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Chief among the mathematical functions that symbolic computation aims to
handle are those one can fully describe by integer matrices. Integer matrices are
merely tables of whole numbers. The simplest example is the function which
maps variable x to, say, 3 times x: here the associated matrix has a single
entry, equal to number 3. On the other hand, real life applications such as
cryptography often yield integer matrices with thousands of rows and columns
and thus millions of entries. As arrays of numbers, matrices are particularly easy
to store in a computer; as representations of the mathematical functions used
for modelling, they encode the intrinsic properties of the underlying problem.
Hence, among all the scientific problems that are to be solved by computers,
many of them eventually reduce to matrix formulation.

Solving such problems requires that computers can combine matrices arith-
metically, in the same way as solving simple algebraic equations such as 2x+3=4
is governed by combinations of whole numbers. So perhaps the easiest way to
think about matrices in computer science is as a generalization of numbers:
just like with numbers, what we can do with two matrices of the same size—
that is, the same number of rows and columns—includes addition, subtraction,
multiplication and, sometimes, division. The result of any of these arithmetic
operations is another matrix with the same size. Having more than one row
and one column further allows for some matrix operations that do not exist for
numbers: given a matrix, one may transform it into mathematically equivalent
matrices whose all non-diagonal entries are equal to zero or whose entries are,
in a sense, “as small as possible”. We usually call these simplifying operations
diagonalization and reduction, respectively. Other operations return some im-
portant mathematical characteristics of the matrix that are not immediately
visible, like its volume (determinant) or a particular relation between its rows
or its columns (linear system solving). Matrix computations usually refer to all
to these operations when performed by a computer. It is worth noting at this
stage that instead of numbers, matrices may often contain functions of one vari-
able called polynomials: polynomials look very similar to whole numbers but
are, perhaps surprisingly, easier to handle mathematically. In this case we say
polynomial matrices and polynomial matrix computations.

Now assume that you want your computer to perform one of these opera-
tions exactly for some large matrices. Before starting, a most legitimate and
fundamental question is then “How hard is this computation?” Most of today’s
computers are “binary computers” and every computation ultimately reduces
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to a sequence of logical operations on zeros and ones called bit operations. So,
by hardness or complexity of a computation, we mean an idea of the number of
bit operations associated with this particular computation as a function of the
input size: when doubling the size of the input matrix, will producing the exact
result take roughly twice as long as before (linear complexity)? Or should this
be expected to be four times slower (quadratic complexity) or eight times slower
(cubic complexity) or even more? (We recall that 4 = 2 times 2 = 2 squared
and that 8 = 2 times 2 times 2 = 2 cubed.)

In a sense, complexity indicates the intrinsic computational hardness of ma-
trix operations, independently of solution methods (or algorithms) and software
and hardware. For example, what is the complexity of adding two matrices of
size n? Matrix addition is defined entry-wise: for each row and column, we
add the two entries lying on the same row and column. Since the result is a
matrix of size n whose all entries may differ from the input values, every ad-
dition algorithm requires at least n squared operations on whole numbers and
the complexity of matrix addition is thus lower bounded by n squared. On the
other hand, the definition of matrix addition yields an addition algorithm that
costs no more than n squared additions of whole numbers and the complexity
is upper bounded by n squared. The two bounds coincide and matrix addition
has quadratic complexity.

Of course the same holds for matrix subtraction. But for every other opera-
tion, even the fastest known algorithms still yield upper bounds much different
from output size-based lower bounds. In particular, evaluating the complexity
of matrix multiplication alone seems to be a formidable task. Unlike addition,
the classic definition of matrix multiplication yields an algorithm that costs n
cubed operations on numbers of the same order of magnitude as the input num-
bers. This upper bound was improved for the first time in 1969 when Strassen
discovered a product formula whose cost is about n to the power w with w
strictly between 2 and 3. Since then, exponent w has been decreased to less
than 2.39 but no method is known where w = 2. However, right after Strassen’s
breakthrough, multiplication became central to the understanding of the com-
plexity of all other matrix operations: during the thirty years that followed,
algorithms for performing matrix operations have been designed that rely only
on matrix products (and on other a priori cheaper operations such as addition
and subtraction). The reason for this approach is twofold: we get tighter upper
bounds for the complexity of all matrix computations every time w is decreased;
it may also give a way to relate complexities without having to know their ex-
act value. For example, if the number of matrix products is “small” and if the
magnitude of the size and of the entries of the matrices involved have the same
order as those of the input then such computations are not essentially harder

than matrix multiplication. Here by “small” we mean a function of the input
matrix size n that grows extremely slowly as n increases. Such a function is
called a polylogarithm.

Unfortunately, until last year, incorporating matrix multiplication typically
meant too many products. Thus it was not known whether some matrix com-
putations are reduceable to matrix multiplication. At ISSAC 2002, however,
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Storjohann showed that, for polynomial matrices, diagonalization, determinant
computation and linear system solving are not essentially harder than matrix
multiplication. He got his result by designing clever algorithms that return a
provably correct answer while keeping the number of matrix products small
enough. This breakthrough has opened up a new path in the study of how the
complexities of matrix computations relate to each other. Are there other ma-
trix operations that can be performed within roughly the same amount of time
as matrix multiplication? Conversely, is matrix multiplication not essentially
harder than some other operations?

This year, at ISSAC 2003, we shall give answers in both directions for poly-
nomial matrices. First, we prove that reduction is not essentially harder than
matrix multiplication by combining Storjohann’s technique with Villard’s ear-
lier work on this particular operation. Then we show that the converse of one of
Storjohann’s results holds true: in fact, matrix multiplication is not essentially
harder than computing the determinant. (This second result might be a little
surprising at first sight since, as a volume, the determinant is a single number.)

Yet we are still far from a global view of the complexity of polynomial matrix
computations, and even less is known in the more difficult case of integer matri-
ces. In particular, are there operations other than computing the determinant
that essentially have the same complexity as matrix multiplication? Are some
of them—such as linear system solving—strictly easier? We don’t know. On
the other hand we do know of operations being much harder, such as dividing
a matrix by another matrix. The result of matrix division is a matrix of the
same size whose entries are in general not whole numbers but fractions like 2/5
or -7/3. Unfortunately the upper and lower parts of each of these n squared
fractions usually have n times as many digits as the entries of the two matrix
operands. The complexity of matrix division is thus lower bounded by n cubed
which, as seen before, is itself lower bounded by the complexity of matrix multi-
plication. Hence another open problem is to design a division algorithm whose
cost matches this cubic lower bound.

It is important to note that most of the above complexity results have been
obtained via the design and analysis of concrete algorithms you can implement
quite easily into any computer algebra system. How to make these algorithms
practically fast in order to reflect the theory is thus another challenge for re-
searchers in this field.
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