
Energy-aware scheduling: models and complexity results

Guillaume Aupy

To cite this version:

Guillaume Aupy. Energy-aware scheduling: models and complexity results. IPDPSW
- IEEE 26th International Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2012, May 2012, Shanghai, China. pp.2478-2481, 2012,
<10.1109/IPDPSW.2012.307>. <hal-00857276>

HAL Id: hal-00857276

https://hal.inria.fr/hal-00857276

Submitted on 3 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract—This paper presents several energy-aware scheduling
algorithms whose design is optimized for different speed models.
Dynamic Voltage and Frequency Scaling (DVFS) is a model
frequently used to reduce the energy consumption of a schedule,
but it has negative effect on reliability. While the reliability of a
schedule can sometimes be neglected (battery powered systems
such as cell-phones or personal computers), it becomes extremely
important when considering massively parallel architectures
(petascale, exascale).

In this work, we consider the problem of minimizing the
energy within a makespan constraint. Additionally, we consider
two models, one that takes into account a reliability constraint,
and one that does not. We assume that the mapping is given,
say by an ordered list of tasks to execute on each processor, and
we aim at optimizing the energy consumption while enforcing a
prescribed bound on the execution time. While it is not possible
to change the allocation of a task, it is possible to change its
speed. Rather than using a local approach such as backfilling,
we consider the problem as a whole and study the impact of
several speed variation models on its complexity. To improve the
reliability of a schedule while reducing the energy consumption,
we allow for the re-execution of some tasks. We present several
results in that framework, as well as future research plans.

I. INTRODUCTION

Energy-aware scheduling has proven an important issue

in the past decade, both for economical and environmental

reasons. This holds true for traditional computer systems, not

even to speak of battery-powered systems. To help reduce

energy dissipation, processors can run at different speeds.

We call dynamic voltage and frequency scaling (DVFS) the

common technique to decrease the energy consumption by

changing the execution speed of the processor. Their power

consumption is the sum of a static part (the cost for a processor

to be turned on) and a dynamic part, which is a strictly convex

function of the processor speed, so that the execution of a

given amount of work costs more power if a processor runs

in a higher mode [8]. More precisely, a processor running at

speed f dissipates f3 watts [10] per time-unit, hence consumes

f3 × d joules when operated during d units of time. Faster

speeds allow for a faster execution, but they also lead to a

much higher (supra-linear) power consumption.

Energy-aware scheduling aims at minimizing the energy

consumed during the execution of the target application.

Obviously, it makes sense only if it is coupled with some

performance bound to achieve, otherwise, the optimal solution

always is to run each processor at the slowest possible speed.

Hence we also consider the makespan of an execution, that is

the total execution time.

Reliability and fault-tolerance have always been major con-

cerns in computer science design. Zhu et al. [14] showed that

energy management through DVFS has significant effects on

reliability: for critical applications, the goal of saving energy

by reducing execution speed must be carefully weighted

with the goal of maintaining a certain level of reliability.

Re-execution is a technique to increase the reliability of a

process. It consists in re-executing each task that does not meet

the reliability constraint on the same processor. A schedule

specifies which tasks are re-executed, as well as the speed at

which each task is executed (and possibly re-executed).

In this work we consider two types of problems: bi-criteria

where one should minimize the energy consumption while

matching a deadline bound, and tri-criteria where a constraint

on reliability is added to the bi-criteria problem. For both

problems, we consider different energy models. In the CON-

TINUOUS model, an execution speed can take any arbitrary

real value; this model is appealing for theoretical work. On the

contrary, the discrete models (discrete set of possible speeds)

are closer to what exists and is actually implemented.

The paper is organized as follows. We start with a formal

description of the framework and of the energy models in

Section II. The next two sections constitute the heart of

the work: in Section III, we provide theoretical results for

the continuous speeds as well as a brief description of the

heuristics that we implemented. In Section IV, we assess the

complexity of the problem with all the discrete models, and

provide some theoretical results. Finally we conclude and give

research orientations in Section V.

II. MODELS

The application consists of n tasks {T1, · · · , Tn} with

dependence constraints, hence forming a directed acyclic task

graph (DAG). For 1 ≤ i ≤ n, task Ti has a weight wi, that

corresponds to the computation requirement of the task. The

goal is to schedule the DAG on a platform of p identical

processors. The traditional scheduling objective consists in

minimizing the execution time, or makespan, to process the

DAG. In order to do so, the DAG is mapped on the processors

and an execution speed is assigned to each task of the DAG.

Because the problem of finding a schedule that match the



makespan constraint is NP-complete, we consider that the

DAG is already mapped on the processors. The schedule then

consists in choosing the number of executions of each task (in

case of re-execution), and the speeds at which these executions

will happen. This makes sense in many situations, such as

optimizing for legacy applications, or accounting for affinities

between tasks and resources, or even when tasks are pre-

allocated [12], for example for security reasons. Furthermore,

our work can be coupled with classical list-scheduling heuris-

tics that map the DAG on the platform.

We present novel theoretical work to minimize the energy

consumption under the constraints of both a reliability thresh-

old and a deadline bound under different speed models. These

criteria are formally defined in this section. First we define the

different speed models.

Speed models

The following speed models are relevant in different con-

texts:

• CONTINUOUS model: processors can have arbitrary

speeds, from fmin to a maximum value fmax, and a pro-

cessor can change its speed at any time during execution.

The CONTINUOUS model is used mainly for theoretical

studies, which are then useful for relevant algorithms [5].

• DISCRETE model: processors have a set of possible speed

values, denoted as f1, ..., fm. There is no assumption on

the range and distribution of these speeds. The speed of

a processor cannot change during the computation of a

task, but it can change from task to task. This is the most

commonly used model [9].

• VDD-HOPPING model: a processor can run at different

speeds f1, ..., fm, as in the previous model, but it can

also change its speed during a computation. The energy

consumed during the execution of one task is the sum, on

each time interval with constant speed f , of the energy

consumed during this interval at speed f . It was shown

that significant power can be saved by using two distinct

voltages, and architectures using this principle have been

developed [6].

• INCREMENTAL model: we introduce a value δ that corre-

sponds to the minimum permissible speed increment [2].

That means that possible speed values are obtained as

f = fmin + i × δ, where i is an integer such that

0 ≤ i ≤ fmax−fmin

δ
. Admissible speeds lie in the interval

[fmin, fmax]. This new model aims at capturing a realistic

version of the DISCRETE model, where the different

modes are spread regularly between f1 = fmin and

fm = fmax, instead of being arbitrarily chosen. It is

intended as the modern counterpart of a potentiometer

knob.

The last three models are the so-called discrete models.

Optimization criteria

We consider three different optimization criteria: makespan,

reliability, and energy.

a) Makespan: The makespan of a schedule is its total

execution time. The execution time of a task Ti of weight wi

at speed fi is di =
wi

fi
. The first task is scheduled at time 0,

so that the makespan of a schedule is simply the maximum

time at which one of the processors finishes its computations.

We consider a deadline bound D, which is a constraint on the

makespan. The makespan of a schedule should not be greater

than this bound.

b) Reliability: Unfortunately, blindly applying DVFS for

energy savings may cause significant degradation in system

reliability. There are some systems where reliability may

be irrelevant, however with the advent of supercomputers

(petascale, exascale platforms), taking reliability into account

when considering energy management becomes a necessity.

It was shown that DVFS has a direct and negative effect on

transient fault-rates [14]. In order to make up for the loss in

reliability due to the energy efficiency, different models have

been proposed for fault-tolerance.

• Re-execution: it consists in re-executing a task that does

not meet the reliability constraint, see [14].

• Replication: this model, studied in [1], consists in exe-

cuting the same task on p different processors simultane-

ously, in order to meet the reliability constraints.

• Checkpointing: this model, studied in [11], consists in

”saving” the work done at some certain points of the

work, hence reducing the amount of work lost when a

failure occurs.

This work focuses on the re-execution model. The reliability

of a task Ti executed at speed f can be defined as in [3]:

Ri(f) = 1− λ0 e
d

fmax−f
fmax−fmin ×

wi

f
, (1)

where fmin ≤ f ≤ fmax is the processing speed, the exponent

d ≥ 0 is a constant, indicating the sensitivity of fault rates to

DVFS, and λ0 is the average fault rate corresponding to fmax.

We want the reliability Ri of each task Ti to be greater than

a given threshold, namely Ri(frel), hence enforcing a local

constraint dependent on the task Ri ≥ Ri(frel). If task Ti is

executed only once at speed f , then the reliability of Ti is Ri =
Ri(f). Since the reliability increases with speed, we must have

f ≥ frel to match the reliability constraint. If task Ti is re-

executed (speeds f (1) and f (2)), then the execution of Ti is

successful if and only if both attempts do not fail, so that the

reliability of Ti is Ri = 1− (1−Ri(f
(1)))(1−Ri(f

(2))), and

this quantity should be at least equal to Ri(frel).
c) Energy: The goal is to the minimize the energy con-

sumed during the execution. In all models, when a processor

operates at speed f during t time-units, the corresponding

consumed energy is f3 × t, which is the dynamic part of

the energy consumption, following the classical models of

the literature [4]. Note that we do not take static energy into

account, because all processors are up and alive during the

whole execution. The energy consumed by task Ti executed

at speed f is Ei = f3wi

f
= wif

2.

When a task is scheduled to be re-executed at two different

speeds f (1) and f (2), we always account for both executions,

i.e., Ei = wi(f
(1)2 + f (2)2), even when the first execution is



successful. In other words, we consider a worst-case execution

scenario, and the deadline D must be matched even in the

case where all tasks that are re-executed fail during their first

execution. The total energy consumption is E =
∑n

i=1 Ei.

Optimization problems

Consider an application task graph G = (V, E), and p

homogeneous processors. For each speed model, we define:

Definition 1. BI-CRIT. Given an application graph G =
(V, E), mapped onto p homogeneous processors, BI-CRIT is

the problem of deciding at which speed each task should be

processed, in order to minimize the total energy consump-

tion E, subject to the deadline bound D.

Definition 2. TRI-CRIT. Given an application graph G =
(V, E), mapped onto p homogeneous processors, TRI-CRIT is

the problem of deciding which tasks should be re-executed and

at which speed each execution of a task should be processed,

in order to minimize the total energy consumption E, subject

to the deadline bound D and to the reliability constraints

Ri ≥ Ri(frel) for each Ti ∈ V .

We point out that TRI-CRIT brings dramatic complications:

in addition to choosing the speed of each task, as in BI-CRIT,

we also need to decide which subset of tasks should be re-

executed (and then choose both execution speeds). Few authors

have tackled such a challenging problem.

III. THE CONTINUOUS MODEL

With the CONTINUOUS model, processor speeds can take

any value between fmin and fmax. We were able to show some

theoretical results with or without reliability constraints.

The BI-CRIT problem (see [2]):

We provide optimal speed values for special execution graph

structures (trees, series-parallel graphs), expressed as closed

form algebraic formulas. These values may be irrational. We

give an example for the graphs of type Fork:

Theorem (fork graphs). When G is a fork execution graph

with n + 1 tasks T0, T1, . . . , Tn, the optimal solution to BI-

CRIT is the following:

• the execution speed of the source (resp. sink) T0 is

f0 =

(
∑n

i=1 w
3
i

)
1

3 + w0

D
;

• for the other tasks Ti, 1 ≤ i ≤ n, we have

fi = f0 ×
wi

(
∑n

i=1 w
3
i )

1

3

if f0 ≤ fmax .

Otherwise, T0 should be executed at speed f0 = fmax, and

the other speeds are fi =
wi

D′
, with D′ = D− w0

fmax

, if they do

not exceed fmax. Otherwise there is no solution.

If no speed exceeds fmax, the corresponding energy

consumption is

Efork(G,D) =

(

(
∑n

i=1 w
3
i )

1

3 + w0

)3

D2
.

We formulate the problem for general DAGs as a geometric

programming problem (see [7, Section 4.5]) for which efficient

numerical schemes exist.

The TRI-CRIT problem (see [3]):

We show that this problem is NP-hard even in the simple

case when there is only one processor and a set of tasks

mapped on this processor (linear chain). However, we were

able to find an optimal strategy for the case of a linear chain:

first slow the execution of all tasks equally, then choose the

tasks to be re-executed. Based on this strategy we were able

to develop a first set of heuristics very efficient on linear-

chain-like DAGs. We were also able to find a polynomial time

algorithm to solve the problem for a fork. We point out that

it is much more difficult to obtain closed-form formulas than

for the BI-CRIT problem, even if all the tasks of the fork have

the same weight. This polynomial-time algorithm is based on

a totally different strategy than for linear chains: those highly

parallelizable tasks should be preferred when allocating time

slots for re-execution or deceleration. Based on this strategy,

we were able to develop a second set of heuristics, very

efficient on highly-parallelizable DAGs.

The heuristics that we developed are based on the failure

probability, the task weights, and the processor speeds. They

aim at minimizing the energy consumption while enforcing

reliability and deadline constraints. After running our two

sets of heuristics on a wide class of problem instances, we

have identified two heuristics that are complementary, and that

together are able to produce good results on most instances.

Altogether, taking the best result out of those two heuristics

always gives the best result over all simulations and is a good

candidate for competitiveness. The constructive results are not

theoretically proven to be approximation algorithms, though

they are backed up by theoretic intuitions and experimental

evaluation.

IV. DISCRETE MODELS

In this section, we present complexity results on the three

energy models with a finite number of possible speeds.

The BI-CRIT problem (see [2]):

• With the VDD-HOPPING model, we show that this prob-

lem can be solved in polynomial time using a linear

program.

• With the INCREMENTAL model (and hence the DISCRETE

model), we show that this problem is NP-complete.

However we were able to give polynomial time approxi-

mation algorithms (for instance, with the INCREMENTAL

model, we can approximate the solution within a factor

(1+ δ
fmin

)2(1+ 1
K
)2, in a time polynomial in the size of

the instance and in K).

The TRI-CRIT problem (see [3]):

With reliability we focused on the VDD-HOPPING model

which had a polynomial time solution without reliability. We

first showed that only two different speeds are needed for the

execution of a task under the VDD-HOPPING model (this is a

well known result when studying BI-CRIT, which still holds



true with reliability). Then we showed that with the VDD-

HOPPING model, TRI-CRIT is NP-complete (while BI-CRIT

problem was in P).

Finally, we could easily adapt the heuristics for the CON-

TINUOUS model to the VDD-HOPPING model: for a solution

given by a heuristic for the CONTINUOUS model, if a task

should be executed at the continuous speed f , then we would

execute it at the two closest discrete speeds that bound f , while

matching the execution time and reliability for this task. There

remains to quantify the performance loss incurred by the latter

constraints.

V. CONCLUSION AND RESEARCH ORIENTATIONS

In this work, we have assessed the tractability of a classical

scheduling problem, with task preallocation, under various

energy models. We have given several results related to

CONTINUOUS speeds. However, while these are of conceptual

importance, they cannot be achieved with physical devices,

and we have analyzed several models enforcing a bounded

number of achievable speeds. In the classical DISCRETE model

that arises from DVFS techniques, admissible speeds can be

irregularly distributed, which motivates the VDD-HOPPING

approach that mixes two consecutive speeds optimally. While

the BI-CRIT problem is NP-hard with discrete speeds, it

has polynomial complexity when mixing speeds. Intuitively,

the VDD-HOPPING approach allows for smoothing out the

discrete nature of the speeds. An alternate (and simpler in

practice) solution to VDD-HOPPING is the INCREMENTAL

model, where one sticks with unique speeds during task execu-

tion as in the DISCRETE model, but where consecutive modes

are regularly spaced. Such a model can be made arbitrarily

efficient, according to our approximation results. Coupling this

model with the classical reliability model used in [13], we

have been able to formulate the TRI-CRIT problem: how to

minimize the energy consumed given a deadline bound and

a reliability constraint? The “antagonistic“ relation between

speed and reliability renders this tri-criteria problem much

more challenging than the standard bi-criteria version. We have

stated two variants of the problem, for processor speeds obey-

ing either the CONTINUOUS or the VDD-HOPPING model. We

have assessed the intractability of this tri-criteria problem, even

in the case of a single processor. A very encouraging point is

the fact that we were able to develop two very complementary

heuristics for the CONTINUOUS TRI-CRIT problem, efficient

on different sort of DAGs.

Future work involves several promising directions. On the

theoretical side, it would be very interesting to prove a

competitive ratio for the heuristic that takes the best out of our

heuristics for the CONTINUOUS TRI-CRIT problem. However,

this is quite a challenging work for arbitrary DAGs, and one

may try to design approximation algorithms only for special

graph structures, e.g. series-parallel graphs.

The previous heuristics are solving the problem where the

mapping is given. However, as said earlier, they can provide ef-

ficient solutions for the general problem associated with a list-

scheduling algorithm. When implementing those heuristics, we

coupled them with a critical-path list-scheduling algorithm. It

would be important to assess the impact of the list schedul-

ing heuristic that precedes the energy-reduction heuristic. In

other words, the classical critical-path list-scheduling heuristic,

which is known to be efficient for deadline minimization,

may well be superseded by another heuristic that trades-off

execution time, energy and reliability when mapping ready

tasks to processors. Such a study could open new avenues for

the design of multi-criteria list-scheduling heuristics.

Finally, we point out that energy reduction and reliability

will be even more important objectives with the advent of

massively parallel platforms, made of a large number of

clusters of multi-cores. More efficient solutions to the tri-

criteria optimization problem (deadline, energy, reliability)

could be achieved through combining replication with re-

execution. A promising (and ambitious) research direction

would be to search for the best trade-offs that can be achieved

between these techniques that both increase reliability, but

whose impact on execution time and energy consumption is

very different.
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