
Evaluation of Profiling Tools for the Acquisition of Time

Independent Traces

Frédéric Desprez, George Markomanolis, Frédéric Suter

To cite this version:

Frédéric Desprez, George Markomanolis, Frédéric Suter. Evaluation of Profiling Tools for the
Acquisition of Time Independent Traces. [Technical Report] RT-0437, INRIA. 2013, pp.43.
<hal-00842396v2>

HAL Id: hal-00842396

https://hal.inria.fr/hal-00842396v2

Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52311094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00842396v2

IS
S

N
0

2
4

9
-0

8
0

3
IS

R
N

IN
R

IA
/R

T-
-4

3
7

--
F

R
+

E
N

G

TECHNICAL

REPORT

N° 437
July 2013

Project-Team AVALON

Evaluation of Profiling

Tools for the Acquisition

of Time Independent

Traces

Frédéric Desprez, George S. Markomanolis, Frédéric Suter

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Evaluation of Pro�ling Tools for the
Acquisition of Time Independent Traces

Frédéric Desprez, George S. Markomanolis, Frédéric Suter∗

Project-Team AVALON

Technical Report n° 437 � July 2013 � 43 pages

Abstract: In a previous work, we proposed a framework for the o�-line simulation of MPI
applications. Its main originality with regard to the literature is to rely on time-independent
execution traces. Time-independent traces are an original way to estimate the performance of
parallel applications. To acquire time-independent traces of the execution of MPI applications, we
have to instrument them to log the necessary information. There exist many pro�ling tools which
can instrument an application. In this report we propose a scoring system that corresponds to our
framework speci�c requirements and evaluate the most well-known and open source pro�ling tools
according to it. Furthermore we introduce an original tool called Minimal Instrumentation that
was designed to ful�ll the requirements of our framework.

Key-words: MPI, Pro�ling tools, Traces, Performance Analysis, o�-line simulation

∗ IN2P3 Computing Center, CNRS, Lyon-Villeurbanne, France

Évaluation des outils de pro�ling pour l'acquisition de
traces d'exécution indépendantes du temps

Résumé : Dans nos précédents travaux, nous avons proposé un environnement pour la sim-
ulation hors-ligne d'applications MPI. Sa principale originalité vis-à-vis de la littérature est de
s'appuyer sur des traces d'exécution indépendantes du temps. Cela constitue une manière origi-
nale d'estimer les performances d'applications parallèles. Pour acquérir de telles traces indépen-
dantes du temps lors de l'exécution d'applications MPI, nous devns les instrumenter a�n de
recueillir toutes les informations nécessaires. Il existe de nombreux outils de pro�ling permet-
tant d'instrumenter une application. Dans ce rapport, nous proposons une méthode de notation
correspondant aux besoins spéci�ques de notre environnement et évaluons les outils de pro�ling
open-source les plus connus selon cette méthode. De plus, nous introduisons un outil origi-
nal, appelé Minimal Instrumentation, spécialement conçu pour répondre aux besoins de notre
environnement.

Mots-clés : MPI, outils de pro�ling, traces, analyse de performance, simulation hors-ligne

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 3

1 Introduction

Nowadays there are many performance measurement tools which can provide useful informa-
tion about the behavior of parallel applications and record the events that happen during the
execution. These tools can be categorized into tracing, pro�ling and statistical pro�ling or a
combination of these modes. The purpose of our framework is to predict the performance of a
parallel application by replaying their time-independent traces [1],[2] using the SimGrid simu-
lation toolkit [3]. Since version 3.3.3, SimGrid provides the option to describe an applicative
workload as time-independent trace. So it is necessary to instrument an application and convert
the measurement data into the appropriate format.

However, all this procedure raised an issue about which tool should be used for our framework.
Thus we needed to evaluate them in order to conclude which ones are appropriate according to
our requirements. In [1],[2], there is further information about the structure of the speci�c
time-independent traces.

The remaining of this document is organized as follows. Section 2 describes the requirements
of our framework that the pro�ling tools should comply with. Section 3 presents the evaluation
scheme with the criteria and score method. The Section 4 provides the evaluation of all the par-
ticipated tools. Finally we aggregate all the evaluation's scores in and we draw some conclusions
in Section 5.

2 Requirements

In order to extract the time-independent traces from an application is necessary to acquire some
speci�c data. For each event that occurs during the execution of an instrumented application,
either is a computation or a communication operation, the amount of the executed �ops or bytes
is saved respectively. In this point, we should mention that although for the experiments on
the current evaluations we measure the �ops, we can change this metric to another one such as
the total executed instructions which we used in [1],[2]. The main idea is to use a metric that
corresponds to the computation part of the application.

Afterwards the tracing of an application and the extraction of the time-independent traces,
we have a list of actions which correspond to the computations and the communications that
took part during the execution of the instrumented application. An action is described by the id
of the process that does the action, its type, e.g., a computation or a communication operation,
a volume of �ops or bytes and some parameters related to the action, such as the destination of
the message in the case of an MPI_Send call or the sender process id for an MPI_Recv call.

For example, the left hand side of Figure 1 shows a simple computation executed on a ring
of four processes. Each process computes one million �ops and send one million bytes to its
neighbor. The right hand side of this �gure displays the corresponding time-independent trace.

As we can observe, the following requirements should be applied on the execution traces in
order to be replayed:

� For compute parts, the trace should contain the id of the process that executes the instruc-
tions and the corresponding amount;

� For point-to-point communications, it is mandatory to know both the sender and the
receiver of the message, the type (MPI_Send, MPI_Recv, etc.) and the message size in
bytes;

� For collective communications, it is important to know at least the size of the message
and the type of the MPI communication (MPI_Broadcast, etc.). However, there are some

RT n° 437

4 Desprez, Markomanolis, Suter

for (i=0; i<4; i++){

if (myId == 0){

/* Compute 1M flops */

MPI_Send(1MB,..., (myId+1));

MPI_Recv(...);

} else {

MPI_Recv(...);

/* Compute 1M flops */

MPI_Send(1MB,...,

(myId+1)% nproc);

}

}

0 compute 1e6

0 send 1 1e6

0 recv 3 1e6

1 recv 0 1e6

1 compute 1e6

1 send 2 1e6

2 recv 1 1e6

2 compute 1e6

2 send 3 1e6

3 recv 2 1e6

3 compute 1e6

3 send 0 1e6

Figure 1: MPI code sample of some computation on a ring of processes (left) and its equivalent
time-independent trace (right).

MPI calls such as MPI_Allreduce, where the participating processes execute also some
computation, summing values or determining a maximum for example. In this case, it is
mandatory to log the number of executed instructions in order to simulate the compute
part;

� For synchronization calls such as MPI_Barrier, it is mandatory to know the MPI Commu-
nicator.

To select the tool that corresponds the most to the requirements expressed by our time-
independent traces replay framework, we conducted an evaluation based on the following criteria
and scoring method.

3 Evaluation Criteria and Scoring Method

Many pro�ling tools can provide useful information about the behavior of parallel applications
and record the events that occur during their execution. PAPI[4] provides access to the hardware
counters of a processor. In our prototype framework we measured the compute parts of an
application in numbers of �oating point operations (or �ops). However, using another counter,
such as the number of instructions, has no impact on the instrumentation overhead as long
as the chosen measure does not combine the values of several counters. To select the tool
that corresponds the most to the requirements expressed by our time-independent traces replay
framework, we conducted an evaluation based on the following criteria and scoring method:

3.1 Pro�ling Features

Many tools exist to pro�le parallel applications, i.e., get an idea of the behavior of the application
over its execution time. A classi�cation of these tools can be made following two axes. The �rst
distinction depends on the type of output produced by the considered tool. It can be either a
pro�le or a trace. A pro�le gives a higher view of the behavior of an application as information is
grouped according to a type of operation or to the call tree. A trace gives lower level information
as every event is logged without any aggregation. The second way to classify tools depends on the
kind of events they can be pro�led or traced. Such events are mainly related to communication

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 5

or computation. A third important parameter for this evaluation is the type of value associated
to each logged event, e.g., volumes or timings. Finally, the instrumentation of an application is
mandatory to obtain a pro�le or a trace. Such a instrumentation can be applied to the entire
application or to a speci�c block of code, e.g., , a particular function or a MPI call. In this
evaluation we give a higher score to tools o�ering an automatic instrumentation feature. Such a
feature lighten the burden of getting a pro�le from a user point of view.

With regard to the speci�c requirements of our time-independent trace replay framework, we
adopt the following scoring scheme for the Pro�ling feature criterion:

� Tracing → 2 points

� Information on communication → 1 point

� Information on computation → 1 point

� Information on communication volumes (in bytes) → 1 point

� Information on computation volumes (in �ops) → 1 point

� Automatic instrumentation of the complete application → 1 point

� Automatic instrumentation of a block of code → 1 point

Each tool can then obtain a score ranging from 0 to 8, the higher being the better.

3.2 Quality of Output

Pro�ling tools usually output the results in �les. These �les could be of various formats such
as plain text, XML, or binary formats. As mentioned earlier our objective is to convert such
output �les into set of actions to be replayed by SimGrid. The readability of the output �les is
then a very important requirement. However, tools that produce binary �les often come with an
application or an API to extract the required information. Finally we aim at replaying executions
that involve large numbers of processes. To ensure a good scalability, it is important that the
trace of each process is stored in a separate �le. Indeed a tool enforcing a unique trace �le for
the complete execution will have a poor scalability due to merging overhead. Moreover as we
intend to read these traces and extract the time-independent ones, if there is at least one trace
�le per node, then we can use the same number of nodes with a parallel application to achieve
our purpose. This means that even for large trace sizes we would be able to use many processors
and hard disks. So the conversion will be much faster than using just one node. Then we propose
the following scoring scheme (ranging from 0 to 3) for the Output quality criterion:

� Capacity to extract the required information → 1 point

� Direct extraction → 1 point

� One pass conversion → 1 point

3.3 Space and Time Overheads

As already mentioned, �les that contain all the relevant information are created during the
tracing or pro�ling of an application. Pro�ling provides aggregated data about an application.
This means for example that it records the number of times a function is called and its average
duration. Conversely tracing records each call independently with the timestamp and some other

RT n° 437

6 Desprez, Markomanolis, Suter

information which depend on what the user wants to measure. The source of the time overhead
for an instrumented application are the measurement of a PAPI counter on the processor, the
instrumentation of the MPI communications, and writing traces on disks. In terms of space
overhead, pro�ling obviously leads to smaller traces, as logged events are aggregated.

Then, for Space and Time overhead, we adopt the following scoring scheme:

� Overhead < 50% of the initial execution time → 2 points

� 50% < Overhead < 100% of the initial execution time → 1 point
The executed time of the instrumented application includes the time needed to write the
produced traces on disk.

� Linear increase of the overhead → 1 point

� Constant overhead → 2 points

� Linear decrease of the overhead → 3 points

� Linear increase of trace size with regard to problem size → 1 point

� Linear increase of trace size with regard to number of processes → 1 point

� Any special technique integrated in the tool to reduce the time overhead → 1 point

Each tool can then obtain a score ranging from 0 to 8, the higher being the better.

3.4 Software Quality

Sometimes installing a pro�ling tool is not just a simple procedure such as executing the com-
mands ./configure, make, and make install in a Linux environment. In some cases many �ags
should be added to install a tool, or dependencies on other tools should be taken under consider-
ation. Moreover the tools that are released under open source license are preferred compared to
the ones with any non open source license. Every tool should support a variety of hardware e.g.,
processors and software developed under various programming languages e.g., C/C++/Fortran
or implementations of the Message Passing Interface e.g., Mpich, OpenMPI. A well written man-
ual is also always helpful for both installing and using a tool. It also has to be up to date and
inform the user about new features. Finally it is desirable that the tool is maintained in order
to support all the new versions of MPI and PAPI. As result for the software quality criterion we
adopt the following scoring scheme:

� Ease of installation → 1 point

� Software dependencies → 1 point

� License → 1 point

� Hardware compatibility → 1 point

� Support of C/C++/Fortran programming language, 1 point for each → 3 points

� Compatibility with the major MPI implementations, i.e., Mpich or OpenMPI → 1 point

� Documentation → 1 point

� The project is active → 1 point

� There is a support team for this tool → 1 point

Each tool can then obtain a score ranging from 0 to 11, the higher being the better.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 7

4 Evaluation of Tracing and Pro�ling Tools

Based on the aforementioned evaluation criteria, the following tools: PAPI [4] which gives access
to the performance counters, PerfBench [5] which can instrument only compute parts, Perf-
Suite [6] that provides statistical pro�ling for the compute parts, MpiP [7] which can apply
statistical pro�ling for the MPI communication, MPE [8, 9] that instruments MPI commu-
nication operations, IPM [10] which supports pro�ling for MPI communication and compute
parts. The other tools provide both pro�ling for communication and compute parts: Extrae [11],
Scalasca [12], TAU [13], VampirTrace [14, 15], Score-P[16], and our contribution, called Minimal
Instrumentation. In this section, we only include the evaluations of a selected subset of tools
that are representative.

4.1 PAPI

The Performance Application Programming Interface (PAPI) is a tool developed at the University
of Tennessee, Knoxville [4]. We based our evaluation on the version 3.7.0 while the last one is
version 5.1.0. The di�erences with the last version are the support of multiple components,
or counting domains, the possibility of developing new components and the support of more
platforms. These recent additions do not impact our evaluation. PAPI relies on the hardware
performance counters that are available on most processors. It provides the connection between
software and hardware performance counters.

In computers, hardware performance counters, are a set of special-purpose registers built
into modern microprocessors to store the counts of hardware-related events within computer
systems. The counters are used for online monitoring of hardware events. Compare to software
pro�lers, hardware counters provide low-overhead access performance information related to
cpu's functional units, caches etc. PAPI can extract information from many hardware counters.
Depending on the brand of the processor, the number of available hardware counters does vary.
For instance on a AMD Opteron processor, PAPI can access 4 counters at the same moment
without activating multiplexing feature. Multiplexing is an option where the user can measure
more counters with a small loss of accuracy (usually less than 1%).

Properties of the events are presented in Listing 1. First the name of each hardware counter
is given along with its internal code. The Avail column declares if the event is available and the
Deriv column shows if this PAPI counter uses two or more counters to produce a value or there
is a hardware counter that provides this information directly. Finally, the last line presents how
many counters are available for the used processor.

So by using this metric, it is possible to create traces with the exact amount of executed �ops.

Pro�ling features With regard to the pro�ling features evaluation criterion, PAPI obtains
a score of 4 points. Indeed, PAPI o�ers tracing facilities (2 points), that allows us to obtain
information about the computation (1 point) and especially about volume for each computation
event (1 point). However, PAPI does not provide any mechanism to trace communication events
and there is no way to trace an application automatically using only PAPI. Nevertheless it is
possible to instrument an application manually.

Listing 2 presents an example of how to measure the number of �ops computed by a block of
code. In order to trace a block of code, some commands should be inserted at the beginning and
the end of it. If we want to measure the amount of executed �ops for the function ssor(itmax)

in the LU benchmark, the commands PAPIF_start and PAPIF_stop should be inserted as shown
in Listing 2.

RT n° 437

8 Desprez, Markomanolis, Suter

Listing 1: Events measured by PAPI on a AMD processor

The f o l l ow i ng correspond to f i e l d s in the PAPI_event_info_t s t r u c tu r e .

Name Code Avai l Deriv Desc r ip t i on (Note)
PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 i n s t r u c t i o n cache misse s
PAPI_L2_DCM 0x80000002 Yes No Level 2 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 i n s t r u c t i o n cache misse s
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses
PAPI_L3_ICM 0x80000005 No No Level 3 i n s t r u c t i o n cache misses
PAPI_L1_TCM 0x80000006 Yes Yes Leve l 1 cache misses
PAPI_L2_TCM 0x80000007 Yes No Level 2 cache misses
PAPI_L3_TCM 0x80000008 No No Level 3 cache misse s
. . .
PAPI_TOT_IIS 0x80000031 No No In s t r u c t i o n s i s su ed
PAPI_TOT_INS 0x80000032 Yes No I n s t r u c t i o n s completed
PAPI_INT_INS 0x80000033 No No In t eg e r f l o p s
PAPI_FP_INS 0x80000034 Yes No Float ing po int f l o p s
PAPI_LD_INS 0x80000035 No No Load f l o p s
PAPI_SR_INS 0x80000036 No No Store f l o p s
PAPI_BR_INS 0x80000037 Yes No Branch f l o p s
PAPI_VEC_INS 0x80000038 Yes No Vector /SIMD f l o p s
PAPI_RES_STL 0x80000039 Yes No Cycles s t a l l e d on any r e sou rc e
PAPI_FP_STAL 0x8000003a No No Cycles the FP uni t (s) are s t a l l e d
PAPI_TOT_CYC 0x8000003b Yes No Total c y c l e s
PAPI_LST_INS 0x8000003c No No Load/ s t o r e f l o p s completed
PAPI_SYC_INS 0x8000003d No No Synchron izat ion f l o p s completed
PAPI_L1_DCH 0x8000003e Yes Yes Level 1 data cache h i t s
PAPI_L2_DCH 0x8000003f Yes Yes Level 2 data cache h i t s
PAPI_L1_DCA 0x80000040 Yes No Level 1 data cache a c c e s s e s
PAPI_L2_DCA 0x80000041 Yes No Level 2 data cache a c c e s s e s
PAPI_L1_DCR 0x80000043 No No Level 1 data cache reads
PAPI_L2_DCR 0x80000044 No No Level 2 data cache reads
PAPI_L1_DCW 0x80000046 No No Level 1 data cache wr i t e s
PAPI_L2_DCW 0x80000047 No No Level 2 data cache wr i t e s
PAPI_L1_ICH 0x80000049 Yes Yes Level 1 i n s t r u c t i o n cache h i t s
PAPI_L2_ICH 0x8000004a Yes No Level 2 i n s t r u c t i o n cache h i t s
PAPI_L3_ICH 0x8000004b No No Level 3 i n s t r u c t i o n cache h i t s
PAPI_L1_ICA 0x8000004c Yes No Level 1 i n s t r u c t i o n cache a c c e s s e s
PAPI_L2_ICA 0x8000004d Yes No Level 2 i n s t r u c t i o n cache a c c e s s e s
PAPI_L3_ICA 0x8000004e No No Level 3 i n s t r u c t i o n cache a c c e s s e s
. . .
PAPI_FML_INS 0x80000061 Yes No Float ing po int mult ip ly f l o p s
PAPI_FAD_INS 0x80000062 Yes No Float ing po int add f l o p s
PAPI_FDV_INS 0x80000063 No No Float ing po int d i v id e f l o p s
PAPI_FSQ_INS 0x80000064 No No Float ing po int square root f l o p s
PAPI_FNV_INS 0x80000065 No No Float ing po int i nv e r s e f l o p s
PAPI_FP_OPS 0x80000066 Yes No Float ing po int ope ra t i on s (Counts
s p e cu l a t i v e adds and mu l t i p l i e s . Var iab le and h igher than t h e o r e t i c a l .)

−−−

Of 103 p o s s i b l e events , 36 are ava i l ab l e , o f which 8 are der ived .

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 9

Listing 2: Example of measuring the �ops for the ssor iteration.

0 integer events (1) , numevents , check , EventSet
1 integer Values (1)
2 character (15) ch , ch2
3 numevents=1
4 EventSet = PAPI_NULL
5 events (1) = PAPI_FP_OPS
6 check = PAPI_VER_CURRENT
7 ca l l PAPIf_library_init (check)
8 ca l l PAPIF_create_eventset (EventSet , check)
9 ca l l PAPIF_add_event (EventSet , events (1) , check)
10 ca l l PAPIF_start (EventSet , check)
11 ca l l s s o r (itmax)
12 ca l l PAPIF_stop(EventSet , Values , check)
13 write (ch , '(i10)') Values (1)
14 write (ch2 , '(i6)') id
15 write (* , 100) tr im (ch2) , ' compute ' , tr im (ch)
16 100 format (A,A9 ,A)

Lines 0-1 declare the events array in which are saved the codes of the events to be measured.
The variable numevents declares the number of events that PAPI should monitor and the variable
check is used for checking the status of the commands. Furthermore the EventSet is the set
with all events that are going to be used. The values from the counters are saved in the array
Values. Line 2 declares two strings for printing the number of �ops and the rank of the process.
Line 3 declares the number of events that are going to be monitored. Line 4 sets EventSet to
PAPI_NULL on the next line, the event PAPI_FP_OPS is saved to the events array. The variable
check on the line 6 is always equal to the code of the current PAPI's version. Between the lines
7 and 12 the following commands are executed: the initialization of PAPI, the creation of the
null set, the event is added to the null set, the measurement starts, the ssor function is called,
and the measurement stops respectively. Finally from lines 13 to 16 the value of the counter is
saved to the string ch, the id which is the rank of the process is saved to the string ch2 and
with the last two lines the number of the �ops and the rank are printed with the format �rank
compute value� which is the format of time-independent traces.

Moreover each process saves its own trace to a separate �le so if the application is executed
on N processes, then there are N trace �les.

Quality of output About the quality of output evaluation criterion, PAPI obtains a score of
3 points. PAPI allows for the extraction of information on computations (1 point). By using
appropriate commands such as those in Listing 2 it is possible to print the number of �ops
according to the time-independent trace format (1 point). As result there is no need for any
conversion (1 point).

Example of traces for the LU benchmark

Table 1 presents the �rst four lines of the traces of the LU benchmark, class C, executed on 4
nodes. The benchmark was traced with PAPI, hence there is no info about the communication.
After each MPI call we start measuring the executed �ops and stop just before the next MPI
call, where we save the corresponding action into our traces.

RT n° 437

10 Desprez, Markomanolis, Suter

Table 1: The �rst lines of the time-independent traces of LU benchmark, class C, 4 nodes.

0 compute 10632621

0 compute 244390418

0 compute 11612863

0 compute 6492893

1 compute 10633358

1 compute 244372181

1 compute 9328093

1 compute 2284893

2 compute 10633400

2 compute 244372720

2 compute 9328049

2 compute 2284855

3 compute 10632459

3 compute 244394098

3 compute 9327954

3 compute 6492794

Space and time overhead Thanks to papi_cost, it is possible to compute the minimal,
maximal, mean and the standard deviation of the execution time of basic PAPI operations, e.g.,
start/pairs and reads. The results are presented in Table 2.

Min cycles Max cycles Mean cycles std. deviation

Papi_start/stop 9 26381 12 26.73

Papi_read 111 28568 114 81.9

Addition 235 9537 254 10

Table 2: Overhead in cycles of basic PAPI operations as measured with papi_cost.

So the mean execution cost for the pairs PAPI_start/stop is 12 cycles and for PAPI_read it
is 114 cycles.

We compare these values with the cycles that are needed for an addition and an assignment.
A simple program was implemented for this comparison. The basic part of this program is
presented in the Listing 3. With this program we count the total cycles of the cpu for computing
the c=c+1. The hardware event PAPI_TOT_CYC is used and the addition is executed for 1,000,000
iterations such as the papi_cost program does.

Note: During the experiments we observed that the value of the cycles for the �rst loop is
always big enough, such as in our example is 9537 cycles. All the next values are less than 300
cycles. So the cold start of the measurement causes big overhead. According to the values, the
cost of Papi_read is not negligible compared to one addition but the benchmarks that are used
compute a lot of �ops compared to an addition and an assignment. For a cold start of measuring
an addition the cost of calling these commands is big enough but not if they are called more
times, i.e., if we start and stop PAPI measurement inside our code many times.

With regard to the space and time overheads, PAPI obtains the score of 6 points. In Table 3,
we see that the time overhead is less than 50% for the LU benchmark class C (2 points). While
slightly increasing, the time overhead remains in the 5-7% range, then we consider it as constant
(2 points).

In Table 4 we can observe that when the number of the nodes is doubled then the size of
the traces is almost two times bigger. We can thus claim that the increase is linear (1 point).
Moreover with 32 nodes, the di�erence of the trace sizes from class A to C is of 25 MB per class,
so the trace size increases linearly with the problem size, except for class D. Compared to the

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 11

Listing 3: Measuring the cycles of an addition

count=0
sd=0
numevents=1
EventSet = PAPI_NULL
events = PAPI_TOT_CYC
check = PAPI_VER_CURRENT

ca l l PAPIf_library_init (check)

ca l l PAPIF_create_eventset (EventSet , check)

ca l l PAPIF_add_event (EventSet , events , check)
do 20 i = 1000000 , 1 , −1

ca l l PAPIF_start (EventSet , check)
count=count+1
ca l l PAPIF_stop(EventSet , Values , check)
va l (i)=Values (1)

20 continue

max=MAXVAL(va l)
min=MINVAL(va l)
sm=SUM(va l)
print * , 'average' , sm/count
print * , 'max' , max
print * , 'min' , min
do 200 i = 1000000 , 1 , −1

sd=sd+(va l (i)−sm/count)* (va l (i)−sm/count)
200 continue

avg=sd /1000000.0
sd=SQRT(avg)
print * , 'sd' , sd
end

other classes, Class D works on larger matrices (14 times bigger than class C) and needs more
iterations (300 vs. 250). The observed can then easily be justi�ed and we give 1 point on this
criterion.

Software quality Considering the software quality, PAPI obtains the score of 11 points. The
installation of the PAPI is easy without any problem but there are some restrictions by the soft-
ware dependencies (1 point). PAPI depends on linux performance counters driver (perfctr) [17]
or performance monitoring interface (perfmon2) [18]. For the kernels older than 2.6.30 it is
needed to patch the kernel, otherwise there is at least support for perfmon2. In the case that
a patch is needed, the con�guration of the kernel has to be changed. The monitoring counters
should be enabled through the make oldconfig command and afterwards to build and install
the modi�ed kernel (1 point). Moreover PAPI is released under the New BSD license template
which is a GPL-compatible software license (1 point). PAPI is the standard tool to access the
hardware counters of the CPU and it is compatible with the major platforms as shown in Ta-
ble 5 (1 point). Furthermore PAPI supports the C/C++ and Fortran programming languages
(3 points). About the documentation, the installation process is well documented on the o�cial

RT n° 437

12 Desprez, Markomanolis, Suter

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 696 1.58

8 345.2 362.5 5.01

16 184 195.4 6.2

32 100.1 106.6 6.5

64 53.08 56.8 7

Table 3: Time overhead of PAPI for the LU benchmark, Class C.

LU, class C

Nodes Size (in MB)

4 11

8 23

16 46

32 94

64 193

LU, 32 nodes

Class Size (in MB)

A 36

B 59

C 94

D 299

Table 4: Space overhead of PAPI for the LU benchmark.

web page (1 point), the usage of PAPI is well explained through the PAPI references, the
Presentations and the Doxygen docs that are available under the Documentation menu of the
o�cial web page (1 point). Finally the project is active, patches are released often (1 point) and
there is a support team answering any question (1 point).

Hardware Operating Requirements

System

AMD Athlon/Opteron, Linux 2.2, Mikael Pettersson's PerfCtr

Intel thru Pentium III, 2.4,2.6 kernel patch for Linux

Pentium M, Core2 Series (included)

AMD Opteron, Linux 2.6 Stephane Eranian's

Intel Pentium M, Perfmon2 kernel patch

Core2 Series from sourceforge

Intel Pentium IV, D Linux 2.2,2.4,2.6 Mikael Pettersson's PerfCtr

2.6.x kernel patch

for Linux (included)

Intel Itanium II, Linux 2.4, 2.6 none

Montecito, Montvale

Table 5: Principal Hardware/OS combinations supported by PAPI.

Table 6 summarizes the results of the evaluation of PAPI.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 13

Pro�ling features Quality of output Overheads Quality of Software Total

4 3 6 11 24

Table 6: Summary of the evaluation of PAPI.

4.2 PerfBench

PerfBench (PB) [5] is a set of programs that instruments a code, and then creates timing and
performance �les during run time. This tool is developed by the Instrumental company [19]. The
evaluation was based on the version 5.2 which is the last one. Finally this tool can only pro�le
an application.

Unfortunately the PerfBench is compatible only with PAPI version 2.X. It was possible to be
installed but there were errors related to the instrumentation. PB can be used to get information
for each subroutine about the time and the �ops.

Pro�ling features With regard to the pro�ling features evaluation criterion, PB obtains the
score of 2. This tool provides information on computation (1 point). Furthermore an application
can be automatically instrumented (1 point) with the help of the scripts that PB provides.

Quality of Output PB could not pro�le an application without errors so we could not acquire
any output �les. As conclusion there is no ranking for the quality of output criterion (0 points).

Space and Time overheads For the same reasons as in the quality of the output criterion,
there is no ranking (0 points).

Software quality Regarding the software quality criterion, PB obtains the score of 5. PB's
installation is easy (1 point) but it depends on PAPI 2.X (0 points). After some modi�cations it
is possible to install the PB tool but is not functioning as it should. PB is released under GPL
license (1 point). The tool has the same hardware compatibility with PAPI 2.X as it can be
seen in the Table 7. Only the programming languages Fortran and C are supported (2 points).
Finally there are �ops about the installation and the usage of the program (1 point).

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M

Intel Pentium M, x86_64-Linux PAPI 2.X

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Table 7: Principal Hardware/OS combinations supported by PerfBench.

Table 8 presents the results of the evaluation of PerfBench.

RT n° 437

14 Desprez, Markomanolis, Suter

Pro�ling features Quality of output Overheads Quality of Software Total

2 0 0 5 7

Table 8: Summary of the evaluation of PerfBench.

4.3 PerfSuite

PerfSuite [6, 20] is a collection of tools, utilities, and libraries for software performance analysis.
This software is implemented by the University of Illinois/NCSA. The version 1.1.0 of PerfSuite
was used in this evaluation while the last one is the 1.1.2 which �xes some bugs not related to
our framework and it supports more processors. This version is the development version that
supports the latest version of PAPI. Moreover PerfSuite is only a pro�ling software.

Psrun is a tool that can apply statistical pro�ling of hardware performance counters during
the execution of an application. However, this tool provides the aggregation of the events so it
is not possible to know their sequence. There is no need to compile again the application for
pro�ling it, just execute psrun with the name of the application as argument. The psrun utility,
can operate in two modes, the one is the counting mode where we can measure for example the
�ops of the whole application without having any information about the source code, so we do
not know how many �ops are computed per function. On the other side with pro�ling mode the
tool provides the number of the �ops per function.

The third utility, psprocess, is related to pre- and post-processing of performance measure-
ments. Typically with psprocess it is possible to convert the XML results that psrun provides
into HTML or even combine the results from many processors into one �nal �le.

We present a simple example, pro�ling the LU, class C benchmark on four processes. List-
ings 4 and 6 respectively show the output of the counting and pro�ling modes.

The results of the counting mode are presented in the Listing 4, which shows that the ap-
plication computes 703,804,547,988 �oating point operations, this value is measured with the
hardware counter PAPI_FP_OPS, the counting domain is the user (it measures only the events
caused from the application). Finally it measures data for one counter, while the limit of the
counter for multiplexing is four counters, thus the multiplexing is not activated , the value of
M�op/s is 1008,669 and the execution time is 697.756 seconds.

So from the counting mode is not possible to acquire any info relevant to the time-independent
traces.

The Listing 5 presents the output of the pro�ling mode information. The version 3.7.0 of the
PAPI tool is used with the hardware metric PAPI_FP_OPS. The period is the sampling rate of
the pro�ling mode, afterwards is declared the number of the samples and it pro�les only the user
domain. In the continuation is presented the execution time is 716.84 seconds and the sampling
mode is not activated.

From the output �le in the Listing 6, we can see the percentage of the �ops per function
for the LU benchmark. These results provide aggregate information which is not compatible
with the requirements of our framework. Unfortunately there are some question marks in the
output because PerfSuite could not �nd the number of the lines where the functions are called.
Afterwards, there are some sections in this listing with a column which declares the number of
the samples, another one for the percentage of the samples that are caused due to the speci�c
module, �le or function, the total percentage of the samples till this point and the name of the
module, �le or function.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 15

Listing 4: Example of pro�ling LU class C 4 nodes for counting mode part 3

Index Desc r ip t i on Counter
Value
==
1 Float ing po int ope ra t i on s . 703804547988

Event Index
==
1 : PAPI_FP_OPS

S t a t i s t i c s
==
Counting domain . u se r
Mult ip lexed . no
MFLOPS (wal l c l o ck) . 1008.669
Wall c l o ck time (seconds) . 697 .756

Listing 5: Example of Perfsuite output for a LU class C on 4 nodes part1

P r o f i l e In format ion
==
Class : PAPI
Vers ion : 3 . 7 . 0
Event : PAPI_FP_OPS (Float ing po int ope ra t i on s)
Period : 100000
Samples : 7039052
Domain : user
Run Time : 716 .84 (seconds)
Min S e l f % : (a l l)

RT n° 437

16 Desprez, Markomanolis, Suter

Listing 6: Example of Perfsuite output for a LU class C on 4 nodes part 2

Module Summary
−−

Samples S e l f % Total % Module

7039052 100.00% 100.00% /tmp/ lu .C. 4

F i l e Summary
−−

Samples S e l f % Total % F i l e

7039052 100.00% 100.00% ??

Function Summary
−−

Samples S e l f % Total % Function

1899668 26.99% 26.99% rhs_
1690194 24.01% 51.00% jacld_
1514948 21.52% 72.52% jacu_
917681 13.04% 85.56% blts_
917671 13.04% 98.60% buts_
45350 0.64% 99.24% exact_
38557 0.55% 99.79% ssor_
10962 0.16% 99.94% erhs_
3449 0.05% 99.99% set iv_
412 0.01% 100.00% l2norm_
152 0.00% 100.00% error_

6 0.00% 100.00% pintgr_
2 0.00% 100.00% setbv_

Function : F i l e : Line Summary
−−

Samples S e l f % Total % Function : F i l e : Line

1899668 26.99% 26.99% rhs_ : ? ? : 0
1690194 24.01% 51.00% jacld_ : ? ? : 0
1514948 21.52% 72.52% jacu_ : ? ? : 0
917681 13.04% 85.56% blts_ : ? ? : 0
917671 13.04% 98.60% buts_ : ? ? : 0
45350 0.64% 99.24% exact_ : ? ? : 0
38557 0.55% 99.79% ssor_ : ? ? : 0
10962 0.16% 99.94% erhs_ : ? ? : 0
3449 0.05% 99.99% set iv_ : ? ? : 0
412 0.01% 100.00% l2norm_ : ? ? : 0
152 0.00% 100.00% error_ : ? ? : 0

6 0.00% 100.00% pintgr_ : ? ? : 0
2 0.00% 100.00% setbv_ : ? ? : 0

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 17

Pro�ling features Regarding the criterion of the pro�ling features, PerfSuite achieves the
score of 2. This tool provides information on computation using the PAPI tool (1 point). It is
possible to instrument an application automatically by executing the psrun utility (1 point).

Quality of output With PerfSuite is not possible to extract the required information because
there is no tracing mode. As conclusion, the quality of output is marked with 0 points for all the
sub-criteria.

Space and time overhead Moreover about the space and time overhead because Perfsuite
has not the capability of tracing so the results are only for pro�ling, that's why we can not study
the overhead (0 points). A small sample of the pro�ling overhead is presented in Table 9.

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 717.24 4.68

8 345.2 363.197 5.21

16 184 191.349 3.99

32 100.1 106.606 6.5

64 53.08 55.3 4.18

Table 9: Time overhead of PerfSuite for the LU benchmark, Class C.

Software Quality Regarding the software quality criterion, PerfSuite obtains the score of 10
points. The installation of the program is very easy without any issue (1 point). Moreover it
depends on the libraries tDom and Tcl but there is no installation issue (1 point). The tool
is released under the University of Illinois/NCSA Open Source License. This license is based
on MIT/X11 and BSD licenses and are GPL-compatible (1 point). Furthermore according to
Table 10 this tool is compatible with the major platforms (1 point). It supports at least the
pro�ling of the programming languages C/C++ and Fortran (3 points) and but not the pro�ling
of the MPI communication (0 points). During the execution of an instrumented application there
were some errors because of incompatibility issues with Mpich that's why we used OpenMpi.
About the documentation, the installation and the usage processes are well documented (1
point), there are many information about how to link (if it is needed) or execute the program
at their o�cial web site. The project is still active (1 point) and there is a support team which
answers to the emails of the users (1 point).

Table 11 shows the results of the evaluation of PerfSuite.

RT n° 437

18 Desprez, Markomanolis, Suter

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III,

Pentium M, Core2 Series x86-Linux

AMD Opteron, x86_64-Linux PAPI

Intel Pentium M,

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux PAPI

Montecito, Montvale

Table 10: Principal Hardware/OS combinations supported by PerfSuite.

Pro�ling features Quality of output Overheads Quality of Software Total

2 0 0 10 12

Table 11: Summary of the evaluation of PerfSuite.

4.4 MpiP

MpiP [21] is a lightweight pro�ling library for MPI applications. It is developed by The Regents
of the University of California and the version 3.3 is evaluated, which is the last one.

Pro�ling features With regard to the pro�ling features evaluation criterion, MpiP obtains the
score of 2. This tool provides information on communication (1 point). Moreover an application
can be automatically instrumented (1 point) by just re-linking the application with the MpiP
library.

Example of output, LU class C, 4 nodes: The output of the execution is presented in the
Listings 7 and 8. In the �rst one, the callsite section identi�es all the MPI callsites within the
application. The �rst number, is the callsite ID. The next column contains the stack trace level
of the execution, the third column is the name of the �le or the address from which the MPI
command was executed. Afterwards, there is a column with the line number of the �le and in
the continuation another one with the name of the function which calls the command. Finally
the last one contains the name of the MPI command (w/o the MPI_ pre�x).

In the Listing 8, are presented all the pro�led MPI commands. In the �rst column, is the name
of the command, in the second one, is the number of the site in which was executed. In the next
column there is the rank which corresponds to this command, where in the case that there is the
symbol * instead of a number, is the aggregate line for this site and command. The column called
count declares how many times this command is called and the rest columns contain what their
header describes, the maximum, mean, minimum and the sum of the messages' sizes. Moreover
it is a statistical pro�ling tool, thus it is possible for the output �les not to include all the MPI
calls. Finally in the case that an MPI call is executed from the same site many times, if the size
of the message varies then the MpiP tool provides only the maximum, minimum, mean and sum
values of the sizes without knowing exactly the size per message. So it is not possible to acquire
the needed data for creating the time-independent traces.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 19

Listing 7: Example of MpiP output for the LU benchmark class C on 4 nodes part 1

−−−

@−−− Ca l l s i t e s : 83 −−

−−−

ID Lev F i l e /Address Line Parent_Funct MPI_Call
1 0 bcast_inputs . f 28 bcast_inputs Bcast
1 1 read_input . f 122 read_input
1 2 lu . f 72 applu
2 0 exchange_3 . f 288 exchange_3 Wait
2 1 erhs . f 243 erhs
2 2 lu . f 112 applu
.
.
.

81 2 s s o r . f 61 s s o r
82 0 exchange_5 . f 76 exchange_5 Send
82 1 p in tg r . f 171 p in tg r
82 2 lu . f 138 applu
83 0 exchange_6 . f 76 exchange_6 Send
83 1 p in tg r . f 250 p in tg r
83 2 lu . f 138 applu

Listing 8: Example of MpiP output for the LU benchmark class C on 4 nodes part 2

−−−

@−−− Ca l l s i t e Message Sent s t a t i s t i c s (a l l , s ent bytes) −−−−−−−−−−−−−−−−−−−

−−−

Name S i t e Rank Count Max Mean Min Sum
Al l r educe 17 0 1 8 8 8 8
Al l r educe 17 1 1 8 8 8 8
Al l r educe 17 2 1 8 8 8 8
Al l r educe 17 3 1 8 8 8 8
Al l r educe 17 * 4 8 8 8 32
.
.
.
Send 82 3 1 1296 1296 1296 1296
Send 82 * 1 1296 1296 1296 1296
Send 83 3 1 1296 1296 1296 1296
Send 83 * 1 1296 1296 1296 1296
−−−

@−−− End o f Report −−

RT n° 437

20 Desprez, Markomanolis, Suter

Quality of Output Mpip does not support the tracing mode, so it is not possible to acquire
related info for the the time-independent traces. As conclusion the quality of output criterion is
ranked with 0 points for all of its sub-criteria.

Space and Time Overhead As the MpiP tool provides only the pro�ling mode, it is not
proper to study the time overhead of this tool (0 points). However, some results about the
overhead of the LU benchmark, class C, are presented in the Table 12.

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 693.12 1.16

8 345.2 356.54 3.28

16 184 190.21 3.37

32 100.1 104.20 4.09

64 53.08 55.53 4.61

Table 12: Time overhead of Mpip for the LU benchmark, Class C.

Table 12 shows that the overhead of MpiP is small enough. However, this is logic as the tool
collects statistical information.

Software Quality Regarding the software quality criterion, MpiP obtains the score of 11.
This tool can be installed without any issue (1 point) and it depends on the library libunwind
which was installed successfully (1 point). This software is released under the New BSD License
which is GPL-compatible (1 point). According to Table 13, MpiP is compatible with many
hardware platforms (1 point) and the tool supports the programming languages C/C++ and
Fortran (3 points). About the compatibility with MPI implementations, MpiP support both
Mpich and OpenMpi (1 point). All the instructions about the installation and the usage of
this tool are available in the website [21] (1 point). The project is active (1 point) and there is
available a mailing list for the users of the tool (1 point).

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux binutils

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux libunwind, binutils

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux libunwind, binutils

Montecito, Montvale

Table 13: Principal Hardware/OS combinations supported by MpiP.

Table 14 summarizess the results of the evaluation of MpiP.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 21

Pro�ling features Quality of output Overheads Software Quality Total

2 0 0 11 13

Table 14: Summary of the evaluation of MpiP.

4.5 MPE

MPE [8, 9, 22] (Multi-Processing Environment) is a software package for performance analysis of
MPI programs. It is developed by the Argonne National Laboratory. We based our evaluation
on the version 1.0.6p1, while the latest one is 1.3.0. The recent additions of the latest version,
do not impact our evaluation. MPE can only trace MPI calls.

Currently, MPE o�ers the following three pro�ling libraries. The tracing library traces all the
MPI calls. Each MPI call is preceded by a line that contains the rank in the global communnicator
of the calling process and followed by another line indicating that the call is completed. The
animation library provides a simple form of real-time program animation that requires X window
routines. Finally with the logging library, it is possible to generate log �les from user MPI
programs. There are three di�erent log �le formats allowed in MPE. The CLOG2 is the default
one. It is basically a collection of events with timestamps. ALOG is an older format and it exists
mainly for compatibility reasons, is not developed anymore. The Scalable log �le format (SLOG-2)
allows for much improved scalability for visualization purpose.

We use only the logging and tracing libraries as the animation libraries are out of the scope of
our framework. Unfortunately, the default output of the tracing library, is the standard output.
This increases the execution time but for all the experiments we redirect the output into a single
�le. The logging libraries contain enough data about the visualization of the MPI calls. With
the tools clog2TOslog2 it is possible to convert the CLOG2 �le to SLOG-2 in order to provide
scalable traces as input to a visualization tool. The tools clog2print and slog2print convert
the respectively �les into text format. For both formats it was not possible to provide the message
size for the call MPI_Bcast by default.

Unfortunately, the default output of the tracing library is the standard output. This increases
the execution time but for all the experiments we redirect the output into a single �le.

The manual indicates the procedure for applying a selective instrumentation for the logging
libraries but with many modi�cations into the code. In the case of the tracing libraries it is not
mentioned a procedure and all the e�orts did not provide the desired results. So it is not possible
to acquire the traces for a speci�c block of code automatically.

Pro�ling features With regard to the pro�ling features evaluation criterion, MPE obtains
the score of 4. This tool can trace an application (2 points) and can provide information about
the communication (1 point). Moreover, an application can be automatically instrumented (1
point) by just re-linking the application with the MPE library.

Example of output, LU benchmark, class C, 4 nodes A part of the output of the
execution by linking with the tracing library is presented in the Listing 9.

During the MPI_Send call, the variable count represents the number of elements in send
bu�er, the variable destination is the receiver of the message and the variable tag is the message
tag.

Quality of output Regarding the quality of output, the MPE tool obtains the score of 1. This
tool provides one pass conversion (1 point) but we can not extract all the required information

RT n° 437

22 Desprez, Markomanolis, Suter

Listing 9: Output from the MPE tool for the LU benchmark class C on 4 nodes

[2] S t a r t i ng MPI_Bcast
[2] Ending MPI_Bcast
[0] S ta r t i ng MPI_Wait
[1] Ending MPI_Wait
[1] S ta r t i ng MPI_Send with count = 131220 , des t = 0 , tag = 1
[0] Ending MPI_Wait
[1] Ending MPI_Send
[0] S ta r t i ng MPI_Recv with count = 400 , source = 2 , tag = 3
[0] Ending MPI_Recv from 2 with tag 3
[3] S ta r t i ng MPI_Send with count = 400 , des t = 2 , tag = 1
[3] Ending MPI_Send
[3] S ta r t i ng MPI_Send with count = 400 , des t = 1 , tag = 3
[3] Ending MPI_Send

for our framework.

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 755.35 10.24

8 345.2 393.8 14.08

16 184 225.5 22.55

32 100.1 144.3 44.15

64 53.08 251.1 373.06

Table 15: Time overhead of MPE for the LU benchmark, Class C.

Space and time overhead About the space and time overhead evaluation criterion, MPE
obtains the score of 2. The traces' sizes are included in Table 16. In the case that the number
of processes is doubled the traces' sizes are increasing linearly (1 point). With regard to the
problem size, by changing only the class of the problem, the size of the traces is increased
linearly (1 point).

LU, class C

Nodes Size (in mb)

4 58.9

8 147.3

16 358.32

32 786.67

64 1702

LU, 32 nodes

Class Size (in mb)

A 291.24

B 469

C 786.67

D 2300

Table 16: Space overhead of MPE for the LU benchmark.

Software quality MPE achieves a score of 10 points regarding the software quality criterion.
The installation of the tool is very simple and no problems occured (1 point). There is no

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 23

dependency on another library (1 point). MPE is released under the same license with Mpich.
According to this license, permission is hereby granted to use, reproduce, prepare derivative works
and redistribute to others (1 point). Table 17 shows that MPE has no hardware compatibility
issues (1 point). It supports C/C++ and Fortran programming languages (3 points). The MPE
tool is included in the Mpich and all the experiments were executed with OpenMPI, so it supports
both of them (1 point). The documentation of the tool contains all the necessary information
(1 point). Moreover this project is active (1 point) there is a support team for answering any
question (1 point).

Hardware Operating

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 17: Principal Hardware/OS combinations supported by MPE.

Table 18 shows the overall results of the evaluation of MPE.

Pro�ling features Quality of output Overheads Quality of Software Total

4 1 2 10 17

Table 18: Summary of the evaluation of MPE.

4.6 IPM

Integrated Performance Monitoring (IPM) [10, 23] is a portable pro�ling infrastructure for paral-
lel codes. It provides a low-overhead performance pro�le of the performance aspects and resource
utilization in a parallel program. Communication, computation, and IO are the primary focus.
The tool is is a collaborative project between National Energy Research Scienti�c Computing
Center and San Diego Supercomputer Center. The evaluation was based on the IPM v0.982
while the last one is v.0.983 and provides only a pro�ling mode.

Pro�ling features With regard to the pro�ling features evaluation criterion, IPM obtains the
score of 3. This tool provides information on communication (1 point) and computation by using
PAPI tool (1 point). Finally it can automatically instrument an application (1 point) but for
selective instrumentation is needed to add some commands in the code.

Example of output, LU class C, 4 nodes: In the Listing 10 is presented the output of a
pro�led application.

RT n° 437

24 Desprez, Markomanolis, Suter

Listing 10: Example of IPM output for the LU benchmark class C on 4 nodes

##IPMv0.982 ##
#
command : unknown (completed)
host : pas t e l −5/x86_64_Linux mpi_tasks : 4 on 4 nodes
s t a r t : 07/01/10/15 :48 :54 wa l l c l o ck : 694.390258 sec
stop : 07/01/10/16 :00 :29 %comm : 3 .56
gbytes : 0 .00000 e+00 t o t a l g f l op / sec : 4 .05424 e+00 t o t a l
#
##
reg ion : * [ntasks] = 4
#
[t o t a l] <avg> min max
en t r i e s 4 1 1 1
wa l l c l o ck 2777.56 694.389 694.388 694 .39
user 2676.78 669.194 668.294 670.826
system 101.03 25 .259 23.6215 26 .157
mpi 98 .99 24 .748 21 .856 28 .853
%comm 3.564 3.14752 4 .155
g f l op / sec 4 .05424 1.01356 1.01355 1 .013
gbytes 0 0 0 0
#
PAPI_FP_OPS 2.81523 e+12 7.03806 e+11 7.03798 e+11 7.03811 e+11
#
[time] [c a l l s] <%mpi> <%wall>
MPI_Recv 39.4388 321280 39 .84 1 .42
MPI_Wait 32 .5669 2040 32 .90 1 .17
MPI_Send 26.855 323320 27 .13 0 .97
MPI_Allreduce 0.123987 40 0 .13 0 .00
MPI_Irecv 0.00638825 2040 0 .01 0 .00
MPI_Bcast 0.000819312 36 0 .00 0 .00
MPI_Barrier 0 .000624671 8 0 .00 0 .00
MPI_Comm_rank 1.66488 e−06 4 0 .00 0 .00
MPI_Comm_size 1 .47433 e−06 5 0 .00 0 .00
##

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 25

In the beginning there are some information about the root node, the number of the nodes in
which the instrumented application was executed, the size of the �les that were saved on the disk
and the total G�ops. Afterwards there is a region for analyzing the times. For each category
there are four columns; total, average, minimum and maximum. The entries describes how many
times the tracing starts in the case that it stops during the execution. The wallclock is the total
time, the user is the duration caused by the application, the system is the duration of tasks not
related to the application, the mpi is the communication time. The %comm is the percentage
of the communication time regarding the total time, the g�op/sec is the �op rate and the gbytes
is the size of the �les that were saved. In the continuation are presented for every MPI call that
is included in the executed application, the total duration time, the number of the calls, the
percentage compared to the total MPI time and the percentage compared to the total time.

Quality of Output IPM does not support the tracing mode, so it is not possible to acquire
the time-independent traces. As conclusion the quality of output criterion can not be evaluated
(0 points).

Space and Time overheads For the same reasons, the space and time overheads can not be
evaluated (0 points). Although some results about the overhead of the LU benchmark, class C,
are presented in Table 19.

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 693.1 1.15

8 345.2 361.8 4.8

16 184 187.4 1.84

32 100.1 106.9 6.79

64 53.08 53.8 1.35

Table 19: Time overhead of IPM for the LU benchmark, Class C.

As it can be seen from Table 19, the overhead of IPM is at most 6.79%.

Software Quality Regarding the software quality criterion, IPM obtains the score of 11. The
installation of the IPM tool is easy (1 point) and there is no dependency (1 point). This software
is released under the LGPL license (1 point). Its only restriction about hardware compatibility
is the PAPI tool, so according to Table 20 there is no issue (1 point) and the tool supports
the programming languages C/C++ and Fortran (3 points). Furthermore it is compatible with
both Mpich and OpenMpi (1 point). The documentation is available at the web site [23] with
instructions about the installation and the usage of the tool (1 point). Finally the project is
active (1 point) and there is a mailing list for asking questions about this tool (1 point).

Table 21 summarizes the results of the evaluation of IPM.

RT n° 437

26 Desprez, Markomanolis, Suter

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 20: Principal Hardware/OS combinations supported by IPM.

Pro�ling features Quality of output Overheads Quality of Software Total

3 0 0 11 14

Table 21: Summary of the evaluation of IPM.

4.7 Extrae

Extrae [11] (formerly named MPItrace) is a dynamic instrumentation package to trace programs.
This tool is developed by Barcelona Supercomputing Center. The evaluation was based on Extrae
version 2.2.0 while the last one is version 2.3.2.

Pro�ling features With regard to the pro�ling features evaluation criterion, Extrae obtains
the score of 7. It can trace an application (2 points) and provide information on communication
(1 point) and computation (1 point). Moreover the communication and computation volumes
are recorded in the trace �les in bytes and �ops respectively (2 points). Extrae can trace auto-
matically an application (1 point).

Quality of output About the criterion quality of output the Extrae achieves the score of 2. The
trace �les can not be handled without the use of a tool which is provided by the Supercomputing
Center of Barcelona. The trace �les should be converted into a Paraver �le by using either the
serial Paraver merger called mpi2prv or the parallel one mpimpi2prv. Then with the help of a
script it is possible to convert the Paraver �le into time-independent traces (1 point) and it can
be done by reading the �le just one time (1 point).

Space and time overhead After the execution of an instrumented application, the tool
creates intermediate trace �les (*.mpit). These �les are readable only from the Paraver or
Dinemas mergers. The parallel Paraver merger mpimpi2prv was used for all the experiments.
All the intermediate trace �les are converted into one Paraver �le. This procedure can take a lot
of time because it demands to save the traces in a global �le system. Afterwards a script should
read this �le in order to convert into time-independent traces. In the cases that this �le is big,
then a lot of time would be needed for the conversion.

With regard to the space and time overhead criterion, Extrae obtains the score of 5 points.
The overhead for tracing is less than the 50% of the execution time (2 points), however a lot

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 27

of time is needed in order to convert the traces into Paraver �les. According to Table 22, the
overhead increases linearly as we increase the number of the processes (1 point). As it can be
seen in Table 23 the traces' sizes increase linearly while the problem size is increased (1 point).
Similar in the case which the number of the processes increases (1 point).

Nodes Execution time Execution time Time Overhead Mpimpi2prv (in sec.)

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 696.3 1.62 28

8 345.2 358.34 3.8 43

16 184 194 5.43 61.7

32 100.1 106.89 6.78 130.1

64 53.08 60.15 13.1 290.7

Table 22: Time overhead of Extrae for the LU benchmark, Class C.

LU, class C

Nodes Size (in mb)

4 153

8 348

16 834

32 1800

64 3800

LU, 32 nodes

Class Sizes (in mb)

A 784

B 1300

C 1800

D 5400

Table 23: Space overhead of Extrae for the LU benchmark.

Software quality The score for the criterion software quality is 11 points. The installation
of the tool is easy without any issue (1 point) and it depends on the libxml library (1 point).
It is released under the LGPL license which was designed as a compromise between the strong-
copyleft GNU General Public License or GPL and permissive licenses such as the BSD licenses
and the MIT License (1 point). According to Table 24 there is not mentioned any issue about
hardware compatibility (1 point). Moreover the programming languages C/C++ and Fortran
are supported from the tool (3 points) and it is compatible with both Mpich and OpenMpi (1
point). A manual is provided with a lot of details about the installation and the usage of the
tool (1 point). The project is active (1 point) and there is a support team for answering any
question (1 point).

Table 25 presents the results of the evaluation of Extrae.

RT n° 437

28 Desprez, Markomanolis, Suter

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI

Core2 Series libxml

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 24: Principal Hardware/OS combinations supported by Extrae.

Pro�ling features Quality of output Overheads Quality of Software Total

7 2 5 11 25

Table 25: Summary of the evaluation of Extrae.

4.7.1 Scalasca

Scalasca [12, 24] is an open-source toolset that can pro�le and trace an application. It is devel-
oped by the Forschungszentrum Jülich, Jülich Supercomputing Centre and the German Research
School for Simulation Sciences, Laboratory for Parallel Programming. We based our evaluation
on version 1.3.3 while the latest is version 1.4.3. When the execution of an instrumented ap-
plication ends, a parallel automatic event trace analysis tool called SCOUT is executed. This
tool identi�es and reports any logical clock violations. Since the version 1.3.3, a new environ-
ment variable is introduced that disables the execution of this tool as it does not in�uence the
creation of the traces. The Program Database Toolkit (PDToolkit) ([25], [26]) is a framework
for analyzing source code written in several programming languages and for making rich pro-
gram knowledge accessible to developers of static and dynamic analysis tools. This framework
is partially supported by Scalasca.

Pro�ling features Regarding the pro�ling features, Scalasca obtains a score of 6 points. This
tool can trace an application (2 points), but it is not possible to trace the size of the message
for a MPI_Recv call. Thus it can not extract from the trace �les all the required data related
to communication (0 point). All the required data about computation (1 point), the volumes in
bytes (1 point) and the volumes in �ops (1 point) are respectively recorded into the trace �les.
Finally, Scalasca can automatically trace an application (1 point).

Quality of output Scalasca provides the PEARL API [27] to create a C++/MPI tool to
extract the required data from the traces (1 point). Thanks to the format of the trace �les, it is
possible to convert them in one pass (1 point).

Space and time overhead Considering the space and time overhead, Scalasca obtains a score
of 8 points. According to Table 26, the time overhead stays under 50% (2 points). Moreover, we

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 29

see that it linearly decreases as the number of participating processes increases (3 points). As
we execute the benchmark with one process per node, there is always one disk per process onto
which �ush the traces. The size of the trace produced by a single process decreases as the total
number of processes grows, hence the reduction of the overhead.

problem than between

LU benchmark, class C

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 893 30.33

8 345.2 449 30.07

16 184 216 17.39

32 100.1 110 9.89

64 53.08 58.6 10.39

Table 26: Time overhead of Scalasca for the LU benchmark, Class C.

In terms of space overhead, the evolution of the trace size is correlated to that of the size
of the instance (1 point). Class D is much bigger than the other instances (larger matrices and
more iterations). This bigger gap is also observed in the size of the traces. From class A to class
C, size grows by a factor of 2.3 and 2.6, while from class C to class D, the trace grows by a factor
of 4.7. When the number of processes is increased for a given class, we observe a linear increase
of the trace size (1 point). However, a large part of the trace size comes from the tracing of a
function that does not depend on the number of processes and is not relevant for our studies.
Scalasca allows the user to declare that some functions do not have to be traced, which allows
for a reduction the space overhead (1 point).

LU, class C

Nodes Size (in MB)

4 2,100

8 2,200

16 2,500

32 2,900

64 3,900

LU, 32 nodes

Class Size (in MB)

A 476

B 1,100

C 2,900

D 36,000

Table 27: Space overhead of Scalasca for the LU benchmark.

Software quality Although some �ags have to be set to install the tool, the installation was
easy (1 point). It depends on libbfd and libiberty libraries but both libraries are part of
standard distributions (1 point). Furthermore Scalasca is released under the New BSD license
which is a GPL-compatible free software license and has been vetted as open source by the Open
Source Initiative (1 point). According to Table 28 Scalasca is compatibile with a lot of hardware
(1 point). Scalasca can trace applications which are implemented in C/C++ and Fortran (3
points) and is compatible with MPICH and OpenMPI (1 point). The documentation is well
written and covers a lot of topics about the installation and usage of the tool (1 point). Finally
the project is active (1 point) and there is a team providing support to the users (1 point).

Table 29 shows the overall results of the evaluation of Scalasca.

RT n° 437

30 Desprez, Markomanolis, Suter

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI, PDToolkit,

Core2 Series libbfd,libiberty,Qt4

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 28: Principal Hardware/OS combinations supported by Scalasca.

Pro�ling features Quality of output Overheads Software Quality Total

6 2 8 11 27

Table 29: Summary of the evaluation of Scalasca.

4.7.2 TAU

TAU [13, 28] is an advanced pro�ling and tracing toolkit for the performance analysis of parallel
programs. It is developed by the Department of Computer and Information Science, University of
Oregon, the Forschungszentrum Jülich, Jülich Supercomputing Centre, ZAM and the Advanced
Computing Laboratory, Los Alamos National Laboratory. The evaluation is based on TAU
version 2.21 while the last one is version 2.22.2 which suppors new technologies and processors
and a new implementation of the MPI wrapper. According to our experiments these changes do
not in�uence the current results.

Pro�ling features Regarding the pro�ling features, TAU obtains a score of 8 points. TAU
can trace an application (2 points), and logs data related to the computation (1 point) and
the communication (1 point) into trace �les. Moreover the volumes of the communication and
computation are in bytes (1 point) and �ops (1 point) respectively. TAU supports the PDToolkit
framework so it provides the user with a method to trace all the application (1 point) or only a
block of code (1 point).

Quality of output The binary trace �les produced by TAU contain all the required data for
the simulation. It is possible to extract them with the help of the TAU trace format reader
library [29] (1 point). We used the API to implement a tool that converts TAU traces into
time-independent traces in one pass (1 point).

Space and time overhead The time overhead of TAU is given in Table 30. It is under 50% of
the execution time of the application (1 point) but does not decrease as the number of processes
grows. In terms of space overhead, the size of the traces increases linearly along with both the
number of processes (1 point) and the problem size (1 point), as shown by Table 31. Finally,
TAU provides a way to declare that some functions are not to be traced in order to decrease the
time and space overheads (1 point).

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 31

LU benchmark, class C

Nodes Execution time Execution time Time Overhead

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 983 43.46

8 345.2 493.5 42.96

16 184 239.3 30.05

32 100.1 128.8 28.67

64 53.08 71.1 33.94

Table 30: Time overhead of TAU for the LU benchmark, Class C.

LU, class C

Nodes Size (in MB)

4 5,100

8 5,400

16 6,000

32 7,300

64 9,900

LU, 32 nodes

Class Size (in MB)

A 1,300

B 2,700

C 7,300

D 87,200

Table 31: Space overhead of TAU for the LU benchmark.

Software quality The installation of TAU is easy. It can be con�gured thanks to compilation
�ags (1 point). It has a software dependency on the PDToolkit which can be respected (1
point). TAU is free under BSD style license which is GPL-compatible (1 point). According to
Table 32 it supports various hardware con�gurations (1 point). Moreover all the programming
languages C/C++ and Fortran (3 points) and the major MPI implementations such as MPICH
and OpenMPI (1 point) are supported. The o�cial web site gives access to manuals about usage
and installation of this tool (1 point). Finally the project is active (1 point) and there is a team
for answering any question (1 point).

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI, PDToolkit (optional)

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 32: Principal Hardware/OS combinations supported by TAU.

The overall results of the evaluation are presented in Table 33.

RT n° 437

32 Desprez, Markomanolis, Suter

Pro�ling features Quality of output Overheads Software Quality Total

8 2 5 11 26

Table 33: Summary of the evaluation of TAU.

4.7.3 Score-P

Score-P [16, 30] has been developed by the German BMBF project SILC and the US DOE project
PRIMA. It is a highly scalable tool suite for pro�ling, tracing, and the online analysis of HPC
applications. The evaluated version is the 1.0-beta while the latest one is 1.1.1 that corrects
some bugs not related with our usage. This tool is the result of the collaboration between the
researchers involved in the development of many well known tools such as TAU, Scalasca and
VampirTrace.

Pro�ling features With regard to pro�ling features criterion, Score-P achieves the score of
7 points. It can trace an application (2 points) and record all the computation (1 point) and
communication events (1 point) with their volumes in �ops by using PAPI (1 point) and bytes
(1 point) respectively. It can automatically instrument an application (1 point).

Quality of output The Score-P tool achieves the score of 2 points for the criterion of quality
of output. The format of the generated traces is the Open Trace Format Version 2 (OTF2) [31]
which is a highly scalable, memory e�cient event trace data format and will become the new
standard trace format for TAU, Vampir and Scalasca. It is the common successor format for
the Open Trace Format (OTF) and the Epilog trace format [32]. When the execution ends, the
traces comprise the computation and the communication events with all the necessary data (1
point). From the OTF2 �les it is possible to acquire the time-independent traces by using the
OTF2 API and only one pass (1 point).

Space and time overhead Table 34 shows that the time overhead is less than 50% (2 points).
Moreover the overhead decreases linearly as the number of the processes increases (3 points).

Nodes Execution time Execution time Time Overhead (in %)

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.16 915.919 33.67

8 345.2 443.59 28.5

16 184 220.78 19.99

32 100.1 109.95 9.84

64 53.08 58.16 9.57

Table 34: Time overhead of Score-P for the LU benchmark, Class C.

According to Table 35 the increase of the number of the processes causes a linear increase of
the size of the traces (1 point). Similarly, when the size of the problem increases, then the size
of the traces increases also linearly (1 point). With the combination of PDT and the Score-P
user API, code regions can be excluded from the instrumentation (1 point).

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 33

LU, class C

Nodes Size (in mb)

4 2800

8 2900

16 3200

32 3700

64 4900

LU, 32 nodes

Class Size (in mb)

A 583

B 1400

C 3700

D 48000

Table 35: Space overhead of Score-P for the LU benchmark.

Software quality Score-P achieves the score of 11 points regarding the software quality crite-
rion. There is no issue about the installation (1 point) and no dependency on other libraries (1
point). It is available in Open Source under a BSD license (1 point). The tool is compatible with
various hardware and is supported on many platforms (1 point) as it can be seen in Table 36.

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI, PDToolkit

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 36: Principal Hardware/OS combinations supported by Score-P.

It is compatible with the C/C++ and Fortran programming languages (3 points) and with
the major MPI implementations (1 point). There is a manual which describes many di�erent
aspects of what this tool can do, how to install it and how to use it (1 point). This is a new
project which aims at providing the best characteristics of some well known tools (1 point) and
there is a support team for solving any problem (1 point). We aggregate the results of the
evaluation in Table 37.

Pro�ling features Quality of output Overheads Software Quality Total

7 2 8 11 28

Table 37: Summary of the evaluation of Score-P.

4.7.4 Minimal Instrumentation (MinI)

There are two undesirable side e�ects caused by complex pro�ling tools. First, they may in-
duce a large time overhead. Second, the measure of hardware counters may be skewed, as the

RT n° 437

34 Desprez, Markomanolis, Suter

Listing 11: Handling MPI_Send function with MinI.

i n t MPI_Send(buf , count , datatype , dest , tag , comm)
{
. . .
i f (PAPI_accum_counters (values , 1) !=PAPI_OK) {

p r i n t f ("PAPI does not support t h i s metr ic \n") ;
}
counter2=va lues [0] ;

MPI_Type_get_name(datatype , t_data ,&np) ;
this_type=encode_datatype(&t_data) ;
PMPI_Comm_rank(MPI_COMM_WORLD, &l l r a nk) ;

s p r i n t f (msg,"%d compute %l l d \n" , l l r ank , counters2−counter1) ;
s t r c a t (longmsg ,msg) ;

returnVal=PMPI_Send(buf , count , datatype , dest , tag , comm) ;

i f (this_type==0) s p r i n t f (msg , "%d send %d %d\n" ,
l l r ank , dest , count) ;

e l s e s p r i n t f (msg , "%d send %d %d %d\n" ,
l l r ank , dest , count , this_type) ;

s t r c a t (longmsg ,msg) ;

i f (PAPI_accum_counters (values , 1) !=PAPI_OK) {
p r i n t f ("PAPI does not support t h i s metr ic \n") ;

}
counter1=va lues [0] ;
. . .

}

�ops caused by the tool itself are also measured. Unnecessary instrumentation, in our case in-
strumentation that generates trace data beyond the information strictly needed for our replay
framework, would then unnecessarily increase overhead and skew. In order to control the in-
strumentation at a lower level, we implemented our own instrumentation method, called MinI.
The MPI standard exposes two interfaces for each MPI function, one pre�xed with MPI_ and
the other pre�xed with PMPI_, the former calling the latter directly. This provides developers
with the opportunity to insert their own code, e.g. for pro�ling purposes, in the implementation
of all MPI_ functions. This mechanism is used by several of the aforementioned tools, and we
ourselves use it to insert code that is executed upon entry and exit for all MPI calls. This code
retrieves hardware counters through PAPI, and generates event traces such as those in Figure 1.
This approach is guaranteed to perform the minimal amount of instrumentation needed for our
purpose.

According to both MPICH and OpenMPI implementations, the Fortran PMPI layer calls C
PMPI either directly or through C MPI layer. Thus we just have to provide pro�ling wrappers
in C to trace an application. Furthermore, to decrease the I/O overhead, we implement a simple
bu�ering mechanism. We can declare how many events are saved in the memory before �ushing
them to the hard disk.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 35

Listing 11 presents the instrumentation of the MPI_Send call, with this minimal instrumen-
tation. The general concept is that when there is an MPI_Send call, we create a compute action
with the amount of �ops computed since the last MPI call. Then, PMPI_Send is called, and the
corresponding send action is created, saved in the bu�er and it starts measuring again the �ops.
We use the PAPI_accum_counters command which measures the corresponding PAPI metric
since the beginning of the execution and increases monotonically.

Pro�ling features With regard to the pro�ling features evaluation criterion, the minimal in-
strumentation tool, obtains a score of 7 points. This tool can trace an application (2 points)
and record the communication (1 point) and computation information (1 point) with the corre-
sponding data in bytes (1 point) and �ops (1 point). Moreover it can instrument automatically
an application (1 point), but all the application has to be traced.

Quality of output Regarding the quality of output, it achieves a score of 3 points. This
tool can record all the required information (1 point), it saves directly the measured data into
time-independent traces (1 point), thus there is no need to read the traces at all (1 point).

Nodes Execution time Execution time Time Overhead (in %)

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 695.8 1.55

8 345.2 360 4.29

16 184 191.63 4.15

32 100.1 105.2 5.09

64 53.08 55.8 5.12

Table 38: Time overhead of MinI for the LU benchmark, Class C.

Space and time overhead About the space and time overheads evaluation criterion, our
minimal instrumentation obtains a score of 6 points. The time overhead in Table 38 is around
4-5% in all the cases, then smaller than 50% (2 points) and constant (2 points). The trace sizes
are given in Table 39. When the number of processes is doubled, the size of the traces is increased
linearly (1 point). With regard to the problem size, by changing only the class of the problem,
the size of the traces is increased linearly (1 point).

LU, class C

Nodes Size (in MB)

4 20

8 49

16 120

32 257

64 549

LU, 32 nodes

Class Size (in MB)

A 99

B 161

C 257

D 804

Table 39: Space overhead of MinI for the LU benchmark.

RT n° 437

36 Desprez, Markomanolis, Suter

Software quality MinI achieves a score of 10 points regarding the software quality criterion.
There is no need to install the tool, just to compile it (1 point). There is no dependency except
on PAPI (1 point). MinI is released under the LGPL license (1 point). Table 40 shows that MinI
has no hardware compatibility issues (1 point). It supports C/C++ and Fortran programming
languages (3 points). The MinI tool is developed according to the MPI standards, thus it
supports both MPICH and OpenMPI (1 point). There are instructions on how to compile and
use it (1 point). Moreover this project is active (1 point) there is a support team for answering
any question (1 point).

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 40: Principal Hardware/OS combinations supported by MinI.

Finally we aggregate the results of the evaluation in the Table 41.

Pro�ling features Quality of output Overheads Quality of Software Total

7 3 6 10 26

Table 41: Summary of the evaluation of MinI.

4.8 VampirTrace

VampirTrace [14, 33] has been developed at ZIH, TU Dresden in collaboration with the KOJAK
project from JSC/FZ Juelich. We use the version 5.13 while the last one is version 5.14.3 but
the new features do not in�uence the current experiments. Although OpenMpi 1.3.3 includes
VampirTrace 5.4.9, it is needed to use at least the version 5.8.0 and the reason is explained in
this section. Moreover VampirTrace can trace an application and is possible to measure both
volumes of computation and volumes of communication.

Pro�ling features With regards to the criterion of pro�ling features, VampirTrace achieves
the score of 7. This tool can trace an application (2 points) and record all the events. Moreover
it provides information for communication (1 point) and computation (1 point). For both com-
munication and communication there is information about the volumes in bytes (1 point) and
the volumes in �ops (1 point) respectively. Finally an application can be traced automatically
(1 point).

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 37

Quality of output About the criterion of quality of output the VampirTrace achieves the score
of 2. This tool records all the events into Open Trace Format (OTF) [34] �les which contain
all the needed information for the time-independent traces (1 point). When the application
terminates, the traces are uni�ed with the use of the tool vtunify automatically. In the case
that the traces are not saved in a global �le system, then they are not uni�ed and there is
available only one uctl �le per process instead of OTF �les. This means that the �les should be
gathered into one node, be converted to OTF �les and then to time-independent traces which
is time consuming. The version 5.8, introduced the vtunify-mpi which is the parallel version
of vtunify, that's why it is better to use at least this version which also requires that the �les
are saved into a global �le system. In this case, the uni�cation is implemented with an parallel
algorithm. From the OTF �les it is possible to acquire the time-independent traces by reading
the traces once time (1 point).

Space and time overhead Furthermore the space and time overheads criterion is studied.
At the Table 42, are presented the timings for the overhead which are less than 50% (2 points).

Nodes Execution time Execution time Time Overhead (in %)

w/o tracing (in sec.) w tracing (in sec.) (in %)

4 685.18 922.3 34.5

8 345.2 458.17 32.72

16 184 220.6 19.89

32 100.1 111.46 11.34

64 53.08 70.85 33.47

Table 42: Time overhead of VampirTrace for the LU benchmark, Class C.

In the continuation, at the left side of Table 43, we can see that increasing the number of
processes, causes linear increase of the size of the traces (1 point). Furthermore at the right
side of the Table 43, the size of the traces is increasing linearly while the size of the problem
is increasing (1 point). VampirTrace o�ers the option to declare which functions should not be
recorded in the traces in the case that the user is not interested about them or to declare how
often a function should be traced (1 point).

LU, class C

Nodes Size (in mb)

4 3500

8 3700

16 4000

32 4600

64 6000

LU, 32 nodes

Class Size (in mb)

A 706

B 1700

C 4600

D 59700

Table 43: Space overhead of VampirTrace for the LU benchmark.

Software quality About the criterion software quality, VampirTrace achieves the score of 11.
The tool is very easy to be installed either by installing OpenMpi or by installing it separately
(1 point). This software does not depend on other tools or libraries (1 point) and it is released
under the New BSD license which it is GPL-compatible. There is no issue about the hardware

RT n° 437

38 Desprez, Markomanolis, Suter

compatibility, it supports the major platforms (1 point) as it can be seen in Table 44 and it
is compatibile with the programming languages C/C++ and Fortran (3 points). Moreover the
most well known MPI platforms are supported (1 point). The manual that is available at the
formal website is well written and all the procedures about the installation and the usage of
VampirTrace are included (1 point). Furthermore the project is active (1 point) and there is a
support team for solving any problem (1 point).

Hardware Operating Requirements

System

AMD Athlon/Opteron,

Intel thru Pentium III, x86-Linux

Pentium M, Core2 Series

AMD Opteron,

Intel Pentium M, x86_64-Linux PAPI, PDToolkit (optional)

Core2 Series

Intel Pentium IV, D

Intel Itanium II, IA_64-Linux

Montecito, Montvale

Table 44: Principal Hardware/OS combinations supported by VampirTrace.

Finally we aggregate the results of the evaluation in the Table 45.

Pro�ling features Quality of output Overheads Quality of Software Total

7 2 5 11 25

Table 45: Summary of the evaluation of VampirTrace.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 39

5 Final Scores and Discussion

The �nal score for all the tools is presented in the Table 46.

Tool Pro�ling Quality of Space and Quality of Total

features output Time Overheads Software

PerfBench 2 0 0 5 7

PerfSuite 2 0 0 10 12

MpiP 2 0 0 11 13

IPM 3 0 0 11 14

MPE 4 1 2 10 17

PAPI 4 3 6 11 24

Extrae 7 2 5 11 25

VampirTrace 7 2 5 11 25

MinI 7 3 6 10 26

TAU 8 2 5 11 26

Scalasca 6 2 8 11 27

Score-P 7 2 8 11 28

Table 46: Summary of the evaluation of the studied instrumentation tool.

First, we recall the evaluation criteria we used are driven by the requirements of our frame-
work. Then, it is not an exhaustive evaluation of all the features of each tool. About the score,
PAPI achieves a high score. However, it only provides information about computation with man-
ual instrumentation. Then, Extrae needs a lot of time to convert the trace �les into Paraver �les
and depending on the application, traces can be large. As the conversion to time-independent
traces should be done by a serial application, the demanded time could be signi�cant with regard
to the execution of an application. Reading the provided OTF �les of VampirTrace instrumen-
tation, requires to merge them, so a global �le system is demanded, or at least to gather all
the traces into a single node. This is a procedure that we want to avoid because the global �le
system is not supported by default by all our clusters and the gathering of the traces would
consume a lot of time. Although Scalasca is an e�cient tool, it does not comply with all the
necessary requirements expressed by our framework. TAU, is one of the tools that provide all
the features and it is e�cient enough according to our requirements. However, there are some
cases which are going to be described later, where it demands a lot of memory in comparison
with other tools. One of the newest tools, named Score-P, seems to be promising. It provides
all the required information and with the OTF2 API it is possible to extract time-independent
traces without the need for a global �le system. The MinI tool succeeded to most of our tests.
It has been developed to ful�ll our framework requirements. It provides the time-independent
traces directly after the application's execution, just by compiling MPI applications against our
tool with less overhead than any other tool. The TAU, Score-P, and MinI can be used for our
framework but with some restrictions. For example if we want to create an action correspond-
ing to communication such as MPI_Alltoallv, then we need to know some speci�c information
about the MPI call that only MinI provides directly.

While MinI does not achieve the highest score, it is the most e�cient with regard to our
framework requirements. It leads to smaller time and space overhead than other tools. Further-
more it creates the time-independent traces directly during the execution of the application, thus
it needs less space to save trace �les on hard disks. The instrumentation skew is also smaller

RT n° 437

40 Desprez, Markomanolis, Suter

than other tools, so the traces represent accurately the performance of an application. Another
advantage is its lack of dependencies and it is easy to use by linking MinI to the desired ap-
plication. For our prototype we used the TAU tool, as Score-P was not mature at that time.
However, the need for an even more e�cient pro�ling tool, led us to develop MinI.

Inria

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 41

References

[1] Frédéric Desprez, George S. Markomanolis, Martin Quinson, and Frédéric Suter. Assessing
the Performance of MPI Applications Through Time-Independent Trace Replay. In Proc. of
the 2nd International Workshop on Parallel Software Tools and Tool Infrastructures (PSTI),
pages 467�476, Taipei, Taiwan, September 2011.

[2] Frederic Desprez, George S. Markomanolis, and Frédéric Suter. Improving the accuracy and
e�ciency of time-independent trace replay. In SC Workshops, 2012.

[3] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a Generic Framework
for Large-Scale Distributed Experiments. In Proceedings of the 10th IEEE International
Conference on Computer Modeling and Simulation, March 2008.

[4] Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip Mucci. A Portable
Programming Interface for Performance Evaluation on Modern Processors. International
Journal of High Performance Computing Applications, 14(3):189�204, 2000.

[5] PerfBench. http://icl.cs.utk.edu/papi/custom/index.html?lid=51&slid=71.

[6] Rick Kufrin. Perfsuite: An Accessible, Open Source Performance Analysis Environment for
Linux. In Proceedings of the 6th International Conference on Linux Clusters: The HPC
Revolution 2005 (LCI-05), Chapel Hill, NC, April 2005.

[7] Je�rey Vetter and Michael Mccracken. Statistical Scalability Analysis of Communication
Operations in Distributed Applications. In Proccedings of the 2001 ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPOPP'01), pages 123�132,
Snowbird, UT, Jun 2001.

[8] Anthony Chan, William Gropp, and Ewing Lusk. User's Guide for MPE: Extensions for
MPI Programs. Argonne National Laboratory, Mathematics and Computer Science Division,
1998.

[9] Anthony Chan, William Gropp, and Ewing Lusk. An E�cient Format for Nearly Constant-
Time Access to Arbitrary Time Intervals in Large Trace Files. Scienti�c Programming,
16(2-3):155�165, 2008.

[10] Nicholas J. Wright, Shava Smallen, Catherine Mills Olschanowsky, Jim Hayes, and Allan
Snavely. Measuring and understanding variation in benchmark performance. HPCMP Users
Group Conference, 0:438�443, 2009.

[11] Extrae. http://www.bsc.es/ssl/apps/performanceTools/.

[12] Markus Geimer, Felix Wolf, Brian Wylie, and Bernd Mohr. A Scalable Tool Architecture for
Diagnosing Wait States in Massively Parallel Applications. Parallel Computing, 35(7):375�
388, 2009.

[13] Sameer Shende and Allen Malony. The Tau Parallel Performance System. International
Journal of High Performance Computing Applications, 20(2):287�311, 2006.

[14] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias Müller, and Wolfgang Nagel. The Vampir Performance Analysis Tool-Set.
Stuttgart, Germany, July 2008.

RT n° 437

http://icl.cs.utk.edu/papi/custom/index.html?lid=51&slid=71
http://www.bsc.es/ssl/apps/performanceTools/

42 Desprez, Markomanolis, Suter

[15] Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger Brunst,
Hartmut Mix, Wolfgang E. Nagel, C. Bischof, M. Bücker, P. Gibbon, G. R. Joubert, B. Mohr,
F. Peters (eds, Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber,
Holger Brunst, Hartmut Mix, and Wolfgang E. Nagel. Developing scalable applications with
vampir,.

[16] Dieter an Mey, Scott Biersdor�, Christian Bischof, Kai Diethelm, Dominic Eschweiler,
Michael Gerndt, Andreas Knüpfer, Daniel Lorenz, Allen D. Malony, Wolfgang E. Nagel,
Yury Oleynik, Christian Rössel, Pavel Saviankou, Dirk Schmidl, Sameer S. Shende, Michael
Wagner, Bert Wesarg, and Felix Wolf. Score-P�A uni�ed performance measurement system
for petascale applications. In Proc. of the CiHPC: Competence in High Performance Com-
puting, HPC Status Konferenz der Gauÿ-Allianz e.V., Schwetzingen, Germany, pages 1�12.
Gauÿ-Allianz, Springer, June 2010. (to appear).

[17] Mikael Pettersson. Perfctr: the Linux Performance Monitoring Counters Driver. http:

//user.it.uu.se/~mikpe/linux/perfctr/2.6/.

[18] Perfmon2. http://perfmon2.sourceforge.net/.

[19] PerfBench Instrumental. http://www.instrumental.com.

[20] PerfSuite. http://perfsuite.ncsa.uiuc.edu.

[21] Scalable MPI Pro�ling MpiP: Lightweight. http://mpip.sourceforge.net/.

[22] MPE. http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/index.

htm.

[23] IPM: Integrated Performance Monitoring. http://ipm-hpc.sourceforge.net.

[24] Scalasca. http://www.scalasca.org.

[25] Performance Research Lab. University of oregon: Tau reference guide, chapter tau
instrumentaton options, http://www.cs.uoregon.edu/research/tau/docs/newguide/

bk03ch02.html.

[26] Performance Research Lab. University of oregon: Tau user guide, chapter selectively
pro�ling an application, http://www.cs.uoregon.edu/research/tau/docs/newguide/

ch03s03.html.

[27] Markus Geimer, Felix Wolf, Andreas Knüpfer, Bernd Mohr, and Brian J. N. Wylie. A parallel
trace-data interface for scalable performance analysis. In Proceedings of the 8th international
conference on Applied parallel computing: state of the art in scienti�c computing, PARA'06,
pages 398�408, Berlin, Heidelberg, 2007. Springer-Verlag.

[28] Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/tau/home.php.

[29] Performance Research Lab. TAU User Guide, chapter Tracing, TAU Trace Format
Reader Library. University of Oregon. http://www.cs.uoregon.edu/research/tau/docs/
newguide/ch06s02.html.

[30] Score-P. http://www.score-p.org.

Inria

http://user.it.uu.se/~mikpe/linux/perfctr/2.6/
http://user.it.uu.se/~mikpe/linux/perfctr/2.6/
http://perfmon2.sourceforge.net/
http://www.instrumental.com
http://perfsuite.ncsa.uiuc.edu
http://mpip.sourceforge.net/
http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/index.htm
http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/index.htm
http://ipm-hpc.sourceforge.net
http://www.scalasca.org
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch03s03.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch03s03.html
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch06s02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/ch06s02.html
http://www.score-p.org

Evaluation of Pro�ling Tools for the Acquisition of Time Independent Traces 43

[31] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E.
Nagel, and Felix Wolf. Open trace format 2 - the next generation of scalable trace formats
and support libraries. In Proc. of the Intl. Conference on Parallel Computing (ParCo),
Ghent, Belgium, 2011. (to appear).

[32] F. Wolf and B. Mohr. EPILOG binary trace-data format. Technical report // Zentralinstitut
für Angewandte Mathematik, Forschungszentrum Jülich. FZJ-ZAM, 2004.

[33] VampirTrace. http://www.tu-dresden.de/zih/vampirtrace/.

[34] Allen Malony and Wolfgang Nagel. Open Trace - The Open Trace Format (OTF) and
Open Tracing for HPC. In Proceedings of the ACM/IEEE Conference on High Performance
Networking and Computing (SC'06), Tampa, FL, November 2006.

[35] The Top 500 List. http://www.top500.org.

[36] OTF. http://www.tu-dresden.de/zih/otf.

RT n° 437

http://www.tu-dresden.de/zih/vampirtrace/
http://www.top500.org
http://www.tu-dresden.de/zih/otf

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-0803

	Introduction
	Requirements
	Evaluation Criteria and Scoring Method
	Profiling Features
	Quality of Output
	Space and Time Overheads
	Software Quality

	Evaluation of Tracing and Profiling Tools
	PAPI
	PerfBench
	PerfSuite
	MpiP
	MPE
	IPM
	Extrae
	Scalasca
	TAU
	Score-P
	Minimal Instrumentation (MinI)

	VampirTrace

	Final Scores and Discussion

