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Abstract Building a meaningful model of biological regulatory network is
usually done by specifying the components (e.g. the genes) and their inter-
actions, by guessing the values of parameters, by comparing the predicted
behaviors to the observed ones, and by modifying in a trial-error process both
architecture and parameters in order to reach an optimal fitness. We propose
here a different approach to construct and analyze biological models avoiding
the trial-error part, where structure and dynamics are represented as formal
constraints. We apply the method to Hopfield-like networks, a formalism often
used in both neural and regulatory networks modeling. The aim is to char-
acterize automatically the set of all models consistent with all the available
knowledge (about structure and behavior). The available knowledge is formal-
ized into formal constraints. These last are compiled into Boolean formula in
conjunctive normal form (CNF) and then submitted to a Boolean satisfiability
solver. This approach allows to formulate a wide range of queries, expressed in
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a high level language, and possibly integrating formalized intuitions. In order
to explore its potential, we use it to find cycles for 3-nodes networks and to de-
termine the flower morphogenesis regulatory network of Arabidopsis thaliana.
Applications of this technique are numerous and concern the building of mod-
els from data as well as the design of biological networks possessing specified
behaviors.

Keywords Regulatory networks · Hopfield-like networks · Biological model
building · Constraint-based programming · Arabidopsis thaliana

1 Introduction

Most biological processes imply regulatory relationships between proteins
and genes at the cellular level, or between cells at the tissue level. Such sys-
tems are represented as interaction graphs composed of nodes representing the
components of the system (genes, proteins, cells) linked together by directed
arrows indicating the relationships between them.
However, the building of a model of biological regulatory network depends
principally on two types of knowledge: structural and behavioral (or dynami-
cal) knowledge. Structural knowledge (who are the actors, and who influences
who?) can be extracted in a number of ways, e.g. via two-hybrid screening to
identify protein-protein interactions or genetic experiments to find epistasis.
Behavioral knowledge is directly inferred by observing patterns of expression
of molecular markers in different cellular contexts. It corresponds to the overall
genetic behavior (gene expression profile“) to which the cells of living organisms
converge, and that generates their proteomes and subsequently their pheno-
types. For example one can observe that gene g is expressed in cell type T1

at a certain level whilst absent in cell type T2. When designing a regulatory
network, the choice of the modeler – which is correlated with the time and
resources he can spend – will drive the needs in one type of knowledge, the
other type or both types. Some models are preferentially based only on struc-
tural knowledge. One can of course simulate the behaviors of all the models
describing a regulatory network and check which models reproduce the experi-
mentally observed expression patterns. This is only possible when the number
of models is small (reasonably below tens of billions models) as in (Giacoman-
tonio and Goodhill 2010). In (Ben-Amor et al 2009), the authors analyze the
fluorescence intensity of some genetic markers and infer the local structure of
the 4 genes that induce the periodic spatial pattern needed for feather morpho-
genesis. Recently other authors (Gowda et al 2009) determined the structure
of an interaction graph by measuring the correlation of gene expressions be-
tween consecutive time steps. The same idea of ”directional correlation” had
been previously proposed in (Demongeot et al 2003; Aracena et al 2003) and a
pure logical inference method about the structure of the undirected version of
the interactions graph had been described in (Aracena and Demongeot 2004).
Other models are principally based on and emphasize the behaviors of the
system given a certain network topology. The weights of the interactions are
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adjusted to best fit a desired behavior. This adjustment is ensured by a learn-
ing process, as it is the case in soft computing when designing artificial neural
networks.
The available data can also be a mix of structural and behavioral knowledge
with different levels of abstraction, which can vary gradually from qualita-
tive to quantitative levels. Mendoza and Alvarez-Buylla (1998) started with
both types of knowledge when they modeled the biological network that reg-
ulates the flower morphogenesis of Arabidopsis thaliana. They used genetic
algorithms to select a network having behaviors which fitted a desired one. A
common strategy is to build up a tentative model of the system of interest
(using only ’local‘ data, i.e., binary interactions and values of kinetic parame-
ters), then use the data of observed behaviors to compare them with predicted
behaviors and validate or falsify the model. This strategy uses the available
knowledge in two levels ; upstream and downstream the modeling process.
Structural knowledge is integrated upstream and behaviors downstream. This
considers that the behaviors are more reliable than the structural knowledge
because this strategy converges toward the behavioral observations by modi-
fying the structure of the network. Such consideration is a consequence of this
decomposition and not a deliberate choice of the modeler. Moreover, the con-
vergence is ensured through the maximization of a fitness function which may
lead in some cases to a local minimum. One of our objectives here is to over-
ride this decomposition by considering all the knowledge and hypotheses at the
same level of processing, where knowledge is no longer functionally divided but
entirely integrated upstream. A formalization that considers initial data and
hypotheses as constraints ensures such unification. Moreover, it renders the
non-uniqueness of biological modeling by providing the complete set of consis-
tent instantiations (solutions). In the context of modeling, the constraint-based
approach entails a profound change of perspective: (i) As said above the rela-
tionship between structure and behaviors is not unidirectional anymore (from
structure to behaviors when performing simulations/predictions). Structure
and behaviors are both represented as constraints and exploited jointly by
constraint solvers. This allows a much greater power of expression and flexi-
bility in the type of questions which can be addressed. (ii) A set of constraints
can have many solutions (under constrained problem), in which case there is
no reason to single-out one solution.
This is in contrast with the traditional approach where a ’representative’ so-
lution is used, and from which predictions are made. Keeping in mind at all
times that we are dealing with solution sets is an important change of mind-
set, and opens the way to the development of new functionalities. One can
for example use the current knowledge to prioritize the next experiments to
perform in order to reduce the set of solutions.
When using the constraint-based approach, a failure means that the hypothe-
ses and the raw data are contradictory. In other words there is a contradiction
between the assumed structure of the network and the observed or desired
behaviors. It is important to realize that such result is obtained in one stroke
without having to run numerous simulations in order to test all combinations
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of bounded integer parameter values. The algorithm uses constraint propa-
gation mechanisms which accelerate considerably the processing until getting
a result (compared to the calculus over all possible simulations). In case of
inconsistency one has to revise the model by putting into question some hy-
potheses defining the model. For example some interactions or genes have to
be removed from the network (erroneous observations), or on the contrary new
genes have to be added to the network (lack of information). If the pool of
constraints is consistent it means that uncertain knowledge like intuitions and
hypotheses can be kept in the pool. When more observations become available,
new constraints are added to the pool, and consequently inconsistencies may
appear, leading to a new phase of revision.
Whilst presenting some analogies, the present approach (reverse engineering)
and model checking may not be confused. Model checking works indeed with
only one model and does not imply any reverse engineering method like con-
straint propagation. Model checking is a technique that allows the automatic
validation of discrete automata (mostly in computer sciences, electronics). It
verifies if a given instantiated model (the system itself or an abstraction of it)
satisfies a specification often formulated in terms of temporal logic (e.g. CTL).
For example, it can be used successfully to find the number of attractors in
some well defined boolean network based models of regulatory network, as de-
scribed by Dubrova and Teslenko (2011). We do not address the same problem.
Ours is larger: given a parameterized family of models, we want to find the so-
lution set of instantiated models (models in which the parameters are defined)
that all satisfy a given interaction graph and a specification. We obtain by
this way the set of existing and satisfying models given a necessary structure
(common to all models of the solution set) and behaviour of the network, both
knowledges expressed in a language like CTL but more expressive. We also
aim to automatically revise the initial model if it presents any incoherence
(no solutions obtained). Our approach allows to infer properties (initially not
known) which are common to all coherent models (see for example the study
of the effects of signs in Section 4.1). The study of the instantiated models in
the solution set, if not too large, allows to extract conclusions on one or several
models of network satisfying the knowledge on the structure and behaviour.
The main work done here concerns the formalization of a variant of Hop-
field networks (Hopfield 1982), which we call here Hopfield-like networks, in
the form of constraints on integers. Boolean automata networks are among
the most used models in biological modeling of regulatory networks. Initially,
they were introduced by Kauffman to study global properties of genetic nets
(Kauffman 1969). To model a particular regulatory phenomenon, we chose a –
Boolean – thresholded automaton. This model is similar to Hopfield’s model
(Hopfield 1982) but it is discrete and more general in the sense that there are
no conditions of symmetry imposed on the weights and self-interaction loops
are authorized (as illustrated in Figure 1). Two other notable advantages of
Hopfield-like networks are their intuitive notation for biologists and the pos-
sibility to take into account different update schedules (parallel, sequential,
block-parallel). In the present paper, we only focus on parallel update sched-
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ules but constraints can also be written to take into account the different
update schedules. Two applications are presented in the Results section to
illustrate the feasibility and the potentiality of this approach: the first one is
inspired from theoretical questions, the second one is a biological inference
problem. We demonstrate here the capacity of this method to help biologists
to design consistent regulatory networks given a certain knowledge about the
system of interest.

2 Formalization of Hopfield-like networks

A Hopfield network (as a Hopfield-like network) H is composed of nodes
(e.g. genes) gi, i ∈ 1..n, associated to thresholds θi, and of oriented edges
from node gj to gi associated to weights wij . The vector of thresholds is noted
θH , and the matrix of weights is noted WH (Figure 1). In classical Hopfield
networks, self-interactions (edges from gi to gi) are forbidden, the matrix of
weights is symmetric, and the parameters θi and wij take real values. In our
case of study, Hopfield-like networks, no restriction is made on the network
topology and the parameters θi and wij take signed integer values limited to
an interval [−Max..Max]. We represent a Hopfield network H by the couple
(WH , θH).

θ1

θ2 θ3

w31

w23

w12

w13

w32

w21

w11

w22 w33

WH =





w11 w12 w13

w21 w22 w23

w31 w32 w33



 , θH =





θ1
θ2
θ3





Fig. 1 Example of Hopfield-like network H fully connected with 3 nodes.

A state S of H is a vector 〈S1, S2, ..., Sn〉 where Si ∈ {0, 1} is the value
of the node gi in S. The behaviors of H are ruled by a state transition graph
containing 2n network states Sk. In the following, node indices will be noted as
subscripts whereas network state indices as superscripts (e.g. Sk

i is the value

of gi in state Sk). The existence of a transition Sk
։ Sk′

between the network
states, noted transition(H,Sk, Sk′

), is defined by Definition 1.

Definition 1 : transition(H,Sk, Sk′

) ⇔
∧

i [Sk′

i ⇔ [(
∑

j wij .S
k
j ) > θi]]
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where WH =





. . .

. wij .

. . .



 , θH =





.
θi
.





Note that, each state Sk has a unique successor Sk′

. The component Sk′

i which

represents the value of gi in Sk′

is determined by the truth value of the in-
equality [(

∑

j wij .S
k
j ) > θi]). This is the formalization of Hopfield-like network

synchronous updating: the next state of a node gi is computed by comparing
the sum of effective weights to its threshold θi.

Example 1 We consider the example of Figure 1 with the following valuation

of parameters:

WH =





−1 −2 −1
1 −1 2
−2 2 3



 , θH =





−3
0
0





By applying the Definition 1 for the state S = 110, we obtain its successor

state S′ = 000 of S with S′
1 ⇔ −1 − 2 > −3, S′

2 ⇔ 1 − 1 > 0, and S′
3 ⇔

−2 + 2 > 0.
We give in Figure 2 all the transitions: depending on its initial state, the

system reaches a fixed point or a cycle. We note that each of those two has its

own attraction basin, i.e. the set of initial states leading to it.

〈0, 0, 0〉 〈1, 0, 0〉

〈0, 1, 0〉

〈1, 1, 0〉

〈0, 0, 1〉 〈1, 0, 1〉

〈0, 1, 1〉 〈1, 1, 1〉

Fig. 2 Graph of transitions for the Example 1. Note the two attractors of the network:
one fixed point 〈0, 1, 1〉 and one cycle [〈0, 0, 0〉, 〈1, 0, 0〉, 〈1, 1, 0〉].

We also introduce a relation path(H, p, q) which is true if the list of q states
P is a path in H.

Definition 2 : path(H,P, q) ⇔
∧

k∈1..q−1
transition(H,P k, P k+1)

where P k is the kth element of P
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Definition 1 defines the formal relation between the existence of a transition
Sk

։ Sk′

and the variables defining the network structure θi’s and wij ’s. It
is the building block to express queries involving paths and attractors. The
aim of the game is thus to find a way to express a given problem in terms of
constraints using the relation path/3 (3 is for the arity, number of parameters,
of the relation). The constraint set is then submitted to constraint solvers
which implements deduction rules (constraint propagation in the jargon) and
enumeration strategies.

3 Implementation of Hopfield-like networks

The implementation uses the environment SICStus Prolog, where the con-
straints, directly over bounded integer variables, are encoded via the library
CLP(FD) (Constraint Logic Programming (Finite Domain)) (Carlsson et al
1997; Apt 2003).

The form of Definition 1 is actually not suitable for efficient constraint
propagation. We present in Section 3.1 its translation to a more suitable form
for finite domain solvers.

Moreover, we can use the finite domain solver in cooperation with a SAT
solver, depending on the complexity of the queries. The SAT solver used is
MiniSAT (Eén and Sörensson 2004; Eén and Biere 2005). This second type
of solvers is extremely efficient at computing the satisfiability of very large
formulas in Conjunctive Normal Form (CNF) which is the standard format
for the classical Boolean satisfiability problem (SAT).

We present some necessary relations in Section 3.2 to permit an easy trans-
lation into CNF formulas.

3.1 Translation for finite domain solver

In order to obtain, from Definition 1, a formalization directly suitable for
finite domain solvers, we need to introduce some intermediate variables with
finite domains. The Proposition 1, using these intermediate variables, gives
the mean to implement into constraints the relation transition/3 for finite
domain solvers.

Let gi be one of the network nodes, and let Li be the subset of nodes gj
that have an influence on gi (in other words there is an arc from gj to gi). Let
us note |Li| the cardinal of Li. From the viewpoint of node gi, there are 2|Li|

possible contexts, depending on the state of the |Li| influencing nodes: The
contexts are the equivalence classes of network states according the equiva-
lence “The active predessors of gi are the same”. The contexts are a set of
subsets of network states.

To represent the context of each node gi, we introduce the notion of neigh-
boring state li, an index made of |Li| binary digits, which is a sequence of
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state values of the influencing nodes. The order of the digits in li follows the
numbering of the nodes. We denote Li,li the subset of Li containing the nodes
whose state value is equal to 1 in li. Each li defines a unique set Li,li . We
call Contexti,li the context defined by li, that is the set network states whose
values are in accordance with li.

Definition 1 contains the expression
∑

j∈Li
wij .S

k
j , corresponding to at

most 2|Li| possible sums
∑

j wij , depending on which nodes j ∈ Li are ac-

tive (Sk
j = 1). To represent the summation

∑

j∈Li
wij .S

k
j we introduce 2|Li|

independent variables Sumi,li =
∑

j∈Li,li

wij

Example 2 Let us consider the example given in Figure 1, but where the arc

from node 2 to 1 is suppressed. Then L1 = {1, 3}. So, there are 22 = 4 possible

subsets L1,l1 , and consequently 4 new variables. For example:

- with l1 = 11, we have L1,11 = {1, 3}, Context1,11 = {101, 111} and Sum1,11 =
w11 + w13,

- with l1 = 01, we have L1,01 = {3}, Context1,01 = {001, 011} and Sum1,01 =
w13.

We introduce a second type of variables InContextk
i,li

with Boolean domains,

which are true when state Sk belongs to Contexti,li . These variables are such
that InContextk

i,li
= (

∧

j∈Li,li

Sk
j ) ∧ (

∧

j′∈Li\Li,li

¬Sk
j′)

Given a node gi, a state Sk belongs to one and only one context. For
each state Sk, there are 2|Li| InContextki,li variables, i.e. one for each context

of gi. The union of the 2|Li| contexts Contexti,li associated to a node gi is
equal to the whole state space. When a question contains several formal states
S1, ..., Sk, ..., Sk′

, ..., as it is the case usually (see below), the network state
index k specifies which state the InContextki,li variable is defined from.

Proposition 1 :

transition(H,Sk, Sk′

) ⇔
∧

i

∧

li
[InContextki,li ⇒ [Sk′

i ⇔ (Sumi,li > θi)]]

Let us note by (1) the formula
∧

i [Sk′

i ⇔ [(
∑

j wij .S
k
j ) > θi]] of Definition

1 and by (2) the formula
∧

i

∧

li
[InContextki,li ⇒ [Sk′

i ⇔ (Sumi,li > θi)]]
of Proposition 1. (1) and (2) are equivalent.
In fact, let gi a component. Let Sk a state. Any state belongs to one and
only one context. Let li the context for Sk. So InContextki,li = 1, and for any

li′ 6= li we have InContextki,li′ = 0. Due to the definition of InContextki,li , we

obtain Sumi,li =
∑

j∈Li,li

wij =
∑

j wij .S
k
j . This equality is noted (3).

Suppose that (1) is true. Then Sk′

i ⇔ (Sumi,li > θi) (using equality (3)). As
this equivalence is the sole to be true among the choice of contexts in (2) (for
any li′ 6= li we have InContextki,li′ = 0), then (2) is true.

Suppose that (2) is true. As InContextki,li = 1 and for any li′ 6= li we have

InContextki,li′ = 0, then Sk′

i ⇔ (
∑

j wij .S
k
j > θi) (using equality (3)). So (1)

is true.
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3.2 Translation for SAT solver

In (Corblin et al 2010, 2011), we present our translation into CNF of several
types of constraints over unsigned integer and Booleans (in particular reified
constraints as B ⇔ X > Y ). The idea, to fill the gap between expression
in Proposition 1 and a CNF expression, is to reify constraints and treat only
unsigned integer variables.

The expression in Proposition 1 contains constraints having arity superior
or equal to 3, but they can be decomposed into binary or ternary constraints
by a process called reification. For example, the 4-arity constraint (X < Y ⇐
Z < Y ) is equivalent to (B1 ⇔ X < Y ) ∧ (B2 ⇔ Z < Y ) ∧ (B1 ⇐ B2), a
conjunction of binary and ternary constraints involving two additional Boolean
variables.

In order to express our problem with unsigned integer variables only, we
represent signed integer variables, Sumi,li and θi, by couples (σ, V ), where σ is
a Boolean which is true if and only if the represented signed integer is positive
or null, and V is the absolute value of the represented signed integer.

In addition, two new relations have to be defined: the one defined in Def-
inition 3, to formalize the addition of two signed integers X and Y (used to
translate into CNF Sumi,li , and the other defined in Definition 5, to translate
into CNF “B equivalent to X > Y ” with X and Y two signed integers, which
is necessary to translate into CNF Sumi,li > θi.

Definition 3 :

c sgn AddXY Z(X,Y,XpY ) ⇔ X = (σX , VX)∧
Y = (σY , VY )∧
XpY = (σXpY , VXpY )∧
Ble ⇔ VX ≤ VY ∧
Bge ⇔ VX ≥ VY ∧
minmax B le(VX , VY , Ble,MinVX ,VY

,MaxVX ,VY
)∧

V 1XpY = VX + VY ∧
V 2XpY = MaxVX ,VY

−MinVX ,VY
∧

(σX ⇔ σY ) ⇒ (VXpY = V 1XpY )∧
(σX < σY ) ⇒ (VXpY = V 2XpY )∧
σXpY ⇔ (σX ∧ σY ) ∨ (σX ∧ Bge) ∨ (σY ∧ Ble)

The relation c sgn AddXY Z(X,Y,XpY ) is true if and only if X, Y and XpY
are signed integer variables represented by couples such as (σ, V ), and XpY is
equal to X + Y .

Definition 4 :

minmax B le(VX , VY , Ble,Min,Max) ⇔ (Ble ∧ Min = VX ∧ Max = VY )∨
(¬ Ble ∧ Min = VY ∧ Max = VX)



10 Hedi Ben Amor et al.

The relation minmax B le(VX , VY , Ble,Min,Max) is true if and only if Min
(resp. Max) is the minimum (resp. maximum) of VX and VY .

Definition 5 :

c sgn SupXY B(X,Y, b) ⇔ X = (σX , VX)∧
Y = (σY , VY )∧
b ⇔
(σX ∧ ¬ σY )∨
(σX ∧ VX > VY )∨
(¬ σY ∧ VX < VY )

The relation c sgn SupXY B(X,Y,B) is true if and only if X and Y are signed
integer variables represented by couples such as (σ, V ), and B is a Boolean
equivalent to X > Y .

4 Results

In this section, two examples of questions are described. All concern Hopfield-
like networks having a parallel update schedule. Different update schedules
like sequential or block-parallel can be taken into account by adding new con-
straints. For all the queries presented below, the set of all consistent instanti-
ations (solutions) is obtained.

4.1 Finding cycles for 3-nodes networks

A typical behavior of a network one could obtain is the existence of a –
limit – cycle of a given length p, i.e. having a given number of transitions.
Definition 6 defines the relation cycle(H,C, p) true if and only if C is a cycle
of length p produced by the network H.

Definition 6 :

cycle(H,C, p) ⇔
C = [S1, S2, ..., Sp+1] ∧ path(H,C, p) ∧ all diff([S1, ..., Sp]) ∧ S1 = Sp+1

where all diff(L) is true if and only if all the states of the list L are all
differents.

Networks satisfying the relation cycle/3 defined in Definition 6 exist. An ex-
ample of solution for a 3-node network and in the case of p = 2n (the length
of the cycle is equal to the number of possibles states, i.e. p = 23 = 8) is given
in Figure 3.
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W =





-1 1 1
-1 1 -1
1 1 1



 , θ =





0
-1
1





〈0, 0, 0〉 〈0, 1, 0〉 〈1, 1, 0〉

〈0, 1, 1〉

〈1, 1, 1〉〈1, 0, 1〉〈0, 0, 1〉

〈1, 0, 0〉

Fig. 3 Example of a network having all its possible states in a single cycle of
size 8.

In Question 1 we ask if there is a cycle of length p for a network with only
positive values for the network parameters wi,j and θi.

Question 1 : Is there a Hopfield-like networks H = (W, θ) coherent with the

formula positive(W ) ∧ positive(θ) ∧ cycle(H,C, p) ?

where positive(M) is true if and only if M is a matrix of positive or null in-
tegers.

The answer of Question 1 is ”yes”. In fact, there are several solutions (in
terms of parameter values). One is given in the low part of Figure 4.

θj < 0 θj ≥ 0 ∀ θj
Wij ≤ 0 2,3,6,8 No cycle 2,3,6,8

Wij ≥ 0 No cycle 2 ,3 2,3

∀ Wij 2..8 2,3,4,5,6,8 2..8

W =





1 1 2
0 0 0
1 1 0





θ =





1
0
0





θ1

θ2 θ3

w31

w32

w13

w12

w11

Fig. 4 Lengths of existing cycles depending on the signs of weights and thresh-
olds for a 3-node network. The system, in the low part, corresponds to the case Wij ≥ 0
and θj ≥ 0 (highlighted in the table) and has one cycle of length 2 (between states 100 and
001).

Now, we explore deeply the effect of the sign of parameters over the length
of cycles by adpating the Question 1 (modification of p and the constraints



12 Hedi Ben Amor et al.

on the signs). The results on the length of existing cycles as a function of the
sign of weights and thresholds are given in the top part of Figure 4.

Given a network of size 3, no cycles are obtained when the weights are
positive and the thresholds negative or when the weight are negative and the
thresholds positive.

R. Thomas conjectured (Thomas 1980) that a negative circuit is a necessary
condition for stable periodicity. This conjecture has been formally proven in
the context of discrete networks (Remy et al 2008; Richard 2010). In the case
of Remy et al (2008) the strategy can be deduces from the attractive cycle,
and in the case of Richard (2010) the considered dynamics is the asynchronous
one which is undeterministic.

The example given in the low part of Figure 4 shows that it is not verified
in the case of a parallel update strategy.

In case of unsatisfiability (no cycle), the constraints on the signs must
be removed to find cycles. This answer allows us to make a bridge between
structure and behaviors in the whole set of networks.

4.2 Defining the regulatory network of Arabidopsis thaliana morphogenesis

Finding models of regulatory networks can be easily and very efficiently
done via constraints (Corblin et al 2009). In (Mendoza and Alvarez-Buylla
1998), the authors have designed a model, noted here HA, of the morpho-
genesis of the Arabidopsis thaliana flower by using a genetic algorithm on a
population of networks. They kept the solution that – in this context of ge-
netic algorithm – best fitted the experimental observations and was consistent
with an existing model called the ABC model (Coen and Meyerowitz 1991).
The parameters, obtained by Mendoza and Alvarez-Buylla (1998), and the
behaviors of HA, which we have computed algorithmically in the case of a
parallel update strategy, are shown in Figure 5. Here, we aim to obtain the set
of similar networks having at least the behaviors described in (Mendoza and
Alvarez-Buylla 1998) by using constraint–based methods.

We synthesize in the form of constraints the whole knowledge that these
authors used. They started with structural knowledge which consists of in-
equalities between the weights of gene interactions involved in the regulation
of the flower morphogenesis. Then they checked the obtained simulated behav-
iors with behavioral knowledge from the ABC Model (Coen and Meyerowitz
1991). The ABC model postulates that 3 types of activities specify the dif-
ferent organs of the flower; activity A specifies sepals, coupled activities A

and B specify petals, coupled activities B and C specify stamens and finally
activity C specifies carpels. In the Arabidopsis case, A corresponds to the ex-
pression of the gene AP1 (4th node), B to the joint expression of AP3 and PI

(10th and 11th nodes) and C to the expression of AG (9th node). In addition
to this knowledge, the authors introduced the graph of existing interactions
(with non null weights). We give in Figure 6 this network. Moreover, we note
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Behaviors of HA :

# Attractor Cell Type SAB
F1 000100000000 Sepal 168
F2 000000001000 Carpel 24
F3 000100010110 Petal 248
F4 000000011110 Stamen 8
F5 110000010110 Mutant 384
F6 110000000000 No Flower 384
C1 000000000000 — 192

000100001000
C2 000100001110 — 272

000000010000
C3 110000000110 — 1280

110000010000
C4 000100000110 — 800

000100010000
C5 000000001110 — 32

000000011000
C6 000000000110 — 176

000100011000
C7 000100011110 — 128

000000010110

Fig. 5 Parameters of the network HA and its behaviors. HA is the network obtained
by Mendoza and Alvarez-Buylla (1998). The column SAB contains the size of the attraction
basins.

structure mendoza(H) the relation which defines the Hopfield-like network
with 12 nodes of this figure with the notations of weights used originaly by
the authors Mendoza and Alvarez-Buylla (1998) (for example a for the weight
of edge from node 3 onto node 4).

It has to be said that many constraints introduced by Mendoza and Alvarez-
Buylla (1998) are not meaningful. These authors indeed compared weights that
should not be compared because they do not belong to interactions over the
same target gene. For example, weights a and b correspond to interactions
that do not concern the same target: interaction a acts on node 4 while b acts
on node 3. On the contrary weights e and n can be compared because both
act on the same node 11. However, we understand what these authors wanted
to express: probably as many biologists, they were tempted to describe in the
form of weights the relative strengths of interactions between genes acting on
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different targets, because this make sense in biological terms. A gene g1 can
be much more sensitive to the action of the product of another one g2, than
another third gene g3 would be for the products of a fourth one g4, and this
because of different levels of expression of genes g2 and g4, and because of the
different efficiencies of the promoters of g1 and g3.

To be in agreement with Hopfield’s formalism, we only kept the weight
comparisons that are permitted (see Constraint 1), i.e. those that are in the
same line in the interaction matrix.
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Fig. 6 The graph of interactions of the Arabidopsis thaliana flower morphogenesis
regulatory network (cf. Mendoza and Alvarez-Buylla (1998)). The solid (resp.
dashed) edges are activations (resp. inhibitions). The letters on arcs identify the weights
(these variables are used in Definition 1). According to the authors, the genes from 1 to 12
correspond, in the same order, to EMF1, TFL1, LFY, AP1, CAL, LUG, UFO, BFU (the
AND function), AG, AP3, PI and SUP.

We define below : the structural knowledge in Constraint 1, the activities
associated to the ABC model in Constraint 2 and the behavioral knowledge
in Constraint 3

Constraint 1 :
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structure(H) ⇔ structure mendoza(H)∧

a > |o| ∧
b > l∧
d > |f | ∧
e > n ∧ e > |g| ∧
|h| > i∧
|p| > |q| ∧
u = 1∧
z = 1∧

θ1 = 0∧
θ6 = 0∧
θ7 = 0∧
θ12 = 0∧

θ8 = 1

In this definition we express the structural knowledge used by the authors
and we suppose that the thresholds of the sources are null. The sources are
the non-regulated genes (nodes 6,7,12) and the self-regulated gene (node 1).
Their threshold values are set to zero (θi = 0 for i ∈ {6, 7, 12, 1}) to avoid a
permanent expression because they are not regulated by other genes in the
network. The case of a permanent expression of the sources (boundaries) is
interesting but it corresponds to a robustness study towards noise and external
factors (Ben-Amor et al 2008, 2009). Therefore, it is out of our scope here.

The 8th node, stands for BFU (Boolean Function), was introduced in (Men-
doza and Alvarez-Buylla 1998) to represent the protein heterodimer formed by
AP3 (10th node) and PI (11th node). This complex forms an active transcrip-
tion factor. The authors formalized this by an AND logical function acting
back on AP3 and PI. The weights and parameters of this hypothetical pat-
tern in the network are well defined. This choice is made in such a way that
we can express the complex formation in a Hopfield model. All the weights
of the interactions in this pattern are equal to 1 and the threshold of activa-
tion of BFU is equal to 1. The introduction of this node implies the function
B (as defined above) to be the expression of BFU or (inclusively) the joint
expression of PI and AP3.

Note that some other inequalities are given by Mendoza and Alvarez-Buylla
(1998). They are given by the following formula: a > b∧ a > c∧ a > d∧ a > e∧
c > l ∧ d > m ∧ d > n ∧ e > d ∧ |f | > |g| ∧ |j| > k ∧ m > n ∧ |p| > |q| ∧ |s| >
|r|. They involve comparisons between interaction weights acting on differents
nodes. In this formalism (Hopfield-like network), the weight represents the
contribution of an entity to the activation of another. This should not be
confused with quantitative modeling. For this reason we omit them. Let’s call
them supplementary inequalities.

Constraint 2 :
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abc functionA(S) ⇔ S4

abc functionB(S) ⇔ S10 ∧ S11

abc functionC(S) ⇔ S9

These 3 constraints formalize the Boolean functions used in the ABC model
(see above).

Constraint 3 :

dynamic(H) ⇔ transition(H,S1, S1)∧ % Steady states
transition(H,S2, S2)∧
transition(H,S3, S3)∧
transition(H,S4, S4)∧

abc functionA(S
1)∧ % Sepal Attractor

¬ abc functionB(S
1)∧

¬ abc functionC(S
1)∧

abc functionA(S
2)∧ % Petal Attractor

abc functionB(S
2)∧

¬ abc functionC(S
2)∧

¬ abc functionA(S
3)∧ % Stamen Attractor

abc functionB(S
3)∧

abc functionC(S
3)∧

¬ abc functionA(S
4)∧ % Carpel Attractor

¬ abc functionB(S
4)∧

abc functionC(S
4)

In this constraint we express the behavioral knowledge used by the authors.
The constraint on the dynamics asks for at least 4 fixed points corresponding
to the 4 floral tissues, described by the ABC model : carpel, stamen, sepals
and petals. In Constraint 3 we chose to keep the possibility of additional fixed
points and cycles. It allows notably to find other ’tissues’ like a mutant ’no
flower’ as shown in Fig. 8. Of course, constraints on the behavior can be added
so that the behavior contains only 4 fixed points or no cycles (NB. we did not
find any existing solutions without cycles).

Question 2 : Is there at least one solution to the set of integrated data of

Constraints 1 and 3 ?

The answer of Question 2 is ”yes”. An example of solution, noted HS , is
given in the top part of Figure 8.

In fact, there are a lot of solutions (in terms of parameter values). Given
a certain range of parameter values (for example, weights can be chosen in
the interval [−10, 10] or in a smaller interval like [−2, 2]) the set of models
can be huge but a lot of solutions are equivalent. In fact, different values of
parameters (weights and thresholds) give the same transition graph.
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Two models are equivalent when they have the same behavior (set of tran-
sitions). This brings us to define the notion of ’minimal model’ in thresholded
integer automata networks. A model M defined by a vector of thresholds θ and
a matrix of weights W , is called minimal when there is no equivalent model
M ′ defined by a vector of thresholds θ′ and a matrix of weights W ′ and such
that ∃ i / |θ′i| < |θi| or |

∑

j w
′
ij | < |

∑

j wij |. An example is shown in Figure
7 and discussed in Example 3.

θ1

θ2 θ3

w31

w32

Fig. 7 The interaction graph of an AND Boolean function.

Example 3 Let us consider the following values of parameters w31 = w32 = 1,
θ1 = θ2 = 0 and θ3 = 1 for the network of Figure 7. These values give

us an AND Boolean function as well as the following ones w31 = w32 = 2,
θ1 = θ2 = 0 and θ3 = 2. One could not obtain another model of the AND

Boolean function with integer values of parameters smaller than the first ones.

For each model in the list of solutions, the algorithm attemps to reduce the
values of parameters without changing the dynamics. If this is possible the
model is eliminated because the solution with reduced parameter values is
also in the list. This algorithm is detailed in (Elena 2009; Glade et al 2011)

If we consider the structural knowledge (Defintion 1) but not the behav-
ioral knowledge (Defintion 3), and if we restrict the domains of wij and θi
to adequate intervals (for example, for any function having 3 arguments, the
weights are in the interval [−2; 2] and the thresholds [−3; 2]), we obtain more
than 37.3 1010 models (including equivalent ones).

If we add the dynamical knowledge (Constraint 3), there were 3360 models
(including equivalent ones). By applying the algorithm of model minimization
described before, we ensured that no equivalent models remained. We obtain,
from the previous 3360 models, a set of 532 models (without equivalent ones).

All models have behaviors which converge to the experimentally observed
stationary points or some showed other stationary points or showed different
cycles. Mendoza’s model does not belong to them because of the presence
in this model of unsatisfiable constraints. In fact, Mendoza added more in-
equalities (called supplementary inequalities) which are not relevant with the
formalism of thresholded automata networks. When one add these inequalities
as new constraints, this leads to an unsatisfiability. One can not find weight
values in [−2, 2] and threshold values in [−3, 2] satisfying all the inequalities
imposed by Mendoza and expect to have the ABC stationnary points.
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The modeler can then add additional criteria if for some reason fewer or
only one model must be chosen. For example one can decide to take as criterion
a score R defined as a function of the size of the basins of attraction of the
different tissues.

This criterion could be used as a measure of structural robustness (e.g.
under perturbations the larger the attraction basins the more stable it is in
general) (Glade et al 2011).

5 Conclusions

We showed in this article how various types of queries can be implemented
as sets of constraints: the initial knowledge is written naturally by using this
paradigm. Then, we are able to impose constraints concerning the behaviors
and the structure so as to get the set of models consistent with the biologi-
cal knowledge the biologists will increase by their observations and hypothesis
until reaching the uniqueness of the model.

In the real life, the initial knowledge and intuitions are incomplete, so we
will have more than one solution, although it is also possible to have a con-
tradiction, in which case there is no solution at all. In this investigation, we
used two sets of constraints. The first one contains all the constraints origi-
nally used by Mendoza. These constraints lead to a contradiction. The second
set of constraints is obtained by removing the supplementary inequalities (see
above). This second set is satisfiable and give us 532 possible instantiations of
parameters. By showing that there is no unique model of Arabidopsis thaliana
flower morphogenesis’ regulatory network, and that other possible behaviors
exist (additional cyclic attractors that could correspond to a rhythmic activity
in the cell), we aimed to warn biologists against a too-confident design of their
own models. Biologists often construct their models by following a trial-error
approach, that progressively converge to one of the plausible models which
sometimes becomes a reference in the literature. We point out that most of
the time their models are not unique. More, our technique constitutes a pow-
erful tool for inferring new properties (not thought before). These properties
concern essentially the interactions (existence, manner to compose interac-
tions) and conditions about one specific state of a path. We will work soon
over more general properties about dynamics (cycles synchronization, descrip-
tion of bassins of attraction). Moreover, the idea is to go toward experiment
design. With our approach, the idea is to infer scoring properties about per-
turbation and observation of the system. We have applied this approach to the
modeling of the nutritional stress network of E. coli using the formalism of R.
Thomas (Corblin et al 2009). Here we used, in this context of inverse meth-
ods, the formalism of Hopfield-like networks, which is a novelty in itself and
enlarges the field of applications. We aim now to adapt our technique to more
general logical formalisms that include thresholded automata but also other
simple (AND, OR, XOR, ...) or complex (modules composed of several logical
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WHS
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1 0 0 0 0 0 0 0 0 0 0 0
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Behaviors of HS :

# Attractor Cell Type SAB
F1 001111100000 Sepal 630
F2 000001101000 Carpel 42
F3 001111110110 Petal 126
F4 000001111110 Stamen 2
F5 110001100000 NoFlower 252
F6 101111100000 — 240
F7 101111110110 — 80
F8 110001110110 — 12
C1 001001100000 — 384

000111101000
C2 111001100000 — 564

100111100000
C3 000111101110 — 152

001001110000
C4 111001110000 — 284

100111100110
C5 001111100110 — 588

001111110000
C6 101111110000 — 320

101111100110
C7 110001110000 — 120

110001100110
C8 111001100110 — 108

100111110000
C9 000001101110 — 20

000001111000
C10 001001100110 — 72

000111111000
C11 000111111110 — 32

001001110110
C12 111001110110 — 68

100111110110

Fig. 8 Parameters of the network HS and its behaviors. HS is one selected instan-
tiation (based on the maximization of a robustness criterion R from the set of consistent
solutions we have obtained. R is the sum of the size of the attraction basins, in column SAB,
of the plant tissues minus the one of the ’no flower’ attractor).

functions) logical-based functions. The set of solutions may be huge, in which
case it is not possible nor useful to enumerate the solutions. In the case of the
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Arabidopsis thaliana flower morphogenesis regulatory network it was possible
to perform the enumeration and one can apply an additional optimization cri-
terion. As pointed out by Alon (2003), modularity and the use of recurring
circuit elements are structural principles shared by biological and engineered
networks. We can take advantage of these principles to reduce the number
of models or to design new Hopfield-like networks by using known recurring
modules as additional constraints. In addition, many models are very similar
and will not be differentiated unless having very precise biological data. We
will now develop criteria of classification and taxonomies by considering the
probabilities of transition between network states and the size of the basins of
attraction (robustness criteria), in order to extract the best instantiation (the
most centered) or showing the existence of classes of models having similar
structures. Some of them may be more similar than others like individuals
within species.

Finally, we focused on parallel updated networks, but more interesting and
biologically adapted update schedules that are not parallel (synchronous) or
sequential (asynchronous), but block-parallel or block-sequential have to be
considered now (Demongeot et al 2008). Of course, an effort has to be made
now to propose a set of graphical tools or high level languages to convert
biological data in an appropriated notation for existing SAT solvers, eventually
by the way of automatic annotations in electronic laboratory notebooks.
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