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Abstract: We study the complexity of traversing tree-shaped workflows whose tasks require
large I/O files. We target a heterogeneous architecture with two resource types, each with a
different memory, such as a multicore node equipped with a dedicated accelerator (FPGA or
GPU). The tasks in the workflow are colored according to their type and can be processed if all
their input and output files can be stored in the corresponding memory. The amount of used
memory of each type at a given execution step strongly depends upon the ordering in which the
tasks are executed, and upon when communications between both memories are scheduled. The
objective is to determine an efficient traversal that minimizes the maximum amount of memory
of each type needed to traverse the whole tree. In this paper, we establish the complexity of this
two-memory scheduling problem, and provide inapproximability results. In addition, we design
several heuristics, based on both post-order and general traversals, and we evaluate them on a
comprehensive set of tree graphs, including random trees as well as assembly trees arising in the
context of sparse matrix factorizations.
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Ordonnancement d’arbres de tâches avec affinité mémoire

Résumé : Dans ce rapport, nous nous intéressons à la complexité du traitement d’arbres de
tâches utilisant de gros fichiers d’entrée et de sortie. Nous nous focalisons sur une architecture
hétérogène avec deux types de ressources, utilisant chacune une mémoire spécifique, comme par
exemple un noeud multicore équipé d’un accélérateur (FPGA ou GPU). Les tâches de l’arbre
sont colorées suivant leur type et peuvent être exécutées si tous leurs fichiers d’entrée et de sor-
tie peuvent être stockés dans la mémoire correspondante. La quantité de mémoire de chaque
type utilisée à une étape donnée de l’exécution dépend fortement de l’ordre dans lequel les tâches
sont exécutées et du moment où sont effectuées les communications entre les deux mémoires.
L’objectif est de déterminer un ordonnancement efficace qui minimise la quantité de mémoire de
chaque type nécessaire pour traiter l’arbre entier. Dans ce rapport, nous établissons la com-
plexité de ce problème d’ordonnancement à deux mémoires et nous fournissons des résultats
d’inapproximabilité. De plus, nous proposons plusieurs heuristiques, fondées à la fois sur des
traversées d’arbres en profondeur et des traversées générales, que nous évaluons sur un ensemble
complet d’arbres, comprenant des arbres aléatoires ainsi que des arbres rencontrés dans le domaine
de la factorisation de matrices creuses.

Mots-clés : Ordonnancement, Contrainte Mémoire, Factorisation de matrices creuses, Méthode
multifrontale, Traversée d’arbres, Optimisation bi-critère



Tree traversals with task-memory affinities 3

1 Introduction

Modern computing platforms are heterogeneous: a typical node is composed of a multi-core pro-
cessor equipped with a dedicated accelerator, such as a FPGA or a GPU. Our goal is to study
the execution of a computational workflow tree onto such a platform. The nodes of the workflow
tree correspond to tasks, and the edges correspond to the dependencies among the tasks. The
dependencies are in the form of input and output files: each node accepts a (potentially large)
file as input, and produces a set of files, each of them to be accepted by a different child node.
Each task in the workflow is best suited to a given resource type (say a core or a GPU), and
is colored accordingly. To execute a task of a given color, all the input files and the output file
of the task must fit within the corresponding memory. As the workflow tree is traversed, tasks
of different colors are processed, and capacity constraints on both memory types must be met.
In addition, when a child of a task has a different color than its parent, a communication from
the parent’s memory to the child’s memory must be executed before the child can be processed
(and again, the input file and all output files of this child must fit within the child’s memory).
All these constraints require to carefully orchestrate the scheduling of the tasks, as well as the
communications between memories, in order to minimize the maximum amount of each memory
that is needed throughout the tree traversal.

Memory-aware scheduling in an important problem that has been the focus of many papers
(see Section 2 for related work). This work mainly builds upon the pioneering work of Liu,
who has studied tree traversals that minimize the peak amount of memory used on a single
machine, hence with a single memory type. Liu first restricted to depth-first traversals in [11],
before dealing with an optimal algorithm for arbitrary traversals in [11]. In many situations,
the optimal traversal is a depth-first traversal, but this is not always the case. An assessment
of the relative performance of depth-first traversals versus optimal traversals is proposed by [8].
The main objective of this paper is to extend these results to colored trees with two memory
types, and tasks belonging to a given type. Clearly, the traversal, i.e., the order chosen to execute
the tasks, and to perform the communications, plays a key role in determining which amount of
each memory is needed for a successful execution of the whole tree. The interplay between both
memories dramatically complicates the scheduling: it is no surprise that the complexity of the
problem, that was polynomial with a unique memory, now becomes NP-complete.

In this paper, we concentrate on memory usage, but we are fully aware that performance as-
pects are important too, and that even more difficult trade-offs are to be found between parallel
performance and memory consumption. One could envision a fully general framework, where tasks
have different execution-times for each resource type (instead of being tied to a given resource as
in this paper), and where concurrent execution of several tasks on each resource type is possible
(instead of the fully sequential processing of the task graph that is assumed in this paper). Alto-
gether, this study is only a first step towards the design of memory-aware schedules on modern
heterogeneous platforms with two memory types. However, despite the apparent simplicity of
the model, our results show that we already face a difficult bi-criteria optimization problem when
dealing with two different memory types. We firmly believe that the results presented in this paper
will help to lay the foundations for memory-aware scheduling algorithms on modern heterogeneous
platforms such as those equipped with multicores and GPUs.

One major contribution of the paper is the derivation of several complexity results: NP-
completeness of the problem, and inapproximability within a constant (α, β) factor pair of both
absolute minimum memory amounts. Here the absolute minimum memory of a given type is
computed when assuming an infinite amount of memory of the other type.

Another major contribution is the study of depth-first traversals and related variants. We show
how to extend Liu’s algorithm to compute the best depth-first traversal, which simultaneously
minimizes both memory usages. However, while depth-first traversals were natural algorithms
with a single memory, they severely constrain the activation of communication nodes with two
memories. We show that the optimization problem is still NP-complete when relaxing the firing
of communication nodes in depth-first traversal, which leads us to go beyond depth-first traversals
and to introduce general heuristics. These heuristics extends Liu’s optimal algorithm along various
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(greedy) decision criteria to trade-off the usage of both memory types.
Finally, the third major contribution is a comprehensive assessment of all these heuristics

using both randomly generated tress, and actual elimination trees that arise from the multifrontal
factorization of sparse linear systems.

The rest of the paper is organized as follows: We start with an overview of related work in
Section 2. Then we detail the framework in Section 3. The next four sections constitute the heart
of the paper. We deal with complexity results in Section 4. Section 5 is devoted to the study
of depth-first traversals, a first class of (widely-used) heuristics. Then we introduce additional
heuristics in Section 6. The experimental evaluation of all the heuristics is conducted in Section 7.
Finally we provide some concluding remarks and hints for future work in Section 8.

2 Related Work

The work presented in this paper builds upon previous results related to memory-aware scheduling,
but its applications are relevant to the field of sparse matrix factorization and of hybrid computing.
In this section, we present related work for each domain.

2.1 Sparse matrix factorization

Determining a memory-efficient tree traversal is very important in sparse numerical linear algebra.
The elimination tree is a graph theoretical model that represents the storage requirements, and
computational dependencies and requirements, in the Cholesky and LU factorization of sparse
matrices. In a previous study, we have described how such trees are built, and how the multi-
frontal method organizes the computations along the tree [8]. This is the context of the founding
studies of Liu [11, 12] on memory minimization for postorder or general tree traversals mentioned
in Section 1. Memory minimization is still a concern in modern multifrontal solvers when dealing
with large matrices. In particular, efforts have been made to design dynamic schedulers that takes
into account dynamic pivoting (which impacts the weights of edges and nodes) when scheduling
elimination trees with strong memory constraints [6], or to consider both task and tree parallelism
with memory constraints [1]. While these studies try to optimize memory management in ex-
isting parallel solvers, we aim at designing a simple model to study the fundamental underlying
scheduling problem.

2.2 Scientific workflows

The problem of scheduling a task graph under memory constraints also appears in the processing
of scientific workflows whose tasks require large I/O files. Such workflows arise in many scientific
fields, such as image processing, genomics or geophysical simulations. The problem of task graphs
handling large data has been identified in [14] which proposes some simple heuristic solutions.
Surprisingly, in the context of quantum chemistry computations, Lam et al. [10] have recently
rediscovered the algorithm published in 1987 in [12].

2.3 Pebble game and its variants

On the more theoretical side, this work builds upon the many papers that have addressed the
pebble game and its variants. Scheduling a graph on one processor with the minimal amount of
memory amounts to revisiting the I/O pebble game with pebbles of arbitrary sizes that must be
loaded into main memory before firing (executing) the task. The pioneering work of Sethi and
Ullman [16] deals with a variant of the pebble game that translates into the simplest instance of the
problem with a unique memory and where all input/output files have weight 1 and all execution
files have weight 0. The concern in [16] was to minimize the number of registers that are needed
to compute an arithmetic expression. The problem of determining whether a general DAG can
be executed with a given number of pebbles has been shown NP-hard by Sethi [15] if no vertex
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is pebbled more than once (the general problem allowing recomputation, that is, re-pebbling a
vertex which have been pebbled before, has been proven Pspace complete [4]). However, this
problem has a polynomial complexity for tree-shaped graphs [16]. Recently, still in the contact
of a single memory type, an extension of these results to parallel machines base been proposed
in [13].

2.4 Hybrid computing

Hybrid computing consists in the simultaneous use of CPUs and GPUs to optimize performance
for high performance computing. Since CPUs and GPUs are powerful for specific and different
tasks, its is natural to schedule tasks on their “favorite” resource, that is, the resource where there
execution time is minimal. This has been done successfully to increase performance in linear alge-
bra libraries [17, 7]. There also exist software tools that schedule an application composed of tasks
with both CPU and GPU implementations on hybrid platforms: for instance, StarPU [2] optimizes
the execution time of an application by scheduling its tasks on multiple kinds of resources, based
on predictions of execution and data transfer times.

3 Framework

As stated above, we deal with tree traversals on a two-memory system where each task belongs
to a specific memory. Dependencies are in the form of input and output files: each task accepts
a file as input from its parent node in the tree, and produces a set of files to be consumed by
each child node. We start this section by formally writing all the constraints that need to be
satisfied during a traversal: for the convenience of the reader, we briefly review the constraints for
uncolored trees (single memory) in Section 3.1, before dealing with those for bi-colored trees (two
memories) in Section 3.2. Also, we work out a small example in Section 3.3. Finally, we state the
target optimization problems in Section 3.4.

3.1 Uncolored trees

The tree work-flow T is composed of n nodes, or tasks, numbered from 1 to n where Children(i)
denotes the set of the children of i and parent(i) denotes its parent. We consider here out-trees,
where a parent node has to be processed before its children nodes. Each task (or node) i in the
tree is characterized by the size fi of its input file (data needed before the execution and received
from its parent), and by the size ni of its execution file. A valid traversal σ of the tree T is
an ordered list of the nodes of T such that all precedence constraints in T are enforced by the
schedule. Since the nodes of T are numbered from 1 to n, σ can be seen as a permutation of
J1, nK, where ∀i ∈ J1, nK and ∀j ∈ Children(i), σ(i) < σ(j).

� Each node i in the tree has an input files of size fi. If i is not the root, its input file is
produced by its parent parent(i); if i is the root, its input file may be of size zero, or it may
contain input from the outside world.

� Each node i in the tree has an execution file of size ni. This execution file can be modeled
by adding an extra child to the node, as depicted in Figure 1. Thus, from now on, we will
assume w.l.o.g. that every node i has an execution file of size ni = 0.

� Each non-leaf node i in the tree, when executed, produces a file of size fj for each j ∈
Children(i). If i is a leaf-node, then Children(i) = ∅ and i produces a file of null size (we
consider that terminal data produced by leaves are directly sent to the outside world).

During the processing of a task i, the memory must contain its input file, and all its output
files (including the execution file of the additional child whenever needed). The amount of memory
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GGGGGA

Figure 1: Modeling a node with an execution file of size ni 6= 0

MemReq(i) that is needed for this processing is thus:

MemReq(i) =





∑

j∈Children(i)

fj



+ fi

After task i has been processed, the input file is discarded, while its output files are kept in memory
until the processing of its children. Thus, for a traversal σ of T , the actual amount of memory
used to process the node i is:

MemUsed(σ, i) =





∑

j∈Children(i)

fj



+ fi +
∑

j∈S\{i}

fj

where S denotes the set of files stored in the memory when the scheduler decides to execute task
i. Note that S must contain the input file of task i. After the processing of node i, we have:

S ← (S\{i}) ∪ Children(i)

Initially, S contains the input file of the root.

3.2 Bi-colored trees

When two memories are considered, each task (or node) i in the tree is now characterized by its
color, which represents the specific memory where the task has to be executed, in addition to the
size fi of its input file (as before). We let color(i) ∈ {red, blue} represent the memory type of task
i. If color(i) = red, then i is a computational node which operates in the red memory, which it
uses to load its input file, execute its program and produce the set of output files for its children.
Similarly, if color(i) = blue, then i is a computational node which operates in the blue memory.

Each communication from one memory to the other is achieved through a communication node,
which is uncolored. Hence, there are two types of nodes in the tree, red or blue computational
nodes (or tasks), and uncolored communication nodes. Each time there is a data dependence
between two tasks assigned to different memories, the output file of the source task has to be
loaded from one memory into the other, using a communication node. Thus, in the model, the
tree T does not contain direct edges between blue and red nodes; memory loads from one memory
to the other occur only when processing a communication node. A valid traversal σ of the tree T is
an ordered list of the nodes of T (including communication nodes) such that all node dependences
in T are enforced by the schedule.

Here are further details on the processing of each node type:

� Computational nodes: they represent a task executed on a specific memory. During the
processing of a computational task i, the associated memory must contain the input file and
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its output files. Assuming that i is a blue task, the amounts of memory BlueMemReq(i) and
RedMemReq(i) that are needed for this processing are thus:

BlueMemReq(i) =





∑

j∈Children(i)

fj



+ fi

RedMemReq(i) = 0

After task i has been processed, the input file is discarded, while its output files are kept in
memory until the processing of its children. Thus, for a traversal σ of T , the actual amounts
of memory used to process the blue node i are:

BlueMemUsed(σ, i) =





∑

j∈Children(i)

fj



+ fi +
∑

j∈Sblue\{i}

fj

RedMemUsed(σ, i) =
∑

j∈Sred

fj

where Sblue (respectively Sred) denotes the set of files stored in the blue (respectively red)
memory when the scheduler decides to execute task i. Note that Sblue must contain the
input file of task i. After processing the blue node i, we have:

Sblue ← (Sblue\{i}) ∪ Children(i)

Sred ← Sred

Initially, Sblue contains the input file of the root and Sred = ∅ if the root is a blue node, and
conversely if the root is a red node.

� Communication nodes represent communications between one memory and the other. Each
communication node i has an input file of size fi and an output file of the same size. It loads
fi units of memory from one memory to the other. During the processing of a communication
task i from the blue memory to the red memory, both memories must contain the file of size
fi. Thus, the blue and the red memory needed for this processing is fi:

BlueMemReq(i) = fi

RedMemReq(i) = fi

After i has been processed, the input file from the blue memory is discarded, while the output
file is kept in the red memory until the processing of its child. Thus, for a traversal σ of T ,
the actual amounts of memory used to process the communication node i are:

BlueMemUsed(σ, i) = fi +
∑

j∈Sblue\{i}

fj

RedMemUsed(σ, i) = fi +
∑

j∈Sred

fj

Note that Sblue must contain the input file of task i. Letting j denote the unique child of
communication node i, we have after the execution of i that:

Sblue ← Sblue\{i}

Sred ← Sred ∪ {j}

It is important to stress that a communication node need not be processed right after the
execution of its parent. The only constraint is that its processing must precede the execution
of its unique child. This flexibility in the schedule severely complicates the search for efficient
traversals.
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σex(i) Fired Node BlueMemReq(i) RedMemReq(i) BlueMemUsed(σ, i) RedMemUsed(σ, i)
∑

j∈Sblue
fj

∑
j∈Sred

fj

1 B1 4 0 4 0 0 → 4 0
2 C1 1 1 4 1 4 → 3 0 → 1
3 B2 7 0 7 1 3 → 4 1
4 B3 2 0 4 1 4 → 2 1
5 B4 1 0 2 1 2 → 1 1
6 B5 4 0 4 1 1 → 3 1
7 C3 3 3 3 4 3 → 0 1 → 4
8 R5 0 3 0 4 0 4 → 1
9 R1 0 5 0 5 0 1 → 4
10 C2 2 2 2 4 0 → 2 4 → 2
11 B6 5 0 5 2 2 → 3 2
12 B7 1 0 3 2 3 → 2 2
13 B8 2 0 2 2 2 → 0 2
14 R2 0 8 0 8 0 2 → 6
15 R3 0 4 0 6 0 6 → 2
16 R4 0 2 0 2 0 2 → 0

Table 1: Description of the traversal σex in Section 3.3.

Top-down vs. bottom-up traversals. We conclude this section with a remark on a variant
of the model. There is a complete equivalence with top-down traversals of out-trees (the problem
addressed in this paper) and bottom-up traversals of in-trees. In a nutshell, one only needs to
reverse the direction of the edges, and to execute the schedule backwards, to move form one
variant to another1. In fact, the literature deals with both variants. The seminal paper of Liu [11]
originally deals with post-order bottom-up traversals for in-trees, while we speak of depth-first
top-down traversals for out-trees in this paper, but there is no actual difference.

3.3 Example

Let consider the bi-colored tree T depicted in Figure 2. Any traversal of T has to start with the
execution of the root B1. After it has been processed, 4 units of the blue memory are occupied
and the red memory is empty. We now have two choices:

� Either we process the right blue children B2 first. This would use BlueMemUsed(σ,B2) = 8
units of the blue memory since the file of size 1 created by the root would still reside in the
blue memory. Then, the sum of the file sizes stored in the blue memory after B2 has been
processed would be equal to

∑

j∈Sblue
fj = 5, and the red memory would be empty.

� Or we can process the communication node C1 to load the file of size 1 from the blue memory
to the red one. After that, if the left blue children B2 is now processed, its execution would
use BlueMemUsed(σ,B2) = 7 units of the blue memory instead of 8 in the previous case, but
the red memory would contain a file of size 1 wich will matter for a further execution of a
red node.

A complete traversal σex of T is described in Table 1, with the ordered list of the execution of
tall nodes in T , the amount of both memories required for each task, and the evolution of both
memory usages after each execution. The maximum memory usage for the traversal σex described
in Table 1 is 7 units for the blue memory and 8 units for the red memory. As one can see, the
ordered list of the execution of the computation and communication nodes of T will be the result
of a trade-off between the usage of each memory. In fact, the memory-aware traversal problem for
bi-colored rooted trees can naturally be cast into a two-criteria optimization problem.

1This equivalence has been formally proven in [8] for single-memory platforms, and it is straightforward to
extend the proof for two-memory systems.
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B3 B4 B5
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R1

R2

R3 R4 R5
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C2 C3

1 3

1
2

1
1

2 2
3

4 2
2 3

1 2

Figure 2: Bi-colored tree T for the example.
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3.4 Objectives

As stated above, we face a multi-criteria optimization problem: how to minimize the amount of
both memories needed for the tree traversal? The peak memory is the maximum usage of each
memory over the whole schedule σ of the tree T , and is defined for the blue and the red memory
by:

Mσ
blue(T ) = max

i
BlueMemUsed(σ, i)

Mσ
red(T ) = max

i
RedMemUsed(σ, i)

Thus, we define the optimal peak for each memory needed to process a tree T as:

Mopt
blue(T ) = min

σ
Mσ

blue(T )

Mopt
red (T ) = min

σ
Mσ

red(T )

We point out that Mopt
blue(T ) can be seen as the minimum amount of blue memory required to

traverse the tree when there is an unbounded amount of red memory available: a schedule which
reaches Mσ

blue(T ) = Mopt
blue(T ) can use an arbitrary amount of red memory. Intuitively, one may

ask what are trade-offs between the blue and red memory requirements of feasible schedules. One
major objective of this paper is to provide quantitative answers to this question.

4 Complexity results

This section presents several important complexity results. We start with the NP-completeness
of the two-memory minimization problem in Section 4.1. Then we show in Section 4.2 that the
problem reduces to traversing uncolored trees when one memory is unbounded. Finally, we prove
in Section 4.3 that it is impossible to approximate both minimum memories within arbitrary
constant factors.

4.1 Hardness of the problem

Definition 1 (TwoMemoryTraversal). Given a tree T with n nodes, and two fixed memory
amounts Mred and Mblue, does there exist a traversal σ of the tree such that Mσ

blue(T ) ≤ Mblue

and Mσ
red(T ) ≤Mred?

Theorem 1. The TwoMemoryTraversal problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks (of both
colors and including uncolored communication nodes) executed by the schedule; it is easy to
maintain the amount of each memory required by the schedule, and to check that neither Mred

nor Mblue is exceeded.
To establish the completeness, we use a reduction from the 2-Partition problem [3]. Consider

an instance Inst1 of the 2-Partition problem, with n integers {a1, a2, ..., an ‖
∑n

i=1 ai = S}.
Consider an instance Inst2 of the TwoMemoryTraversal, consisting in the tree depicted on
Figure 3. We set the bounds Mred = 3S for the red memory and Mblue = 2S for the blue memory.
The construction of Inst2 is polynomial in the size of Inst1.

Assume first that Inst2 has a solution. Any traversal must start with the root Broot. After it
has been processed, 2S units of the blue memory are occupied, which means that it is full. Without
loss of generality (by symmetry), assume that C is the next node to be executed. Then, we observe

that if C(2) was the third executed node, we could never process Rroot nor R
(2)
root without violating

the Mred bound for the red memory. Thus, the third executed node has to be Rroot.
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� We observe that the red tasks Rbig and Rfree, and each communication task Ci, all have

to be processed before R
(2)
root, otherwise, since the execution of R

(2)
root require 3S units of

memory, it would violate the Mred bound for the red memory. Besides, since we can not

execute R
(2)
root before Rbig, if C

(2) were processed before Rbig, there would be at least S units
of memory in the red memory and the execution of Rbig (which requires 5

2S units of the red
memory) would violate the Mred bound. Thus, the node Rbig has to be processed before
C(2).

� Besides, let i0 be the index of the first processed task Bi in the traversal. Its execution
requires ai0 +

3
2S units of the blue memory, which implies that it can not be processed before

C(2) without violating the Mblue bound for the blue memory. Thus, the node Rbig has to be
processed before Bi0 .

According to the previous arguments, the only tasks that can be processed right after Rroot

and before Rbig are the communication tasks Ci. Let I be the set of the indices of the tasks Ci

executed after Rroot and before Rbig.

→ After the execution of Rroot, there are 2S units occupied in the red memory and S units in
the blue memory. Thus, to execute Rbig without violating the Mred bound, the amount of
red memory to free is at least S

2 . This means that
∑

i∈I ai ≥
S
2 .

→ Besides, if
∑

i∈I ai >
S
2 , the execution of Bi0 (which requires at least

∑

i∈I ai +
3
2S units of

the blue memory) will violate the Mblue bound.

Thus,
∑

i∈I ai =
S
2 , which implies that Inst1 has a solution.

Suppose now that Inst1 has a solution I. According to the previous reasoning, the sequence of
nodes Broot; C; Rroot; ∀i ∈ I Ci; Rbig and Rfree can be executed without violating the bounds on
memories. After this sequence, there are 3

2S units occupied in the blue memory and the red one

is empty. The node C(2) can be processed to load S units from the blue memory to the red one.
Now, one of the blue node Bi0 with i0 ∈ I can be executed without violating the Mblue bound,
followed by B′

i0
. Moreover, we can process every Bi and B′

i for all i ∈ I to free the blue memory.
Then, it is possible to execute every branch of Ci down to B′

i for all i /∈ I. From this point on,

we can process the sub-tree rooted at the node R
(2)
root using the same pattern, which means that

Inst2 has a solution and concludes the proof.

4.2 When one memory is unbounded

In this section, we focus on the computation of Mopt
red (T ) (or Mopt

blue(T )) which represents the
minimal peak memory reachable when there is no constraint on the other memory. We show that
the computation of Mopt

red (T ) and Mopt
blue(T ) for a bi-colored tree T reduces to the computation of

the minimal peak memory for an uncolored tree.

Definition 2. Given a bi-colored tree T , we construct the corresponding uncolored (or for con-
venience, single-colored) tree Tblue by turning every communication node and red node into a blue
node, and by turning every red edge of size fi into a blue edge of size 0, as depicted in Figure 4. We
construct the single-colored tree Tred in a similar way. We let M∞

blue denote the minimal amount
of memory needed to process Tblue (and similarly, M∞

red for Tred).

Theorem 2. For any bi-colored tree T , we have M∞
red = Mopt

red (T ) and M∞
blue = Mopt

blue(T ).

Proof. Given a bi-colored tree T with n nodes, consider Tblue and M∞
blue as in Definition 2. We

show here that M∞
blue = Mopt

blue(T ). The proof for M∞
red = Mopt

red (T ) is similar.
First, T and Tblue have the same shape. The only differences between T and Tblue are some

edge values and the color of some vertices and edges. Thus, to any feasible traversal σ of T ,
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Figure 3: Tree corresponding to Inst2 in the proof of Theorem 1
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Figure 4: A bi-colored tree T and its corresponding single color trees Tblue and Tred in Definition 2.

RR n° 8226



Tree traversals with task-memory affinities 14

we can associate the corresponding feasible traversal σblue of Tblue, and reciprocally. For any
node i ∈ J1, nK of T , its corresponding node in Tblue will be referred at as iblue ∈ J1, nK, thus
σ(i) = σblue(iblue). Moreover we show that BlueMemUsed(σ, i) = MemUsed(σblue, iblue) for each
node i ∈ J1, nK,:

� If color(i) = blue, node i is not changed in Tblue as described in Definition 2. Thus,
BlueMemReq(i) = MemReq(iblue) and the size of the files stored in the memory after iblue
has been processed is the same that the files stored in the blue memory after i has been
processed.

� If color(i) = red, then BlueMemReq(i) = 0 and no file is stored in the blue memory after i
has been processed. Besides, for the corresponding node iblue in Tblue, we have fiblue = 0 and
fj = 0 for each j ∈ Children(iblue),. Thus MemReq(iblue) = 0 and no file is stored in the
memory after iblue has been processed.

� If i is uncolored (communication node), then BlueMemReq(i) = fi. There are two sub-cases:

- If i is a communication node from a blue node to a red node, its processing will store
no file in the blue memory. According to the Definition 2, if jblue denotes the child of
iblue, we have fiblue = fi and fjblue = 0. Thus, MemReq(iblue) = fi and no file is stored
in the memory after iblue has been processed.

- If i is a communication node from a red node to a blue node, its processing will store
a file of size fi in the blue memory. According to the Definition 2, if jblue denotes the
child of iblue, we have fiblue = 0 and fjblue = fi. Thus, MemReq(iblue) = fi and a file of
size fi is stored in the memory after iblue has been processed.

During the whole process BlueMemReq(σ, i) = MemReq(σblue, iblue). Besides, the size of the files
stored in the blue memory after i has been processed and the size of the files stored in the memory
after iblue has been processed are equal. Thus BlueMemUsed(σ, i) = MemUsed(σblue, iblue) and
Mopt

blue(T ) = M∞
blue.

4.3 Joint minimization of both objectives

Since the traversal problem is NP-complete, it is natural to wonder whether there exist approx-
imation algorithms. In this section, we prove that there does not exist schedules that approxi-
mates both minimum memories Mopt

blue(T ) and Mopt
red (T ) within arbitrary constant factors for any

bi-colored tree T . Since the (usually unfeasible) point of the Pareto diagram with coordinates
(Mopt

blue(T ),M
opt
red (T )) is sometimes called the Zenith, this result amounts to proving that there

exists no Zenith-approximation.

Definition 3. Given a bi-colored tree T , we can construct the corresponding uncolored tree Tunco
by turning every colored node of T into an uncolored node, as depicted in Figure 5. We let
Mopt

unco(Tunco) be the minimal amount of memory needed to process Tunco.

Lemma 1. Given a bi-colored tree T with n nodes, consider an arbitrary traversal σ of T that
requires an amount of red memory equal to Mσ

red(T ) and an amount of blue memory equal to
Mσ

blue(T ). Then necessarily:

Mσ
red(T ) +Mσ

blue(T ) ≥Mopt
unco(Tunco)

Proof. Let Tunco be the uncolored tree corresponding to T as described in Definition 3. We observe
that T and Tunco have the same tasks, hence to any feasible traversal σ of T , we can associate
the corresponding feasible traversal σu of Tunco, and reciprocally. For any node i ∈ J1, nK of T , its
corresponding node in Tunco will be referred to as iu ∈ J1, nK, thus σ(i) = σu(iu).

We will show that

∀i ∈ J1, nK, BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σu, iu)

We proceed along the following case analysis:
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Figure 5: A bi-colored tree T and its corresponding uncolored tree Tunco in Definition 3.

� If color(i) = blue, then BlueMemReq(i) = MemReq(iu) and RedMemReq(i) = 0. Besides, no
file is stored in the red memory after i has been processed; also, the size of the files stored
in the blue memory after i has been processed is the same as that of the files stored in the
memory after iu has been processed.

� If color(i) = red, then RedMemReq(i) = MemReq(iu) and BlueMemReq(i) = 0. Besides, no
file is stored in the blue memory after i has been processed; also, the size of the files stored in
the red memory after i has been processed is the same as that the files stored in the memory
after iu has been processed.

� If i is uncolored (communication node), then BlueMemReq(i) + RedMemReq(i) = 2 × fi =
MemReq(iu). Besides, a file of size fi will be stored in one of the two memories after i has
been processed, and a file of size fi will be stored in the memory after iu has been processed.

During the whole traversal, we thus have BlueMemReq(σ, i)+RedMemReq(σ, i) = MemReq(σu, iu).
The sum of the size of the files stored in the blue memory and of the size of the files stored in the
red memory after i has been processed is always equal to the size of the files stored in the memory
after iu has been processed. Thus BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σu, iu).
This means that:

Mopt
unco(Tunco) ≤Mσu

unco(Tunco)

= max
i

MemUsed(σu, i)

= max
i
{BlueMemUsed(σ, i) + RedMemUsed(σ, i)}

≤ max
i
{BlueMemUsed(σ, i)}+max

i
{RedMemUsed(σ, i)}

= Mσ
red(T ) +Mσ

blue(T )

which concludes the proof.

Theorem 3. There exists no algorithm that is both an α-approximation for blue memory peak
minimization and a β-approximation for red memory peak minimization, when scheduling bi-
colored trees.
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Proof. To establish this result, we proceed by contradiction. We therefore assume that there is
an integer α, an integer β, and an algorithm A that processes any bi-colored tree T using a blue
peak memory that is not greater than α times the optimal blue peak memory Mopt

blue(T ) and using

a red peak memory that is not greater than β times the optimal red peak memory Mopt
red (T ). To

derive the contradiction, we use the family of tree (Tn)n∈N depicted on Figure 6. Tn is defined
recursively using Tn−1. To help the reader to visualize Tn, Figure 7 represents T2.

� ∀n ≥ 2,Mopt
blue(Tn) = 3

Consider the traversal σblue that processes Tn as follows:

- If n = 0, σblue processes the node B0

- If n > 0, σblue processes the nodes Bn and Cn. Then T
(left)
n−1 is processed recursively.

Nodes Rn and C ′
n follow. And finally T

(right)
n−1 is processed recursively.

At each step of this process, the traversal σblue does not use more than 3 units of blue
memory. Since BlueMemReq(Bn−1) = 3, this proves that Mopt

blue(Tn) = 3.

� ∀n ≥ 1,Mopt
red(Tn) = 2

Consider the traversal σred that processes Tn as follows. At step k:

- If k = 0, σred processes the node B0

- If k > 0, σred processes the nodes Bk. Then T
(left)
k−1 is processed recursively. Nodes Ck,

Rk and C ′
k follow. And finally T

(right)
k−1 is processed recursively.

At each step of this process, the traversal σred does not use more than 2 units of red memory.
Since RedMemReq(Rn) = 2, this proves that Mopt

red (Tn) = 2.

� Let T unco
n be the uncolored tree corresponding to Tn as describe in Definition 3 andMopt

unco(T
unco
n )

the minimum amount of memory required to execute it. T unco
2 is depicted in Figure 7. We

now prove by induction that Mopt
unco(T

unco
n ) = n + 2 for n ≥ 2. As show in [12], post-

order traversals are optimal for peak memory minimization of uncolored trees with unit
costs. Besides, all post-order traversals of T unco

n require the same amount of memory. Thus
Mopt

unco(T
unco
n ) = Mopt

unco(T
unco
n−1 ) + 1 for n ≥ 2. Since Mopt

unco(T
unco
1 ) = 2, we have the result.

By hypothesis, algorithmA can process any Tn withMA
blue(Tn) ≤ α.Mopt

blue(Tn) = 3α andMA
red(Tn) ≤

β.Mopt
red (Tn) = 2β. Let n0 = ⌈3α+ 2β⌉, we have:

MA
blue(Tn0) +MA

red(Tn0
) ≤ 3α+ 2β

< ⌈3α+ 2β⌉+ 2

= Mopt
unco(T

unco
n0

)

This contradicts Lemma 1, which means that such an algorithm A cannot exist.

5 Depth-first traversals

In this section, we study depth-first traversals, which are the equivalent of post-order traversals
for in-trees. In the context of single-memory trees, depth-first traversals are known to be sub-
optimal [12]: worse, their memory usage can be arbitrarily high as compared to that of the optimal
solution [8]. Clearly, these negative results remain true in a two-memory framework (simply assume
that one memory is infinite). Still, depth-first traversals are a natural heuristic for traversing tree
graphs, and they enjoy a simple implementation and memory management. As such, they are the
most commonly used traversals in actual sparse solvers.
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We show how to compute the optimal depth-first traversal in Section 5.1. It turns out that this
traversal is optimal for both memory usages (among all depth-first traversals). However, depth-
first traversals give no freedom on scheduling communication nodes. If we allow a communication
node to be processed not immediately before its sub-tree, the ordering of the processing of the
sub-trees and of the communication nodes will create a trade-off between both memory usages
and will allow to decrease them. This leads us to define sloppy depth-first traversals, which we
study in Section 5.2.

5.1 Strict depth-first traversals

Definition 4. A depth-first traversal is a feasible traversal that processes all nodes of a tree T by
processing the root and, then, recursively processing all sub-trees. Hence, in a post-order traversal,
after processing a node i, the whole sub-tree rooted at i is completely processed before any other
node that does not belong to this sub-tree. Formally, a feasible traversal σ of the tree T with n
nodes is a depth-first traversal if and only if for each node r ∈ T , with two children i ∈ Children(r)
and j ∈ Children(r), we have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

Algorithm 1: BestDepthFirstTraversal(T )

root ← the root of T ;
S ← 0;
(σ,Mblue,M red)← ([root] , 0, 0);
for i ∈ Children(root) do

(σi, M
blue
i , M red

i ) ← BestDepthFirstTraversal(Ti);
S ← S + fi

if color(root) = blue then

for i ∈ Children(root) in the increasing order of Mblue
i − fi do

σ ← [σ;σi];
S ← S − fi;
Mblue ← max(Mblue, S +Mblue

i );

M red ← maxi∈Children(root) M
red
i ;

if color(root) = red then

for i ∈ Children(root) in the increasing order of M red
i − fi do

σ ← [σ;σi];
S ← S − fi;
M red ← max(M red, S +M red

i );

Mblue ← maxi∈Children(root) M
blue
i ;

if color(root) = black then
i ← the unique child of root;
σ ← [σ;σi];
if color(i) = blue then

Mblue ←Mblue
i ;

M red ← max(fi,M
red
i );

if color(i) = red then

M red ←M red
i ;

Mblue ← max(fi,M
blue
i );

return (σ, Mblue, M red);

Theorem 4. Algorithm 1 returns the best depth-first traversal σ of T for both the blue and the
red memories and the amount of memory Mblue and M red used by σ.
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Proof. Finding the best depth-first traversal of T amounts to find the best ordering to process
every sub-tree. We prove that the order of the recursive processes at each step in Algorithm 1 is
the best for both memories.

� At a given step, if the root of the sub-tree is a communication node, we have no choice, and
we recursively process the sub-tree rooted at its unique child.

� At a given step, if the root r of the sub-tree is blue, then, the amount of red memory
used to process this sub-tree will not depend on the order of the recursive processes to
complete the sub-tree. Indeed, for each i ∈ Children(r), after the recursive process of Ti,
Sblue ← Sblue\{i} and Sred is unchanged. Then, independently of the order of the recursive
processes of every Ti, the amount of red memory required to process T with a depth-first
traversal will be RedMemReq(T ) = maxi∈Children(root) RedMemReq(Ti). Thus, at this step,
we can only optimize the amount of blue memory. To do so, we use the optimal post-order
traversal for uncolored trees provided by Liu [11]. This post-order traversal leads the best
depth-first traversal for the blue memory at this step, and, thus, to the best depth-first
traversal for both memories.

� At a given step, if the root of the sub-tree is red, the proof is similar.

5.2 Sloppy depth-first traversals

As explained in the previous section, the order of the sub-trees processed in a strict depth-first
traversal does not influence the maximum usage of red memory for a tree rooted at a blue node,
and vice versa. Thus, in a strict depth-first traversal, both memory usages are independent. This
comes from the fact that strict depth-first traversals give no freedom on communications. If we
allow a communication node to be processed not immediately before its sub-tree, the ordering of
the processing of the sub-trees and of the communication nodes will create a trade-off between
both memory usages. This leads us to define sloppy depth-first traversals.

Definition 5. A sloppy depth-first traversal is a feasible traversal similar to a depth-first traversal
except that, after processing a communication node i, the whole sub-tree rooted at i is not nec-
essarily processed immediately. We define SloppyChildren(i) as being the set of thc red and blue
children of i, together with the children of the uncolored children (these represent the set of the
computational children of i). Formally, a feasible traversal σ of the tree T with n nodes is a sloppy
depth-first traversal if and only if for each node r ∈ T , and for any two nodes i ∈ Children(r) and
j ∈ SloppyChildren(r) ∪ Children(r), we have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

Definition 6 (TwoMemorySloppyDepthFirstTraversal). Given a tree T with n nodes,
and two fixed amount of memory Mred and Mblue, is there a sloppy depth-first traversal of the
tree that need an amount of red memory inferior to Mred and an amount of blue memory inferior
to Mblue?

Theorem 5. The TwoMemorySloppyDepthFirstTraversal problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks (of both
colors, and including communication nodes) executed by the schedule.

To establish the completeness, we use a reduction to the 2-Partition problem [3]. Consider an
instance Inst1 of the 2-Partition problem, with n integers {a1, a2, ..., an ‖

∑

i ai = S}. Consider
an instance Inst2 of the decision problem, consisting in the tree depicted on Figure 8. We set
Mred = 2S for the red tasks and Mblue = 2S for the blue tasks. The construction of Inst2 is
polynomial in the size of Inst1.
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Figure 8: Tree corresponding to Inst2 in the proof of Theorem 5

Assume first that Inst2 has a solution. Any sloppy depth-first traversal must start with the
root Broot. After it has been processed, 2S units of the blue memory are occupied, which means
that this memory is full. Let i0 be the index of the first red task Ri to be executed. We observe
that Bbig and Bfree have to be processed before Ri0 , otherwise the process of C ′

i0
(which occurs

right after the process of Ri0 in a sloppy depth-first traversal) would violate the Mblue bound on
the blue memory. Thus, the only tasks that can be processed right after Broot and before Bbig are
the communication tasks Ci. Let I be the set of the indices of the tasks Ci executed before Bbig.

� If
∑

i∈I ai < S
2 , when the scheduler decides to execute Bbig, the blue memory would be

filled with
∑

i/∈I ai + S units. Thus the process of Bbig will use BlueMemUsed(Bbig) =
∑

i/∈I ai + S + 3
2S > 2S units of blue memory, which violates the Mblue bound.

� If
∑

i∈I ai >
S
2 , when the scheduler decides to execute Ri0 , the red memory would be filled

with at least
∑

i∈I ai >
S
2 units. Thus the process ofRi0 will use at least RedMemUsed(Ri0) ≥

∑

i∈I ai +
3
2S > 2S units of red memory, which violates the Mred bound.

Thus,
∑

i∈I ai =
S
2 , which implies that Inst1 has a solution.

Suppose now that Inst1 has a solution I. According to the previous reasoning, the sequence of
nodes Broot; ∀i ∈ I, Ci; Bbig and Bfree can be executed without violating the bounds on memories.
After this sequence, there are S

2 units occupied in the blue memory and in the red one. Now, one
of the red node Ri0 with i0 ∈ I can be executed without violating the Mred bound, followed by C ′

i0
and Bi0 . Moreover, we can process every Ri, C

′
i and Bi ∀i ∈ I. Then, one is able to execute every

branch of Ci down to Bi for all i /∈ I, which means that Inst2 has a sloppy depth-first solution
and concludes our proof.
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6 Heuristics

In addition to depth-first traversals, in this section we present three traversal heuristics which aim
at minimizing both the blue and red memories. We start with the simplest heuristic and then
proceed to more elaborate ones.

Working with the uncolored tree: LiuUncolored We have shown that the problemTwoM-

emoryTraversal of finding a tree-traversal that minimizes both memory is NP-complete. How-
ever, when a single memory is considered, the problem becomes polynomial. It is thus natural to
adapt the optimal algorithm for the single memory problem proposed by Liu [12], to bi-colored
trees. The simplest adaptation amounts to considering the tree as uncolored, that is, as if all
tasks were processed on the same computing unit with a single memory. On this uncolored tree,
illustrated on Figure 4, we apply Liu’s optimal algorithm. This heuristic computes an optimal
traversal for the sum of the blue and the red memories. The intuition is that minimizing the sum
of both memories will lead to a good memory usage for each of them. This heuristic is referred to
as LiuUncolored in the following.

Refining the sum with weights: LiuWeightedSum One problem with the previous heuristic
is that both memories may not be equivalent. For example, it may well be the case that (input
and output) files used by red tasks are much larger that those used by blue tasks. In such a case,
minimizing the sum may lead to a much larger amount of blue memory that would be needed, for
example, in an optimal traversal for the blue memory. This behavior is not desirable, and we can
slightly change the heuristic to (try to) avoid this. We first compute the optimal amount of blue
(respectively red) memory that is needed to traverse the tree, as described in Section 4.2, and we
denote this amount by M∞

blue (resp. M∞
red). Then, we normalize the memory weight of edges as

follows: the memory weight fi of the input edge of node i becomes fi/M
∞
blue if this edge is blue,

and fi/M
∞
red if it is red. Then, the corresponding uncolored tree is considered and Liu’s optimal

algorithm is applied, as in the previous heuristic. This heuristic is called LiuWeightedSum in
the following.

LiuWeightedMax In the previous heuristics, when applying Liu’s algorithm to modified trees,
we minimize the sum (or the weighted sum) of both memory amounts. However, to get closer
to the Zenith point, we would like to minimize the maximum, or rather the weighted maximum
of both memories. It is possible to modify Liu’s algorithm for this new goal. Of course, the
resulting algorithm is not optimal anymore (which is coherent with the NP-completeness of the
TwoMemoryTraversal problem), but it can be used as a heuristic. Liu’s algorithm is a re-
cursive algorithm which, at each node r, combines optimal traversals for the subtrees rooted at
the children of r into an optimal traversal for the whole tree rooted in r. The combination relies
on the definition of “hill-valley” segments: segments are defined by splitting a subtree schedule
at different local minima (the “valley”). These segments are then sorted by non-increasing “hill”
minus “valley” values (hill being the local peak memory of the segment). Liu [12] proves that such
a combination of optimal subtree schedules leads to a global optimal schedule. In this heuristic,
we replace the memory criterion used to define of the schedule by the maximum weighted mem-

ory: max(BlueMemUsed(σ,i)

Mopt
blue(T )

, RedMemUsed(σ,i)

Mopt
red (T )

); we keep the same algorithm for combining subtree

schedules. Of course, the proof of optimality does not hold for this new metric. This heuristic is
called LiuWeightedMax in the following.

7 Experiments

In this section, we experimentally compare the memory usage of the heuristics proposed in the
previous sections for TwoMemoryTraversal. For each heuristic among BestDepthFirst,
LiuUncolored, LiuWeightedSum and LiuWeightedMax, we compute the amount of blue
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and red memory needed by the traversal. These values are compared to the minimum amount
of blue (respectively red) memory needed when the red (resp. blue) memory is unbounded, as
described in Section 4.2.

All heuristics have been implemented in C. The optimal value traversal for a single memory
is computed using Liu’s algorithm [12] written as a recursive code. Source code for all the algo-
rithms, heuristics and experiments is publicly available at http://perso.ens-lyon.fr/julien.
herrmann/.

7.1 Data Sets

We use four different sets of trees, ranging from actual trees arising in sparse matrix computations
to random trees. We first describe the data set of uncolored trees which serves as a basis for our
realistic colored trees.

Real uncolored trees for Cholesky factorization. The UncoloredRealTrees data set
contains assembly trees for a set of sparse matrices obtained from the University of Florida Sparse
Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/). The chosen matrices sat-
isfy the following assertions: not binary, not corresponding to a graph, square, having a symmetric
pattern, a number of rows between 20,000 and 2,000,000, a number of non-zeros per row at least
equal to 2.5, and a total number of non-zeros at most equal to 5,000,000; and each chosen matrix
has the largest number of non-zeros among the matrices in its group satisfying the previous as-
sertions. At the time of testing, there were 76 matrices satisfying these properties. We first order
the matrices using MeTiS [9] (through the MeshPart toolbox [5]) and amd (available in Matlab),
and then build the corresponding elimination trees using the symbfact routine of Matlab. We
also perform a relaxed node amalgamation on these elimination trees to create assembly trees. We
have created a large set of instances by allowing 1, 2, 4, and 16 (if more than 1.6 × 105 nodes)
relaxed amalgamations per node. At the end we compute memory weights and processing times
to accurately simulate the matrix factorization: we compute the memory weight ni of a node as
η2 +2η(µ− 1), where η is the number of nodes amalgamated, and µ is the number of non-zeros in
the column of the Cholesky factor of the matrix which is associated with the highest node (in the
starting elimination tree); the processing cost wi of a node is defined as 2/3η3+η2(µ−1)+η(µ−1)2

(these terms corresponds to one Gaussian elimination, two multiplications of a triangular η × η
matrix with a η× (µ− 1) matrix, and one multiplication of a (µ− 1)× η matrix with a η× (µ− 1)
matrix). Edge weights fi are computed as (µ− 1)2.

The resulting 644 trees contains from 2, 000 to 1, 000, 000 uncolored nodes. Their depth ranges
from 12 to 70, 000, and their maximum degree ranges from 2 to 175, 000.

Real colored trees for Cholesky factorization. The RealTrees data set is obtained by
coloring every tree in UncoloredRealTrees in a meaningful way. Every tree node in Uncol-

oredRealTrees represents a step of a (η+µ−1)× (η+µ−1) matrix factorization, with a panel
of size η. In practice, at each step of the factorization, we aim at processing the GEMM routine
(which corresponds to the multiplication of the (µ − 1) × η matrix with the η × (µ − 1) matrix)
on the GPU. Indeed, GEMMs can reach up to 99% of the GPU’s theoretical peak performance.
Thus, we split every node into two tasks: a red one corresponding to the GEMM routine, and a
blue one corresponding to the rest of the factorization.

Real trees with random colors. The RandomColoredRealTrees data set is obtained
by randomly coloring every node of every tree in UncoloredRealTrees with an equiprobable
choice in the set {red, blue}. Then, communication nodes are added between nodes of different
colors.

Real trees with random weights and colors. The RandomWeightedRealTrees data
set is obtained by randomly coloring every node of every tree in UncoloredRealTrees with an
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equiprobable choice in the set {red, blue} and by randomly changing the nodes and edges weight.
Every ni is set to a random integer value in J1, N

500K where N is the size of the tree, and every fi
is set to a random integer value in J1, NK. Then, communication nodes are added between nodes
of different colors.

Random trees TheRandomTrees data set is a set of 500 trees with random structure, random
weights and random colors. Each tree has been generated as follows: the tree size N is randomly
chosen in J1, 32767K. Then, for each node i ∈ J1, NK, its parent is randomly chosen in J1, i − 1K.
The values of its ni and fi are uniformly chosen in J1, 3276K, and its color is randomly chosen
between red and blue. Then, communication nodes are added between nodes of different colors.

7.2 Results

In this section, we evaluate the performance of the four heuristics introduced above in terms of
memory requirement. For every tree T in the data sets, and for every traversal σ returned by the
heuristics, we compute the maximum relative overhead of each memory compared to the optimal

value: MaxRelativeOverhead(σ, T ) = max(
Mσ

blue(T )−Mopt
blue(T )

Mopt
blue(T )

,
Mσ

red(T )−Mopt
red (T )

Mopt
red (T )

). As explained in

Section 3, the optimal for both memories (also called Zenith) is a theoretical bound that may
be not reachable. Thus, for a tree T , there does not necessarily exist a traversal σ such that
MaxRelativeOverhead(σ, T ) = 0. Detailed statistics for the four heuristics are given in Table 2.
We make the following observations:

� For the RealTrees data set, BestDepthFirst statistically gives the best results, with an
average relative overhead equal to 6.3%,; it reaches the Zenith for 55.6% of the trees. This
comes from the particular structure of the assembly trees. Indeed, most nodes in these assem-
bly trees have an input file smaller than the sum of their output files: fi ≤

∑

j∈Children(i) fj .
This means that when we execute a node, it is more likely to be profitable to execute the
whole subtree straightaway. This is why BestDepthFirst turns out to be the best heuristic
for the RealTrees and the RandomColoredRealTrees data sets. Besides, LiuUncol-

ored is very close to the BestDepthFirst performances on the RealTrees data set, with
an average relative overhead equal to 6.6%. On the contrary, LiuWeightedMax appears to
be not well-designed for the structure of the assembly trees in RealTrees, with an average
relative overhead equal to 8.4%; it can require up to 2.16 times the optimal memory for some
trees.

� The structure of the trees in the RandomColoredRealTrees data set is close to the trees
in RealTrees, and the results are similar. BestDepthFirst statistically gives the best
results with an average relative overhead equal to 3.8%, and LiuUncolored provides the
second best results with relative overhead equal to 5.2%.

� For the RandomWeightedRealTrees data set, file sizes are randomized, and Best-

DepthFirst is no longer adapted to such trees; it provides an average relative overhead
equal to 20.9%. Much worse, LiuUncolored can require up to 5.13 times the optimal
memory for some trees in RandomWeightedRealTrees. On the contrary, LiuWeight-

edMax appears to be well-designed for the trees in RandomWeightedRealTrees, with
an average relative overhead two times lower than that of BestDepthFirst.

� The results for the RandomTrees data confirm that LiuWeightedMax is the best of the
four heuristics when dealing with trees with random structure. It gives the best results with
an average relative overhead equal to 3.4%, and exhibits a relative overhead inferior to 10%
for 92% of the random trees.

Figures 10, 11 and 12 provide complete results of the simulations. In each figure, a point repre-
sents one scenario (one heuristic executed on one tree of the data set). To better visualize the
distribution, we also plot a ”cross” for each heuristic: the center of this cross is the average result,

RR n° 8226



Tree traversals with task-memory affinities 24

Data set Algorithm Avg. Max. Std. Dev. Frac. of Opt. Frac. ≤ 10%

RealTrees

Depth-first 6.3% 64.4% 8.0% 55.6% 73.7%
LiuWeightedMax 8.4% 116.5% 9.9% 49.8% 68.3%
LiuWeightedSum 7.5% 76.0% 9.1% 52.8% 70.6%
LiuUncolored 6.6% 60.0% 8.3% 55.0% 73.8%

RandomColoredRealTrees

Depth-first 3.8% 44.0% 5.4% 67.2% 83.9%
LiuWeightedMax 6.0% 52.3% 7.2% 51.4% 75.5%
LiuWeightedSum 5.9% 52.6% 7.3% 54.1% 75.8%
LiuUncolored 5.2% 52.6% 6.9% 59.7% 78.0%

RandomWeightedRealTrees

Depth-first 20.9% 90.3% 18.6% 28.3% 44.6%
LiuWeightedMax 10.2% 88.2% 13.6% 39.8% 72.7%
LiuWeightedSum 13.4% 107.5% 16.3% 37.7% 65.2%
LiuUncolored 15.4% 413.1% 17.0% 26.5% 60.2%

RandomTrees

Depth-first 4.5% 28.2% 4.3% 33.4% 83.4%
LiuWeightedMax 3.4% 23.5% 3.2% 26.0% 92.0%
LiuWeightedSum 4.4% 21.4% 3.7% 20.6% 86.0%
LiuUncolored 6.8% 32.9% 4.8% 14.6% 72.6%

Table 2: Statistics on the maximum relative overhead for each memory required by the four
heuristics (comparison with the Zenith). Frac. of Opt. (respectively Frac ≤ 10%) counts the
fractions of cases when the heuristics achieve the Zenith (resp. has a degradation not larger than
10%).

while the branches represent the scope of each objective between the 10th and 90th percentile of
the distribution.

For the RealTrees data set, as explained above, we colored in red the nodes corresponding
to the GEMM routine, and in blue the others nodes. Thus, every red nodes appears to have a
communication node as father, and an unique communication node as child. With this structure,
all of our heuristics gives the optimal memory usage for the red memory. This specification fits
well with practice, where one aims at not overloading the GPU memory. Figure 9 provides the
detailed distribution of the blue memory usage for the heuristics.

These figures exhibit the same trends for average values as observed in Table 2. For the
RandomColoredRealTrees data set in Figure 10, and for the RandomTrees data set in
Figure 12, we see that many traversals returned by the heuristics are optimal for at least one
of the two memories, whereas for the RandomWeightedRealTrees data set in Figure 11,
many more of the returned traversals are non-optimal for either memory. We also observe that
LiuUncolored can require around 5 times the optimal red memory in two scenarios. These
results show that the performance of the heuristics are strongly related to the structure of the trees.
While BestDepthFirst achieves nice results for the realistic assembly trees, LiuWeightedMax

appears to be a better solution when dealing with more random structures.

8 Conclusion

In this paper, we have studied the bi-criteria memory minimization problem that arises when
traversing a task tree for a system composed of two different computing units with their own
memory. After relating this problem to the well-studied one-memory problem, we have proved that
the search for an optimal solution, as well as the design of approximation algorithms guaranteed
for both memories are NP-complete problems. We have then proposed several heuristics, among
which is the optimal depth-first traversal.

Admittedly, the platform model used in this paper is a simplified one, but this was the key to
derive complexity results in this initial study. In future work, the model should be refined in several
directions, so as to more accurately account for all the characteristics of hybrid platforms (using
both CPUs and GPUs); however, this is not expected to change the NP-completeness results. A
first step towards a more realistic model would be to include computation times for the tasks, and
to try to minimize both the processing time of the total tree, and the amount of blue and red
memories needed. A second step would consist in providing each task with two different running
times rather than a color, and to give the ability for the scheduler to choose the computing unit for
each task based on running time and memory. Given the complexity of the problem in the simple
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Figure 9: Percentage distribution of the blue memory usage for the RealTrees data set.
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Figure 10: Distribution of each memory usage for the RandomColoredRealTrees data set.
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Figure 11: Distribution of each memory usage for the RandomWeightedRealTrees data set.
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Figure 12: Distribution of each memory usage for the RandomTrees data set.
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case, we do not expect to find approximation algorithms, but rather to design simple heuristics
(as BestDepthFirst) that may be optimal under restrictive conditions, either on the traversal
type or on the tree structure.
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