
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
15/2 (2022), 105-118. DOI: http://dx.doi.org/10.21609/jiki.v15i2.1065

Towards Erlang-based ABS Microservices Framework for Software
Product Line Development

Adrika Novrialdi*, Daya Adianto*, Aulia Rosyida*,
Priambudi Lintang Bagaskara*, Ade Azurat*

* Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia
Email:{adrika.novrialdi01, aulia.rosyida, priambudi.lintang}@ui.ac.id

{dayaadianto, ade}@cs.ui.ac.id

Abstract

Software Product Line Engineering (SPLE) is one of the approaches that can manage the variability in
developing sets of products. However, there is a need for development tools such as programming language and
toolchain in realising SPLE. One language that supports the SPLE process is Abstract Behavioral Specification
(ABS). ABS Microservices is one research that utilises ABS to create a web framework that supports the SPLE
process. This framework uses ABS to generate Java-based applications. However, there is a need for renewal
to the ABS Microservices framework. Deprecation of the Java backend of the ABS opens a new exploration
of another web framework that uses other ABS backend languages. We present the ABS Microservices web
framework based on Erlang OTP. We choose Erlang because it promises more efficient resource usage and
the Erlang backend is one of the ABS backends with the most available features. This research aims to create
an entry point for ABS Microservices to support more language. We use a case study and apply the six
quality factors of software product line implementation to evaluate our framework. This research shows that
the Erlang variant of ABS Microservices has less resource usage than the Java variant. Hence, this promises
more options to develop product lines using ABS Microservices.

Keywords: Software product line engineering, Web engineering, Delta Oriented Programming, Microservices

1. Introduction

Software development transforms, grows, and
changes continuously, including market and indus-
trial aspects. Many companies or organisations need
to develop applications to automate their business
processes. Each organisation develops the required
features for the application one at a time. This causes
applications with similarities to repeat the develop-
ment when building similar features with several
functions tailored to the needs of each organisation.
This variation is referred to as software diversity that
leads to an increase in the complexity and impact
production time, cost, and maintenance effort be-
cause of the large risk of system failure [1]. Failing
to plan the diversity of systems will complicate
further development. Incompatible modelling and

specification techniques can lead to unfit software
structure, such as improper abstractions [2] and dis-
integrate functionalities. The developer might need
an extra effort to refactor the system if there are
requirements changes later, leading to more time and
cost.

Instead of making a particular system for each
product, the system development in multiple prod-
ucts can be achieved more efficiently through
the Software Product Line Engineering (SPLE)
paradigm. This approach aims to improve the pro-
ductivity and quality of the products based on vari-
ability and commonality of features. First, the com-
monality of features is handled by building a com-
mon platform of overall products included in the
product family. Second, the variability of features
to get personalised and the end product is generated

105

http://dx.doi.org/10.21609/jiki.v15i2.1065


106 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

by applying mass customisation [3]. Combinations
between the variability affect many aspects in the
development process, such as flexibility, standardis-
ation, and saving development costs. The modularity
can be achieved by the decomposition of the system
in terms of development view, process view, code
view, and component framework aspect [3]. It will
speed up the maintenance process and allow flexible
configuration.

Web application is one of the most popular
types of software nowadays. Many organisations
use this type of software as their primary business
support. As a result, the research on various web
application aspects has increased in the past years.
From aesthetics research [4], quality and credibil-
ity framework to evaluate website [5], continuous
personalization research [6], to enhancement of data
security [7]. Recently, the web application has been
leaning toward microservices architecture. Microser-
vices provide some benefits [8], thus making many
organisations also consider the use of this architec-
ture. Microservices is an approach to developing
a single application as a suite of small services,
each running in its own process and communicat-
ing with lightweight mechanisms [8]. This style
changes the development paradigm to creating an
application as a set of (small) services instead of
a single unit [8]. In the microservices architecture,
the impact of software evolution, e.g. requirements
changes – the effort to adapt the system to the new
requirements – can be mitigated, as each service
is modular. Usually, microservices are independent
of each other, allowing developers to freely choose
and combine different technologies regarding, for
instance, programming languages, databases or com-
munication protocols [9]. Therefore, microservices
are highly interoperable, enabling developers to in-
tegrate functionalities of different systems that are
not implemented with the same technologies [10].

There are some challenges in implementing the
SPLE process for web application development re-
lated to the integration of the SPLE process into
traditional web engineering. SPLE process’ objective
is to create a platform to create multiple products as
a product line opposite to the traditional software de-
velopment, which creates just a specific application.
In order to adapt the SPLE process in web engi-
neering, there is a need to manage the requirements
and artefacts of multiple applications instead of the
single application in traditional web development.
However, there are also many types of artefacts in
a web application structure, and these artefacts are
not only the ones directly related to the features
of that web application but also the artefacts that
serve as the supporting files such as web server and

configuration files. The management of this kind
of application artefact is another challenge of the
implementation of SPLE in web applications.

SPLE research also starts to consider the study in
web engineering and microservices. Aziz et al. [11]
and Naily et al. [12] use Abstract Behaviour Spec-
ification (ABS) [13] to build an SPLE-enabled web
framework, a web framework that supports the SPLE
process. ABS [13] is a modelling languages that
support the SPLE process. To create a product us-
ing ABS, a model is need to be defined. Then by
applying SPLE process a product is generated. Aziz
et al., and Naily et al., utilised the ABS language
mechanism to create a web application by building
a generator to generate a web application based on
the model. The previous research from [11] and [12]
use the Java backend of the ABS language, which
generate a Java-based web framework. However,
a specific programming language has its strength
and weakness. For example, a language may suit a
particular problem, but it might be unfit for another.
ABS itself seems like it has dropped the support of
Java backend based on the information in their docu-
mentation page 1 which does not include information
about Java backend anymore. The toolchain required
by both ABS Web Framework research [11, 12] also
used an old version of ABS, which need to update
to comply with newer features of ABS. Some newer
features of ABS, e.g. HttpCallable annotation can
be used to create a flexible web framework without
the need to implement the web server logic in the tar-
get language generated by ABS. This feature reduces
the number of artefacts that needed to be manage
in the framework, thus ease the implementation of
SPLE process in the web engineering. This fact
simplifies the development of more SPLE-enabled
frameworks that generate another programming lan-
guage with minimal effort. With the potential ABS
has as a modelling language to implement the SPLE
process, the use of ABS can ease the implementation
of the new SPLE-enabled web framework by model
reuse mechanism.

Based on the need for more new research on
SPLE-enabled web framework, we present an SPLE-
enabled microservices web framework based on Er-
lang OTP. We also use microservices architecture
with the structure defined by Fowler [8]. We also
use ABS to create the framework, which makes it
possible to use the already defined model from pre-
vious research [11, 12]. In this research, we use the
Erlang backend of the ABS language based on the
fact the capabilities the Erlang backend has. Erlang
backend is one of the three backends provided by the
ABS language and based on the information from
1https://abs-models.org/manual/#-abs-backends



Novrialdi et al., Towards Erlang-based ABS Microservices Framework for SPL Development 107

the ABS documentation page with the most backend
capabilities (four capabilities in total) in comparison
to Maude (three capabilities) and Haskell (two capa-
bilities). Since microservices are highly interopera-
ble [10], we also use this architecture in our research.
Microservices architecture enables integrating re-
search that implements different technologies, thus
making the research development more flexible.

This research conducted three process: literature
study, framework design and implementation, and
evaluation. We present a case study that demon-
strates the functional parity of our framework with
ABS Microservices Java [12] and compares the
generated products resulted from both frameworks.
We also use a load test that serves as functional
test in demonstrating the functional parity and show
the differences in runtime behaviour of the gen-
erated products. Then, we evaluate the framework
by applying Six Quality Factor of Software Product
Line implementation [14] to our research and ABS
Microservices Java [12] as the comparison. Based
on the result of the evaluation, we discuss the future
research as the improvement to our framework.

This paper is ordered as follows: Section 1
provides the motivations illustration and a brief
overview of the work. Section 2 explains the related
research and the research method in developing an
Erlang-based ABS Microservices Framework. Sec-
tion 3 shows the detail on how the ABS Microser-
vices Erlang Framework structure is implemented
and the writer’s proof of concept of the ideas. Sec-
tion 4 presents the case study to illustrate the feasi-
bility of the framework when implemented in a real-
world problem. Section 5 discusses the evaluation
of the implementation technique we used in this
research. Section 6 and 7 conclude with conclusions
and possible future works.

2. Related Research and Problem
Overview

2.1. Related Research

The web application has become an essential part
of many organizations, the research about web de-
velopment has taken many researchers’ interest. As
an approach to creating software more effectively,
the use of SPLE on web development has been
researched, and one of the most exciting topics that
arise is web application generator. Moreover, one of
the most significant differences in developing appli-
cations using SPLE is the need to manage and design
the commonality and variability of the application.

Some approaches are considered to manage the
commonality and the variability of the web ap-

plication. The industry usually adopts annotation-
based approaches [15, 16], however majority of
studies encourage the use of composition-based ap-
proaches [17, 18]. Kästner and Apel [18] then for-
mulated the idea of combining both composition and
annotative approaches. However, they only described
general ideas for a combined approach and discuss
the resulting characteristics (granularity, traceability,
etc.). Then Horcas et al. [19] proposed to integrate
annotations into a composition-based approach. Hor-
cas et al. integrate a Common Variability Language
(CVL) with annotations to manage variability in
SPLE for web application [19]. Various artefacts
must be generated to automatically generate a web
application, such as HTML, JavaScript, CSS, JSON
configuration file, and server-side source codes. By
integrating CVL, a base model is used to repre-
sent various artefacts in the web application. The
variability model in CVL will be used to declare
the variation points within a base model that need
to be reconfigured. Each variation point represented
in the variability model will be mapped to one or
more annotations in the artefacts. Later, the engine
will compose the target application by processing
the annotated artefacts according to the selected
variations.

Another approach for generating web applica-
tions based on SPLE is delta-oriented program-
ming (DOP) [20]. Abstract Behavioral Specification
(ABS) [13] is one of the languages that implemented
DOP. Our work is not the first research that has at-
tempted to use ABS to create an SPLE-enabled web
framework. Some research has been using ABS for
generating web application [11, 12]. Aziz et al. [11]
created an SPLE web framework based on the MVC
design pattern. Naily et al. [12] use microservices
architecture in their work of web framework instead
of typical MVC. Naily et al. [12] and Aziz et al. [11]
use the Java backend variant of ABS as opposed
to the Erlang backend that we used. By adopting
microservices, this framework can deliver a more
flexible web application. Our research tries to create
Erlang Microservices Web Framework using ABS.
This framework will enable the developer to use
more backend variants of ABS Microservices to
satisfy a broader need. The developer can choose
the target backend (Java or Erlang) based on the
requirements defined.

2.2. Problem Overview

This subsection explains some concepts and
challenges to developing the framework. There are
some problems we need to solve in order to be able
to create an SPLE-enabled web framework based on



108 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

microservices architecture. We explain this frame-
work’s implementation later in Section 3.

The main problem we need to solve to create the
framework is related to how to implement the SPLE
process in web application engineering. When devel-
oping an application with SPLE approach, there is
a need for a specific mechanism that supports turn-
ing application requirements into code and derives
application from the requirement. Web application
aspects such as a mechanism to handle request and
response, database connectivity, and non-feature ap-
plication artefacts, such as configuration files and
web server, need to be considered when designing
the SPLE process. We also need to apply the SPLE
process to the application’s endpoints and database
tables.

SPLE process is concerned about the diversity
of application, commonality, and variability. Ac-
cording to [3], there are two engineering process,
namely Domain Engineering and Application Engi-
neering, in SPLE. Pohl et al. [3] defines Domain
Engineering as a process to analyze the potential
requirement of application (commonalities and vari-
ants). Application Engineering is the process of de-
riving a single variant tailored to the requirements
of a specific customer from a software product line
(SPL) based on the results of domain engineering.
We will analyze the commonality and variability of
application in domain engineering. Meanwhile, in
application engineering, we will create the variant
of applications/products from the requirement in the
domain engineering.

We use ABS [13] to implement SPLE in this
framework. In ABS, the domain engineering process
is called feature modelling, and it is implemented
in the feature model. The feature model defines all
possible features selection that is valid. Meanwhile,
in ABS, the domain implementation is implemented
using the concept of DOP [20].

In DOP, SPL is defined as a core module and a
set of delta modules [20]. Delta modules specify the
changes to be applied to the core module in order
to implement other products. A delta module can
add classes to a product implementation or remove
classes from a product implementation. Schaefer et
al. [20] explain that in order to generate a product
implementation for a particular feature configura-
tion, the modifications of all delta modules with
valid application conditions are incrementally ap-
plied to the core module. ABS implements the core
module by creating a product variant with minimum
functionality as a base product [13]. Hähnle [13]
explains that the product variants with additional fea-
tures are obtained from it by applying one or more
deltas that realize the desired feature, implementing

the delta module of DOP [20]. A microservices’
module does not merely represent a feature. As
ABS implement a feature by one or more delta
modules [13], therefore the implementation of mi-
croservices is implemented by using delta modules.
We define the base product in the core module and
define some deltas to be applied to the core module
to create product variants.

A web application consists of some parts that
handle the entire process in the application based
on its architecture. We adopt the design of microser-
vices structure from [21]. Figure 1 shows that there
are four layers in the design of microservices [21].
The resource layer acts as mappers between the
application protocol exposed by the service and
messages to the object representing the domain.
The service layer contains logic implementation and
coordinates across multiple domain activities. The
domain layer represents a model or entity related
to the microservice. The repository layer provides a
collection of operations to access persistent data. A
gateway encapsulates message passing with a remote
service, marshalling requests and responses from and
to domain objects. Except in the most trivial cases or
when a service acts as an aggregator across resources
owned by other services, a microservice will need to
be able to persist objects from the domain between
requests [21]. Usually, this is achieved using object
relational mapping or more lightweight data map-
pers depending on the complexity of the persistence
requirements. Often, this logic is encapsulated in a
set of dedicated objects utilized by repositories from
the domain.

Figure 1. Microservices Structure
[21]

The design from [8] is the guide we use to design
and map the SPLE process to microservices web
application structure. The design of the framework
is shown by Figure 2. In general, there are four roles
that the framework need to be fulfilled:



Novrialdi et al., Towards Erlang-based ABS Microservices Framework for SPL Development 109

1) Web Server: The part of the application
that controls how users access the web ap-
plication, the request and the response.

2) Microservices Modules: The part of the
web application in which the microservices
structure is implemented. This is where the
business logic is implemented.

3) ORM: Object Relational Mapping, the part
of the application that connects the business
logic to the database.

4) Database: The part that stores the data of
the application.

From that design, we can define four different
parts we need to define in our framework. We have
the design of the application as shown by Figure 2.
The core business logic lies in the microservices
module. The core of the SPLE process will be
applied to this module. Since we are using the
Delta-Oriented Programming (DOP) approach, the
microservices module should be divided into core
and delta modules. This process can be handled
easily by using ABS, as DOP is supported directly
by the language. However, the microservices module
does not only represent the application’s feature.
The microservices module should be the gateway to
handle requests and responses as a web application.
From the architecture defined in [8], this is the role
of the resource layer. The resource layer acts as the
request-response entity in the application. As ABS
now support handling request and response natively,
we explore the feasibility of features from ABS
itself to build this layer. The newer version of ABS
provide a support to access data with HttpCallable
and HttpName annotations. Since our ABS will gen-
erate Erlang code, we also need to design the routing
configuration from an Erlang file.

The implementation of the service layer and
domain layer is straightforward. For domain and
service, we treat the generated code from ABS as
these layers without further changes. Service is a
business logic layer of the application, so a standard
Erlang code generated from ABS is sufficient to
fulfil this role. A domain represents a model or entity
and usually is tightly related to the data access layer
(repository).

The challenge surfaced from the need to access
the data from a data source like a database. ABS
does not support access to the database natively,
and the mechanism to access an external data source
cannot be handled from modelling language as it will
be tightly coupled to the generated target language;
for this case, it should be handled by generated
Erlang application. Another challenge that we need
to solve to make the idea work is that ABS and
Erlang use different programming paradigms. DOP,

which ABS used, is still utilising objects, similar
to Object-Oriented Programming (OOP), and in the
opposite, Erlang fully utilises functional program-
ming. The model that we need to connect to the
database is defined in ABS, and the architecture
from [8] also make sense in language that respects
the use of object. Object Relational Mapping (ORM)
is used to map from object to the relational database
to ensure flexible connection to the database. We
decide to use external libraries to support the cre-
ation of the ORM. Unfortunately, no approach is
available as far as we know to map from object to
functional programming style that is used in Erlang
easily. The class fields of ABS need to be converted
manually as a parameter to the function in Erlang.
We create orm.erl to comply with the role of the
ORM in generated Erlang code. The database query
such as select, insert, update, delete will be
controlled by the orm.erl that utilised the external
library to access the database. Since we use external
libraries after the code is generated, no mechanism is
designed to create the database automatically. Also,
there is a need to modify the generated Erlang code
to use the orm.erl.

A web application has other types of artefacts
besides the application logic files that need to exist
in order for the web application to work. Beside
the orm.erl file, there are artefacts like configura-
tion files, build script and external library depen-
dencies that need to be considered and managed by
the SPLE process. These artefacts can be treated
as mandatory requirements in the domain analysis
as every product in the product line will need its
existence. However, as these files are not directly
related to the feature, they can be added later after
the core SPLE process. We will present the design
that tackles the problem overview in the next section.

3. The ABS Microservices Erlang
Framework

In this section, we explain the implementation
of ABS Microservices Erlang. First, we show the
framework’s workflow and how to add new features
in case of a new requirement. Then, we present
the framework’s structure based on the previous
section’s design. Later, we explain the build process
in the framework.

3.1. Framework Workflow

There are seven processes in our proposed frame-
work. The starting process might be the initialisation
of the framework or an addition of a new product
definition. The initialisation is the beginning of the



110 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

Figure 2. ABS Microservices Erlang Design

framework workflow where the initial features and
product are analysed. The result of the initialisation
process will be the input of the following process
in the workflow. The new product definition can
be added throughout the framework life cycle as
the product lines grow and more new products are
added. Figure 3 shown the framework’ workflow
process.

The workflow process begins with identifying
features requirements. SPLE approach aims to create
multiple products instead of only one in the tradi-
tional approach. This process identifies and analyses
all the product’ requirements. These requirements
will then be turned into a mapping of the product and
the list of features it contains, and the relation be-
tween features. A feature might be related to another
feature, leading to a need to select both features. All
of these requirements’ identification will be the input
of the second process.

The second process defines the ABS model rep-
resenting a product, and the third process defines
the deltas to derive the other product variants. The
second and third processes are related to the core and
the delta module concept of the DOP. Other product
variants will be derived from the core module by ap-
plying deltas in the third process. The delta contains
the modification needed to derive that features. The
different feature needs different delta. There might
be a feature that needs another feature resulting from
another delta. So the other product variants will
be contained one or more deltas according to what
feature they contain. To make sure no conflicts result
from this process, DOP introduces the concept of
delta ordering [20]. The delta ordering ensures the
order of the delta by using after clause to ensure the
features that delta needs exist. Then, when clause is
used when a feature that needs that delta is selected.

The fourth process defines the product lines and
the products they contain. Then, all products will
be defined based on what features they contain. In
this process, the feature model and the products
are defined. The feature model is created from the
feature model, resulting from the first process. The
feature model defines all the features, whether they
are mandatory or optional, and their relationship
with other features. The products list all the features
that the product contains. If the features listed by
that product require a delta, the delta will be ap-
plied based on the delta definition from the previous
process.

The fifth process is the product derivation pro-
cess. After all the models are and the products are
defined, we can use the framework to generate prod-
ucts. After the product generation is completed, there
is a need to modify some configuration files and
web artefacts before the product can be used as the
final process in the workflow. The detailed process
to create a product variant and the modification
needed will be explained further in the following
subsections.

A new product can be added to the framework.
The product addition can be done by adding the new
products to the product definition. New deltas need
to be defined if the new product needs new features.
The new product then can be generated the same way
as the other product that has been defined initially.

Figure 3. ABS Microservices Erlang Workflow

There are two ways to add a new feature, as
shown by Figure 4. First, we analyse the signifi-
cance of the new feature. If most products require
this new feature, we implement the new feature as
the ABS model, similar to the initial process. On
the other hand, if the new feature is only required
by some specific products, the new feature will be
implemented in the required products. In this case,
the feature will be implemented manually as Erlang
code.



Novrialdi et al., Towards Erlang-based ABS Microservices Framework for SPL Development 111

Figure 4. ABS Microservices Erlang New Feature Addi-
tion Workflow

3.2. Framework Structure

Figure 5. ABS Microservices Erlang Directory Structure

We design a framework structure based on the
problem overview discussed, as can be seen in Fig-
ure 5. In general, there are four types of artefacts in
this framework: microservices module, Web applica-
tion artefacts, build scripts, and external dependen-
cies. The microservices module consists of the fea-
tures that the application owns by the product line.
Web application artefacts are non-feature artefacts
related to the web application process, e.g., Object
Relational Mapping (ORM) and database configu-
ration. External dependencies to run web artefacts
are stored in the lib directory. Build scripts are
Bash and Python scripts that will call ABS compiler
and move the related files to the generated product
application.

The microservices module is implemented using
ABS. Because all the features defined in the product
line reside in this module, all business logic source
codes are implemented within the microservices

module. Consequently, the primary SPLE process
should be applied to this module, and the mandatory
non-feature artefacts will be added after the code
generation.

In order to implement the SPLE process in
the microservices module, the ABS source codes
are divided into core and delta modules. The core
module comprises ABS modules for implementing
the base framework functionality and the mandatory
features of the application. It is organised into a set
of directories in the file system, where each direc-
tory represents a layer in the architecture. The core
module also contains a directory containing the ABS
modules related to the framework and the SPLE
process, such as the ABS modules for HTTP request
routing, feature model, product line configuration,
and product specification.

The delta module comprises ABS deltas for
transforming the core product of the application into
a variant that contains the desired features. It mirrors
the core module structure where each directory in
the module contains the ABS deltas for the corre-
sponding layer in the architecture. The delta module
also contains a directory containing the ABS deltas
for customising the framework. For example, the
HTTP request routing for a feature can be updated
by creating an ABS delta that modifies the routing
scheme defined in the core module.

In addition to the core and delta modules, the
framework contains an Erlang template file for the
ORM, vendorised Erlang libraries for database and
HTTP server functionalities, and the shell scripts
used by the product selection process. Figure 5
represent these files as the non-feature web artefacts
and external libraries. Non-feature artefacts, such as
configuration files and ORM, will be placed out-
side the source code folder (outside src). The code
generation process then moves the needed files to
generated product application. While this approach
seems to be enough to make the generated product
application works, we also need to consider that each
generated product application might need a different
application configuration. Application configuration
such as database connection should be different on
each generated application. We design a generation
process for the configuration files to comply with
this need. As at the current state, our framework runs
the generated product on the same machine as the
code generator, and reading configuration environ-
ment variables would be complex as there might be
plenty of generated products in the machine. This
complexity is why we use generated configuration
files instead of copying the configuration that read
from the environment variables. While the result is
hardcoded configuration, for the state of generated



112 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

Figure 6. ABS Microservices Erlang Build Process

product applications resided in the same machine
as the framework, we do not need to manage the
variables of the generated products. There is also a
directory for storing SQL scripts for initialising the
schema and the seed data in the database. However,
the framework does not support automated execu-
tion of the SQL scripts yet. Therefore, the database
schema and the seed data must be initialised manu-
ally.

3.3. Build Process

The ABS Microservices Erlang build process
consists of three parts: Product Selection, ORM
Generation, and Directory Management. We made a
build system using a Bash script to do the process.

The first step of the build process is to select
and create products. The build script accepts an
argument p that represents the product name. The
value of p will be used as another argument for the
code generator in ABS to select and create products.
The result of this product creation from ABS will
be put in a folder named gen. We now have finished
step 2 of Figure 6 and finished the first part of the
build process.

The next part is about ORM Generation. We
need to connect the generated application to a
database and update the generated ORM code.
The previous ABS Microservice, ABS Microservice
Java [12], uses PostgreSQL as its database. We
need to use PostgreSQL also in ABS Microservice
Erlang. In order to use PostgreSQL, we use a li-
brary, epgsql, to connect ABS Microservice Erlang
to PostgreSQL Database.

ORM is needed to convert data stored in rela-
tional database tables into objects that we can use
in our application. ABS Microservice Erlang does
not have ORM initially, so we also need to adjust
ABS Microservice Erlang to use epgsql functions as
ORM on the generated repository layer. We made

Figure 7. Case Study Stages

a template file, orm.erl, that consists of database-
related functions such as connection setup and basic
query functions using epgsql. Our build script does
this on step 3 of Figure 6.

The supporting libraries and orm.erl are moved
to the generated application, as seen in step 4 of
Figure 6. The last step is to create product folders
according to the input p. This is done with a Python
script.

All model objects that have been annotated
with HttpCallable and HttpName can be accessed
at [HOST]/call/<Object>. ABS Microservice Er-
lang sets the /call route by default. We can recon-
figure the route on modelapi v2.erl, but for now,
we leave it as is. After all steps have been done, the
application is ready to run.

4. Case Study

This section will describe a case study of a
microservices-based project built using the ABS
Microservices Erlang framework. We outline the
process of implementing the case study from do-
main engineering to application engineering phase
according to the SPLE methodology, as depicted
at Figure 7. We develop the required artefacts and
generate the products using both ABS Microser-
vices Erlang and Java frameworks. Then, we deploy
the generated products from both frameworks on a
running server and perform comparison on aspects
such as framework usability, functional parity of
the generated products, and memory usage of the
generated products.

4.1. Domain Engineering

We start by defining the domain of the product
line and creating the representative feature model.
We choose a charity organization system domain
analyzed by Laily et al. [22] as an example. The



Novrialdi et al., Towards Erlang-based ABS Microservices Framework for SPL Development 113

feature model describes the features that will be
mandatory and optional across every possible prod-
uct in the product line. We follow the µTVL syntax
in ABS language to create the feature model in
textual format.

The next step is developing the core module of
the application. The core module consists of ABS
modules that implement all the mandatory features
defined in the feature model. The implementation
also needs to follow the convention dictated by the
ABS Microservices Erlang framework. For example,
the HTTP endpoint to a particular feature needs
to be defined in an ABS module provided by the
framework.

Once done creating the core module, we start
developing the delta module. The delta module con-
tains the ABS deltas that will be used for modifying
the core module when certain features are required.
One or more ABS deltas from the delta module can
be applied during product generation. For instance,
if a new feature requires an HTTP endpoint not
yet available in the core module, one can create a
delta module with an ABS delta that will modify
the existing HTTP router by adding the new HTTP
endpoint definition.

Finally, we define the product line configuration
and the product specification. The product line con-
figuration contains the list of features and deltas in
the product line. It also contains the constraints that
describe the relations among the features and the
deltas. The product specification contains the list of
products that the product line can generate. Each
product describes the features available in the prod-
uct, both the mandatory features and the optional
features.

The same ABS artefacts produced in this phase
can be reused in a product line built on the ABS
Microservices Java framework. However, the arte-
facts need to be adjusted due to the difference in
how the ABS Microservices Java framework pro-
vides an HTTP server. The details are discussed in
section 3.2.

4.2. Application Engineering

First, we set up the toolchain for performing the
product selection in the SPLE process. The toolchain
requires a specific version of ABS tools 2, Erlang
OTP 22, Java 8, Python 3, and Bash shell. ABS
tools provide a compiler that parses ABS modules
and generates the source code written in a supported
language such as Erlang or Java. In addition, ABS
tools also include a model checker to verify the
correctness of the product line.

2https://github.com/abstools/abstools/tree/797bb73329ba

Second, we prepare the generated product’s
database schema and seed data. As mentioned in
section 3.2, the database schema and the seed data
are written in SQL scripts and executed outside of
the framework. Once the database is set up, we
create a JSON file containing the generated product’s
database connection configuration. The framework
will parse the JSON file using a Python script during
product generation and use the parsed values to fill
in the ORM template file required by the generated
product.

The framework provides a Bash shell script that
accepts a parameter containing the desired product
name to generate a product. The Bash shell script
executes a series of commands and a Python script
that invoke the ABS tools to generate the source
code artefact. In addition, the shell script also sets
up the database and organizes the resulting artefact
into a new directory named after the product.

4.3. Comparing Generated Erlang Product
with Java

We set up a virtual machine (VM) running
GNU/Linux-based operating system on a cloud
service provider. The VM contains the required
toolchain for building the product line and running
the generated product from both ABS Microservices
Framework. Then, we create a product with the same
features using both ABS Microservices Framework
and deploy the products on separate ports. Each
product is deployed and run using the default con-
figuration of each respective runtime, which is Java
Virtual Machine (JVM) and Erlang runtime system
(erl).

To simulate user traffic to the running products,
we use Apache JMeter 3 to perform two load tests
on each product. The load tests are executed from
an Internet-connected personal computer (PC). Each
load test simulates concurrent users repeatedly ac-
cessing an HTTP endpoint for 30 seconds with 10
and 100 simulated users. Additionally, each load test
also serves as functional test that verifies the HTTP
response from each product during testing. The tests
expect that all responses from each product must
contain a valid JSON data.

During each load test to each product, we mea-
sure the memory usage of both products by using
ps mem 4 on the VM. We measure the memory
usage before the load test starts and when the load
test simulates the peak number of concurrent users.
Table 1 summarizes the memory usage of each prod-
uct from each load test. We can see that the product

3https://jmeter.apache.org/
4https://github.com/pixelb/ps mem

https://github.com/abstools/abstools/tree/797bb73329ba
https://jmeter.apache.org/
https://github.com/pixelb/ps_mem


114 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

Table 1. Memory Usage

Product Number of
Simulated Users Idle Traffic Peak Traffic

Java 10 201.6 MiB 275.9 MiB
100 199.2 MiB 279.4 MiB

Erlang 10 23.6 MiB 27.6 MiB
100 22.4 MiB 27.3 MiB

that runs on Erlang runtime consumed less memory
than Java.

4.4. Discussion

We have demonstrated that similar ABS modules
can be used both in ABS Microservices Erlang
and ABS Microservices Java frameworks to build a
product line. Additionally, we also showed that both
frameworks could produce two equivalent products
with the same features. There is a minor difference
in how to implement the ABS modules that are re-
sponsible for representing the HTTP API endpoints.
We use HttpCallable and HttpName annotations on
ABS modules that represent the API endpoints. The
Erlang code generator uses the annotations in the
ABS toolchain to bind the generated Erlang code
with the built-in HTTP server in the Erlang runtime.
Meanwhile, the ABS Microservices Java does not
use annotations for wiring up the application with
the HTTP server. The ABS Microservices Java was
developed on an older version of the ABS toolchain
where the HTTP-related annotations were not avail-
able yet. It uses a custom Apache Tomcat-based
HTTP server that integrates with the generated Java
code through the FLI (Foreign Language Interface)
mechanism in ABS language.

We observed a much smaller memory footprint
on the product than run on Erlang runtime in terms
of memory usage. The memory consumption of
Erlang-based products is roughly ten times lesser
than its Java counterpart. This lesser memory con-
sumption leads to a possible operational cost re-
duction when deploying a product on a cloud envi-
ronment, where the costs are charged based on the
utilization of available computing resources. If there
is a concern on cost-effectiveness when running
products on the cloud, one could prefer to build and
deploy a product using ABS Microservices Erlang
instead of ABS Microservices Java.

5. Evaluation

This section explains the evaluation criteria we
use to examine the product line implementation tech-
nique we use. First, we explain the metrics to eval-

uate the framework implementation and the evalua-
tion of our framework and also ABS Microservices
Java from Naily et al. [12] as a comparison. Then,
we discuss the evaluation result and summarize the
evaluation.

Different implementation techniques for product-
line development have different characteristics and
mutual strengths and weaknesses [14]. Apel et
al. [14] present six quality criteria to access tradeoffs
and compare product line implementation strategy.
Apel et al. introduced these quality criteria as the
quality criteria which product line implementation
should ideally meet:

1) Preplanning Effort: The effort needed to
prepare an implementation technique.

2) Feature Traceability: The ability to track
a feature from the problem space into the
solution space.

3) Separation of Concerns: The separation of
features both in design and code, such that
the relationship
between features and corresponding design
and implementation’s artefacts are explicit.

4) Information Hiding: To decompose a sys-
tem into modules and to divide each module
into an internal and an external part.

5) Granularity: The granularity of features.
A level of granularity refers here to the
hierarchical structure of an implementation
artefact,
typically, defined by a containment relation
among the artefacts’ structural elements.

6) Uniformity: All features should be encoded
and synthesized in a similar
manner.

The second to sixth quality criteria are the
quality criteria that check whether implementation
criteria satisfy the defined quality. Meanwhile, the
first quality criteria objective is to show the effort
to preplan implementation criteria and present the
implementation technique’s complexity. As the first
quality criteria defined by Apel et al. yet to give the
explicit definition of the complexity, we extend this
quality factor with three categories of complexity
based on the effort needed to derive a new product
to the product line using that implementation tech-
nique. We also design a complexity modifier specific
to the web application to assess a software product
line implementation to these three categories

As shown by Table 2, there are six complexity
modifier. Their value is weighted based on their
significance on the resulting product. A high effort
and significant impact on the generated product re-
sulted in a high value on the modifier. Every single
complexity modifier is explained below:



Novrialdi et al., Towards Erlang-based ABS Microservices Framework for SPL Development 115

Table 2. Pre-planning Effort Complexity Modifier
Complexity Modifier Value

Customised Compiler 2
Configuration files modification

after product generation 1

Feature artefacts modification
after product generation 3

External or customised middleware
for URL routing 1

Tools forward incompatibility 1
Web Artefacts modification

after product generation 3

1) Customised Compiler (C1): The use of a
customised compiler.
This implied a use of non-standard compiler
to applying a certain process.

2) Configuration files modification after
product generation (C2): There is a need
to change the configuration files after the
product generation before the product can
be worked.

3) Feature artefacts modification after
product generation (C3): There is a need
to edit the feature related artefacts/logic
before the product can be used.

4) External or customised middleware for
URL routing (C4):External libraries or
artefacts are needed to configure the routing
and the request-response of the web appli-
cation.

5) Tools forward incompatibility (C5): De-
picts the framework’s inability to update the
tools to use the latest technology stack in
case of deprecation.

6) Web Artefacts modification after product
generation (C6): There is a need to update
web application related artefacts, such as
database connectors, before the product can
be used.

There are two complexity modifiers with value
weighed at three: feature artefacts modification af-
ter product generation and web artefacts modifica-
tion after product generation. These two complex-
ity modifiers need a high effort, and the generated
product cannot be used before both are completed.
A customised compiler is rated two as the effort to
create the compiler is high, but afterwards, it can
generate multiple products without a need for modi-
fication after the generation process. This complexity
modifier is related to tools forward incompatibility
as a customised compiler makes it hard to upgrade
later. The rest of the complexity modifiers are rated
one as they do not need a high effort, or the product
can be generated without fulfilling that complexity

Table 3. Pre-planning Effort Complexity
Pre-planning

Effort
Complexity

Pre-planning
Effort

Complexity

Low Complexity 0-3
Medium Complexity 4-6

High Complexity Larger than 6

modifier. This value then will be used to determine
the pre-plan complexity. The metrics is shown in
Table 3.

A low complexity implies that adding a new
feature only slightly change or better does not need
to modify the existing codebase. Low complexity is
the ideal complexity that needs to be satisfied by
an implementation technique. The existing reusable
artefacts can be used to derive a new feature and
product. The difference with the low complexity cri-
teria is that the change needed in the low complexity
is mainly on using the reusable artefacts to derive
product, e.g., changing the list of product and what
artefacts that product use. Meanwhile, medium crite-
ria complexity implies a need to change the existing
codebase or the resulting product to use the reusable
artefacts as the working product. High complexity
denotes an inflexible implementation technique, such
that there are many changes needed to add a new fea-
ture or derive a product that does not exist initially.

The result of the pre-plan complexity comparison
between our research and ABS Microservices is
shown by Table 4. Our framework has a complexity
modifier of 7, categorised as high, and on the other
hand, ABS Microservices Java has the value of 5,
categorised as medium. ABS Microservices Erlang
that we developed still needs modifications after the
products are generated. Not only do we need to
modify the generated products’ configuration files,
but there is also a need to modify web artefacts
such as database connection in the repository layer.
The need for these modifications leads to more
complexity in the product generation process for our
framework. On the other hand, ABS Microservices
Java does not possess this problem, but instead, it has
a problem with the maintainability and sustainability
of the framework. It will not be easy to update the
tools to use newer technology in case of deprecation
because of a need to update the customised compiler.
ABS Microservices Java also has the problem of
the framework complexity because a lot of the mid-
dleware such as URL routing and request-response
management uses external libraries.

Table 5 shows the overall evaluation comparison
of both frameworks using the quality criteria defined
by Apel et al. [14]. The quality criteria of Feature



116 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

Table 4. Pre-Planning Effort Complexity Comparison

Framework
Complexity

Modifier
Value

Pre-Planning
Effort

Complexity

Complexity
Modifier

Erlang-based 7 High C2,C3, C6

Java-based 5 Medium C1,C2, C4,
C5

Table 5. Evaluation Comparison of Erlang-based and Java-
based [12] ABS Microservices
No Quality Criteria Erlang-based Java-Based

1 Preplanning Effort High Medium
2 Feature Traceability V V
3 Separation of Concerns V V
4 Information Hiding V V
5 Granularity V V
6 Uniformity V V

Traceability, Information Hiding, and Granularity
have been handled indirectly by ABS, which is
used by both frameworks. ABS is a language that
naturally supports the SPLE process, which eases the
development of the SPLE-enabled framework. SPLE
process in ABS is implemented by Delta-Oriented
Programming (DOP) approach. A feature diagram
used to represent the features of the product line is
translated into ABS codes. The ABS code version of
the feature diagram lists the product line’s features
and validates the feature selection in the product
derivation. ABS also has a module system that helps
to represent the relationship between artefacts via
export and import. This module system complies
with the Information Hiding quality criteria since the
module system explicitly states the dependencies of
that module and what entity the module exposes.
As there are explicit dependencies among modules,
Granularity quality criteria are also fulfilled as it
gives the ability to track the relationship between
modules as reusable artefacts. We can track the
relationship between artefacts, e.g. dependencies be-
tween artefacts and combine it with DOP by using
this mechanism. We can trace features from problem
space to the solution space, hence complying with
Feature Traceability criteria.

Both frameworks satisfy Separation of Concerns
and Uniformity by integrating the SPLE process of
ABS and microservices design from Fowler [8]. A
feature is defined by the cooperation of all four
layers of the microservices design. So the SPLE
process needs to be applied to all layers of microser-
vices. The application of the SPLE process denotes
a pattern to add a new feature, hence maintaining
the consistency asked by uniformity quality criteria.
Furthermore, since all the layers have their explicit
role and the DOP process in the ABS also split the

module based on their role (core or delta), there is
a clear separation of concerns.

The significant difference between both frame-
works is how the framework handles the web en-
gineering process; hence, these frameworks have
different complexity. Both frameworks use ABS
compiler to generate product in the target language,
but ABS Microservices Java [12] uses a customised
build chain as opposed to directly using ABS com-
piler as we did in this research. The information
needed to build web application artefacts such as Ob-
ject Relational Mapping (ORM) and database tables
is inferred from the abstract syntax tree during build
time. As opposed to that approach, our framework
split the process to generate the product’s feature
and web application artefacts. This approach has an
advantage over merging the process as one extensive
build process because different processes imply it
will be easier to interchange the web application
artefacts and technology since the two processes are
independent. We can choose the library and tech-
nology used to build the web application artefacts
without affecting the feature build process. The use
of a custom build chain implies the specific technol-
ogy needed for the product application to work as
intended. Since we are not embedding any specific
process into the build process of the ABS compiler,
the future update of the compiler would not disrupt
the framework as much as it did to the renewal of
ABS Microservices Java. If there is a need to update
the web component, for the web artefacts are in a
different process from the build, they can be replaced
without affecting the primary ABS build process.

More effort is needed to change the technology
used by ABS Microservices Java to build web ap-
plication artefacts. For example, ABS Microservices
Java uses PostgreSQL as the database management
system. Since the create table statement read
from abstract syntax tree and then directly written
as PostgreSQL dialect, to change the database man-
agement system to, for example, MySQL, there is
an effort needed to change the database table gener-
ator to comply with MySQL dialect. In comparison,
our ABS Microservices Erlang framework is more
flexible on web application artefacts technology. The
needed non-feature artefacts are added later after the
product derivation process, so it does not depend on
the build process. If there is a need to change web
application artefacts technology, the new technology
can replace the old technology in the library direc-
tory.

However, as shown by Table 5, our approach has
an overhead in the complexity of preplanning effort
in comparison to ABS Microservices Java [12]. Our
ABS Microservices Erlang does not read the infor-



Novrialdi et al., Towards Erlang-based ABS Microservices Framework for SPL Development 117

mation from the abstract syntax tree. Consequently,
the generator does not have all the needed infor-
mation to generate a non-feature artefact related to
the feature, e.g. database access from the repository
layer. The consequence is that there is a need to
modify the resulting product application code to
be working as intended. This is not the case with
ABS Microservices Java. Overall, the preplanning
complexity of ABS Microservices Erlang is higher
than Java-based.

6. Conclusion

This research presents an ABS Microservices
Erlang, a web framework based on the SPLE con-
cept. The ABS Microservices Erlang framework is
able to semi-automatically generate a web appli-
cation based on delta-oriented programming [20].
ABS is used to develop a web application using
the framework that a standard library supports. The
framework also enables the further adoption of SPLE
approaches in Web application development. Both
frameworks use the ABS to model the features and
the application. The same ABS files can be reused
to generate a microservices web application with the
preferred language. We observed a smaller memory
footprint on the generated products made by the
ABS Microservices Erlang framework based on our
profiling process compared to ABS Microservices
Java. The result may help the user decide on which
framework to use in a memory-constrained envi-
ronment. We also evaluated our framework imple-
mentation technique and ABS Microservices Java
as the comparison. The result shows that there is
still a need to work on our framework’s preplanning
effort quality criteria. Our approach that splits the
process of the main ABS compiler build and the
installation of web application components promises
better maintainability of the code, should there is a
significant update to the ABS compiler. However,
the product generation in our framework has yet
to achieve complete automation, which ABS Mi-
croservices Java has accomplished, thus increasing
the preplanning effort.

7. Future Research

Work is needed to reduce the preplanning effort
in ABS Microservices Erlang by applying some au-
tomation in the web application artefacts generation
and installation process. While we can automate the
process of generating the ORM, there is a manual
step involved where we have to insert the corre-
sponding function call in the generated code to per-
form query or data manipulation. For example, we

have to add orm:findAll in a function that returns
the collection of objects from a table. This manual
step implies a need to add new SQL statements every
time there is a new feature or entity. A mechanism to
read entities information from ABS’s abstract syntax
tree can be considered to improve the automation
ability of the framework. In addition, subsequence
research can further investigate improving the code
generation process from ABS ORM modules into
generated Erlang code.

References

[1] I. Schaefer, R. Rabiser, D. Clarke, L. Bet-
tini, D. Benavides, G. Botterweck, A. Pathak,
S. Trujillo, and K. Villela, “Softw. diversity:
state of the art and perspectives,” Int. J. on
Softw. Tools for Technol. Transfer, vol. 14,
no. 5, pp. 477–495, 10 2012, copyright -
Springer-Verlag 2012; Last updated - 2014-08-
30.

[2] D. Di Ruscio, M. Chechik, and B. Rumpe, “9th
workshop on model. in softw. eng. 2017,” in
2017 IEEE/ACM 9th Int. Workshop on Model.
in Softw. Eng. (MiSE), May 2017, pp. 1–1.

[3] K. Pohl, G. Bockle, and F. van der Linden,
Softw. Product Line Eng.: Found., Princ., and
Techn. Berlin: Springer-Verlag, 2005.

[4] A. Miniukovich and A. De Angeli, “Webpage
aesthetics: One size doesn’t fit all,” in Proc. of
the 9th Nordic Conf. on Human-Comput. In-
teraction, ser. NordiCHI ’16. New York, NY,
USA: Association for Computing Machinery,
2016.

[5] H. Keshavarz and M. E. Givi, “Website eval-
uation frameworks: Is oriented vs. business
oriented models,” in 2020 6th Int. Conf. on Web
Research (ICWR), 2020, pp. 223–228.

[6] V. F. de Santana and M. C. C. Baranauskas,
“Continuous web personalization using
selector-template pairs,” in Proc. of the 16th
Int. Web for All Conf., ser. W4A ’19. New
York, NY, USA: Association for Computing
Machinery, 2019.

[7] D. Yadav, A. Shinde, A. Nair, Y. Patil, and
S. Kanchan, “Enhancing data security in cloud
using blockchain,” in 2020 4th Int. Conf. on
Intell. Comput. and Control Syst., May 2020,
pp. 753–757.

[8] M. Fowler, “Microservices guide,”
2019. [Online]. Available: https:
//martinfowler.com/microservices/

[9] N. Dragoni, S. Giallorenzo, A. L. Lafuente,
M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina, Microservices: Yesterday, Today,

https://martinfowler.com/microservices/
https://martinfowler.com/microservices/


118 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

and Tomorrow. Cham: Springer International
Publishing, 2017, pp. 195–216. [On-
line]. Available: https://doi.org/10.1007/978-
3-319-67425-4 12

[10] M. A. Jarwar, S. Ali, M. G. Kibria, S. Kumar,
and I. Chong, “Exploiting interoperable mi-
croservices in web objects enabled internet of
things,” 2017 Ninth International Conference
on Ubiquitous and Future Networks (ICUFN),
pp. 49–54, 2017.

[11] A. Aziz, M. R. A. Setyautami, and A. Azurat,
“A web-based softw. product line eng. frame-
work,” in 2019 Int. Conf. on Adv. Comput. Sci.
and inf. Syst. IEEE, Oct 2019, pp. 21–26.

[12] M. A. Naily, M. R. A. Setyautami,
R. Muschevici, and A. Azurat, “A framework
for model. variable microservices as softw.
product lines,” in Lecture Notes in Comput.
Sci., vol. 10729 LNCS, 2018.

[13] R. Hähnle, “The abstract behavioral specifi-
cation language: A tutorial introduction,” in
Formal Methods for Components and Objects:
11th Int. Symposium, FMCO 2012, Bertinoro,
Italy, September 24-28, 2012, Revised Lectures,
E. Giachino, R. Hähnle, F. S. de Boer, and
M. M. Bonsangue, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–37.

[14] S. Apel, D. Batory, C. Kästner, and G. Saake,
Feature-Oriented Softw. Product Lines. Berlin:
Springer-Verlag, 2013.

[15] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner,
O. Leßenich, M. Becker, and S. Apel,
“Preprocessor-based variability in open-source
and industrial softw. syst.: An empirical study,”

Empirical Softw. Eng. 2015 21:2, vol. 21, pp.
449–482, 4 2015.

[16] C. Kästner, S. Apel, and M. Kuhlemann,
“Granularity in softw. product lines,” in 2008
ACM/IEEE 30th Int. Conf. on Softw. Eng.,
2008, pp. 311–320.

[17] F. Benduhn, R. Schröter, A. Kenner,
C. Kruczek, T. Leich, and G. ANDSAAKE,
“Migration from annotation-based to
composition-based product lines: towards a
tool-driven process,” in Proc. Conf. Advances
and Trends in Softw. Eng. (SOFTENG). IARIA,
2016, pp. 102–109.

[18] C. Kästner and S. Apel, “Integrating compo-
sitional and annotative approaches for product
line eng.” 2008.

[19] J.-M. Horcas, A. Cortiñas, L. Fuentes, and
M. R. Luaces, “Integrating the common vari-
ability language with multilanguage annota-
tions for web eng.” 2018.

[20] I. Schaefer, L. Bettini, V. Bono, F. Damiani,
and N. Tanzarella, “Delta-oriented program-
ming of softw. product lines,” in Softw. Product
Lines: Going Beyond, J. Bosch and J. Lee, Eds.
Heidelberg: Springer Berlin, 2010, pp. 77–91.

[21] T. Clemson, “Testing strategies
in a microservice architecture,”
2014. [Online]. Available: https:
//martinfowler.com/articles/microservice-
testing/

[22] I. L. Laily, O. Komarudin, S. Fadhilah, and
A. Azurat, “Progressive learning design strat-
egy to improve impact maturity of charity orga-
nizations,” in 2018 Int. Conf. on Adv. Comput.
Sci. and Inf. Syst. IEEE, Oct 2018, pp. 39–44.

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/

	Introduction
	Related Research and Problem Overview
	Related Research
	Problem Overview

	The ABS Microservices Erlang Framework
	Framework Workflow
	Framework Structure
	Build Process

	Case Study
	Domain Engineering
	Application Engineering
	Comparing Generated Erlang Product with Java
	Discussion

	Evaluation
	Conclusion
	Future Research

