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Abstract: The processing of queries expressed as trees of boolean operators applied to predi-
cates on sensor data streams has several applications in mobile computing. Sensor data must be
retrieved from the sensors to a query processing device, such as a smartphone, over one or more
network interfaces. Retrieving a data item incurs a cost, e.g., an energy expense that depletes the
smartphone’s battery. Since the query tree contains boolean operators, part of the tree can be
shortcircuited depending on the retrieved sensor data. An interesting problem is to determine the
order in which predicates should be evaluated so as to minimize the expected query processing
cost. This problem has been studied in previous work assuming that each data stream occurs in
a single predicate. In this work we remove this assumption since it does not necessarily hold for
real-world queries. Our main results are an optimal algorithm for single-level trees and a proof of
NP-completeness for DNF trees. For DNF trees, however, we show that there is an optimal pred-
icate evaluation order that corresponds to a depth-first traversal. This result provides inspiration
for a class of heuristics. We show that one of these heuristics largely outperforms other sensible
heuristics, including the one heuristic proposed in previous work for our general version of the
query processing problem.
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Exécution de coût optimal d’arbres d’opérateurs booléens
partageant des données

Résumé : Le traitement de requêtes, exprimées sous forme d’arbres d’opérateurs booléens
appliqués à des prédicats sur des flux de données de senseurs, a de nombreuses applications dans
le domaine du calcul mobile. Les données doivent être transférées des senseurs vers l’appareil de
traitement des données, par exemple un smartphone. Transférer une donnée induit un coût, par
exemple une consommation énergétique qui diminuera la charge de la batterie du smartphone.
Comme l’arbre de requêtes contient des opérateurs booléens, des pans de l’arbre peuvent être
court-circuités en fonction des données récupérées. Un problème intéressant est de déterminer
l’ordre dans lequel les prédicats doivent être évalués afin de minimiser l’espérance du coût du
traitement de la requête. Ce problème a déjà été étudié sous l’hypothèse que chaque flux apparaît
dans un seul prédicat. Dans le présent travail nous éliminons cette hypothèse qui ne correspond
pas forcément à la réalité. Nos principaux résultats sont un algorithme optimal pour les arbres
avec un seul niveau, et une preuve de NP-complétude pour les arbres sous forme normale dis-
jonctive. Pour les arbres sous forme normale disjonctive, cependant, nous montrons qu’il existe
un ordre optimal d’évaluation des prédicats qui correspond à un parcours en profondeur d’abord.
Ce résultat nous sert à concevoir toute une classe d’heuristiques. Nous montrons que l’une de
ces heuristiques a de bien meilleurs résultats que les autres heuristiques et, entre autres, que la
seule heuristique précédemment proposée pour le cadre général.

Mots-clés : traitement de requêtes, opérateurs booléens, énergie, ordonnancement, algorith-
mique probabiliste, algorithme glouton, partage de données
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l3 : C < 3

l1 : AVG(A, 5) < 70

l2 : MAX(B, 4) > 100

(a)

AND AND

OR

AVG(A, 5) < 70 MAX(A, 10) > 80C < 3MAX(B, 4) > 100

(b)

Figure 1: Two query tree examples: (a) a read-once query; (b) a shared query.

1 Introduction
There has been a recent explosion in the use of personal mobile devices for “mobile sensing” ap-
plications. For instance, smartphones are equipped with increasingly sophisticated sensors (e.g.,
GPS, accelerometer, gyroscope, microphone) that enable near real-time sensing of an individual’s
activity or environmental context. A smartphone can then perform embedded query processing
on the sensor data streams, e.g., for social networking [5], remote health monitoring [6]. The
continuous processing of streams, even when data rates are moderate (such as for GPS or ac-
celerometer data), can cause commercial smartphone batteries to be depleted in a few hours [1].
It is thus crucial to reduce the amount of sensor data acquired for query processing, so as to
reduce energy consumption and lengthen battery life.

In this work we study the problem of minimizing the expected sensor data acquisition cost
(e.g., number of bytes, energy consumption due to byte transfers) when evaluating a query ex-
pressed as a tree of arbitrarily composed conjunctive and disjunctive boolean operators applied
to boolean predicates. Each predicate is computed over data items from a particular data stream
generated periodically by a sensor, and as a certain probability of evaluating to true. The eval-
uation of the query stops as soon as a truth value has been determined, possibly shortcircuiting
part of the query tree. A “push” model by which sensors continuously transmit data to the device
maximizes the amount of acquired data and is thus not practical. Instead, a “pull” model has
been proposed [4], by which the query engine running on the device carefully chooses the order
and the numbers of data items to request from each individual sensor. This choice is based on
a-priori knowledge of operator costs and probabilities, which can be inferred based on historical
traces obtained for previous query executions. In practice, such intelligent processing is possible
thanks to the programming and data filtering capabilities that are emerging on many wear-
able sensor platforms (e.g., the SHIMMER platform [7]) so that data storage and transmission
algorithms can be programmed “over the air.”

Two example query trees are shown in Figure 1, assuming streams named A, B, and C, which
are assumed to produce integer data items. Each leaf corresponds to a boolean predicate. A
predicate may involve no operator, e.g., “C < 3” is true if the last item from stream C is strictly
lower than 3, or based on an arbitrary operator (in this example MAX or AVG) which is applied
to a time-window for a stream, e.g., “AVG(A, 5) < 70” is true if the average of the last 5 items
from A is strictly lower than 70).

The problem of computing the truth value of a boolean query tree while incurring the mini-
mum cost is known as Probabilistic AND-OR Tree Resolution (PAOTR) and has been studied
extensively in the literature. In particular, [3] provides both a survey of known theoretical re-
sults and several new results, all assuming that each data stream occurs in at most one leaf of
the query tree. This assumption is termed read-once therein. In this case, for AND-trees (i.e.,
single-level trees with an AND operator at the root node) a simple O(n logn) greedy algorithm
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produces an optimal leaf evaluation order (n is the number of leaves in the query tree) [8]. For
DNF trees (i.e., collections of AND-trees whose roots are the children of a single OR node), a
O(n logn) depth-first traversal of the trees that reuses the algorithm in [8] to order leaves within
each AND produces an optimal evaluation order [3]. For general AND-OR-trees the complexity
of the problem is open. The example query tree in Figure 1(a) is a read-once query since no
stream occurs in two leaves.

By contrast, in this work we study the more general case, which we term shared, in which a
stream can occur in multiple leaves. The example in Figure 1(b) corresponds to a shared case
since stream A occurs in two leaves. The device that processes the query acquires data items
from streams and holds each data item in memory until that data item is no longer relevant. A
data item from a stream is no longer relevant when it is older than the maximum time-window
used for that stream in the query. Each time a leaf of the query must be evaluated, one can then
compute the number of data items that must be retrieved from the relevant stream given the
time-windows of the operator applied to that stream and the data items from that stream that
are already in the device’s memory. For example, considering the query in Figure 1(b), assume
the predicate “AVG(A, 5) < 70” is evaluated first, thus pulling 5 items from stream A. If later
the predicate “MAX(A, 10) > 80” needs to be evaluated then only 5 additional items must be
pulled.

The shared scenario is important in practice, and has been introduced and investigated in [4].
In that work the authors do not give theoretical results, but instead develop heuristics to deter-
mine an order of operator evaluation that hopefully leads to low data acquisition costs. To the
best of our knowledge, the complexity of the PAOTR problem in the shared case has never been
addressed in the literature, likely because re-using stream data across leaves dramatically com-
plicates the problem. When picking a leaf evaluation order, interdependences between the leaves
must be taken into account. And in fact, even when a leaf evaluation order is given, computing
the expected query cost is intricate while this same computation is trivial in the read-once case.

In this work we study the PAOTR problem in the shared case and make the following con-
tributions:

• For AND-trees we give an optimal algorithm (which is much more involved than the optimal
algorithm in the read-once case);

• For DNF trees we show that the problem is NP-complete; but we are able to prove that
there exists an optimal leaf evaluation order that is depth-first;

• For DNF trees we develop heuristics that we evaluate in simulation and compare to the
optimal solution (computed via an exhaustive search) and to the heuristic proposed in [4].

In Section 2 we discuss models, the problem statement, and related work. We study AND-
trees and DNF trees in Section 3 and Section 4, respectively. Section 5 concludes the paper with
a brief summary of our findings and perspectives on future work. Detailed proofs of some of our
theoretical results are provided in appendices.

2 Problem Statement and Examples
To define our problem we reuse the formalism and terminology in [3]. A query is an AND-OR
tree, i.e., a rooted tree whose non-leaf nodes are AND or OR operators, and whose leaf nodes
are labeled with probabilistic boolean predicates. Each predicate is evaluated over data items
generated by a data stream. The evaluation of each predicate has a known success probability (the
probability that the predicate evaluates to TRUE) and a cost. In practice, the success probability
can be estimated based on historical traces obtained from previous query evaluations. As in [3],
we assume independent predicates, meaning that two predicates at two leaf nodes in a query

Inria
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are statistically independent. The cost is determined by the number of data items required to
perform the evaluation and the evaluation cost per data item for the stream. For instance, the
cost of a data item could correspond to the energy cost, in joules, of acquiring one data item
based on the communication medium used for the stream and the data item size.

More formally, we consider a set of s streams, S = {S1, . . . , Ss}. Stream Sk has a cost per
data item of c(Sk). A query on these streams, T , is a rooted AND-OR tree with m leaves,
l1, . . . , lm. Leaf lj has success, resp. failure, probability pj , resp. qj = 1 − pj , and requires
the last dj items from stream S(j) ∈ S. The objective is to compute the truth value of the
root of the query tree by evaluating the leaves of the tree. Because each non-leaf node in a
query tree is either an OR or an AND operator, it may not be necessary to evaluate all the
leaves due to shortcircuiting. In other words, as soon as any child node of an OR, resp. AND,
operator evaluates to TRUE, resp. FALSE, the truth value of the operator is known and can
be propagated toward the root. For a given query, we define a schedule as an evaluation order
of the leaves of the query tree, represented as a sorted sequence of the leaves.

We define the cost of a schedule as the expected value of the sum of the costs incurred for all
leaves that are evaluated before the root’s truth value is determined. For instance, consider the
query in Figure 1(a), in which leaves are labeled l1, l2, l3, and consider the schedule l2, l3, l1. The
query processing begins with the acquisition of the data items necessary for evaluating l2, which
has cost 4 · c(B). With probability p2, l2 evaluates to TRUE, thus shortcircuiting the evaluation
of l3. Therefore, the expected evaluation cost of the OR operator is: 4 · c(B) + q2 · c(C). If the
OR operator evaluates to FALSE, which happens with probability q2q3, then the evaluation of
l1 is shortcircuited. Otherwise, l1 must be evaluated. The overall cost of the schedule is thus:
4 · c(B) + q2 · c(C) + (1− q2q3) · 5 · c(A). Recall that this query tree is for a read-once scenario.

The PAOTR problem consists in determing a schedule with minimum cost. The complexity
of this problem is unknown in the read-once case for general AND-OR trees, while optimal
polynomial-time algorithms are known for AND-trees [8] and DNF trees [3]. In this work, we
focus on these two types of trees in the shared case, seeking to develop optimal algorithms or to
show NP-completeness. We refer the reader to [3] for a detailed review of the PAOTR literature.
To the best of our knowledge, the only work that has studied the shared case is [4], in which a
heuristic is proposed for DNF trees. We evaluate this heuristic in Section 4.4. In the next two
sections we give examples of cost computations for an AND-tree and a DNF tree both in the
shared case.

2.1 AND-tree example
Consider the AND-tree query depicted in Figure 2 with three leaves labeled l1, l2, and l3, for
two streams A and B. For each leaf (li), we indicate the stream (S(i)), the number of data items
needed from that stream to evaluate the leaf (di), and the success probability (pi). For instance,
leaf l2 requires d2 = 2 items from stream S(2) = A and evaluates to TRUE with probability
p2 = 0.1. We assume that retrieving a data item from a stream has unitary cost, regardless of

and

A[1]
0.75
l1

A[2]
0.1
l2

B[1]
0.5
l3

Figure 2: Example shared AND-tree.
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or

and1 and2 and3

A[1]
l1

C[1]
l3

D[1]
l4

B[1]
l2

C[1]
l5

B[1]
l6

D[1]
l7

Figure 3: Example DNF tree.

the stream. There are 6 possible schedules for this tree, each schedule corresponding to one of
the 3! orderings of the leaves. The optimal algorithm for read-once AND-trees sorts the leaves
by non-decreasing djc(S(j))/qj [8]. Because 1×c(A)

q1
= 1

1−0.75 = 4, 2×c(A)
q2

= 2
1−0.1 ≈ 2.22, and

1×c(B)
q3

= 1
1−0.5 = 2, this algorithm schedules leaf l3 first. There are two possible schedules with

l3 as the first leaf:
• l3, l1, l2 whose cost is: c(B) + p3 × (c(A) + p1 × c(A)) = 1 + 0.5× (1 + 0.75× 1) = 1.875;

and
• l3, l2, l1 whose cost is: c(B) + p3× (2× c(A) + p2× 0× c(A)) = 1 + 0.5× (2 + 0.1× 0) = 2.

However, another schedule, l1, l2, l3, has a lower cost: c(A)+p1× (c(A)+p2×c(B)) = 1+0.75×
(1 + 0.1 × 1) = 1.825. Therefore, the optimal algorithm for the PAOTR problem for read-once
AND-trees is no longer optimal in the shared case.

2.2 DNF tree example
Figure 3 shows a DNF tree with three AND nodes, for four streams A, B, C, and D. Each leaf
requires only one data item from a stream. Leaves are labeled l1 to l7, in the order in which
they appear in a given schedule. This example is meant to illustrate the difficulty of the PAOTR
problem in the case of DNF trees in the shared scenario. In particular, computing the cost of a
schedule is much more complicated than in the read-once scenario due to inter-leaf dependencies.
Let Cj be the cost of evaluating leaf lj , and C the overall cost of the schedule. We consider the
7 leaves one by one, in order:
Leaf l1 – The first leaf is evaluated: C1 = c(A).
Leaf l2 – This is the first leaf in its AND, no AND has been fully evaluated so far, and l2 is
the first encountered leaf that requires stream B. Therefore, l2 is always evaluated, requiring a
data item from stream B: C2 = c(B).
Leaf l3 – This is the second leaf from its AND, no AND has been fully evaluated so far, and l3
is the first encountered leaf that requires stream C. Therefore, a data item from C is acquired
if and only if l1 evaluates to TRUE: C3 = p1c(C).
Leaf l4 – This is the third leaf from its AND, no AND has been fully evaluated so far, and l4
is the first encountered leaf that requires stream D. Therefore, one data item is acquired from
D if and only if l1 and l3 both evaluate to TRUE: C4 = p1p3c(D).
Leaf l5 – This is the second leaf from its AND, and AND1 has been fully evaluated so far.
However, one of the leaves of that AND, l3, requires a data item that is also needed by l5, from
stream C. If l3 has been evaluated, then the evaluation cost of l5 is 0 because the necessary data
item from C has already been acquired and is available “for free” when evaluating l5. If l3 has
not been evaluated (with probability 1 − p1), it means that AND1 has evaluated to FALSE.
Then, if l2 has evaluated to TRUE, l5 must be evaluated thus requiring the data item from

Inria
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stream C. We obtain C5 = (1− p1)p2c(C).
Leaf l6 – Since l2 is always evaluated the data item from stream B required by l6 is always
available for free: C6 = 0.
Leaf l7 – This is the second leaf from its AND, and AND1 and AND2 have been fully evaluated
so far. However, one of the leaves of AND1, l4, but none of those of AND2, require the data
item that is needed by l7 from stream D. Therefore, l7 must be evaluated and its evaluation
is not free if and only if l4 has not been evaluated, AND2 has evaluated to FALSE, and the
evaluation of AND3 went as far as l7. Therefore, C7 = (1− p1p3)(1− p2p5)p6c(D).

Overall, we obtain the cost of the schedule:

T C = c(A) + c(B) + (p1 + (1− p1)p2)c(C)
+ (p1p3 + (1− p1p3)(1− p2p5)p6)c(D)

Given the complexity of the above cost computation, one might expect the PAOTR problem
to be NP-complete in the shared case (recall that it is polynomial in the read-once case). We
confirm this expectation in Section 4.

3 AND trees
In this section, we focus on AND-trees. We have seen in Section 2.1 that the simple greedy
algorithm proposed in [8] in the read-once case is not optimal in the shared case. We propose an
algorithm and we prove that it is optimal. This algorithm is still greedy but compares the ratios
of cost to failure probability of all sequences of leaves that use the same stream, instead of only
considering pair-wise leaf comparisons. We begin in Section 3.1 with a preliminary result on the
optimal ordering of leaves that use the same stream.

3.1 Ordering same-stream leaves
In the example given in Section 2.1, we considered two schedules that begin with leaf l3. In
the first schedule leaf l1 precedes l2, while the converse is true in the second schedule. Leaf
l1 requires one data item from stream A, while leaf l2 requires two data items from the same
stream. Therefore the first schedule is always preferable to the second schedule: if we evaluate
l1 before l2 and if l1 evaluates to FALSE, then there is no need to retrieve the second data item
and the cost is lowered. A general result can be obtained:

Proposition 1. Consider an AND-tree and a leaf li that requires di data items from a stream
S. In an optimal schedule li is scheduled before any leaf lj that requires dj > di data items from
stream S.

Proof. See Appendix A for the proof.

3.2 Optimal schedule
Consider an AND-tree with m leaves, l1, . . . , lm, for s streams, S1, . . . , Ss. We define Lk =
{lj |S(lj) = Sk}, i.e., the set of leaves that require data items from stream Sk. Algorithm 1 shows
a greedy algorithm (implemented recursively for clarity of presentation) that takes as input the
Lk sets, an initially empty schedule ξ, and an array of s integers, NItems, whose elements are
all initially set to zero. This array is used to keep track, for each stream, of how many data
items from that stream have been retrieved in the schedule so far. Each call to the algorithm
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8 Henri Casanova, Lipyeow Lim, Yves Robert, Frédéric Vivien, and Dounia Zaidouni

appends to the schedule a sequence of leaves that require data items from the same stream, in
increasing order of number of data items required. The algorithm stops when all leaves have
been scheduled. The algorithm first loops through all the streams (the k loop). For each stream,
the algorithm then loops over all the leaves that use that stream, taken in increasing order of the
number of items required. For each such leaf the algorithm computes the ratio (variable Ratio)
of cost to probability of failure of the sequence of leaves up to that leaf. The leaf with minimum
such ratio is selected (leaf lj0 in the algorithm, which requires dj0 data items from stream S(lj0)).
In the last loop of the algorithm, all unscheduled leaves that require dj0 or fewer data items from
stream S(lj0) are appended to the schedule in increasing order of the number of required data
items.

Algorithm 1: GREEDY({L1, ...,Ls}, ξ,NItems)
if ∪si=1Li = ∅ then return ξ MinRatio← +∞
for k = 1 to s do loop on streams

Cost← 0
Proba← 1
Num← NItems[k]
for lj in Lk by increasing dj do

Cost← Cost+ Proba× (dj −Num)× c(k)
Proba← Proba× pj
Num← dj
Ratio← Cost

(1−Proba)
if Ratio < MinRatio then

MinRatio← Ratio
j0 ← j

for lj in LS(j0) by increasing dj do
if dj ≤ dj0 then

ξ.append(lj)
LS(j0) ← LS(j0) \ {lj}

NItems[S(j0)]← dj0

return GREEDY ({L1, ...,Ls}, ξ,NItems)

Theorem 1. Algorithm 1 is optimal for the shared PAOTR problem for AND-trees.

Proof. See Appendix B for the proof.

One may wonder how the optimal algorithm in the read-once case [8], which simply sorts
the leaves by increasing djc(S(j))/qj , fares in the shared case. In other terms, is Algorithm 1
really needed in practice? Figure 4 shows results for a set of randomly generated AND-trees.
We define the sharing ratio, ρ, of a tree as the expected number of leaves that use the same
stream, i.e., the total number of leaves divided by the number of streams. For a given number
of leaves m = 2, . . . , 20 and a given sharing ratio ρ = 1, 5/4, 4/3, 3/2, 2, 3, 4, 5, 10, we generate
1,000 random trees for a total of 157,000 random trees (note that ρ cannot be larger than the
number of leaves). Leaf success probabilities, numbers of data items needed at each leaf, and
per data item costs are sampled from uniform distributions over the intervals [0, 1], [1, 5], and
[1, 10], respectively. For each tree we compute the cost achieved by the algorithm in [8] and

Inria
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40000

C
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t

60

40
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0

Shared instances sorted by increasing optimal cost
120000800000

Algorithm in [9]
Optimal algorithm

Figure 4: Cost achieved by the algorithm in [8] and that achieved by the optimal algorithm,
shown for each of the 157,000 AND-tree instances sorted by increasing optimal cost.

that achieved by our optimal algorithm. Figure 4 plots these costs for all instances, sorted
by increasing optimal cost. Due to this sorting, the large number of samples, and the limited
resolution, the set of points for the optimal algorithm appears as a curve while the set of points
for the algorithm in [8] appears as a cloud of points. The algorithm in [8] can lead to costs up
to 1.86 times larger than the optimal. It leads to costs more than 10% larger for 19.54% of the
instances, and more than 1% larger for 60.20% of the instances. The two algorithms lead to
the same cost for 11.29% of the instances. We conclude that, in the shared case, Algorithm 1
provides substantial improvements over the optimal algorithm for the read-once case.

4 DNF Trees

In this section we consider DNF trees. First, in Section 4.1 we provide a method for computing
the expected cost of a given schedule for a DNF tree. In Section 4.2 we show that depth-
first schedules are dominant, which means that there always exists a depth-first schedule that is
optimal. In Section 4.3, we then prove that the problem is NP-complete. This is in sharp contrast
with the read-once case, in which a simple greedy algorithm is optimal [3]. In Section 4.4 we
propose several heuristics to schedule a DNF tree and evaluate their performance on randomly
generated problem instances.

RR n° 8373
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4.1 Evaluation of a schedule

We have seen in Section 2.2 in an example that computing the cost of a schedule is non-trivial
for DNF trees. In this section we formalize this computation. Consider a DNF tree with N
AND nodes, indexed i = 1, . . . , N . AND node i has mi leaves, denoted by li,j , j = 1, . . . ,mi.
The probability of success of leaf li,j is denoted by pi,j , and the stream that leaf li,j requires is
denoted by S(i, j). We use L to denote the set of all the leaves. We consider a schedule ξ, which
is an ordering of the leaves, and use ls,t ≺ lu,v to indicate that leaf ls,t occurs before leaf lu,v in
ξ. We consider that the query is over s streams, Sk, k = 1, . . . , s. The cost per data item of Sk
is denoted by c(Sk). We define the “t-th data item” of a stream as the data item produced t
time-steps ago, so that the first data item is the one produced most recently, the second is the
one produced before the first, etc. In this manner, when we say that a leaf li,j requires di,j data
items it means that it requires all t-th data items of the stream for t = 1, 2, . . . , di,j .

Given the above, we define Lk,t as the set of the leaves that require the t-th data item
from stream Sk, and that are the first of their respective AND nodes to require that data item.
Formally, we have:

Lk,t =

li,j ∈ L
∣∣∣∣∣∣
S(i, j) = Sk, di,j ≥ t, and
∀r 6= j, S(i, r) 6= Sk or di,r < t

or li,j ≺ li,r


We also define Ai,j , the index set of all AND nodes that have been fully evaluated before a leaf
li,j is evaluated, as:

Ai,j = {k | mk = |{lk,r|lk,r ≺ li,j}|}.

If we use Ci,j,t to denote the expected cost of retrieving the t-th data item of the relevant stream
when evaluating leaf li,j , then the total cost C of the schedule ξ is:

C =
N∑
i=1

mi∑
j=1

di,j∑
t=1
Ci,j,t.

The following proposition gives Ci,j,t.

Proposition 2. Given a leaf li,j that requires the t-th data item from stream Sk, if there exists
r such that li,r ≺ li,j and li,r ∈ Lk,t, then Ci,j,t = 0. Otherwise:

Ci,j,t =
∏

lr,s∈Lk,t

lr,s≺li,j

1−
∏

lr,u≺lr,s

pr,u


×

∏
a∈Ai,j

6∃r, la,r∈Lk,t

(
1−

ma∏
r=1

pa,r

)

×

 ∏
li,u≺li,j

pi,u

× c(S(i, j)).

Proof. See Appendix C for the proof.
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4.2 Dominance of depth-first schedules
Theorem 2. Given a DNF tree, there exists an optimal schedule that is depth-first, i.e., that
processes AND nodes one by one.

Proof. Consider a DNF tree T and a schedule ξ. Without loss of generality we assume that the
AND nodes, A1, . . . , An, are numbered in the order of their completion. Thus, according to ξ, A1
is the first AND node with all its leaves evaluated. We denote by M the number (possibly zero)
of AND nodes that ξ processes one by one and entirely at the start of its execution. Therefore,
if ξ evaluates a leaf li,j , with i 6= 1, in the m1 first steps, then M = 0. Finally, we assume that
the leaves of an AND node are numbered according to their evaluation order in ξ.

We prove the theorem by contradiction. Let us assume that there does not exist a schedule
that satisfies the desired property. Let ξ be an optimal schedule that maximizesM . By definition
ofM and by the hypothesis on the numbering of the AND nodes, schedule ξ evaluates some leaves
of the AND nodes AM+2, ..., An before it evaluates the last leaf of AM+1. Let L denote the set
of these leaves. We now define a new ξ′ which starts by executing at least M + 1 AND nodes
one by one:

• ξ′ starts by evaluating the first M AND nodes one by one, evaluating their leaves in the
same order and at the same steps as in ξ;

• ξ′ then evaluates all the leaves of AM+1 in the same order as in ξ (but not at the same
steps);

• ξ′ then evaluates the leaves in L in the same order as in ξ (but not at the same steps);
• ξ′ finally evaluates the remaining leaves in the same order and at the same steps as in ξ.

The cost of a schedule is the sum, over all potentially acquired data items, of the cost of acquiring
each data item times the probability of acquiring it. Let d be a data item potentially needed by
a leaf in T . We show that the probability of acquiring d is not greater with ξ′ than with ξ. We
have three cases to consider.
Case 1) d is not needed by a leaf of AM+1 and not needed by a leaf in L. Then d’s probability
to be acquired is the same with ξ and ξ′.
Case 2) d is needed by at least one leaf of AM+1. The only way in which a leaf that is evaluated
in ξ would not be evaluated in ξ′ is if AM+1 evaluates to TRUE. By assumption, however, at
least one leaf of AM+1 uses d. Therefore, for AM+1 to evaluate to TRUE, d must be acquired.
Consequently, the probability that d is acquired is the same with ξ and with ξ′.
Case 3) d is needed by at least one leaf in L but not needed by any leaf of AM+1. ξ and ξ′

define the same ordering on the leaves in L. For each AND node Ai, with M + 2 ≤ i ≤ N , there
is at most one leaf in Ai ∩L that can be the leaf responsible for the acquisition of d with ξ, and
it is the same leaf with ξ′. Let F be the set of all these leaves. Then, with ξ, the leaves in F are
responsible for the acquisition of d if and only if:

• A1, ..., AM all evaluate to FALSE;
• None of the evaluated leaves of A1, ..., AM needs d; and
• At least one of the leaves in F is evaluated.

Let us denote by P the probability that all the AND nodes A1, ..., AM evaluate to FALSE and
that none of the evaluated leaves of these AND nodes needs the data item d. Let us denote by
D the probability that d is acquired because of the evaluation of one of the leaves of the AND
nodes A1, ..., AM . Finally, let R be the probability that one of the leaves evaluated with ξ after
lM+1,mM+1 acquires d, knowing that no leaves of A1, ..., AM or in L acquires it. Then, with ξ,
the probability p that d is acquired is:

p = D + P

1−
∏
li,j∈F

(
1−

j−1∏
k=1

pi,k

)+R (1)
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because leaf li,j is evaluated with probability
∏j−1
k=1 pi,k, that is, if all the leaves from the same

AND node that are evaluated prior to it all evaluate to TRUE. The second term of Equation (1)
is the probability that the leaves in F are responsible for acquiring d.

With schedule ξ′, the leaves of F are responsible for the acquisition of d if and only if:
• The AND nodes A1, ..., AM , and AM+1 all evaluate to FALSE;
• None of the evaluated leaves of the AND nodes A1, ..., AM need d; and
• At least one of the leaves in F is evaluated.

Thus, with ξ′, the probability p′ that d is acquired is:

p′ = D + P

(
1−

mM+1∏
k=1

pM+1,k

)
×

1−
∏
li,j∈F

(
1−

j−1∏
k=1

pi,k

) + R

Comparing this equation with Equation 1, we see that p′ is not greater than p.

The probability that a data item is acquired with ξ′ is thus not greater than with ξ. Therefore,
in each of the three cases the cost of ξ′ is not greater than the cost of ξ, meaning that ξ′ is also
an optimal schedule. Since ξ′ starts by executing at least M + 1 AND nodes one by one, we
obtain a contradiction with the maximality assumption on M , which concludes the proof.

4.3 NP-completeness
In the read-once case, an optimal algorithm for DNF trees is built on top of the optimal algorithm
for AND-trees [3]. The same approach cannot be used in the shared case, as seen in a simple
counter-example (see Appendix D). And, in fact, in this section we show the NP-completeness
of finding an optimal schedule to evaluate a DNF tree.

Definition 1 (DNF-Decision). Given a DNF tree and a cost bound K, is there a schedule
whose expected cost does not exceed K?

Theorem 3. DNF-Decision is NP-complete.

Proof. The NP-completeness is obtained via a non-trivial reduction from 2-PARTITION [2]. See
the full proof in Appendix E.

4.4 Heuristics
Given the NP-completeness result in the previous section, we now propose several polynomial-
time heuristics for computing a schedule. These heuristics fall into three categories, which we
term leaf-ordered, AND-ordered, and stream-ordered.
Leaf-ordered heuristics simply sort the leaves according to leaf costs (C), failure probabilities
(q = 1− p), or the ratio of the two, which leads to three heuristics plus a baseline random one:

• Leaf-ordered, decreasing q (prioritizes leaves with high chances of shortcutting the evalua-
tion of an AND node);

• Leaf-ordered, increasing C (prioritizes leaves with low costs);
• Leaf-ordered, increasing C/q (prioritizes leaves with low costs and also with high chances

of shortcutting the evaluation of an AND node);
• Leaf-ordered, random (baseline).

The above first three heuristics have intuitive rationales. Other options are possible (e.g., sort
leaves by decreasing C) but are easily shown to produce poor results in practice.
AND-ordered heuristics, unlike leaf-ordered heuristics, account for the structure of the DNF
tree by building depth-first schedules, with the rationale that there is a depth-first schedule that is
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optimal (Theorem 2). Furthermore, Algorithm 1 provides a way to compute an optimal schedule
for the leaves within the same AND node. For this optimal schedule one can compute the
(expected) cost and the probability of success of the AND node using the method in Section 4.1
(this method actually applies to more general DNF trees). Therefore, AND-ordered heuristics
simply order the AND nodes based on their computed costs (C), computed probability of success
(p), or ratio of the two, and using Algorithm 1 for scheduling the leaves of each AND node,
leading to three heuristics:

• AND-ordered, decreasing p (prioritizes AND’s with high chances of shortcircuiting the
evaluation of the OR node);

• AND-ordered, increasing C (prioritizes AND’s with low costs);
• AND-ordered, increasing C/p (prioritizes AND’s with low costs and also with high chances

of shortcircuiting the evaluation of the OR node);
There are two approaches to compute the cost of an AND node: (i) consider the AND node in
isolation assuming that the OR node has a single AND node child; or (ii) account for previously
scheduled AND nodes whose evaluation has caused some data items to be acquired with some
probabilities. We terms the first approach “static” and the second approach “dynamic,” giving
us two versions of the last two heuristics above.
Stream-ordered heuristics proceed by ordering the streams from which data items are ac-
quired, acquiring all items from a stream before proceeding to the next stream, until the truth
value of the OR node has been determined. This idea was proposed in [4], and to the best of
our knowledge it is the only previously proposed heuristic for solving the PAOTR problem in
the shared scenario for DNF trees. For each stream S the heuristic computes a metric, R(S),
defined as follows:

R(S) =
∑
i,j|S(i,j)=S qi,jni,j

maxi,j|S(i,j)=S di,jc(S) ,

where ni,j is the number of leaf nodes whose evaluation would be shortcircuited if leaf li,j was to
evaluate to FALSE. The numerator can thus be interpreted as the shortcutting power of stream
S. The denominator is the maximum data element acquisition cost over all the leaves that use
stream S. The heuristic orders the streams by increasing R values. The rationale is that one
should prioritize streams that can shortcut many leaf evaluations and that have low maximum
data item acquisition costs. The heuristic as it is described in [4] acquires the maximum number
of needed data items from each stream so as to compute truth values of all the leaves that require
data items from that stream. In other words, the leaves that require data items from the same
stream are scheduled in decreasing di,j order. However, Proposition 1 holds for DNF trees,
showing that it is always better to schedule these leaves in increasing di,j order. We use this
leaf order to implement this heuristic in this work. We have verified in our experiments that this
version outperforms the version in [4] in the vast majority of the cases, with all remaining cases
being ties.

In total, we consider 4 leaf-ordered, 5 AND-ordered, and 1 stream-ordered heuristics. We
first evaluate these heuristics on a set of “small” instances for which we can compute opti-
mal schedules using an exponential-time algorithm that performs an exhaustive search. Such
an algorithm is feasible because, due to Theorem 2, it only needs to search over all possi-
ble depth-first schedules. Small instances are generated using the same method as that de-
scribed in Section 3.2 for generating AND-tree instances. We generate DNF trees with N =
2, . . . , 9 AND nodes and up to at most 20 leaves in total, generating 100 random instances for
each configuration, for a total of 21,600 instances (The source code is available at www.ens-
lyon.fr/LIP/ROMA/Data/DataForRR-8373.tgz). For each instance we compute the ratio be-
tween the cost achieved by each heuristic and the optimal cost. Figure 5 shows for each heuristic
the ratio vs. the fraction of the instances for which the heuristic achieves a lower ratio. For
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Figure 5: Ratio to optimal vs. fraction of the instances for which a smaller ratio is achieved,
computed over the 21,600 “small” DNF tree instances.
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Figure 6: Ratio to AND-ordered increasing C/p dynamic vs. fraction of the instances for which
a smaller ratio is achieved, computed over the 32,400 “large” DNF tree instances.

instance, a point at (80, 2) means that the heuristic leads to schedules that are within a factor 2
of optimal for 80% of the instances, and more than a factor 2 away from optimal for 20% of the
instances. The better the heuristic the closer its curve remains to the horizontal axis.

The trends in Figure 5 are clear. Overall the poorest results are achieved by the leaf-ordered
heuristics, with the random such heuristic expectedly being the worst and the increasing C the
best. The AND-ordered heuristics, save for the decreasing p version, lead to the best results
overall. More precisely, the best results are achieved by sorting AND’s by increasing C/p, with
sorting by increasing C leading to the second-best results. For the two AND-ordered heuristics
that have both a static and a dynamic version, the dynamic version leads to marginally better
results than the static version. Finally, the stream-ordered heuristic leads to poorer results
than the best leaf-ordered heuristics, and thus significantly worse than the best AND-ordered
heuristics.

We also evaluate the heuristics on a set of “large” instances with N = 2, . . . , 10 AND nodes
and m = 5, 10, 15, 20 leaves per AND node, with 100 random instances per configuration, for a
total of 32,400 instances. For most of these instances we cannot tractably compute the optimal
cost. Consequently, we compute ratios to the cost achieved by the AND-ordered by increasing
C/p dynamic heuristic, which leads to the best results for small instances. Results are shown in
Figure 6. Essentially, all the observations made on the results for small instances still hold. We
conclude that the best approach is to build a depth-first schedule, to sort the AND nodes by the
ratio of their costs to probability of success, and to compute these costs dynamically, accounting
for previously scheduled AND nodes.
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5 Conclusion
Motivated by a query processing scenario for sensor data streams, we have studied a version of
the Probabilistic And-Or Tree Resolution (PAOTR) problem [3] in which a data stream can be
referenced by multiple leaves. We have given an optimal algorithm in the case of AND-trees
and have shown NP-completeness in the case of DNF trees. For DNF we have shown that there
is an optimal solution that corresponds to a depth-first traversal of the tree. This observation
provides inspiration for a heuristic that largely outperforms the heuristic previously proposed
in [4].

A possible future direction is to consider so-called non-linear strategies [3]. Although in this
work we have considered a schedule as a leaf ordering (called a linear strategy in [3]), a more
general notion is that of a decision tree in which the next leaf to be evaluated is chosen based on
the truth value of the previous evaluated leaf. A practical drawback of a non-linear strategies
is that the size of the description is exponential in the number of tree leaves. In [3], it is shown
that in the read-once case linear strategies are dominant for DNF trees, meaning that there is
always one optimal strategy that is linear. Via a simple counter example it can be shown that
this is no longer true in the shared case (see Appendix F), thus motivating the investigation of
non-linear strategies. Another possible future direction is to consider a less restricted version of
the problem in which a single predicate at a leaf can access multiple streams rather than just
a single one (e.g., “AV G(X < 10) ≥ MIN(Y, 20)”). There is no reason for real-world queries
to be limited to a single stream per predicate. An interesting question is whether the PAOTR
problem remains polynomial for AND-trees or whether it becomes NP-complete.
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A Proof of Proposition 1
Proof. We prove the proposition by contradiction. Consider an AND-tree and two leaves in the
tree l1 and l2 that require data items from the same stream S such that d1 > d2. We terms
these leaves “inverted” because the earlier one, l1, requires more data items than the later one,
l2. Assume that there is an optimal schedule ξ in which l1 is scheduled before l2. Without loss
of generality, we assume that l1 is the first leaf in the schedule that is part of an inverted pair of
leaves (if not, consider the earliest such leaf). Evaluating l2 has always cost zero in this schedule
because all data items required by l2 are also required by l1.

The sequence of leaves in ξ can be written as: lb1 , . . . , lbt
, l1, lm1 , . . . , lmu

, l2, la1 , . . . , lav
. The

cost C of ξ can be written:

C = X + Pb · (d1 − dLB)c(S) + Pb · p1 · Y + Pb · p1 · Pm · 0 + Pb · p1 · Pm · p2 · Z

where
• Pb =

∏t
i=1 pbi

and Pm =
∏u
i=1 pmi

;
• X is the expected cost of evaluating leaves lb1 , . . . , lbt in that order;
• Y is the expected cost of evaluating leaves lm1 , . . . , lmu in that order if leaves lb1 , . . . , llt

and l1 all evaluate to TRUE;
• Z is the expected cost of evaluating leaves la1 , . . . , lav

in that order if leaves lb1 , . . . , lbt
, l1,

ll1 , . . . , lmu
, and l2 all evaluated to TRUE;

• dLB = maxi=1,...,t(dbi
), or the number of elements of stream S that have been acquired

after evaluating leaves lb1 , . . . , lbt .
Because l1 and l2 are the first two inverted leaves in ξ, d1−dLB is non-negative (otherwise a leaf
among lb1 , . . . , lbt

and leaf l1 would be inverted).
We now construct another schedule, ξ’, as lb1 , . . . , lbt

, l2, l1, lm1 , . . . , lmu
, la1 , . . . , lav

. The
expected cost C’ of ξ’ can then be written as:

C′ = X + Pb · (d2 − dLB)c(S) + Pb · p2(d1 − d2)c(S) + Pb · p2 · p1 · Y + Pb · p2 · p1 · Pm · Z

Because l1 and l2 are the first two inverted leaves in ξ, d2−dLB is non-negative (otherwise a leaf
among lb1 , . . . , lbt and leaf l2 would be inverted). Computing the difference of the costs of both
schedules yields:

C − C′ = Pb(1− p2) ((d1 − d2)c(S) + p1Y )

C − C′ is strictly positive because all costs are positives, all probabilities are between 0 and 1,
and because d1 > d2 by assumption. This contradicts the optimality of ξ.

B Proof of Theorem 1
Proof. We prove the theorem by contradiction. We assume that there exists an instance for which
the schedule produced by Algorithm 1, ξgreedy, is not optimal. Among the optimal schedules,
let us pick a schedule, ξopt , which has the longest prefix P in common with schedule ξgreedy. We
consider the first decision (i.e., one recursive call to the algorithm) taken by Algorithm 1 that
schedules a leaf that does not belong to P. Let k be the number of leaves scheduled by this
decision, and let us denote them lσ(1), ..., lσ(k), scheduled in this order. Recall each call to the
GREEDY algorithm schedules a sequence of leaves that all require data items from the same
stream. Furthermore, the scheduled sequence of leaves is a sub-sequence of the ordered sequence
of all leaves that require data items from that stream, sorted by increasing number of data items
required. Without loss of generality, we assume that lσ(1), ..., lσ(k) all require items from stream
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1. The first of these leaves may belong to P (as the last leaf occurrences in P). Let P′ be equal
to P minus the leaves lσ(1), ..., lσ(k). Then, ξgreedy can be written as:

ξgreedy = P′, lσ(1), ..., lσ(k),S. (2)

In turn, ξopt can be written ξopt = P′,Q,R where lσ(k) is the last leaf of Q. In other words, Q can
be written L1lσ(1)L2lσ(2)...Lklσ(k), where each sequence of leaves Li, 1 ≤ i ≤ k, can be empty.
Note that, because of Theorem 1, and because the sequence lσ(1), ..., lσ(k) is a sub-sequence of
the the list of all leaves requiring data items from that stream sorted by increasing number of
data items required, none of the Li sequences can contain a leaf requiring elements from stream
1. Therefore,

ξopt = P′,Q,R where Q = L1lσ(1)L2lσ(2)...Lklσ(k) (3)

From ξgreedy and ξopt , we build a new schedule, ξnew, defined as

ξnew = P′,NewOrder ,R where NewOrder = lσ(1), ..., lσ(k), L1, ..., Lk (4)

P′, lσ(1), ..., lσ(k) is a prefix to both ξgreedy and ξnew. This prefix is strictly larger than P (since
P does not contain lσ(k)). Therefore, if the cost of ξnew is not greater than that of ξopt , ξnew is
optimal and has a longer prefix in common with ξgreedy than ξnew, which would contradict the
definition of ξopt . We obtain this contradiction by computing the cost of ξnew and showing that
it is no larger than that of ξopt .
Cost notations – To ease the writing of the proof we introduce several notations. If X is a
partial leaf schedule, P (X) denotes the probability that all leaves in X evaluates to TRUE. In
other words, P (X) =

∏
li∈X pi. Let X and Y be two disjoint (partial) leaf schedules, i.e., they

do not have any leaf in common, such that X is evaluated right before Y. Then Cost(Y | X)
denotes the cost of evaluating Y, assuming that all leaves in X have evaluated to TRUE. Of
course, Cost(Y | X) takes into account all data items acquired during the successful evaluation
of X. With these notations, we can now give the costs of ξnew and ξopt based on their definitions
as sequences of partial leaf schedules in Equations (3) and (4):

Cost(ξopt) = Cost(P′) + P (P′)Cost(Q | P′)
+P (P′)P (Q)Cost(R | P′,Q)

Cost(ξnew) = Cost(P′) + P (P′)Cost(NewOrder | P′)
+P (P′)P (NewOrder)Cost(R | P′,NewOrder)

Because Q and NewOrder contain exactly the same leaves, P (Q) = P (NewOrder) and
Cost(R | P′,Q) = Cost(R | P′,NewOrder). Therefore,

Cost(ξopt)− Cost(ξnew) = P (P′) (Cost(Q | P′)− Cost(NewOrder | P′)) (5)

From what precedes, it now suffices to show that Cost(Q | P′) − Cost(NewOrder | P′) ≥ 0 to
prove the theorem.
Initial mathematical formulation – We use Proposition 1 to define notations that make it
possible to obtain a simple expression for the quantity in Equation 5. Consider a stream S and
two leaves li and lj that require, respectively, di and dj items from stream S, with di < dj .
Then, according to Proposition 1, li is always evaluated before lj in an optimal schedule. The
GREEDY algorithm also schedules li before lj . If there does not exist any leaf lk requiring
dk ∈ [di; dj ] elements from stream s, then each time lj is evaluated, exactly dj − di items are
acquired from stream s, because the last di elements of stream s were acquired when li was
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evaluated. In this case, we define ai as the number of data items that must be acquired when
evaluating leaf li. Formally,

ai = di −max {dj | S(j) = S(i) and dj < di}

Remark: One should note that we can assume without loss of generality that the AND tree does
not contain two leaves requiring the exact same number of items from the same stream. If such
two leaves exist, then one replaces them by a single leaf with the same data item requirement
and with a probability of success that is the product of the probability of success of the two
original leaves. This is because once one of the two original leaves has been evaluated then the
other one can be evaluated for free.

To ease the writing of the proof, we index the leaves in L1, ..., Lk according to the stream
from which they require data items, and introduce the following additional notations. Let Ni be
the number of leaves in L1 ∪ . . . ∪ Lk that require data items from stream i and li,j be the j-th
of these leaves. We then extend the notations defined in Section 2 as follows: the probability
of success of li,j is pi,j , li,j requires di,j elements from stream S(i, j), etc. µ(i,j) is the index of
the leaf sequence Lp to which leaf li,j belongs: li,j ∈ Lµ(i,j) . Qi,j is the product of the success
probabilities of the leaves that precede li,j in Lµ(i,j) , Qm is the product of the success probabilities
of all the leaves in Lm, and Qm =

∏m
n=1 Qn. Finally, we define Pm =

∏m
n=1 pσ(n). With these

notations we can now write Cost(NewOrder | P′) as:

Cost(NewOrder | P′) =
k∑

m=1

(
m−1∏
n=1

pσ(n)

)
aσ(m)

+
s∑
i=2

Ni∑
j=1

(
k∏

m=1
pσ(m)

)µ(i,j)−1∏
m=1

Qm

Qi,jai,jc(S(i, j))

=
k∑

m=1
Pm−1aσ(m) +

s∑
i=2

Ni∑
j=1

PkQµ(i,j)−1Qi,jai,jc(S(i, j)) ,

and Cost(Q | P′) as:

Cost(Q | P′) =
k∑

m=1

(
m−1∏
n=1

pσ(n)

)(
m∏
n=1

Qn

)
aσ(m)

+
s∑
i=2

Ni∑
j=1

µ(i,j)−1∏
m=1

pσ(m)

µ(i,j)−1∏
m=1

Qm

Qi,jai,jc(S(i, j))

=
k∑

m=1
Pm−1Qmaσ(m) +

s∑
i=2

Ni∑
j=1

Pµ(i,j)−1Qµ(i,j)−1Qi,jai,jc(S(i, j)) .
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Therefore:

Cost(Q | P′)− Cost(NewOrder | P′) =
k∑

m=1
Pm−1Qmaσ(m)

+
s∑
i=2

Ni∑
j=1

Pµ(i,j)−1Qµ(i,j)−1Qi,jai,jc(S(i, j))

−

 k∑
m=1

Pm−1aσ(m) +
s∑
i=2

Ni∑
j=1

PkQµ(i,j)−1Qi,jai,jc(S(i, j))


=

k∑
m=1

Pm−1(Qm − 1)aσ(m)

+
s∑
i=2

Ni∑
j=1

(
Pµ(i,j)−1 − Pk

)
Qµ(i,j)−1Qi,jai,jc(S(i, j)) .

We introduce two additional notations:

α(i,j) = Qµ(i,j)−1
(
Pµ(i,j)−1 − Pk

)
Qi,j , and

A =
∑k
m=1 Pm−1aσ(m)

1− Pk
,

so that we can finally write the expression for the difference of the two costs:

Cost(Q | P′)−Cost(NewOrder | P′) =
(

k∑
m=1

Pm−1 (Qm − 1) aσ(m)

)
+

 s∑
i=2

Ni∑
j=1

α(i,j)ai,jc(S(i, j))

 .

(6)
Accounting for the algorithm’s scheduling decisions – The best decision for the GREEDY
algorithm was to evaluate at once the leaf sequence lσ(1), ..., lσ(k). Therefore, as far as the
algorithm is concerned, this was a better decision than evaluating any sequence of leaves from
any other stream. More formally, for any stream i, 2 ≤ i ≤ s, and the set of the first j leaves of
that stream, 1 ≤ j ≤ Ni, we have:(∑k

m=1

(∏m−1
n=1 pσ(n)

)
aσ(m)

)
(

1−
∏k
m=1 pσ(m)

) (
1−

j∏
l=1

pi,l

)
≤

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
.

These equations express the fact that these other sequence of leaves of a Ratio value (see Algo-
rithm 1) lower than that of the sequence scheduled by the algorithm, and can be rewritten as:

Ineq(i, j) : A

(
1−

j∏
l=1

pi,l

)
≤

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
. (7)

Determining multiplying coefficients – To prove the theorem we combine the Inequali-
ties (7) obtained for different values of i and j. The idea is to follow a variable elimination
process. Ineq(i,Ni) is the only inequality in which ai,Ni

appears. We multiply Ineq(i,Ni) by
a value λi,Ni

such that, in the resulting inequality, the coefficient of ai,Ni
is the same than in
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Equation (6). Next, we multiply Ineq(i,Ni − 1) by a value λi,Ni−1 such that when adding the
resulting inequality to the one previously obtained, the coefficient of ai,Ni−1 is the same than in
Equation (6), and so on. This process can be done independently for the different streams as
Ineq(i, j) only contains terms relative to stream i.

We define the λi,j ’s are defined as follows.

λi,j =


α(i,Ni)∏Ni−1
l=1 pi,l

if j = Ni ,

α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

otherwise.

We will later show that this choice of multipliers enable us to achieve our goal. However, as we
want to use the λi,j ’s as multiplying coefficients for inequalities, we must first show that they
are all non-negative. This is evident for the λi,Ni

’s. Let us consider λi,j for j ∈ [1;Ni − 1]:

λi,j =
α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

= 1∏j−1
l=1 pi,l

µ(i,j)−1∏
m=1

Qm

µ(i,j)−1∏
m=1

pσ(m)

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j

− 1∏j
l=1 pi,l

µ(i,j+1)−1∏
m=1

Qm

µ(i,j+1)−1∏
m=1

pσ(m)

1−
k∏

m=µ(i,j+1)

pσ(m)

Qi,j+1

= 1∏j−1
l=1 pi,l

µ(i,j)−1∏
m=1

Qmpσ(m)



×

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j −

µ(i,j+1)−1∏
m=µ(i,j)

Qmpσ(m)

1−
k∏

m=µ(i,j+1)

pσ(m)

 Qi,j+1

pi,j


Let us first consider the case µ(i,j+1) = µ(i,j). Then the above equation can be rewritten:

λi,j = 1∏j−1
l=1 pi,l

µ(i,j)−1∏
m=1

Qmpσ(m)

1−
k∏

m=µ(i,j)

pσ(m)

[Qi,j − Qi,j+1

pi,j

]

By definition, Qi,j+1 is the product of the probabilities of success of all the leaves that are
evaluated before the leaf li,j+1 is evaluated. By definition of the numbering of the leaves, this
includes at least all the leaves that are evaluated before leaf li,j is evaluated and leaf li,j . As all
probabilities are less than or equal to 1, this implies that Qi,j+1 ≤ Qi,jpi,j , and therefore that
λi,j ≥ 0.

We now consider the other case: µ(i,j+1) > µ(i,j). Then, Qµ(i,j) is of the form Qi,jpi,jX
where X is the product of the probabilities of success of the leaves appearing in Lµ(i,j) after the
leaf li,j . Therefore, Qi,jpi,j ≥ Qµ(i,j) . As for all i ∈ [1; s], 0 ≤ pσ(i) ≤ 1,

∏k
m=µ(i,j+1)

pσ(m) ≥∏k
m=µ(i,j)

pσ(m) and
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1−
∏k
m=µ(i,j+1)

pσ(m) ≤ 1−
∏k
m=µ(i,j)

pσ(m), pσ(µ(i,j))(
∏µ(i,j+1)−1
m=µ(i,j)+1 Qmpσ(m))Qi,j+1 ≤ 1 because

it is a product of probabilities. Using these inequalities, we have:

(
1−

∏k
m=µ(i,j)

pσ(m)

)
Qi,j −

(∏µ(i,j+1)−1
m=µ(i,j)

Qmpσ(m)

)(
1−

∏k
m=µ(i,j+1)

pσ(m)

)
Qi,j+1
pi,j

≥

(
1−

∏k
m=µ(i,j)

pσ(m)

)
Qi,j −

(∏µ(i,j+1)−1
m=µ(i,j)

Qmpσ(m)

)(
1−

∏k
m=µ(i,j)

pσ(m)

)
Qi,j+1
pi,j

=

(
1−

∏k
m=µ(i,j)

pσ(m)

)(
Qi,j −

(∏µ(i,j+1)−1
m=µ(i,j)

Qmpσ(m)

)
Qi,j+1
pi,j

)
≥

(
1−

∏k
m=µ(i,j)

pσ(m)

)(
Qi,j −Qµ(i,j)

(
pσ(µ(i,j))(

∏µ(i,j+1)−1
m=µ(i,j)+1 Qmpσ(m))Qi,j+1

)
1
pi,j

)
≥

(
1−

∏k
m=µ(i,j)

pσ(m)

)(
Qi,j −Qµ(i,j)

1
pi,j

)
≥ 0

Therefore, all the λi,j ’s are non-negative.

Combining the inequalities – For a given couple of values (i, j), with 2 ≤ i ≤ s and 1 ≤ j ≤
Ni, let Ineq(i, j) be Inequality (7) defined for (i, j). Because all the λi,j ’s are non-negative, we
can form the inequality:

s∑
i=2

Ni∑
j=1

(λi,j × Ineq(i, j)) (8)

We now show that Inequality (8) leads to:

Cost(Q | P′)−Cost(NewOrder | P′) ≥
k∑

m=1
Pm−1 (Qm − 1) aσ(m)+A

s∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)


(9)

To prove the Inequality (9), we consider the terms relative to stream i in Inequality (8):

Ni∑
j=1

(λi,j × Ineq(i, j)) ⇔

A

Ni∑
j=1

λi,j

(
1−

j∏
l=1

pi,l

)
≤

Ni∑
j=1

λi,j

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
(10)
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We start by considering the left-hand side of this inequality.

Ni∑
j=1

λi,j

(
1−

j∏
l=1

pi,l

)
=Ni−1∑

j=1
λi,j

(
1−

j∏
l=1

pi,l

)+ λi,Ni

(
1−

Ni∏
l=1

pi,l

)
=Ni−1∑

j=1

(
α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

)(
1−

j∏
l=1

pi,l

)+
α(i,Ni)∏Ni−1
l=1 pi,l

(
1−

Ni∏
l=1

pi,l

)
=Ni−1∑

j=1

α(i,j)∏j−1
l=1 pi,l

(
1−

j∏
l=1

pi,l

)−
Ni−1∑

j=1

α(i,j+1)∏j
l=1 pi,l

(
1−

j∏
l=1

pi,l

)+
α(i,Ni)∏Ni−1
l=1 pi,l

(
1−

Ni∏
l=1

pi,l

)
=Ni−1∑

j=1

α(i,j)∏j−1
l=1 pi,l

(
1−

j∏
l=1

pi,l

)−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
1−

j−1∏
l=1

pi,l

)+
α(i,Ni)∏Ni−1
l=1 pi,l

(
1−

Ni∏
l=1

pi,l

)
= Ni∑

j=1

α(i,j)∏j−1
l=1 pi,l

(
1−

j∏
l=1

pi,l

)−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
1−

j−1∏
l=1

pi,l

) =

α(i,1) (1− pi,1) +

 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
1−

j∏
l=1

pi,l

)−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
1−

j−1∏
l=1

pi,l

) =

α(i,1) (1− pi,1) +
Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
j−1∏
l=1

pi,l −
j∏
l=1

pi,l

)
=

α(i,1) (1− pi,1) +
Ni∑
j=2

α(i,j) (1− pi,j) =

Ni∑
j=1

α(i,j) (1− pi,j) .

Therefore,

A

Ni∑
j=1

λi,j

(
1−

j∏
l=1

pi,l

)
= A

 Ni∑
j=1

α(i,j) (1− pi,j)

 . (11)
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We now focus on the right-hand side of the inequality:

Ni∑
j=1

λi,j

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
=Ni−1∑

j=1
λi,j

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)+ λi,Ni

(
Ni∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
=Ni−1∑

j=1

(
α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

)(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
+

α(i,Ni)∏Ni−1
l=1 pi,l

(
Ni∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
=Ni−1∑

j=1

α(i,j)∏j−1
l=1 pi,l

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)−
Ni−1∑

j=1

α(i,j+1)∏j
l=1 pi,l

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
+

α(i,Ni)∏Ni−1
l=1 pi,l

(
Ni∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
= Ni∑

j=1

α(i,j)∏j−1
l=1 pi,l

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)−
Ni−1∑

j=1

α(i,j+1)∏j
l=1 pi,l

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

) = Ni∑
j=1

α(i,j)∏j−1
l=1 pi,l

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
j−1∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

) =

α(i,1)ai,1c(S(i, 1)) +

 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
−

 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
j−1∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

) =

α(i,1)ai,1c(S(i, 1)) +
Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

(
j−1∏
r=1

pi,r

)
ai,jc(S(i, j)) =

Ni∑
j=1

α(i,j)ai,jc(S(i, j)) .

Therefore

Ni∑
j=1

λi,j

(
j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

)
=

 Ni∑
j=1

α(i,j)ai,jc(S(i, j))

 . (12)

By combining Inequality (10) with Equations (11) and (12), and by summing over all streams,
we obtain:

A

s∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)

 ≤ s∑
i=2

 Ni∑
j=1

α(i,j)ai,jc(S(i, j))

 . (13)
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Using Equation (6) and Inequality (13), we obtain:

Cost(Q | P′)−Cost(NewOrder | P′) ≥
k∑

m=1
Pm−1 (Qm − 1) aσ(m)+A

s∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)

 .

(14)

Completing the proof – We want to prove that the right-hand side of Inequality (14) is
non-negative, i.e., that the following inequality holds:

k∑
m=1

Pm−1 (Qm − 1) aσ(m) +A

s∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)

 ≥ 0 . (15)

Because of Inequality (14), this will enable us to conclude. Let

An =
n∑

m=1
Pm−1aσ(m) .

Therefore, A = Ak

(1−Pk) . We start by focusing on the first term of Inequality (15). We prove that:

k∑
m=1

Pm−1 (Qm − 1) aσ(m) ≥ A

((
k∑
i=1

(Qi −Qi−1)Pi−1

)
+ Pk(1−Qk)

)
. (16)
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k∑
m=1

Pm−1 (Qm − 1) aσ(m)

=
k∑

m=1
(Qm − 1)

(
m∑
n=1

Pn−1an −
m−1∑
n=1

Pn−1an

)

=
k∑

m=1
(Qm − 1)(Am −Am−1)

=
(

k∑
m=1
Qm(Am −Am−1)

)
−

(
k∑

m=1
(Am −Am−1)

)

=
(

k∑
m=1

(QmAm −QmAm−1)
)
− (Ak −A0)

=
(

k∑
m=1

(QmAm −Qm−1Am−1 +Qm−1Am−1 −QmAm−1)
)
−Ak

=
(

k∑
m=1

(QmAm −Qm−1Am−1)
)

+
(

k∑
m=1

(Qm−1Am−1 −QmAm−1)
)
−Ak

= (QkAk −Q0A0) +
(

k∑
m=1

(Qm−1 −Qm)Am−1

)
−Ak

=
(

k∑
m=1

(Qm−1 −Qm)Am−1

)
+ (Qk − 1)Ak =

(
k∑

m=1
(Qm−1 −Qm)Am−1

)
+ (Qk − 1)A(1− Pk) .

By hypothesis, the best decision for the greedy algorithm was to read at once the leaves a1, ...,
ak. Therefore, this was better than reading any other sequence of leaves from stream 1. So, for
any value of m ≤ k,

A (1− Pm−1) ≤ Am−1 .

Inria



Cost-Optimal Execution of Trees of Boolean Operators with Shared Streams 27

Because Qm = Qm−1Qm with Qm ∈ [0; 1], then Qm−1 −Qm ≥ 0. Therefore, we have:
k∑

m=1
(Qm−1 −Qm)Am−1 +A(1− Pk)(Qk − 1)

≥ A

[(
k∑

m=1
(Qm−1 −Qm)(1− Pm−1)

)
+ (1− Pk)(Qk − 1)

]

= A

[(
k∑

m=1
(Qm−1 −Qm)

)
−

(
k∑

m=1
(Qm−1 −Qm)Pm−1

)
+ (1− Pk)(Qk − 1)

]

= A

[
(Q0 −Qk) +

(
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ (1− Pk)(Qk − 1)

]

= A

[
1−Qk +

(
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ (1− Pk)(Qk − 1)

]

= A

[(
k∑

m=1
(Qm −Qm−1)Pm−1

)
− Pk(Qk − 1)

]
.

We now focus on the second term of Inequality (15). We prove must prove that:
s∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j) =
(

k∑
m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk) . (17)

We have:
s∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j)

=
s∑
i=2

Ni∑
j=1

µ(i,j)−1∏
m=1

Qmpσ(m)

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j(1− pi,j)

=
s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j(1− pi,j)

=

 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1

 k∏
m=µ(i,j)

pσ(m)

Qi,j(1− pi,j)


=

 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1PkQi,j(1− pi,j)


=

 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
Pk s∑

i=2

Ni∑
j=1
Qµ(i,j)−1Qi,j(1− pi,j)

 .

We concentrate on the second term and its meaning. For any stream i and any of its leaves j,
Qµ(i,j)−1Qi,j is the probability of success of all the leaves evaluated before the studied leaf (not
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considering the leaves of other streams), and Qµ(i,j)−1Qi,jpi,j is the same probability right after
the evaluation of the studied leaf. Therefore, in the inner sum all terms cancel out except the
first one, that is the probability of success if no leaf had been evaluated so far, and the last one,
that is the probability of success if all the leaves have been evaluated. Formally, we have:

s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Qi,j(1− pi,j) = 1−

(
k∏

m=1
Qm

)
= 1−Qk . (18)

Therefore,

s∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j)

=

 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
Pk s∑

i=2

Ni∑
j=1
Qµ(i,j)−1Qi,j(1− pi,j)


=

 s∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

− Pk(1−Qk)

=

 s∑
i=2

Ni∑
j=1

(Qµ(i,j)−1Pµ(i,j)−1Qi,j −Qµ(i,j)−1Pµ(i,j)−1Qi,jpi,j)

− Pk(1−Qk)

=

 k∑
m=1

∑
(i,j) s.t.
µ(i,j)=m

(Qm−1Pm−1Qi,j −Qm−1Pm−1Qi,jpi,j)

− Pk(1−Qk)

=

 k∑
m=1
Qm−1Pm−1

∑
(i,j) s.t.
µ(i,j)=m

(Qi,j −Qi,jpi,j)

− Pk(1−Qk)

=
(

k∑
m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk) .

The last equality above is established using the same type of reasoning as the one we used to
establish Equation (18).
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We now combine Inequality (16) with Equation (17):

k∑
m=1

(Qm − 1)Pm−1aσ(m) +A

s∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j)

≥ A

((
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ Pk(1−Qk)

)
+A

((
k∑

m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk)

)

= A

((
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ Pk(1−Qk) +

(
k∑

m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk)

)

= A

((
k∑

m=1
(Qm −Qm−1)Pm−1

)
+
(

k∑
m=1
Qm−1Pm−1(1−Qm)

))

= A

(
k∑

m=1
(QmPm−1 −Qm−1Pm−1 +Qm−1Pm−1 −Qm−1Pm−1Qm)

)
= 0 ,

because Qm−1Qm = Qm. We have thus established Inequality (15), which concludes the proof.

C Proof of Proposition 2
Proof. Consider a schedule ξ, and a leaf in that schedule, li,j , which requires the t-th data item
from stream Sk (i.e., S(i, j) = Sk). Let us prove the first part of the proposition. If a leaf
li,r (i.e., a leaf under the same AND node as li,j) occurs before li,j in ξ and requires the t-th
item from stream Sk (i.e., li,r ∈ Lk,t), then there are two possibilities. Either li,r has been
evaluated, in which case the evaluation of li,j uses a data item that has already been acquired
previously, hence a cost of 0. Or li,k has not been evaluated, meaning that its evaluation was
shortcircuited. In this case the AND node has evaluated to FALSE and the evaluation of li,j is
also shortcircuited, hence a cost of 0.

The second part of the proposition shows the expected cost as a product of three factors,
each of which is a probability, and a fourth factor, c(S(i, j)), which is the cost of acquiring the
data item from the stream. The interpretation of the expression for Ci,j,t is as follows: a leaf
must acquire the item if and only if (i) the item has not been previously acquired; and (ii) no
AND node has already evaluated to TRUE; and (iii) no leaf in the same AND node has already
evaluated to FALSE. We explain the computation of these three probabilities hereafter.

The first factor is the probability that none of the leaves that precede li,j in ξ and that require
the t-th item from stream Sk have been evaluated. Such a leaf lr,s is evaluated if all the leaves
in the same AND node that precede it in the schedule have evaluated to TRUE, which happens
with probability

∏
lr,u≺lr,s

pr,u, hence the expression for the first factor.
The second factor is the probability that none of the AND nodes that have been fully eval-

uated so far has evaluated to TRUE, since if this were the case the evaluation of li,j would
not be needed, leading to a cost of 0. Given an AND node in Ai,j , say the k-th AND node,
the probability that it has been evaluated to TRUE is

∏mk

r=1 pk,r. This is true except if one of
the leaves of that AND node belongs to Lk,t. The first factor assumes that that leaf was not
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or

and1 and2

A[1]
0.9
l1

A[2]
2/3
l2

A[5]
1/2
l3

A[1]
0.9
l4

A[3]
2/3
l5

B[1]
2/3
l6

Figure 7: Example showing that Algorithm 1 does not optimally schedule the leaves of a DNF
tree.

evaluated and, therefore, that that entire AND node was not evaluated. Hence, the expression
for the second factor.

The third factor is the probability that all the leaves of the same AND node as the AND
node of li,j have evaluated to TRUE. Recall that, because we are in the second case of the
proposition, none of these leaves requires the t-th item of stream Sk. All these leaves must
evaluate to TRUE, otherwise the evaluation of li,j would be shortcircuited, for a cost of 0, hence
the expression for the third factor.

D Counter-example to the optimality of Algorithm 1 for
DNF trees

In the read-once case, the following greedy algorithm [3] is optimal to evaluate a DNF tree:

• Each AND node ANDi is evaluated independently, sorting the leaves li,j by increasing
di,jc(S(i, j))/qi,j . This leads to a cost Ci for node ANDi;

• Node ANDi is replaced by a single leaf node li of cost Ci and success probability pi =∏mi

j=1 pi,j ;

• These leaf nodes are scheduled by increasing Ci/pi.

In this section we provide a counterexample to show that in the shared case, Algorithm 1
(optimal to evaluate a AND tree) cannot the used to evaluate a DNF tree.

We consider the example of Figure 7 where both streams have a cost of 1. There are two
possible orders for evaluating the AND nodes. We consider both of them and explicit the
behavior of Algorithm 1 on each of the AND’s.

• and1 then and2. Because of Proposition 1, the leaves of and1 are always evaluated in the
order l1, l2, l3. The cost of evaluation of and1 is then α1 = 1 + 0.9× (1 + 2/3× 3) = 3.7.
We then move to the evaluation of and2. Algorithm 1 first schedules leaf l5 whose cost is
null. We then have to compare the ratios for leaves l5 and l6:
– l5. The first element of A was acquired for the evaluation of leaf l1. The second

element of A needs to be acquired for l2 only if leaf l2 was not evaluated and leaf
l4 evaluated to TRUE, which happens with probability (1 − 0.9) × 0.9 = 0.09. The
third element of A needs to be acquired only if leaf l3 was not evaluated and leaf l4
evaluated to TRUE, which happens with probability (1 − 0.9 × 2/3) × 0.9 = 0.36.
Therefore, the evaluation cost of l5 is 0 + 0.09× 1 + 0.36× 1 = 0.45. The ratio for leaf
l5 is thus 0.45

1−2/3 = 1.35.
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– l6. The ratio for l6 is 1
1−2/3 = 3.

Therefore, Algorithm 1 schedules l5 and then l6 for the overall cost:

3.7 + 0 + 0.45 + (1− 0.9× 2/3× 1/2)× 0.9× 2/3 = 4.57.

• and2 then and1. We first consider the ratios for the three leaves:
– The ratio for l4 is 1

1−0.9 = 10.
– The ratio for l5 is 1+0.9×2

1−0.9×2/3 = 7.
– The ratio for l6 is 1

1−2/3 = 3.
Therefore the first scheduled leaf if l6. Then the overall schedule is l6, l4, l5, l1, l2, l3. We
compute the evaluation cost of each leaf.
– l6. Its cost is 1.
– l4. Its cost is 2/3× 1.
– l5. Its cost is 2/3× 0.9× 2 = 1.2.
– l1. Its cost is (1− 2/3)× 1.
– l2. Its costs is (1− 2/3× 0.9)× 0.9 = 0.36.
– l3. Its costs is (1− 2/3× 0.9)× 1 + (1− 2/3× 0.9× 2/3)× 0.9× 2/3× 2 = 0.96.

The overall cost is thus 4.52.

We now consider the schedule l4, l5, l6, l1, l2, l3. We compute the evaluation cost of each
leaf.

• The cost of l4 is 1.
• The cost of l5 is 0.9× 2 = 1.8.
• The cost of l6 is 0.9× 2/3× 1 = 0.6.
• The cost of l1 is 0.
• The cost of l2 is (1− 0.9)× 0.9 = 0.09.
• The cost of l3 is (1− 0.9)× 0.9× 2/3 + (1− 0.9× 2/3× 2/3)× 0.9× 2/3× 2 = 0.78.

The overall cost of this schedule is thus 4.27. The intuitive explanation is the following: for
AND2 alone, the best evaluation order is l6, l4, l5 (and this is the order chosen by Algorithm 1).
However, because of the re-use of some data items of stream A in AND1, the optimal order for
the whole DNF tree is not the same! This leads to a huge combinatorial search space for the
optimal ordering, which corroborates the hardness result (NP-completeness stated in Theorem 3)
of the evaluation of DNF trees in the shared case.

E Proof of Theorem 3
Proof. The problem is obviously in NP: given a schedule, i.e., an ordering of the leaves, one
can compute its expected cost in polynomial time, using the method given in Section 4.1. The
NP-completeness is obtained by reduction from 2-PARTITION [2]. Let I1 be an instance from
2-PARTITION: given a set {a1, ..., an} and S =

∑n
i=1 ai, does there exist a subset I such

that
∑
i∈I ai = S

2 ? We assume that S is even, otherwise there is no solution. The size of I1 is
O(n+logM), whereM = max1≤i≤n{ai}. Without loss of generality, we assume thatM ≥ 10.We
construct the following instance I2 of DNF-Decision:

• We consider a DNF tree with N = n+ 1 AND nodes ANDi, 1 ≤ i ≤ n+ 1 and a total of
m = 2n+ 1 leaves.

• The set of streams is S = {A1, . . . , An, B}. The cost of stream Si = Ai for i ≤ n is
c(i) = 1

2Z , where Z is some large constant defined below. The cost of stream Sn+1 = B is
c(n+ 1) = C0, where C0 ≈ 1

2 is a constant defined below.
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• Each ANDi node, where i ≤ n, has a single leaf li,1 which has success probability

pi,1 = ai
Z

+ β
a2
i

Z2

where β ≈ 1
2 is a constant defined below, and which requires di,1 = 2ai elements of stream

S(i, 1) = Ai. Hence the cost to access all items of leaf li,1 is di,1c(i) = ai

Z .
• The last AND node ANDn+1 has mn+1 = n+ 1 leaves which are specified as follows:

– Each leaf ln+1,i, where i ≤ n, has success probability pn+1,i = 1 − ε and requires
dn+1,i = ai elements of stream S(n+ 1, i) = Ai. Hence the cost to access all items of
leaf ln+1,i is ai

2Z .
– The last leaf ln+1,n+1 has success probability pn+1,n+1 = 1−ε and requires dn+1,n+1 =

1 element of stream S(n+ 1, n+ 1) = B (at cost c(n+ 1) = C0)
– The constant ε is chosen to be very small, see below. Let C =

∑n
i=1

ai

2Z+C0 = S
2Z+C0:

Intuitively, C would be the cost of evaluating node ANDn+1 when starting with this
AND node, and when ε becomes negligible.

• The bound on the expected evaluation cost is K = C
(

1− S2

8Z2

)
+ 1

9Z2

To finalize the description of I2, we define the constants as follows:
• Z = 10

(
(n+ 1)3n + n3)M3

• C0 = Z
2Z−S −

S
2Z , so that C = Z

2Z−S
• β = 1−C

2C
• ε = 1

90(n+1)2Z2

The size of I2 is polynomial in the size of I1: the greatest value in I2 is Z and log(Z) is
linear in (n + logM). Because Z is very large in front of S ≤ nM , we do have that C, C0 and
β are all close to 1

2 . We only use that these constants are all non-negative, and that β ≤ 1 and
C ≤ 1, in the following derivation, where we bound the expected cost of an arbitrary evaluation
of the DNF tree. Then, using this derivation, we will prove that I1 has a solution I if and only
if I2 does.

Let us start with the cost of an arbitrary evaluation of the DNF tree. In such an evaluation,
we evaluate some (possibly none) of the first n AND nodes before starting to evaluate node
ANDn+1. Owing to the dominance property stated in Theorem 2, we can assume that the
schedule terminates the evaluation of the node. Then, because ε is very small, we can compute
an approximation of the cost as follows: we assume that the schedule terminates after node
ANDn+1, because all its leaves have success probability close to 1. We will bound the difference
between this approximation and the actual cost later on.

Let I = {ANDσ(1,ANDσ(2), . . . ,ANDσ(k)} , be the subset, of cardinal k, of AND nodes
that are evaluated, in that order, before node ANDn+1. Let Cost be the approximated cost
of the schedule (terminating after completion of node ANDn+1). To simplify notations, we let
xi = aσ(i) for 1 ≤ i ≤ k, and let qi = 1− pi,1 for i ≤ n. By definition,

Cost =
k∑
i=1

xi
Z

∏
1≤j<i

qj +
(
C −

k∑
i=1

xi
2Z
) ∏

1≤j≤k
qj

Note that the cost of node ANDn+1 has been reduced from its original value, due to the sharing
of the streams whose index is in I. To evaluate Cost, we start by approximating

∏
1≤j<i

qj =
∏

1≤j<i

(
1− xj

Z
− β

x2
j

Z2

)
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Let

Fi = 1−
i−1∑
j=1

xj
Z
− β

i−1∑
j=1

x2
j

Z2 +
∑

1≤j1<j2<i

xj1xj2

Z2

We have ∣∣∣∣∣∣(
∏

1≤j<i
qj
)
− Fi

∣∣∣∣∣∣ ≤ 3nM3

Z3 (19)

To see this, we have kept in Fi all terms of the product
∏

1≤j<i qj whose denominators include a
factor strictly inferior to Z3. The other terms of the product are bounded (in absolute value) by
M3/Z3, because β ≤ 1 and M ≤ Z. There are at most 3i−1 ≤ 3n such terms. Hence the desired
bound in Equation (19). Letting

G =
k∑
i=1

xi
Z
−

∑
1≤j1<j2≤k

xj1xj2

Z2 ,

we prove similarly that ∣∣∣∣∣∣(
k∑
i=1

xi
Z

∏
1≤j<i

qj
)
−G

∣∣∣∣∣∣ ≤ n3nM3

Z3 (20)

Indeed, there are k ≤ n terms in the sum, each of them being bounded as before. We deduce
from Equations (19) and (20), using C ≤ 1, that∣∣∣∣∣Cost −

(
G+ (C −

k∑
i=1

xi
2Z )Fk+1

)∣∣∣∣∣ ≤ (n+ 1)3nM3

Z3 (21)

Now, we aim at simplifying H = G+ (C−
∑k
i=1

xi

2Z )Fk+1 by dropping terms whose denominator
is Z3. We have

H =
k∑
i=1

xi
Z
−

∑
1≤j1<j2≤k

xj1xj2

Z2 + (C −
k∑
i=1

xi
2Z )(1−

k∑
j=1

xj
Z
− β

k∑
j=1

x2
j

Z2 +
∑

1≤j1<j2≤k

xj1xj2

Z2 )

Defining

H̃ = C + 1− 2C
2Z

k∑
i=1

xi + 1
2Z2 (

k∑
i=1

xi)2 + C − 1
2Z2

∑
1≤j1<j2<k

xj1xj2 −
βC

Z2

k∑
i=1

x2
i ,

we derive (using C ≤ 1 and β ≤ 1) that:

∣∣H − H̃∣∣ =

∣∣∣∣∣∣ 1
2Z3 (

k∑
i=1

xi)(
∑

1≤j1<j2<k

xj1xj2 +
k∑
i=1

x2
i )

∣∣∣∣∣∣
hence ∣∣H − H̃∣∣ ≤ n3M3

Z3 (22)

Developing (
∑k
i=1 xi)2 =

∑k
i=1 x

2
i + 2

∑
1≤j1<j2<k

xj1xj2 in H̃, we obtain

H̃ = C + 1− 2C
2Z

k∑
i=1

xi + C

Z2

∑
1≤j1<j2<k

xj1xj2 + 1− 2βC
2Z2

k∑
i=1

x2
i
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We have chosen the constants C and β so that H̃ can be reduced to

H̃ = C + C

2Z2

((S
2 −

k∑
i=1

xi
)2 − S2

4

)
(23)

Indeed, we have 1−2βC
2Z = −SC

2Z2 , and C = 1− 2Cβ. Altogether, we derive from Equations (21) to
(23) that∣∣∣∣∣∣Cost − C

(
1− S2

8Z2

)
− C

2Z2

(
S

2 −
k∑
i=1

xi

)2∣∣∣∣∣∣ ≤
(
(n+ 1)3n + n3)M3

Z3 = 1
10Z2 (24)

Finally, we coarsely bound the difference between the actual cost Cost of the schedule and
the approximated cost Cost. The actual probability of evaluating the i-th leaf of node ANDn+1
is (1 − ε)i so that the error term for that leaf does not exceed

(
1− (1− ε)i

)
max(M2Z , C) ≤ nε.

Since there are n+ 1 terms, we get a difference bounded by n(n+ 1)ε. Next we have neglected
the evaluation of the remaining AND nodes after node ANDn+1, but this cost is (similarly)
bounded by (n+ 1)ε SZ ≤ (n+ 1)ε. Altogether, we obtain that∣∣Cost − Cost

∣∣ ≤ (n+ 1)2ε = 1
90Z2 (25)

Combining Equations (24) and (25), we finally derive that∣∣∣∣∣∣Cost − C
(

1− S2

8Z2

)
− C

2Z2

(
S

2 −
k∑
i=1

xi

)2∣∣∣∣∣∣ ≤ 1
9Z2 (26)

We now prove that I1 has a solution I if and only if I2 does. Suppose first that I1 has a
solution I:

∑
i∈I ai = S

2 . We evaluate the AND nodes whose indices are in I before evaluating
node ANDn+1. Let Cost be the cost of this evaluation. From Equation (26), we have∣∣∣∣Cost − C

(
1− S2

8Z2

)∣∣∣∣ ≤ 1
9Z2

hence Cost ≤ C
(

1− S2

8Z2

)
+ 1

9Z2 = K thereby providing a solution to I2.
Suppose now that I2 has a solution whose cost is Cost ≤ K, and let I denote the (index) set of

AND nodes that are evaluated before node ANDn+1. If (by contradiction) we have
∑
i∈I ai 6=

S
2 ,

then
(
S
2 −

∑k
i=1 xi

)2
≥ 1, and Equation (26) shows that

Cost ≥ C
(

1− S2

8Z2

)
+ C

2Z2 −
1

9Z2 = K + 9C − 4
9Z2

Since 9C − 4 = Z+4S
2Z−S > 0, and Cost > K, we obtain a contradiction. Therefore

∑
i∈I ai = S

2 ,
and I1 has a solution. This concludes the proof.

It is interesting to point out that instance I2 is constructed so that the ordering of the leaves
inside each AND node has no importance. In fact, only the last AND node has more than
one leaf, and because its leaves have all very high success probability, their ordering does not
matter. This shows that the combinatorial difficulty of the DNF-Decision problem already lies
in deciding the ordering of the AND nodes.
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or

and and and

A[1]
0.5
l1

B[1]
0.5
l2

B[2]
0.99
l3

C[2]
0.99
l4

Figure 8: Example DNF tree for which the best schedule has larger cost than a non-linear
strategy.

F Dominant Linear Strategy Counter-Example

A more general notion than a schedule, called a strategy, is described in [3]. Although it may
seem counter-intuitive, the processing of a query does not have to follow a defined ordering of the
leaves. Instead, a strategy is a decision tree in which the next leaf to be evaluated is chosen based
on the truth value of the leaves that have been evaluated previously. A schedule, as defined in
this work, is a particular kind of strategy, termed a “linear strategy” in [3]. Therein, the authors
prove that for some problem instances the best linear strategy can be far from being the optimal
strategy. Although interesting from a theoretical standpoint, a practical drawback of a non-linear
strategy is that the size of its description is exponential in the number of tree leaves. Instead, a
linear strategy, or schedule, is simply an ordering of the leaves, with a description size linear in
the number of tree leaves. This severe drawback explains why we have not considered non-linear
strategies in this work.

However, from a theoretical point of view, it is interesting to ask the following question:
while linear strategies are dominant (among all possible strategies) for DNF trees in the read-
once case [3], is it still the case in the shared case? We show that the answer is negative by
building a counter-example.

Consider three streams, A, B, and C, with per data item costs c(A) = 1, c(B) = 1.1, and
c(C) = 1. Consider the query tree in Figure 8, where for each leaf is indicated the success
probability, the stream needed, and the number of data items required from that stream. We
first compute the best schedule (i.e., leaf ordering). The cost of schedule l1, l2, l3, l4 is

c(A) + p1(c(B) + (1− p2)c(B)) + (1− p1)(2c(B))
+(1− p1p2)(1− p3)(2c(C)) = 1.95 < 2

The cost of any schedule starting with l3 or l4 is at least 2. The cost of schedule l1, l2, l4, l3 is
larger than

c(A) + p1(c(B) + (1− p1p2)(2c(C)) = 2.15 > 2.

Finally, if we start with the first AND node, it is always better to start with leaf l1 whose cost
is 0. Altogether, the best schedule is l1, l2, l3, l4, of cost 1.95.

Now, consider the non-linear strategy that evaluates l1 first and then:
• if l1 evaluates to TRUE, proceeds with l2, l3, and l4, just as in the optimal schedule;
• if l1 evaluates to FALSE, proceeds with l4, l3, and l2.
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The cost of this strategy is

c(A)+
p1[(c(B) + (1− p2)c(B)) + (1− p2)(1− p3)(2c(C))]

+(1− p1)[2c(C)) + (1− p4)(2c(B))] = 1.851,

which is lower than that of the best schedule.
Determining the optimal non-linear strategy for a DNF tree in the shared model is an open

problem. Unless some structural property of this strategy can be proven, the space required to
describe this optimal non-linear strategy is unknown (and likely exponential).
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