frac{\partial \psi_{x}}{\partial v}\right\|_{\infty}+\left\|\frac{\partial k_{\text {inf }}}{\partial z}\right\|_{\infty}$. Choose Δ such that, upon reducing $t_{\max }^{\prime}$ and $v_{\text {max }}^{\prime}$

- $t_{\text {max }}^{\prime}=4 \Delta<\frac{\lambda}{96 M}$;
- $v_{\max }^{\prime}<\min \left(\frac{\Delta}{8 M}, \frac{\lambda}{48 M}, v_{\mathcal{H}}\right)$;
- the planes $t= \pm \Delta$ intersect $S_{\mathcal{B}}$ for $v \leq v_{\text {max }}^{\prime}$.

For all $(t, u, v) \in\left[0, t_{\text {max }}^{\prime}\right] \times\left[u_{\lambda}, u_{\text {max }}\right] \times I_{v}^{\prime}$ we have ${ }^{4}$

$$
\begin{aligned}
& \psi_{y}(0, u, v)+\frac{t}{\eta} \sin \left(\frac{\pi}{2}+\lambda\right) \leq \psi_{y}(t, u, v) \leq \psi_{y}(0, u, v)+\eta t \\
& \psi_{y}(0, u, 0)-v_{\max }^{\prime}\left\|\frac{\partial \psi_{y}}{\partial v}\right\|_{\infty} \leq \psi_{y}(0, u, v) \leq \psi_{y}(0, u, 0)+v_{\max }^{\prime}\left\|\frac{\partial \psi_{y}}{\partial v}\right\|_{\infty}
\end{aligned}
$$

Thus $\psi_{y}\left(p^{\prime}\right)-\psi_{y}(p) \geq \frac{\Delta}{4}>0$. Similarly, it holds that

$$
\begin{aligned}
& \psi_{x}(0, u, 0)-v_{\max }^{\prime}\left\|\frac{\partial \psi_{x}}{\partial v}\right\|_{\infty}-2 t_{\max }^{\prime}\left\|\frac{\partial k_{\mathrm{inf}}}{\partial z}\right\|_{\infty} \leq \psi_{x}(t, u, v) \\
& \psi_{x}(t, u, v) \leq \psi_{x}(0, u, 0)+v_{\max }^{\prime}\left\|\frac{\partial \psi_{x}}{\partial v}\right\|_{\infty}+2 t_{\max }^{\prime}\left\|\frac{\partial k_{\mathrm{inf}}}{\partial z}\right\|_{\infty}
\end{aligned}
$$

and $\psi_{x}\left(p^{\prime}\right)-\psi_{x}(p) \leq 2 v_{\max }^{\prime}\left\|\frac{\partial \psi_{x}}{\partial v}\right\|_{\infty}+4 t_{\max }^{\prime}\left\|\frac{\partial k_{\text {inf }}}{\partial z}\right\|_{\infty}$.

[^3]Construction 7.22. We apply Lemma 7.21 and choose a map $h \in \mathcal{H}$ such that $v_{\Delta}<\max (h)<v_{\max }$ and such that the planes $v=v_{\max }^{\prime}$ intersect S_{h} outside the flat part of \tilde{S}_{h}.
Fact 7.23. There exists $\varepsilon_{\text {pert }}^{h}$ such that for any $\varepsilon_{\text {pert }}^{h}$-perturbation of $\alpha_{\text {prec }}$ in \mathcal{C}^{1} norm, the Reeb vector field is transverse to \tilde{S}_{h} for all x satisfying $x_{\text {flat }}^{h} \leq\left|x-\frac{\pi}{2}\right| \leq \frac{\lambda}{3}$.
7.5.2. Convexification model. We now construct a convexification model for $y \in$ $\left[y_{-}, \frac{2}{5} y_{\text {std }}\right]$ and interpolate with the adapted model for $y \in\left[\frac{2}{5} y_{\text {std }}, \frac{2}{3} y_{\text {std }}\right]$. The new boundary is smoothed for $y \in\left[\frac{2}{3} y_{\text {std }}, \frac{3}{4} y_{\text {std }}\right]$. Let $z>0$ and

$$
\begin{cases}\Phi_{z_{0}}(z)=\exp \left(-\frac{1}{z-z_{0}}\right), & \text { if } z>z_{0} \\ \Phi_{z_{0}}(z)=0, & \text { otherwise }\end{cases}
$$

For $y \in\left[y_{\rho}^{-}, y_{\rho}^{+}\right]$and near Γ_{0},

$$
\alpha_{\text {prec }}=k_{\text {inf }}(z) \sin (x) \mathrm{d} y+\cos (x) \mathrm{d} z
$$

and $k_{\text {inf }}(z)=1-\rho z$. Let $k_{\text {conv }}(z)=k_{\text {inf }}(z)+a \Phi_{z_{0}}(z)$ and

$$
\begin{equation*}
\alpha_{\text {conv }}=k_{\text {conv }}(z) \sin (x) \mathrm{d} y+\cos (x) \mathrm{d} z \tag{13}
\end{equation*}
$$

where $a>0$.
Fact 7.24. The contact form $\alpha_{\text {conv }}$ is adapted to \tilde{S}_{h} for $y \in\left[y_{-}, \frac{2}{3} y_{\text {std }}\right]$.
In the coordinates (t, u, v), the associated contact form is not a convexification model in the sense of [6]. We use a weakened version of convexification. Let J_{u} be such that $\left[u_{1}, u_{5}\right] \subset J_{u} \subset I_{u}$. Two functions f and g from $I_{t} \times J_{u} \times I_{v}$ to \mathbb{R}_{+}^{*} form a convexification pair if
(1) $f=1$ and $g(t, u, v)=1-\rho z_{\text {prod }}-\rho v$ near S^{\prime} and for $v \geq v_{\text {max }}^{\prime}$;
(2) f and g do not depend on u for $u \in\left[u_{1}, u_{5}\right]$;
(3) $\frac{\partial f}{\partial v} \geq 0$ and $\frac{\partial f}{\partial v}>0$ near $\left(0, v_{h}\right)$;
(4) in a neighbourhood of $\left[u_{1}, u_{5}\right]$, in the planes $u=\mathrm{cst}$, the vector field $X_{g}=$ $\left(-\frac{\partial g}{\partial v}, \frac{\partial g}{\partial t}\right)$ is negatively transverse to S_{h} for $t>0$, positively transverse for $t<0$ and points toward the half-space $t<0$ for $t=0$ (see Figure 30).

Figure 30. The surface S_{h} and the Reeb vector field

Proposition 7.25. For ρ and C_{ψ} small enough, there exists $\varepsilon_{z_{0}}>0$ such that for any small ρ_{0} and any $z_{h}-\varepsilon_{z_{0}}<z_{0}<z_{h}$, there exists a contact form α and a pair of convexification (f, g) with $J_{u}=\left[u_{\max }+u_{\min }-u_{+}, u_{+}\right]$satisfying
(1) $R_{u} \geq 0, R$ is positively transverse to S_{h} for $t<0$, negatively transverse for $t>0$ and points toward the half-space $t<0$ for $t=0$;
(2) $\sigma^{*} \alpha=-\alpha$;
(3) $\alpha=\alpha_{\text {prec }}$ for $v \geq v_{\text {max }}^{\prime}$ and $v \leq v_{\Delta}$;
(4) $\alpha=f(t, u, v) \mathrm{d} t+g(t, u, v) \mathrm{d} u$ on $I_{t} \times J_{u} \times I_{v}$;
(5) $\psi^{-1^{*}} \alpha=\alpha_{\text {conv }}$ and $k_{\text {conv }}^{\prime}\left(z_{h}\right)=\rho_{0}$ in a neighbourhood of $\left\{\frac{\pi}{2}\right\} \times\left[y^{+}, \frac{2}{5} y_{\text {std }}\right] \times$ $\left\{z_{\text {prod }}\right\}$.

By definition $\left\|k_{\text {conv }}\right\|_{\mathcal{C}^{1}} \leq \rho_{0}$. The end of Section 7.5.2 is devoted to the proof of Proposition 7.25. Before extending $\alpha_{\text {conv }}$ for all u, we study some properties of $\alpha_{\text {conv }}$ in the (t, u, v)-coordinates.

Fact 7.26. For all $(t, u, v) \in I_{t} \times\left[u^{-}, u^{+}\right] \times I_{v}$, we have

$$
\begin{aligned}
\mathrm{d} \psi(t, u, v) & =\left(\begin{array}{lll}
R_{x}(\psi(t, u, v)) & 0 & \frac{\partial \psi_{x}}{\partial v}(t, u, v) \\
R_{y}(\psi(t, u, v)) & 1 & \frac{\partial \psi \psi_{y}}{\partial v}(t, u, v) \\
R_{z}(\psi(t, u, v)) & 0 & \frac{\partial \psi \psi_{z}}{\partial v}(t, u, v)
\end{array}\right), \\
\mathrm{d} \psi(0, u, v) & =\left(\begin{array}{lll}
R_{x}\left(\frac{\pi}{2}, u, v\right) & 0 & 0 \\
R_{y}\left(\frac{\pi}{2}, u, v\right) & 1 & 0 \\
R_{z}\left(\frac{\pi}{2}, u, v\right) & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Fact 7.27. For all $(t, u, v) \in I_{t} \times\left[u^{-}, u^{+}\right] \times I_{v}$, we have

$$
\psi^{*} \alpha_{\text {prec }}(t, u, v)=\mathrm{d} t+k_{0} \mathrm{~d} u \text { and }\left\{\begin{array}{l}
k_{\text {inf }}\left(\psi_{z}\right) \sin \left(\psi_{x}\right)=k_{0} \\
k_{\text {inf }}\left(\psi_{z}\right) \sin \left(\psi_{x}\right) \frac{\partial \psi_{y}}{\partial v}+\cos \left(\psi_{x}\right) \frac{\partial \psi_{z}}{\partial v}=0
\end{array}\right.
$$

where $k_{0}(v)=k_{\text {inf }}\left(v+z_{\text {prod }}\right)$.
Fact 7.28. For all $(t, u, v) \in I_{t} \times\left[u^{-}, u^{+}\right] \times I_{v}$, we have

$$
\begin{array}{r}
\psi^{*} \alpha_{c o n v}=\left(\frac{k_{c o n v}\left(\psi_{z}\right)}{k_{i n f}\left(\psi_{z}\right)} \sin ^{2}\left(\psi_{x}\right)+\cos ^{2}\left(\psi_{x}\right)\right) \mathrm{d} t+k_{c o n v}\left(\psi_{z}\right) \sin \left(\psi_{x}\right) \mathrm{d} u+ \\
\\
\left(k_{\text {conv }}\left(\psi_{z}\right) \sin \left(\psi_{x}\right) \frac{\partial \psi_{y}}{\partial v}+\cos \left(\psi_{x}\right) \frac{\partial \psi_{z}}{\partial v}\right) \mathrm{d} \tau \\
\psi^{*} \alpha_{c o n v}=\left(\left(\frac{k_{c o n v}\left(\psi_{z}\right)}{k_{i n f}\left(\psi_{z}\right)}-1\right) \sin ^{2}\left(\psi_{x}\right)+1\right) \mathrm{d} t+\frac{k_{c o n v}\left(\psi_{z}\right)}{k_{i n f}\left(\psi_{z}\right)} k_{0} \mathrm{~d} u+ \\
\left(\left(k_{c o n v}\left(\psi_{z}\right)-k_{i n f}\left(\psi_{z}\right)\right) \sin \left(\psi_{x}\right) \frac{\partial \psi_{y}}{\partial v}\right) \mathrm{d} \tau
\end{array}
$$

In coordinates $(t, u, v), \alpha_{\text {conv }}=f_{1}(t, v) \mathrm{d} t+g_{1}(t, v) \mathrm{d} u+h_{1}(t, v) \mathrm{d} v$ where $f_{1} g_{1}$ and h_{1} do not depend on u. Note that $f_{1}(-t, v)=f_{1}(t, v), g_{1}(-t, v)=g_{1}(t, v)$ and $h_{1}(-t, v)=-h_{1}(t, v)$ (Fact 7.16). Fix $u^{-}<u_{0}^{\prime}<u_{1}^{\prime}<u^{+}$and $p:\left[u_{0}^{\prime}, u_{1}^{\prime}\right] \rightarrow \mathbb{R}$ such that $p=0$ near u_{0}^{\prime} and $p=1$ near u_{1}^{\prime}. Let

$$
\alpha=f_{1}(t, v) \mathrm{d} t+g_{1}(t, v) \mathrm{d} u+p(u) h_{1}(t, v) \mathrm{d} v
$$

Lemma 7.29. For ρ and C_{ψ} small and for z_{0} close to z_{h}, α is a contact form, $\frac{\partial f_{1}}{\partial v} \geq 0$ and $\frac{\partial f_{1}}{\partial v}>0$ near $\left(0, v_{h}\right)$;
Proof. The differential of α is

$$
\mathrm{d} \alpha=\frac{\partial f_{1}}{\partial v} \mathrm{~d} v \wedge \mathrm{~d} t+\frac{\partial g_{1}}{\partial v} \mathrm{~d} v \wedge \mathrm{~d} u+\frac{\partial g_{1}}{\partial t} \mathrm{~d} t \wedge \mathrm{~d} u+p^{\prime} h_{1} \mathrm{~d} u \wedge \mathrm{~d} v+p \frac{\partial h_{1}}{\partial t} \mathrm{~d} t \wedge \mathrm{~d} v
$$

The contact condition is

$$
\frac{\partial f_{1}}{\partial v} g_{1}-\frac{\partial g_{1}}{\partial v} f_{1}+p h_{1} \frac{\partial g_{1}}{\partial t} \mathrm{~d} t+p^{\prime} h_{1} f_{1}-p \frac{\partial h_{1}}{\partial t} g_{1}>0
$$

Without loss of generality we may assume that the ranges of f_{1}, g_{1} and h_{1} are in $\left[\frac{1}{2}, 2\right]$. In what follows, the bounds associated to the notation O are uniform for all
convexification models. By definition, it holds that

$$
\begin{aligned}
k_{\mathrm{conv}}(z)-k_{\mathrm{inf}}(z) & =A \Phi_{z_{0}}(z)=\left(z-z_{0}\right)^{2} A \Phi_{z_{0}}^{\prime}(z) \\
\frac{k_{\mathrm{conv}}}{k_{\mathrm{inf}}}(z)-1 & =\left(z-z_{0}\right)^{2} A \Phi_{z_{0}}^{\prime}(z) O(1) \\
\left(\frac{k_{\mathrm{conv}}}{k_{\mathrm{inf}}}\right)^{\prime}(z) & =A \Phi_{z_{0}}^{\prime}(z)\left(\frac{1}{k_{\mathrm{inf}}(z)}+\frac{\rho\left(z-z_{0}\right)^{2}}{\left(k_{\mathrm{inf}}(z)\right)^{2}}\right)
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
f_{1}(t, v) & =1+A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(\psi_{z}-z_{0}\right)^{2} O(1) \\
\frac{\partial f_{1}}{\partial v} & =A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(1+O(\rho)+O\left(C_{\psi}\right)+\left(\psi_{z}-z_{0}\right)^{2} O(1)\right)
\end{aligned}
$$

Therefore for $\rho, C_{\psi}, z_{h}-z_{0}$ small enough, we have $\frac{\partial f_{1}}{\partial v} \geq 0$ and $\frac{\partial f_{1}}{\partial v}\left(0, v_{h}\right)>0$. Similarly, we obtain

$$
\begin{aligned}
g_{1}(t, v) & =1+O(\rho)+\left(z-z_{0}\right)^{2} O(1)+O\left(C_{\psi}\right) \\
\frac{\partial g_{1}}{\partial v} & =-\rho+A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(1+\left(\psi_{z}-z_{0}\right)^{2} O(1)+O(\rho)+O\left(C_{\psi}\right)\right) \\
\frac{\partial g_{1}}{\partial t}(t, v) & =A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right) O\left(C_{\psi}\right) \\
h_{1}(t, v) & =A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(\psi_{z}-z_{0}\right)^{2} O(1) \\
\frac{\partial h_{1}}{\partial t}(t, v) & =A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(\left(\psi_{z}-z_{0}\right)^{2} O(1)+O\left(C_{\psi}\right)\right)
\end{aligned}
$$

and the contact condition is

$$
\begin{equation*}
\rho+A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(O(\rho)+\left(\psi_{z}-z_{0}\right)^{2} O(1)+O\left(C_{\psi}\right)\right)>0 \tag{14}
\end{equation*}
$$

Yet $A \Phi_{z_{0}}^{\prime}(z)<2 \rho$ as $k_{\text {conv }}^{\prime}\left(z_{h}\right)=\rho_{0}<\rho$. Thus the contact condition is satisfied for ρ, C_{ψ} and $z_{h}-z_{0}$ small enough.

Lemma 7.30. For $\rho, \rho_{0}, C_{\psi}, z_{h}-z_{0}$ small, $R_{u} \geq 0$ and R is positively transverse to S_{h} for $t<0$, negatively for $t>0$ and points toward the half-plane $t<0$ for $t=0$.
Proof. The component R_{u} is positively collinear to

$$
\frac{\partial f_{1}}{\partial v}-p \frac{\partial h_{1}}{\partial t}=A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)\left(1+O(\rho)+O\left(C_{\psi}\right)+\left(\psi_{z}-z_{0}\right)^{2} O(1)\right)
$$

Thus $R_{u} \geq 0$. By u-invariance, we study the transversality properties in the planes $u=\mathrm{cst}$. The Reeb vector field is positively collinear to

$$
Y=\binom{-\frac{\partial g_{1}}{\partial v}+p^{\prime}(u) h_{1}}{\frac{\partial g_{1}}{\partial t}}
$$

in the coordinates (t, v). The tangency condition for $t=0$ is automatically satisfied as $h_{1}(0, v)=0$. On the non flat part of h, the transversality conditions are satisfied for $\rho_{0}<\varepsilon_{h}^{\text {pert }}$ as $\left\|k_{\text {conv }}-k_{\text {inf }}\right\|_{\mathcal{C}^{1}} \leq \rho_{0}$ (Fact 7.23). We now prove the result in the flat part of h. The transversality condition is

$$
\begin{equation*}
-\frac{\partial g_{1}}{\partial v}+p^{\prime}(u) h_{1}-l_{ \pm}^{\prime} \frac{\partial g_{1}}{\partial t}>0 \tag{15}
\end{equation*}
$$

for $t \neq 0$ where l_{+}and l_{-}parametrise S_{h}. Let $\rho_{0}=s_{0} \rho$. Then $A \Phi_{z_{0}}^{\prime}\left(\psi_{z}\right)=\left(1+s_{0}\right) \rho$. For $p=1, Y$ satisfies the desired transversality conditions (Fact 7.24). For $p^{\prime}=0$ the transversality condition is

$$
\begin{equation*}
-s_{0} \rho+\rho\left(1+s_{0}\right) a(t, u, v)>0 \tag{16}
\end{equation*}
$$

where a does not depend on s_{0}. There exists $s_{\max }$ such that (16) is satisfied for $s_{0} \in\left(0, s_{\max }\right]$. Thus $a>\frac{s_{\max }}{1+s_{\max }}$. For z_{0} close to z_{h},

$$
\left|p^{\prime}(u)\left(\psi_{z}-z_{0}\right)^{2} \sin \left(\psi_{x}\right) \frac{\partial \psi_{y}}{\partial v}\right|<\frac{s_{\max }}{2\left(1+s_{\max }\right)}
$$

The general transversality condition is

$$
\begin{equation*}
a(t, u, v)+p^{\prime}(u)\left(\psi_{z}-z_{0}\right)^{2} \sin \left(\psi_{x}\right) \frac{\partial \psi_{y}}{\partial v}+s(a(t, u, v)-1)>0 \tag{17}
\end{equation*}
$$

For $s \leq \frac{s_{\max }}{2}$, we obtain $a(t, u, v)+s(a(t, u, v)-1)>\frac{s_{\max }}{2\left(1+s_{\max }\right)}$ and (17) is satisfied.

Proof of Proposition 7.25. We choose $\rho, \rho_{0}, C_{\psi}, z_{h}-z_{0}$ small enough to apply Lemma 7.29 and Lemma 7.30. We extend α to \mathcal{U} by $\alpha=f_{1} \mathrm{~d} t+g_{1} \mathrm{~d} u$ for $u \in J_{u}$ and $-\sigma^{*} \alpha$ for $u \in\left[u_{\min }, u_{\min }+u_{\max }-u^{+}\right]$. It remains to prove that $\alpha=\alpha_{\text {prec }}$ for $v \geq v_{\max }^{\prime}$ and $v \leq v_{\Delta}$. The set where

$$
\left(f_{1}(t, v), g_{1}(t, v)\right) \neq\left(1,1-\rho z_{\text {prod }}-\rho v\right)
$$

is contained between the surface $S_{z_{0}}$ associated to the equation $z=z_{0}$ and S_{h}. The surface $S_{z_{0}}$ has properties similar to S_{h}. In particular, its v-coordinates are greater than $z_{0}-z_{\text {prod }}$. As $z_{h}-z_{\text {prod }}>v_{\Delta}$ (Construction 7.22) $z_{0}-z_{\text {prod }}>v_{\Delta}$ for $z_{h}-z_{0}$ small enough. Additionally, $S_{z_{0}}$ intersects S_{h} in its non-flat part. Yet for $z_{h}-z_{0}$ small enough the intersection points are arbitrarily close to the endpoints of the flat part and the v-coordinates of the intersection points are smaller than $v_{\max }^{\prime}$ (Construction 7.22).
7.5.3. Perturbed convexification. The contact form α described in Proposition 7.25 is adapted to the boundary but does not give us the desired control on the Reeb flow. Let $\Sigma_{ \pm}=\left\{\left(\pm t_{\max }, u, v\right), u \in I_{u}, v \in I_{v}\right\}$ and Φ be the map induced by the Reeb flow of $\alpha_{\text {conv }}$ between Σ_{-}and Σ_{+}.
Proposition 7.31. Let (f, g) be a convexification pair given in Proposition 7.25. Upon perturbing α near $I_{t} \times\left[u_{1}, u_{5}\right] \times I_{v}$ and we may also assume that
(1) $\Phi_{*}\left(\mathcal{C}_{p}(V, B)\right) \subset \mathcal{C}_{\Phi(p)}\left(H, \varepsilon_{B}\right)$ and $\Phi_{*}^{-1}\left(\mathcal{C}_{\Phi(p)}(V, B)\right) \subset \mathcal{C}_{p}\left(H, \varepsilon_{B}\right)$ for all $p \in\left[u_{2}, u_{3}\right] \times I_{v} \cap \Phi^{-1}\left(\left[u_{4}, u_{5}\right] \times I_{v}\right) ;$
(2) $\|\mathrm{d} \Phi(p, v)\|>\frac{L^{2}}{\sqrt{\eta}}\|v\|$ and $\left\|\mathrm{d} \Phi^{-1}(\Phi(p), w)\right\|>\frac{L^{2}}{\sqrt{\eta}}\|w\|$ for all $p \in\left[u_{2}, u_{3}\right] \times$ $I_{v} \cap \Phi^{-1}\left(\left[u_{4}, u_{5}\right] \times I_{v}\right)$ and $v \in \mathcal{C}_{p}(V, B)$;
(3) the return time in $\left[u_{2}, u_{3}\right] \times I_{v}$ is bounded by τ.

Construction 7.32. Apply Proposition 7.25 with $\rho_{0} \leq \varepsilon_{\text {pert }}^{h}$ and Proposition 7.31.
The end of Section 7.5.3 is devoted to the proof of Proposition 7.31. The contact form from Proposition 7.25 is $\alpha=f(t, u, v) \mathrm{d} t+g(t, u, v) \mathrm{d} u$. Thus

$$
R_{\alpha}=\frac{1}{\frac{\partial f}{\partial v} g-\frac{\partial g}{\partial v} f}\left(\begin{array}{c}
-\frac{\partial g}{\partial v} \tag{18}\\
\frac{\partial f}{\partial v} \\
\frac{\partial g}{\partial t}
\end{array}\right)
$$

We progressively modify f and g so that the difference between the u-coordinates of two Reeb orbits which contribute to Φ widens when the Reeb orbits cross the convexification area.
Remark 7.33. If $\left(f_{1}, g_{1}\right)$ and $\left(f_{1}, g_{2}\right)$ are two convexification pairs satisfying conditions (1), (3) and (4) of Proposition 7.25 on $I_{t} \times J_{u} \times I_{v}$ then there exists a convexification pair $\left(f_{1}, g\right)$ satisfying the same conditions such that $g=g_{1}$ outside a neighbourhood of $I_{t} \times\left[u_{1}, u_{5}\right] \times I_{v}$ and $g=g_{2}$ in a neighbourhood of $I_{t} \times\left[u_{1}, u_{5}\right] \times I_{v}$. There exists a analogous statement to interpolate between f-coordinates in a convexification pair if $f_{1}=f_{2}$ near S_{h}.

If (f, g) is a convexification pair given in Proposition 7.25, without loss of generality, we have $1 \leq f \leq \frac{3}{2}$. Let Γ_{v} denote the g-level intersecting $(0, v)$ in a plane $u=\mathrm{cst}$ for $u \in\left[u_{1}, u_{5}\right]$ and $\Gamma_{\left[v, v^{\prime}\right]}$ be the set between Γ_{v} and $\Gamma_{v^{\prime}}$ if $v<v^{\prime}$. Let $m_{f}>1024 \frac{u_{5}-u_{1}}{u_{4}-u_{3}}$ and $M_{g}=\frac{m_{f} t_{1}}{8\left(u_{5}-u_{1}\right)}$ for $t_{1}>0$. Without loss of generality $\rho<\frac{1}{4}$.

Figure 31. The g-levels

Figure 32. Conditions on f and g

Lemma 7.34. Let $C>0$. We may assume that there exist $t_{1}>0, v_{c}, v_{0}$ and v_{1} such that $v_{\Delta}<v_{1}<v_{0}<v_{c}<v_{h}$ and for all $u \in\left[u_{1}, u_{5}\right]$ (see Figure 32)

- $\frac{1}{2} \leq g \leq 1$ and $\left|\frac{\partial g}{\partial v}\right| \leq \rho ;$
- $g(-t, v)=g(t, v)$ and $f(-t, v)=f(t, v)$;
- $\left(0, v_{c}\right)$ is a saddle for g and the g-level intersecting $\{0\} \times\left[v_{c}, v_{h}\right]$ do not intersect Σ_{+}or Σ_{-}(see Figure 31);
- $g(t, u, v)=1-\rho z_{\text {prod }}-\rho v$ for all (t, u, v) such that $|t| \geq t_{1}$ or (t, v) on $\Gamma_{\left[0, v_{\Delta}\right]} ;$
- $f(t, u, v)=1$ for all (t, u, v) such that $|t| \geq 2 t_{1}$ or (t, v) on $\Gamma_{\left[0, v_{\Delta}\right]}$;
- $\frac{\partial^{2} g}{\partial v^{2}} \geq 0$ and $\frac{\partial g}{\partial v}<0$ on $\Gamma_{\left[0, v_{c}\right]}$;
- $\left|\frac{\partial g}{\partial v}(t, v)\right|>\frac{M_{g}}{2}$ and $\frac{\partial^{2} f}{\partial v^{2}}(t, u, v) \geq 0$ on $\Gamma_{\left[0, v_{0}\right]}$;
- $\frac{\partial f}{\partial v}(t, u, v)<8 \rho$ on $\Gamma_{\left[0, v_{1}\right]}$;
- $\frac{\partial f}{\partial v}(t, u, v)>m_{f}$ for all (t, u, v) such that $|t| \leq t_{1}$ and $(t, v) \in \Gamma_{\left[v_{0}, v_{c}\right]}$;
- $\left|\frac{\partial g}{\partial v}(t, v)\right|<M_{g}$ for all (t, u, v) such that $|t| \leq \frac{t_{1}}{2}$ and $(t, v) \in \Gamma_{\left[v_{0}, v_{c}\right]}$;
- $\frac{\partial^{2} f}{\partial v^{2}}(t, u, v)>C$ and $\frac{\partial f}{\partial v}(t, u, v)>4 \rho$ for all (t, u, v) such that $|t| \leq t_{1}$ and $(t, v) \in \Gamma_{\left[v_{1}, v_{0}\right]} ;$

Proof. We extensively use Remark 7.33 to modify f and g. We first modify f and choose v_{c} so that $\frac{\partial f}{\partial v}>2 m_{f}$ in a neighbourhood of $\{0\} \times\left[u_{1}, u_{5}\right] \times\left\{v_{c}\right\}$. To achieve this condition, we modify f near $\left(0, v_{h}\right)$ in a neighbourhood that does not intersect S_{h} and such that $\frac{\partial f}{\partial v}>0$. The only non-trivial condition on the perturbed f is the contact condition $\frac{\partial f}{\partial v} g-\frac{\partial g}{\partial v} f>0$. There exists $\varepsilon>0$ such that for any f_{1} with $\left|f-f_{1}\right|<\varepsilon$ and $\frac{\partial f_{1}}{\partial v}>\frac{\partial f}{\partial v}-\varepsilon$, then $\frac{\partial f_{1}}{\partial v} g-\frac{\partial g}{\partial v} f_{1}>0$. We choose f_{1} such that $\frac{\partial f_{1}}{\partial v}>2 m_{f}$ near $\left(0, v_{c}\right),\left|f-f_{1}\right|<\varepsilon$ and $\frac{\partial f_{1}}{\partial v}>\frac{\partial f}{\partial v}-\varepsilon$.

We now choose t_{1} and v_{0} such that $\rho>\frac{M_{g}}{2}$ and $\left|\frac{\partial f}{\partial v}(t, v)\right|>2 m_{f}$ for all (t, u, v) such that $|t| \leq t_{1}$ and $(t, v) \in \Gamma_{\left[v_{0}, v_{c}\right]}$. We modify g (and change v_{0} if necessary) so that g satisfies the desired conditions. To obtain the contact condition we choose g so that $\frac{\partial g}{\partial v}>0$ implies $\frac{\partial f}{\partial v}>0$ and $\max \left(\frac{\partial g}{\partial v}\right) \ll 1$. Finally we modify f.
Lemma 7.35. The projection in the (t, v)-plane of any Reeb orbit which contributes to Φ is contained in $\Gamma_{\left[v_{1}, v_{0}\right]}$.

Proof. The projection in the (t, v)-plane of a Reeb orbit is contained in a g-level. Thus no Reeb orbit contributes to Φ and intersects $\{0\} \times\left[u_{1}, u_{5}\right] \times\left[v_{c}, v_{h}\right]$.

If a Reeb orbit intersects $\{0\} \times\left[u_{1}, u_{5}\right] \times\left[v_{0}, v_{c}\right]$ then this orbit crosses the strip $|t| \leq t_{1}$ and is contained in $\Gamma_{\left[v_{0}, v_{c}\right]}$. In this strip

$$
\frac{m_{f}}{2} \leq \frac{\partial f}{\partial v} g \leq \frac{\partial f}{\partial v} g-\frac{\partial g}{\partial v} f \leq \frac{5}{2}\left|\frac{\partial f}{\partial v}\right|
$$

$\left|R_{t}\right| \leq \frac{2 M_{g}}{m_{f}}$ and $\left|R_{u}\right| \geq \frac{2}{5}$. Therefore, the time spent in the strip is bounded below by

$$
\frac{2 t_{1}}{\max \left(R_{t}\right)} \geq \frac{t_{1} m_{f}}{M_{g}}=8\left(u_{5}-u_{1}\right)
$$

and the u-interval swept out by the orbit is bounded below by $\min \left|R_{u}\right| \times 8\left(u_{5}-u_{1}\right)>$ $u_{5}-u_{1}$. The orbit does not contribute to Φ.

We now consider a Reeb orbit which intersects $\{0\} \times\left[u_{1}, u_{5}\right] \times\left[-v_{\max }, v_{1}\right]$ and crosses the strip $|t| \leq 2 t_{1}$. In this strip $\frac{1}{2}\left|\frac{\partial f}{\partial v}\right| \leq \frac{\partial f}{\partial v} g-\frac{\partial g}{\partial v} f \leq 10 \rho \leq 4,\left|R_{t}\right| \geq \frac{M_{g}}{8}$ and $\left|R_{u}\right| \leq 2$. The return time between $-2 t_{1}$ and $2 t_{1}$ is bounded by $\frac{4 t_{1}}{\min \left(R_{t}\right)} \leq \frac{32 t_{1}}{M_{g}}$ and the u-interval swept out by the orbit is bounded by $\frac{64 t_{1}}{M_{g}}<u_{4}-u_{3}$. The orbit does not contribute to Φ as $R_{u}=0$ for $|t| \geq 2 t_{1}$.

Proof of Proposition 7.31. We prove that Proposition 7.31 is satisfied for C big enough. We first study the difference between the u-coordinates of two Reeb orbits which contribute to Φ. Let $\left(-t_{\max }, u, v\right)$ and $\left(-t_{\max }, \tilde{u}, \tilde{v}\right)$ be the endpoints of two Reeb chord which contribute to Φ. Without loss of generality $\tilde{v}>v$. Their projections on the (t, v)-plane are contained in $\Gamma_{\left[v_{1}, v_{0}\right]}$ (Lemma 7.35). Let

$$
Y=\left(1,-\frac{\frac{\partial f}{\partial v}}{\frac{\partial g}{\partial v}},-\frac{\frac{\partial g}{\partial t}}{\frac{\partial g}{\partial v}}\right)
$$

be a renormalisation of the Reeb vector field and $t \mapsto\left(-t_{\max }+t, u(t), v(t)\right)$ and $t \mapsto\left(-t_{\max }+t, \tilde{u}(t), \tilde{v}(t)\right)$ be the Y-orbits with endpoints $\left(-t_{\max }, u, v\right)$ and $\left(-t_{\max }, \tilde{u}, \tilde{v}\right)$. Then

$$
\frac{\partial Y_{u}}{\partial v}=-\frac{\frac{\partial^{2} f}{\partial v^{2}} \frac{\partial g}{\partial v}-\frac{\partial^{2} g}{\partial v^{2}} \frac{\partial f}{\partial v}}{\left(\frac{\partial g}{\partial v}\right)^{2}} \geq-\frac{\frac{\partial^{2} f}{\partial v^{2}}}{\frac{\partial g}{\partial v}} \geq 0
$$

and $\tilde{u}-u$ is non-decreasing. In addition, $\frac{\partial Y_{u}}{\partial v} \geq \frac{C}{\rho}$ for $|t| \leq \frac{t_{1}}{2}$. Thus, we have

$$
\tilde{u}\left(t_{\max }\right)-u\left(t_{\max }\right) \geq \tilde{u}-u+\frac{C}{\rho} \min _{|t| \leq \frac{t_{1}}{2}}(\tilde{v}(t)-v(t)) .
$$

Our orbits are contained in g-levels, therefore it holds that

$$
(\tilde{v}(t)-v(t)) \min \left(\left|\frac{\partial g}{\partial v}\right|\right) \leq g\left(-t_{\max }, v\right)-g\left(-t_{\max }, \tilde{v}\right) \leq(\tilde{v}(t)-v(t)) \max \left(\left|\frac{\partial g}{\partial v}\right|\right)
$$

and $\tilde{v}(t)-v(t) \geq \frac{M_{g}(\tilde{v}-v)}{2 \rho}$ as $\frac{M_{g}}{2} \leq\left|\frac{\partial g}{\partial v}\right| \leq \rho$. Thus we obtain

$$
\begin{equation*}
\tilde{u}\left(t_{\max }\right)-u\left(t_{\max }\right) \geq \tilde{u}-u+\frac{C M_{g} t_{1}(\tilde{v}-v)}{2 \rho^{2}} \tag{19}
\end{equation*}
$$

Let γ be a curve in $\left\{-t_{\max }\right\} \times\left[u_{2}, u_{3}\right] \times I_{v}$ such that $\left|\gamma^{\prime}(v)\right| \leq B$ (the v-coordinate is the vertical coordinate). Let δ be its image on $\left\{t_{\max }\right\} \times\left[u_{4}, u_{5}\right] \times I_{v}$. By symmetry, if it is well-defined, the image of $\left(-t_{\max }, \gamma(v), v\right)$ is $\left(t_{\max }, \delta(v), v\right)$. Using equation (19), we obtain

$$
\begin{equation*}
\delta^{\prime}(v) \geq \gamma^{\prime}(v)+\frac{C M_{g}}{2 \rho^{2}} \geq-B+\frac{C M_{g}}{2 \rho^{2}}=D \tag{20}
\end{equation*}
$$

Therefore, we have $D \geq \frac{1}{\varepsilon_{B}}$ for C big enough. A similar proof shows the symmetric result. Additionally, if $w=\left(1, \gamma^{\prime}(v)\right)$ then $\|w\| \leq \sqrt{1+B^{2}}$ and $\|\mathrm{d} \Phi(p, w)\| \geq$ $\sqrt{1+D^{2}}$. Thus the dilatation condition is satisfied for C big .

Finally the return time between $\left\{-t_{\max }\right\} \times\left[u_{2}, u_{3}\right] \times I_{v}$ and $\left\{t_{\max }\right\} \times\left[u_{4}, u_{5}\right] \times I_{v}$ is bounded by $2\left(u_{5}-u_{1}\right)+2 t_{\max }$. Indeed, for $|t| \geq t_{1}$, we have $\left|R_{t}\right| \leq 1$ and the return time is bounded by $2 t_{\max }$. Additionally, for $|t| \leq t_{1}$, we have $\left|R_{u}\right|=\geq \frac{8}{11}$ and the return time is bounded by $\frac{11}{8}\left(u_{5}-u_{1}\right)$ as the u-interval is bounded by $u_{5}-u_{1}$. As $u_{5}-u_{1} \leq\left|\int \Gamma_{\lambda_{D}} \alpha\right|<\tau$ by definition of pre-convex bypass, we obtain the desired condition on the return time.
7.5.4. Convexification smoothing. In this section we interpolate between $\alpha_{\text {conv }}$ and $\alpha_{\text {prec }}$ for $y \geq \frac{2}{5} y_{\text {std }}$.
Construction 7.36. For $y \in\left[\frac{2}{5} y_{\text {std }}, y_{\text {std }}\right]$, let $\alpha=\alpha_{\text {prec }}+a l(y) \Phi_{z_{0}}(z) \sin (x) \mathrm{d} y$ where l is non increasing, $l=1$ in $\left[\frac{2}{5} y_{\text {std }}, \frac{1}{2} y_{\text {std }}\right]$ and $l=0$ for $y \geq \frac{2}{3} y_{\text {std }}$. We extend this construction to the other non-convex areas by symmetry.

The 1-form α is a contact form as $a l(y) \Phi_{z_{0}}(z) \sin (x)$ is \mathcal{C}^{1}-close to 0 . Let $\mathcal{B}_{\text {conv }}$ be the convexified bypass and $\alpha_{\text {conv }}$ the associated contact structure. We call $\mathcal{C}=$ $\mathcal{B}_{\text {conv }} \backslash \mathcal{B}$ the convexification area and we denote by \mathcal{P} the set where $\alpha_{\text {conv }} \neq \alpha_{\text {prec }}$. In coordinates (x, y, z), the connected component of \mathcal{P} containing Γ_{0} is the set $z \geq z_{0}$. In coordinates (t, u, v), it is contained between $S_{\mathcal{B}}$ and S_{h} and its v-coordinates are in $\left(v_{\Delta}, v_{\max }^{\prime}\right)$ (Proposition 7.25).
Corollary 7.37 (Corollary of Lemma 7.21). Let γ be a Reeb orbit intersecting \mathcal{P}. If γ enters \mathcal{C} in $p_{\text {in }}=\left(x_{i n}, y_{i n}, z_{i n}\right)$ such that $x_{i n} \in\left[\frac{\pi}{2}-\frac{\lambda}{4}, \frac{\pi}{2}+\frac{\lambda}{4}\right]$ and $z_{i n}>0$ then the exiting point $p_{\text {out }}=\left(x_{\text {out }}, y_{\text {out }}, z_{\text {out }}\right)$ satisfies $x_{\text {out }} \in\left[\frac{\pi}{2}-\frac{\lambda}{3}, \frac{\pi}{2}+\frac{\lambda}{3}\right]$ and $y_{\text {out }}>y_{\text {in }}$.
Proof. If γ intersects the set $y \geq \frac{2}{5} y_{\text {std }}$, we obtain the desired result as $R_{y}>0$ and h is defined for $x \in\left[\frac{\pi}{2}-\frac{\lambda}{3}, \frac{\pi}{2}+\frac{\lambda}{3}\right]$. We now assume that γ is contained in the set $y \leq \frac{2}{5} y_{\text {std }}$. As γ intersects \mathcal{P}, we have $t_{\text {out }}-t_{\text {in }} \geq \Delta$, and $p_{\text {in }}, p_{\text {out }} \in I_{t}^{\prime} \times I_{u} \times I_{v}^{\prime}$ (Lemma 7.21 and Construction 7.22). In addition $u_{\text {out }}-u_{\mathrm{in}} \geq 0$ as $R_{u} \geq 0$. Lemma 7.21 gives the desired result.

By symmetry, there exist analogous statements near any endpoint of $\Gamma_{\text {prec }}^{\leq y_{\text {std }}}$.
7.6. Conditions (B1) to (B8). We now prove that our construction satisfies conditions (B1) to (B8) and is adapted to the boundary.

The contact form is adapted to the boundary. By the definition of pre-convex bypass, the contact form is adapted to the boundary outside \mathcal{C}. The contact form is adapted for $y \geq \frac{2}{3} y_{\text {std }}$ as $\alpha_{\text {conv }}=\alpha_{\text {prec }}$ and $\|h\|_{\mathcal{C}^{\infty}}<\varepsilon_{\text {stab }}^{\prime}$ (Lemma 7.14). For $y \leq \frac{2}{5} y_{\text {std }}$ and $z \leq \frac{2}{5} y_{\text {std }}+z_{\text {prod }}$, Lemma 7.25 gives the desired result. For $y \in\left[\frac{2}{5} y_{\text {std }}, \frac{2}{3} y_{\text {std }}\right]$ and $x_{\text {flat }}^{h} \leq\left|x-\frac{\pi}{2}\right|$, we apply Lemma 7.23 . Finally, for $y \in$ $\left[\frac{2}{5} y_{\text {std }}, \frac{2}{3} y_{\text {std }}\right]$ and $\left|x-\frac{\pi}{2}\right|<x_{\text {flat }}^{h}$, we have $h=h(0)$ and R_{z} is positively collinear to

$$
\left(k_{\mathrm{inf}}(z) k_{\mathrm{sup}}(z)+a l(y) \Phi_{z_{0}}(z)\right) \cos (x)
$$

Thus

- $R_{z}=0$ for $x=\frac{\pi}{2}$;
- $R_{z}>0$ for $x<\frac{\pi}{2}$;
- $R_{z}<0$ for $x>\frac{\pi}{2}$.

The tangency points between \tilde{S}_{h} and $R_{\alpha_{\text {conv }}}$ are the segment $x=\frac{\pi}{2}$. Along this segment and for $y \leq \frac{1}{2} y_{\text {std }}, R_{x}$ is positively collinear to $f_{\inf }(y) \rho-a \Phi_{z_{0}}^{\prime}\left(z_{h}\right)$ and

$$
f_{\mathrm{inf}}(y) \rho-a \Phi_{z_{0}}^{\prime}\left(z_{h}\right) \leq \rho-a \Phi_{z_{0}}^{\prime}\left(z_{h}\right)<0
$$

For $y>\frac{1}{2} y_{\text {std }}, R_{x}$ is positively collinear to

$$
-k_{\text {sup }}^{\prime}\left(z_{h}\right)-c g(y) \Phi_{z_{0}}^{\prime}\left(z_{h}\right)<0
$$

By symmetry we obtain the desired result in the other convexified areas.
Condition (B6). Let γ be a Reeb chord of S_{Z} in $\mathcal{B}_{\text {conv }}^{\leq y_{\text {std }} . ~ I f ~} \gamma$ does not meet \mathcal{P}, condition (B6) is given by Lemma 7.6. We now assume that γ intersects \mathcal{P}. Let $p_{\text {in }}^{S}$ and $p_{\text {out }}^{S}$ denote the endpoints of γ and $p_{\text {in }}$ and $p_{\text {out }}$ the first entering and exiting point of \mathcal{C}. We assume that $p_{\text {in }}$ is in the connected component of \mathcal{C} containing Γ_{0}. The proof of the other cases is similar.

If γ does not intersect \mathcal{P} after $p_{\text {out }}$, then γ is contained in $\left[\pi-\frac{\lambda}{4}, \pi+\frac{\lambda}{4}\right] \times$ $\left[0, y_{\text {std }}\right] \times I_{\text {max }}$ after $p_{\text {out }}$ (Lemma 7.8 and Equation (7)). Thus we have $x_{\text {out }}^{S} \in$ $\left[\pi-\frac{\lambda}{2}, \pi+\frac{\lambda}{2}\right]$ (Lemma 7.5). Then $x_{\text {in }} \in\left[\pi-\frac{\lambda}{3}, \pi+\frac{\lambda}{3}\right]$ and $z_{\text {in }}>z_{\text {out }}$ (Corollary 7.37). Therefore $z_{\text {in }}^{S}>z_{\text {in }}>z_{\text {out }}>z_{\text {out }}^{S}$ as $R_{z}<0$. We obtain $x_{\text {in }}^{S} \in\left[\pi-\frac{\lambda}{2}, \pi+\frac{\lambda}{2}\right]$ (Lemma 7.5).

If γ intersects \mathcal{P} after $p_{\text {out }}$, then γ meets the connected component associated to $\left[\pi, \frac{3 \pi}{2}\right] \times\left[0, y_{\text {std }}\right] \times\left[-z_{\text {std }}, 0\right]$ (Lemma 7.8). Let $p_{\text {in }}^{\prime}$ and $p_{\text {out }}^{\prime}$ denote the second entering and exiting point. Between $p_{\text {out }}$ and $p_{\text {in }}^{\prime}, \gamma$ is contained $\left[\pi-\frac{\lambda}{4}, \pi+\frac{\lambda}{4}\right] \times$ $\left[0, y_{\text {std }}\right] \times I_{\max }$ (Lemma 7.8). Thus we have $x_{\text {in }} \in\left[\pi-\frac{\lambda}{3}, \pi+\frac{\lambda}{3}\right]$ and $z_{\text {in }}>z_{\text {out }}$ (Corollary 7.37). Therefore $x_{\mathrm{in}}^{S} \in\left[\pi-\frac{\lambda}{2}, \pi+\frac{\lambda}{2}\right]$ (Lemma 7.5). As γ does not intersect \mathcal{P} before $p_{\text {in }}$ and $R_{z}<0$, we obtain $z_{\text {in }}^{S}>z_{\text {in }}>z_{\text {out }}>z_{\text {out }}^{\prime}$. In addition $x_{\text {out }}^{\prime} \in\left[\pi-\frac{\lambda}{3}, \pi+\frac{\lambda}{3}\right]$ and $z_{\text {in }}^{\prime}>z_{\text {out }}^{\prime}$ (Corollary 7.37). As γ does not meet \mathcal{P} after $p_{\text {out }}^{\prime}$ (Lemma 7.8) and $R_{z}<0$, we obtain $z_{\text {in }}^{S}>z_{\text {in }}>z_{\text {out }}>z_{\text {in }}^{\prime}>z_{\text {out }}^{\prime}>z_{\text {out }}^{S}$ and $x_{\text {out }}^{S} \in\left[\pi-\frac{\lambda}{2}, \pi+\frac{\lambda}{2}\right]$ (Lemma 7.5).

Condition (B7). Let γ be a Reeb orbit in \mathcal{B} conv $\leq y_{\text {std }}$ with endpoints $p_{\text {in }}^{S}$ and $p_{\text {out }}^{S}$ in S_{Z} and $S_{y_{\text {std }}}$. If γ does not meet \mathcal{P} we obtain the desired result by Lemma 7.6. We now assume that γ meets \mathcal{P}. The image of \mathcal{P} on S_{Z} is contained in $X \cup X+2 \pi$. Thus $p_{\text {in }}^{S} \in X+2 k \pi$ for $k \in\{0,1\}$. In addition, there exists $k^{\prime} \in\{0,1\}$ such that $p_{\text {out }}^{S} \in\left[\frac{\pi}{2}-\frac{\lambda}{2}+2 k^{\prime} \pi, \frac{\pi}{2}+\frac{\lambda}{2}+2 k^{\prime} \pi\right] \times I_{\max }$ (Lemma 7.6). It remains to prove that $k=k^{\prime}$. If γ meets \mathcal{P} once, then the x-coordinate of the exiting point is in $\left[2 k \pi-\frac{\lambda}{8},(2 k+1) \pi+\frac{\lambda}{8}\right]$ as $\mathcal{P} \subset \mathcal{V}$ and thus $k=k^{\prime}$ (Lemma 7.5). If γ meets \mathcal{P} twice, then the first exiting point has a x-coordinate in $\left[2 k \pi-\frac{\lambda}{8},(2 k+1) \pi+\frac{\lambda}{8}\right]$. Thus the x-coordinate of the second entering point is in $\left[2 k \pi-\frac{\lambda}{4},(2 k+1) \pi+\frac{\lambda}{4}\right]$
(Lemma 7.5) and the x-coordinate of the second exiting point is contained in $\left[2 k \pi-\frac{\lambda}{3},(2 k+1) \pi+\frac{\lambda}{3}\right]$ (Corollary 7.37). Thus $k=k^{\prime}$. The proof of condition (B8) is similar.

Condition (B5). By Remark 7.7, if γ is a Reeb chord of $S_{y_{\text {std }}}$ in $\mathcal{B} \leq y_{\text {std }}$ conv then γ intersects $S_{\frac{2}{3}} y_{\text {std }}$. Let $p_{\text {in }}^{S}$ and $p_{\text {out }}^{S}$ denote the endpoints of γ. By Lemma 7.6, $x_{\mathrm{in}}^{S} \in\left[\frac{3 \pi}{2}-\frac{\lambda}{2}+2 k \pi, \frac{3 \pi}{2}+\frac{\lambda}{2}+2 k \pi\right]$ and $x_{\mathrm{out}}^{S} \in\left[\frac{\pi}{2}-\frac{\lambda}{2}+2 k^{\prime} \pi, \frac{\pi}{2}+\frac{\lambda}{2}+2 k^{\prime} \pi\right]$. In addition γ intersects \mathcal{P} (Lemma 7.5). Yet γ intersects only one connected component of \mathcal{P} (Lemma 7.8). This leads to a contradiction.

Condition (B4). This condition is a consequence from Lemma 7.9.
Conditions (B1), (B2) and (B3). These conditions derive from Lemma 7.17 and Lemma 7.31. Indeed, by Lemma 7.6, all the Reeb chords which contribute to the map between R_{λ} and S_{R} intersect \mathcal{P} and thus Σ_{+}and Σ_{-}. In addition, the intersection points with Σ_{-}are in $\left[u_{2}, u_{3}\right] \times I_{v}$ (Equation (11)) and the intersection points with Σ_{+}in $\left[u_{4}, u_{5}\right] \times I_{v}$ (Equations (9) and (10) and Lemma 7.6). Let δ be a curve in $\left[\frac{\pi}{2}+\lambda, \pi-\lambda\right] \times I_{\max }$ with tangents in $\mathcal{C}(V, A)$. Then the tangents of the image of δ in Σ_{-}are in $\mathcal{C}(V, B)$ (Lemma 7.17) and the tangents of the image of δ in Σ_{+}are in $\mathcal{C}\left(H, \varepsilon_{B}\right)$ (Lemma 7.31). Thus the image of δ on S_{R} is ε_{R} close to δ_{1}. Similarly, the tangent of the image of an horizontal segment in S_{R} are in $\mathcal{C}(H, \nu)$ (Lemma 7.17). Condition (B3) is a consequence of the definition of preconvex bypasses. We obtain the rectangle structures on $\operatorname{dom}\left(\varphi_{i}\right)$ and $\operatorname{im}\left(\varphi_{i}\right)$ by considering the images of vertical curves in S_{Z} and the inverse images of horizontal curves in S_{R}. These curves are transverse (definition of pre-convex bypasses).

8. Conley-Zehnder index

In this section we prove Theorem 2.6: we compute the Conley-Zehnder index μ of the periodic orbit $\gamma_{\mathbf{a}}$ described in Theorem 2.1.

8.1. Two technical lemmas.

Lemma 8.1. Let $\left(R_{t}\right)_{t \in[0,1]}$ be a path of symplectic matrices in \mathbb{R}^{2} such that $R_{0}=$ Id and $R_{1} \in S p^{*}$. Let $R_{t} e_{1}=r(t) e^{i \alpha(t)}$. If $\alpha(1) \in\left[2 k \pi+\frac{\pi}{2}, 2 k \pi+\frac{3 \pi}{2}\right]$ and $\mu(R)$ is odd, then then $\mu(R)=2 k+1$. Similarly if $\mu(R)$ is even and $\alpha(1) \in$ $\left[2 k \pi-\frac{\pi}{2}, 2 k \pi+\frac{\pi}{2}\right]$, then $\mu\left(R_{t}\right)=2 k$.

Proof. We extend R_{t}, α_{t} and r_{t} to $t \in[1,2]$ (see Section 3.3.2). Let θ_{t} denote the rotation angle associated to the polar decomposition $R_{t}=S_{t} O_{t}$. Without loss of generality $\theta_{0}=0$. As S_{t} is positive-definite, $\theta_{t}-\frac{\pi}{2}<\alpha_{t}<\theta_{t}+\frac{\pi}{2}$. Additionally, if there exists $t \in[1,2]$ such that $\theta_{t}=0[2 \pi]$ then $R_{t} \in \mathrm{Sp}^{-}(2)$. Similarly if $\theta_{t}=\pi[2 \pi]$ then we have $R_{t} \in \mathrm{Sp}^{+}(2)$. Therefore if $\mu(R)$ is odd, $\theta_{t} \neq 0[2 \pi]$ for all $t \in[1,2]$. Thus $\theta_{1}-\pi<\theta_{2}<\theta_{1}+\pi$ and $\alpha_{1}-\frac{3 \pi}{2}<\theta_{2}<\alpha_{1}+\frac{3 \pi}{2}$. Therefore $\theta_{2} \in((2 k-1) \pi,(2 k+3) \pi)$. The proof of the other case is similar.

Lemma 8.2. Let $\theta_{0}>0$. There exists $\nu\left(\theta_{0}\right)>0$ such that if $R \in \operatorname{Sp}(2)$ and

- $R e_{1} \in \mathcal{C}\left(e_{1}, \tan \left(\nu\left(\theta_{0}\right)\right)\right)$;
- $\left\|R e_{1}\right\| \geq 3$;
- there exists $f \in C\left(e_{2}, \tan \left(\theta_{0}\right)\right)$ such that $R f \in C\left(e_{2}, \tan \left(\theta_{0}\right)\right)$;
then R is \mathbb{R}-diagonalizable and its eigenvalues are of the sign of $\left\langle e_{1}, R e_{1}\right\rangle$.
Proof. We prove that $|\operatorname{tr}(R)|>2$. Without loss of generality, $\left(e_{1}, f\right)$ is a direct basis. The matrix associated to the change of basis from $\left(e_{1}, e_{2}\right)$ to $\left(e_{1}, f\right)$ is

$$
P=\left(\begin{array}{cc}
1 & \cos (\theta) \\
0 & \sin (\theta)
\end{array}\right)
$$

where $\theta \in\left[\frac{\pi}{2}-\theta_{0}, \frac{\pi}{2}+\theta_{0}\right]$. In the basis $\left(e_{1}, e_{2}\right)$, the matrix of R is

$$
P^{-1} R P=\frac{1}{\sin (\theta)}\left(\begin{array}{cc}
\mu_{1} \sin \left(\theta-\theta_{1}\right) & \mu_{2} \sin \left(\theta-\theta_{2}\right) \\
\mu_{1} \sin \left(\theta_{1}\right) & \mu_{2} \sin \left(\theta_{2}\right)
\end{array}\right)
$$

where $\theta_{1} \in\left[-\nu\left(\theta_{0}\right), \nu\left(\theta_{0}\right)\right], \theta_{2} \in\left[\frac{\pi}{2}-\theta_{0}, \frac{\pi}{2}+\theta_{0}\right]$ and $\left|\mu_{1}\right| \geq 3$. As $\mu_{1} \mu_{2}>0$, we obtain $\operatorname{tr}(R)>2$ for $\nu\left(\theta_{0}\right)$ small enough.
8.2. Computation of the Conley-Zehnder index. Let $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k}}$ be a word such that $l(\mathbf{a})<K$. Let $p_{\mathbf{a}}$ be an intersection point between $\gamma_{\mathbf{a}}$ and S_{Z}^{-}. We denote by $T(\mathbf{a})$ the period of $\gamma_{\mathbf{a}}$. Let R_{t} be the path of symplectic matrices along $\gamma_{\mathbf{a}}$ associated to the trivialisation described in Section 2.4. Let $\chi_{\mathbf{a}}$ be the map induced by the Reeb flow between S_{Z} and $S_{\mathbf{a}}$, a surface tangent to $\xi\left(p_{\mathbf{a}}\right)$ at $p_{\mathbf{a}}$. Let $G_{\mathbf{a}}=\varphi_{B} \circ \psi_{i_{k}} \cdots \circ \varphi_{B} \circ \psi_{i_{1}}$. By definition of φ_{B} and ψ,

- $\operatorname{dom}\left(G_{\mathbf{a}}\right)$ and $\operatorname{im}\left(G_{\mathbf{a}}\right)$ are rectangles with respectively horizontal and vertical fibres and G_{a} preserves the fibres;
- $\mathrm{d} G_{\mathbf{a}}\left(p_{\mathbf{a}}, \frac{\partial}{\partial x}\right) \in \mathcal{C}(H, \nu)$;
- $\left\|\mathrm{d} G_{\mathbf{a}}\left(p_{\mathbf{a}}, \frac{\partial}{\partial x}\right)\right\| \geq \frac{1}{(\eta M)}$.

Lemma 8.3. There exists θ_{0} such that for μ, ν and η small enough, $R_{T(\mathbf{a})}$ satisfies the hypothesis of Lemma 8.2.

Proof. Note that $\mathrm{d} \chi_{\mathbf{a}}\left(p_{\mathbf{a}}\right) \frac{\partial}{\partial x}= \pm e_{1}$. We choose θ_{0} such that $\chi_{\mathbf{a} *}(\mathcal{C}(V, A)) \subset$ $\mathcal{C}\left(e_{2}, \tan \left(\theta_{0}\right)\right)$. For μ small enough, we have $\chi_{\mathbf{a} *}(\mathcal{C}(H, \mu)) \subset \mathcal{C}\left(e_{1}, \tan \left(\nu\left(\theta_{0}\right)\right)\right.$. Let l be such that $\left\|\mathrm{d} \chi_{p_{\mathbf{a}}}\left(p_{\mathbf{a}}\right)\right\|<l$ and $\left\|\mathrm{d} \chi_{p_{\mathbf{a}}}\left(p_{\mathbf{a}}\right)^{-1}\right\|<l$. Then

$$
\left\|R_{\mathbf{a}, T(\mathbf{a})} e_{1}\right\| \geq\left\|d \chi_{p_{\mathbf{a}}}\left(p_{\mathbf{a}}\right)^{-1}\right\|^{-1}\left\|\mathrm{~d} G_{\mathbf{a}} \frac{\partial}{\partial x}\right\| \geq \frac{1}{\eta \eta M}
$$

and $\left\|R e_{1}\right\| \geq 3$ for η small enough.
Lemma 8.4. For all $p \in \operatorname{dom}\left(G_{\mathbf{a}}\right),\left\langle\mathrm{d} G_{\mathbf{a}}(p) \frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle$ is of the sign of $\prod_{j=1}^{k}(-1)^{\tilde{\mu}\left(a_{i_{j}}\right)}$.
Proof. Note that $\left\langle\mathrm{d} \varphi_{B}(p) \frac{\partial}{\partial z}, \frac{\partial}{\partial x}\right\rangle>0$ for all $p \in \operatorname{dom}\left(\varphi_{B}\right)$. Therefore, we have

$$
\left\langle\mathrm{d} \varphi_{B}(p) v, \frac{\partial}{\partial x}\right\rangle>0
$$

for all $v \in \mathcal{C}_{p}(V, A)$ such that $\left\langle v, \frac{\partial}{\partial z}\right\rangle>0$.
We prove the desired result by induction on k. If $k=1$ then $\mathrm{d} \psi_{a_{1}}(p) \frac{\partial}{\partial x} \in \mathcal{C}(V, A)$. If $\tilde{\mu}\left(a_{1}\right)$ is even, $\left\langle-\mathrm{d} \psi_{a_{1}}(p) \frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right\rangle<0$ (see Figure 33) and we obtain

$$
\left\langle\mathrm{d} G_{a_{1}}(p) \frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle>0
$$

Similarly, if $\mu\left(a_{1}\right)$ is odd, we obtain $\left\langle-\mathrm{d} \psi_{a_{1}}(p) \frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right\rangle>0$ and

$$
\left\langle\mathrm{d} G_{a_{1}}(p) \frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle<0
$$

We now prove the result for $\mathbf{a}=a_{i_{1}} \ldots a_{i_{k+1}}$. Let $p \in \operatorname{dom}\left(G_{\mathbf{a}}\right)$ and $v=$ $\mathrm{d} G_{a_{i_{1}} \ldots a_{i_{k}}}(p) \frac{\partial}{\partial x}$. By induction, $\left\langle v, \frac{\partial}{\partial x}\right\rangle$ is of the sign of $\prod_{j=1}^{k}(-1)^{\tilde{\mu}\left(a_{i_{j}}\right)}$. Then, $\left\langle\mathrm{d} \psi_{a_{i_{k+1}}} v, \frac{\partial}{\partial z}\right\rangle$ is of the sign of $\prod_{j=1}^{k+1}(-1)^{\tilde{\mu}\left(a_{i_{j}}\right)}$ and so is $\left\langle\mathrm{d} G_{a_{i_{k+1}}} v, \frac{\partial}{\partial x}\right\rangle$.
Corollary 8.5. For μ, ν and η small enough, $\sum_{j=1}^{k} \tilde{\mu}\left(a_{i_{j}}\right)=\mu\left(\gamma_{\mathbf{a}}\right)[2]$.
Proof. The signs of $\left\langle\mathrm{d} G_{\mathbf{a}} \frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle$ and $\left\langle R_{T(\mathbf{a})} \frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle$ coincide and $R_{T(\mathbf{a})}$ is hyperbolic (Lemmas 8.2 and 8.3). Its eigenvalues are positive if $\sum_{j=1}^{k} \tilde{\mu}\left(a_{i_{j}}\right)$ is even and negative if $\sum_{j=1}^{k} \tilde{\mu}\left(a_{i_{j}}\right)$ is odd (Lemma 8.4).

Figure 33. The vector $\mathrm{d} \psi_{a_{1}}(p) e_{1}$

Lemma 8.6. There exists a collar neighbourhood $S_{\gamma_{\mathbf{a}}}$ of $\gamma_{\mathbf{a}}$ in the trivialisation class given in Section 2.4 such that if R_{t} is the associated path of symplectic matrices along $\gamma_{\mathbf{a}}$ and $R_{t} \frac{\partial}{\partial x}=r(t) e^{i \theta(t)}$ then $\theta(t) \neq 0[\pi]$ when $\gamma_{\mathbf{a}}(t)$ is in the bypass and $t>0$.

Proof. Let c be a Reeb chord in the bypass contained in $\gamma_{\mathbf{a}}$ with endpoints c_{+} and c_{-}on S_{Z}. We construct a strip S_{c} along c such that no Reeb chord with one endpoint on the vertical segment containing c_{+}and close to c_{+}intersects S_{c}. We then glue together the half of S_{c} and the collar associated to the Reeb chords to obtain $S_{\gamma_{\mathrm{a}}}$. We choose S_{c} such that
(1) between S_{Z} and the convexification, S_{c} is tangent to $\frac{\partial}{\partial x}$;
(2) in the convexification area, S_{c} is tangent to $\frac{\partial}{\partial u}$;
(3) is the upper part of the bypass, S_{c} is tangent $\frac{\partial}{\partial r}$.

We smooth the resulting surface. Figure 34 shows c and a Reeb chord with one endpoint on the vertical segment contained c_{+}(dotted curve). In this figure S_{c} is transverse to the projection.

Figure 34. The surface S_{c} and the Reeb chords

Proof of Theorem 2.6. We consider the trivialisation from Lemma 8.6. Without loss of generality $\theta(0)=0$. Let $0=t_{1}<t_{1}^{\prime}<\cdots<t_{k}<t_{k}^{\prime}=T(\mathbf{a})$ be the times associated to the intersection points between $\gamma_{\mathbf{a}}$ and $S_{Z}\left(\gamma_{\mathbf{a}}(0)\right.$ is the fixed point of G_{a}).

We prove by induction that for all $j=1, \ldots, k$

$$
\begin{equation*}
\theta\left(t_{j}\right) \in\left[\left(\sum_{l=1}^{j-1} \mu\left(a_{i_{l}}\right) \pi\right)-\nu\left(\theta_{0}\right),\left(\sum_{l=1}^{j-1} \mu\left(a_{i_{l}}\right) \pi\right)+\nu\left(\theta_{0}\right)\right] . \tag{21}
\end{equation*}
$$

As $\theta(0)=0$, the condition (21) is satisfied for $j=1$. We now suppose that the equation (21) stands for $i \in 1 \ldots j-1$. By definition of $\mu\left(a_{i_{j}}\right)$,

$$
\theta\left(t_{j}^{\prime}\right) \in\left[\left(\sum_{l=1}^{j} \mu\left(a_{i_{l}}\right) \pi\right),\left(\sum_{l=1}^{j} \mu\left(a_{i_{l}}\right) \pi\right)+\pi\right] .
$$

We obtain (Lemma 8.6)

$$
\begin{aligned}
\theta\left(t_{j+1}\right) & \in\left[\left(\sum_{l=1}^{j} \mu\left(a_{i_{l}}\right) \pi\right)-\nu\left(\theta_{0}\right),\left(\sum_{l=1}^{j} \mu\left(a_{i_{l}}\right) \pi\right)+\nu\left(\theta_{0}\right)\right] \\
\text { or } \quad \theta\left(t_{j+1}\right) & \in\left[\left(\sum_{l=1}^{j} \mu\left(a_{i_{l}}\right) \pi\right)+\pi-\nu\left(\theta_{0}\right),\left(\sum_{l=1}^{j} \mu\left(a_{i_{l}}\right) \pi\right)+\pi+\nu\left(\theta_{0}\right)\right] .
\end{aligned}
$$

By Lemma 8.4, we obtain the equation (21) for $i=j$. Lemma 8.1 provides us with the desired Conley-Zehnder index.

Acknowledgements. I am deeply grateful to my advisor, Vincent Colin, for his guidance and support. I would also like to thank Samuel Tapie, Paolo Ghiggini and François Laudenbach for stimulating discussions. Thanks also go to Chris Wendl for his help with holomorphic curves, Jean-Claude Sikorav for suggesting numerous improvements and corrections and Marc Mezzarobba for proofreading this text.

References

[1] Daniel Bennequin. Entrelacement et équations de Pfaff. In IIIe Rencontre de Géométrie du Schnepfenried, volume 1 of Astérisque, pages 87-161, 1983.
[2] Frédéric Bourgeois, Tobias Ekholm, and Yakov Eliashberg. Effect of Legendrian Surgery. arXiv:0911.0026, 2009.
[3] Frédéric Bourgeois and Alexandru Oancea. Fredholm theory and transversality for the parametrized and for the S^{1}-invariant symplectic action. Journal of European Mathematical Society, 12(5):1181-1229, 2010.
[4] Kai Cieliebak and Alexandru Oancea. Non-equivariant contact homology. In preparation.
[5] Vincent Colin, Paolo Ghiggini, and Ko Honda. $H F=E C H$ via open book decompositions : a summary. arXiv:1103.1290, 2011.
[6] Vincent Colin, Paolo Ghiggini, Ko Honda, and Michael Hutchings. Sutures and Contact Homology I. arXiv:1004.2942v1, 2010.
[7] Charles C. Conley and Eduard Zehnder. Morse-type index theory for flows and periodic solutions of Hamiltonian equations. Communications on pure and applied mathematics, 37:207253, 1984.
[8] Dragomir Dragnev. Fredholm theory and transversality for non compact pseudoholomorphic curves in symplectisations. Communications on pure and applied mathematics, 57:726-763, 2004.
[9] Yakov Eliashberg. Classification of overtwisted contact structures on 3-manifolds. Inventiones Mathematicae, 98(3):623-637, 1989.
[10] Yakov Eliashberg. Contact 3-manifolds, twenty years since J. Martinet's work. Annales de l'institut Fourier, 42:165-192, 1992.
[11] Yakov Eliashberg, Alexander Givental, and Helmut Hofer. Introduction to Symplectic Field Theory. In Noga Alon, Jean Bourgain, Alain Connes, Mikhail Gromov, and Vitali Milman, editors, Visions in Mathematics, pages 560-673. Birkhäuser, 2000. Special volume, Part II.
[12] Yakov Eliashberg and Mikhaïl Gromov. Convex symplectic manifolds. In Several complex variables and complex geometry, Proceedings of Symposia in Pure Mathematics, pages 135162, 1991.
[13] Kenji Fukaya and Kaoru Ono. Arnold conjecture and Gromov-Witten invariants. Topology, 38:933-1048, 1999.
[14] David Gabai. Foliations and the topology of 3-manifolds. Journal of Differential Geometry, 18:445-503, 1983.
[15] Hansjörg Geiges. An Introduction to Contact Topology. Cambrige University Press, 2008.
[16] Emmanuel Giroux. Convexité en topologie de contact. Commentarii Mathematici Helvetici, 66(4):637-677, 1991.
[17] Emmanuel Giroux. Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Inventiones Mathematicae, 141:615-689, 2000.
[18] Emmanuel Giroux. Structures de contact sur les variétés fibrées en cercles au-dessus d'une surface. Commentarii Mathematici Helvetici, 76:218-262, 2001.
[19] Roman Golovko. The cylindrical contact homology of universally tight sutured contact solid tori. arXiv:1006.4073v3, 2010.
[20] Roman Golovko. The embedded contact homology of sutured solid tori. Algebraic \& Geometric Topology, 11:1001-1031, 2011.
[21] Mikhaïl Gromov. Pseudo-holomorphic curves in symplectic manifolds. Inventiones Mathematicae, 82:307-347, 1985.
[22] Helmut Hofer. Pseudoholomorphic curves in symplectization with applications to the Weinstein conjecture in dimension three. Inventiones mathematicae, 114:515-563, 1993.
[23] Helmut Hofer. Polyfolds and a General Fredholm Theory. arXiv:0809.3753, September 2008. To appear in the Proceedings of the 2008 Clay research conference.
[24] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. Applications of Polyfold Theory II : The Polyfolds of Symplectic Field Theory. In preparation.
[25] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. Applications to Polyfold Theory I : The Polyfolds of Gromov-Witten Theory. arXiv:1107.2097, July 2011.
[26] Ko Honda. Notes for math 599: contact geometry. Lecture Notes available at http: //www-bcf.usc.edu/~khonda/math599/notes.pdf.
[27] Ko Honda. On the classification of tight contact structures I. Geometry and Topology, 4:309368, 2000.
[28] Michael Hutchings. An index inequality for embedded pseudoholomorphic curves in symplectizations. Journal of European Mathematical Society, 4:313-361, 2002.
[29] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of mathematics and its applications. Cambrige University Press, 1995.
[30] Çagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. $H F=H M$ I, II, III, IV. arXiv:1007.1979; 1008.1595; 1010.3456; 1111.3324, 2010.
[31] François Laudenbach. Symplectic geometry and Floer homology. Ensaios Mathematicos, 7:150, 2004.
[32] Gang Liu and Gang Tian. Floer homology and Arnold conjecture. Journal of Differential Geometry, 49:1-74, 1998.
[33] Daniel Mathews. Chords diagrams, contact-topological quantum field theory, and contact categories. PhD thesis, Stanford University, 2009.
[34] Dusa McDuff. Singularities and positivity of intersections of J-holomorphic curves. In Michèle Audin and Jacques Lafontaine, editors, Holomorphic curves in symplectic geometry, volume 117 of Progress in Mathematics. Birkhäuser, 1994. With an appendix by Gang Liu.
[35] Dusa McDuff and Dietmar Salamon. J-holomorphic Curves and Symplectic Topology, volume 52 of Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
[36] Jürgen Moser. Stable and random motions in dynamical systems, volume 77 of Annals of mathematics studies. Princeton University Press and University of Tokyo Press, 1973.
[37] Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomology I. arXiv:0811.3985, 2008.
[38] Anne Vaugon. Étude dynamique des champs de Reeb et propriétés de croissance de l'homologie de contact. Thèse de doctorat, Université de Nantes, December 2011.

Anne Vaugon, Université de Lyon, CNRS UMR 5669, ENS Lyon, UMPA 46, allée d'Italie, 69364 Lyon Cedex 07, France

E-mail address: anne.vaugon@ens-lyon.fr

[^0]: ${ }^{1}$ The multi-curve $\Gamma \times\{ \pm 1\}$ is a dividing set of the boundary.

[^1]: ${ }^{2}$ This operation corresponds to an annihilation in [33].

[^2]: ${ }^{3}$ See Lemma 7.8 for the definition of $V_{\text {smooth }}$.

[^3]: ${ }^{4}$ See equation(4) for the explicit form of the Reeb vector field.

