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Abstract

In their book Scientific Computing on The Itanium [1], Cornea, Harrison
and Tang introduce an accurate algorithm for evaluating expressions of
the form ab + cd in binary floating-point arithmetic, assuming an FMA
instruction is available. They show that if p is the precision of the floating-
point format and if u = 2

−p, the relative error of the result is of order
u. We improve their proof to show that the relative error is bounded by
2u+7u2

+6u3. Furthermore, by building an example for which the relative
error is asymptotically (as p → ∞ or, equivalently, as u → 0) equivalent to
2u, we show that our error bound is asymptotically optimal.

1 Introduction and notation

1.1 Computing ab + cd

Expressions of the form ab+ cd, where a, b, c, d are floating-point (FP) numbers
arise naturally in many numerical computations. Typical examples are com-
plex multiplication and division; discriminant of quadratic equations; cross-
products and 2D determinants. The naive way of computing ab+cd may lead to
very inaccurate results, due to catastrophic cancellations.1 Several algorithms
have been introduced, to overcome this problem. An algorithm attributed to
Kahan by Higham [2, p. 65] can be used when an FMA instruction is available.
It is Algorithm 1 below.

1This is especially true when an FMA is used in a naive way: see for instance the paragraph
“Multiply-Accumulate, A Mixed Blessing” in Kahan’s on-line document [5].
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Algorithm 1 Kahan’s algorithm for computing x = ab+cd with fused multiply-
adds. RN(t) means t rounded to the nearest FP number, so that RN(cd) is
the result of the floating-point multiplication c*d, assuming round-to-nearest
mode.

ŵ ← RN(cd)
e← RN(cd− ŵ) // this operation is exact: e = cd− ŵ.

f̂ ← RN(ab + ŵ)

x̂← RN(f̂ + e)
return x̂

Jeannerod, Louvet and Muller [4] show that in radix-β floating-point arith-
metic, the relative error of Kahan’s algorithm is bounded by 2u, where u =
1

2
β1−p is the unit roundoff. They also show that this bound is asymptotically

optimal, which means that the ratio between the largest attained relative error
and the bound goes to 1 as p goes to infinity (or, equivalently, as u goes to 0).

Another algorithm, that also requires the availability of an FMA instruction,
was introduced by Cornea, Harrison and Tang in their book Scientific Comput-
ing on The Itanium [1]. Cornea et al’s algorithm is

Algorithm 2 Cornea, Harrison and Tang’s algorithm for computing x = ab+cd
with fused multiply-adds.

π1 ← RN(ab)
e1 ← ab− π1 // exact with an FMA
π2 ← RN(cd)
e2 ← cd− π2 // exact with an FMA
π ← RN(π1 + π2)
e← RN(e1 + e2)
s← RN(π + e)
return s

Cornea, Harrison and Tang provide a quick error analysis to show that the
relative error of their algorithm is of the order of u. At the time of the pub-
lication of their book, the relative bound 2u on Kahan’s algorithm was not
known, which made their algorithm a very attractive choice, although it re-
quires slightly more computation than Kahan’s algorithm. Now, to choose be-
tween these two algorithms, we need to evaluate the largest possible relative
error of Cornea et al’s algorithm more accurately. This is the purpose of this
paper.

1.2 Some notation and assumtions

Throughout the paper, we assume a binary floating-point system of precision
p ≥ 2, with unbounded exponent range (that is, our results will apply to real-
life computations provided that no underflow or overflow occurs). In such a
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system, a floating-point number is a number x that can be expressed in the
form

x = Mx · 2
ex−p+1,

where Mx and ex are integers, and 2p−1 ≤ |Mx| ≤ 2p − 1. We denote u = 2−p.
If t is a nonzero real number, with 2k ≤ t < 2k+1, we define ulp(t) as 2k−p+1.

We assume that an FMA instruction is available. The FMA (fused multiply-
add) evaluates expressions of the form FMA(a, b, c) = ab + c with one final
rounding only and since it is required by the 2008 revision of the IEEE 754
standard [3], one can expect that it will soon belong to the instruction set of
most general-purpose processors. In the following we assume that the round-
ing mode is round to nearest even, and we denote RN the rounding function, so
that the result returned when computing FMA(a, b, c) is RN(ab + c).

We will frequently use the following properties [6]:
for any real number t,

(i) |RN(t)− t| ≤ 1

2
ulp(t) ≤ u · |t|,

(ii) |RN(t)− t| ≤ u · |RN(t)|,

(iii) ulp(t) ≤ ulp(RN(t)).

An interesting property of the FMA instruction is that it allows to quickly
compute the error of a floating-point multiplication. More precisely, if π =
RN(xy) is the result of a rounded-to-nearest FP multiplication and e = RN(xy−
π) (e is computed using one FMA), then π + e = xy.

2 Preliminary properties of Algorithm 2

Remark 2.1. If ab = −cd then ab + cd = 0 is exactly computed by the algorithm.

Proof. Straightforward by noticing that π1 = −π2 and e1 = −e2.

Remark 2.2. Let cd be the product of two binary floating-point numbers of precision
p. Define π2 = RN(cd) and e2 = cd− π2. We have:

• either e2 is a multiple of 2−p+1ulp(π2) (which implies that it fits in p− 2 bits);

• or |cd| ≤ (2p − 2 + 2−p)ulp(π2).

Proof. Since c and d are precision-p binary floating-point numbers, one has

c = Mc · 2
ec−p+1 and d = Md · 2

ed−p+1,

where Mc, Md, ec, and ed are integers, with 2p−1 ≤ |Mc|, |Md| ≤ 2p − 1. The
number cd is a multiple of 2ec+ed−2p+2, hence π2 = RN(cd) and e2 = cd − π2

are multiple of 2ec+ed−2p+2 too.

• if π2 < 2ec+ed+1 then ulp(π2) ≤ 2ec+ed−p+1, so that (since ulp(π2) is a
power of 2) e2 is a multiple of 2−p+1ulp(π2);
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• if π2 ≥ 2ec+ed+1 then ulp(π2) = 2ec+ed−p+2, therefore

|cd| = |McMd|·2
ec+ed−2p+2 ≤ (2p−1)2·2ec+ed−2p+2 = (2p−2+2−p)ulp(π2).

Remark 2.3. Denote u = 2−p. We have,

π + e = (ab + cd)(1 + ǫ1) + γ,

with |ǫ1| ≤ u and |γ| ≤ 2u2 · (|ab|+ |cd|), so that

s = RN(π + e) = ((ab + cd)(1 + ǫ1) + γ) · (1 + ǫ3),

with |ǫ3| ≤ u.

Proof. We have,

• π1 + e1 = ab, |e1| ≤ u · |π1|, and |e1| ≤ u · |ab|;

• π2 + e2 = cd, |e2| ≤ u · |π2|, and |e2| ≤ u · |cd|;

• π = (π1 + π2) · (1 + ǫ1), with |ǫ1| ≤ u;

• e = (e1 + e2) · (1 + ǫ2), with |ǫ2| ≤ u.

Therefore,
π + e = (ab + cd)(1 + ǫ1) + γ,

with
γ = (e1 + e2) · (ǫ2 − ǫ1),

which implies
|γ| = 2u2 · (|ab|+ |cd|) .

3 Discussion on the various cases that occur in Al-

gorithm 2

3.1 If ab and cd have the same sign

In that case, |γ| ≤ 2u2 · |ab + cd|, so that the final relative error is bounded by
2u + 3u2 + 2u3.

3.2 If ab and cd have different signs

Without loss of generality, we assume |ab| ≥ |cd|, ab > 0 and cd < 0 (notice that
if ab = 0 or cd = 0 the analysis becomes straightforward).
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3.2.1 If |cd| ≤ 1

2
ab

In that case,

|ab + cd| ≥
1

2
|ab|, and |ab|+ |cd| ≤

3

2
|ab|,

so that

|ab + cd| ≥
1

3
(|ab|+ |cd|) ,

so that |γ| ≤ 6u2 · |ab+cd|, which implies that the final relative error is bounded
by 2u + 7u2 + 6u3.

3.2.2 If |cd| > 1

2
ab

In that case, since function t→ RN(t) is an increasing function, we easily find

1

2
π1 ≤ |π2| ≤ π1.

Applying Sterbenz Lemma [7, 6], we find that π = π1 + π2 exactly, so that
ǫ1 = 0, which gives

π + e = ab + cd + γ,

with
γ = (e2 + e1)ǫ2,

which implies
|γ| ≤ u2 · (|ab|+ |cd|) .

1. if |ab + cd| ≥ u · (|ab|+ |cd|) , then |γ| ≤ u · |ab + cd|, so that the final
relative error is bounded by 2u + u2.

2. if |ab + cd| < u · (|ab|+ |cd|) and π1 and π2 have the same floating-
point exponent e. In that case, we have,

• |e1| ≤ (1/2)ulp(π1) = 2e−p,

• |e2| ≤ (1/2)ulp(π2) = 2e−p,

• e1 and e2 are multiple of 2e−2p+1,

Hence, e1 + e2 is a multiple of 2e−2p+1, say e1 + e2 = K · 2e−2p+1, k ∈ Z,
that satisfies

∣

∣K · 2e−2p+1
∣

∣ ≤ 2e−p+1,

i.e., |K| ≤ 2p. This implies that e1 + e2 is a floating-point number. Hence,
e = RN(e1+e2) = e1+e2, so that ǫ2 = 0. As a consequence, π+e = ab+cd
exactly, and the final relative error is bounded by u.

3. if |ab + cd| < u · (|ab|+ |cd|) and π1 and π2 do not have the same floating-
point exponent. In such a case, 1

2
π1 ≤ |π2| ≤ π1 implies that the exponent

of π2 is the exponent of π1 minus one, so that ulp(π2) = 1

2
ulp(π1). Let us

notice the following property
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Remark 3.1. If |ab + cd| < u · (|ab|+ |cd|) and π1 and π2 do not have the same
floating-point exponent then (π1 + π2) ≤ 4ulp(π2).

Proof. π1 and π2 are obviously multiples of ulp(π2), and if we had (π1 +
π2) ≤ 4ulp(π2), that would imply

|ab+cd| = |π1+π2+e1+e2| ≥ 5ulp(π2)−ulp(π2)−
1

2
ulp(e2) = 7/2ulp(π2),

whereas

|ab|+ |cd| < 2pulp(π1) + 2pulp(π2) = 3 · 2pulp(π2),

so that
|ab|+ |cd|

|ab + cd|
≤

6

7
· 2p =

6

7u
,

which contradicts the assumption |ab + cd| < u · (|ab|+ |cd|).

The fact that π1 and π2 do not have the same floating-point exponent (so
that there is a power of 2 between them), and that (π1 +π2) ≤ 4ulp(π2) implies
that there remain only a very few cases to examine. Define eπ1

as the floating-
point exponent of π1:

• either π1 is the floating-point number immediately above 2eπ1 . In such a
case −π2 is either 2eπ1 − ulp(π2) or 2eπ1 − 2ulp(π2);

• or π1 = 2eπ1 . In such a case, π2 = 2eπ1 − i · ulp(π2), with i = 1, 2, 3, or 4.

We can even reduce further the number of cases to be considered:

• First, one can apply Remark 2.2. If e2 is a multiple of 2−p+1ulp(π2), then
e1+e2 is a multiple of 2−p+1ulp(π2), say e1+e2 = K ·2−p+1 ·ulp(π2). Since
|e1 + e2| ≤

1

2
(ulp(π1) + ulp(π2)) = 3

2
ulp(π2), we deduce that |K| ≤ 3 ·

2p−2 < 2p. This shows that e1 + e2 is a precision-p floating-point number.
Hence, e = RN(e1 + e2) = e1 + e2, so that ǫ2 = 0. As a consequence,
π + e = ab + cd exactly, and the final relative error is bounded by u.
Now, Remark 2.2 tells us that If e2 is no a multiple of 2−p+1ulp(π2), then
|cd| ≤ (2p − 2 + 2−p)ulp(π2), so that |π2| = |RN(cd)| ≤ 2eπ1 − 2ulp(π2).
Hence the case π2 = 2eπ1 − ulp(π2) need not be considered.

• If π1 = 2eπ1 , then, since π1 = RN(ab), 2eπ1 − 1

4
ulp(π1) ≤ ab ≤ 2eπ1 +

1

2
ulp(π1). However the case ab ≤ 2eπ1 is easily dealt with: in that case,

we have |e1| ≤
1

2
ulp(π2), so that it is very similar to a case already met:

e1 + e2 is a floating-point number. Hence, e = RN(e1 + e2) = e1 + e2,
so that ǫ2 = 0. As a consequence, π + e = ab + cd exactly, and the final
relative error is bounded by u.

Therefore, we only need to consider two cases:
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• Case 1 π1 is the floating-point number immediately above 2eπ1 , and 2eπ1−
2ulp(π2). When reasoning on the consequences of Remark 2.2, we have
seen that we can further assume that |cd| ≤ (2p − 2 + 2−p)ulp(π2) =
2eπ1 − (2− 2−p)ulp(π2). This case is exemplified by Figure 1. In that case,

|ab + cd| > (3− 2−p)ulp(π2),

and

|ab|+|cd| <

(

2p−1 +
3

2

)

ulp(π1)+(2p+1−2+2−p)ulp(π2) = (2p+1+1+2−p)ulp(π2),

so that

γ < u2 2p+1 + 1 + 2−p

3− 2−p
· |ab + cd|.

Elementary manipulations show that as soon as u = 2−p is less than 1/2
(i.e., p ≥ 1, which always holds), the ratio

2p+1 + 1 + 2−p

3− 2−p
=

2

3u
+

5

9
+

14u

27
+

14u2

81
+ · · ·

is less than
2

3u
+ 1.

As a consequence, γ ≤
(

2u
3

+ u2
)

|ab + cd|, so that the final relative error
is less than 5

3
u + 5

3
u2 + u3.

• Case 2 π1 = 2eπ1 and−π2 is π1−2ulp(π2), π1−3ulp(π2), or π1−4ulp(π2).
We have seen that we can further assume |cd| ≤ 2eπ1 − (2− 2−p)ulp(π2),
and ab > 2eπ1 . This case is exemplified by Figure 2. In that case,

|ab + cd| > (2− 2−p)ulp(π2),

and

|ab|+ |cd| < [(2p − 1) + (2p − 2− 2−p]ulp(π2) = (2p+1 − 1 + 2−p)ulp(π2).

We deduce

γ ≤ u2 2p+1 − 1 + 2−p

2− 2−p
|ab + cd|.

We easily find
2p+1 − 1 + 2−p

2− 2−p
≤

1

u
+ u,

Hence γ ≤ (u + u3)|ab + cd|, from which we deduce that the final relative
error is bounded by 2u + u2 + u3 + u4.
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2eπ1 π1−π2

−cd is located here

ab is located here

ulp(π1) = 2ulp(π2)

Figure 1: Case π1 = 2eπ1 · (1 + 2−p+1).

π1 = 2eπ1−π2

If π2 is the largest possible,
−cd is located here

ab is located here

ulp(π1) = 2ulp(π2)

Figure 2: Case π1 = 2eπ1 .
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4 General result

The results obtained in the various cases considered in Section 3 can be sum-
marized as follows

Theorem 4.1. Provided no underflow/overflow occurs, and assuming radix-2, precision-
p floating-point arithmetic, the relative error of Cornea et al’s algorithm is bounded by
2u + 7u2 + 6u3.

Now, interestingly enough, we are going to see that the bound given by
Theorem 4.1 is asymptotically optimal (as p → ∞ or, equivalently, as u →
0). To show this, it suffices to consider, in radix-2, precision-p floating-point
arithmetic:















a = 2p − 1,
b = 2p−3 + 1

2
,

c = 2p − 1,
d = 2p−3 + 1

4
,

One easily checks that a, b, c, and d are precision-p FP numbers. One easily
finds:

ab + cd = 22p−2 + 2p−1 − 3

4
,

π1 = 22p−3 + 2p−2,
e1 = 2p−3 − 1

2
,

π2 = 22p−3,
e2 = 2p−3 − 1

4
,

π = 22p−2,
e = 2p−2 − 3

4
,

s = 22p−2.

The relative error |s− (ab + cd)|/|ab + cd| is equal to

2p−1 − 3

4

22p−2 + 2p−1 − 3

4

=
2u− 3u2

1 + 2u− 3u2
= 2u− 7u2 + 20u3 + · · ·

which is asymptotically equivalent to 2u. This shows that our relative error
bound is asymptotically optimal.

In the frequent case where the considered floating-point format is the bi-
nary64/double precision format of the IEEE 754 Standard, the relative error
bound provided by Theorem 4.1 is

u× 2.000000000000000777156 · · · ,

and the relative error attained with our example is

u× 1.99999999999999922284 · · ·

This illustrates the tightness of the bound provided by Theorem 4.1.
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Conclusion

We have provided a relative error bound for Cornea, Harrison and Tang’s al-
gorithm (Algorithm 2), and we have shown that our bound is asymptotically
optimal. Since that bound is not better than the (also asymptotically optimal)
error bound for Kahan’s algorithm (Algorithm 1), it is in general preferable to
use Algorithm 1. A possible exception is when one wants to always get the
same result when computing ab + cd and cd + ab (for instance to implement
a commutative complex multiplication): in this case, the natural symmetry of
Algorithm 2 will guarantee the required property, whereas it is easy to build
examples for which Algorithm 1 does not satisfy it.
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