
Improving X10 Program Performances by Clock

Removal

Paul Feautrier, Eric Violard, Alain Ketterlin

To cite this version:

Paul Feautrier, Eric Violard, Alain Ketterlin. Improving X10 Program Performances by Clock
Removal. 23rd International Conference on Compiler Construction (CC’14), part of ETAPS’14,
Apr 2014, Grenoble, France. 2014. <hal-00924206>

HAL Id: hal-00924206

https://hal.inria.fr/hal-00924206

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00924206

Improving X10 Program Performances by Clock

Removal

Paul Feautrier1, Éric Violard2, and Alain Ketterlin2

1 INRIA, UCBL, CNRS & Ecole Normale Supérieure de Lyon, LIP, Compsys
2 INRIA & Université de Strasbourg

Abstract. X10 is a promising recent parallel language designed specifi-
cally to address the challenges of productively programming a wide vari-
ety of target platforms. The sequential core of X10 is an object-oriented
language in the Java family. This core is augmented by a few paral-
lel constructs that create activities as a generalization of the well known
fork/join model. Clocks are a generalization of the familiar barriers. Syn-
chronization on a clock is specified by the advance() method call. Ac-
tivities that execute advances stall until all existent activities have done
the same, and then are released at the same (logical) time.
This naturally raises the following question: are clocks strictly necessary
for X10 programs? Surprisingly enough, the answer is no, at least for
sufficiently regular programs. One assigns a date to each operation, de-
noting the number of advances that the activity has executed before the
operation. Operations with the same date constitute a front, fronts are
executed sequentially in order of increasing dates, while operations in a
front are executed in parallel if possible. Depending on the nature of the
program, this may entail some overhead, which can be reduced to zero for
polyhedral programs. We show by experiments that, at least for the cur-
rent X10 runtime, this transformation usually improves the performance
of our benchmarks. Besides its theoretical interest, this transformation
may be of interest for simplifying a compiler or runtime library.

1 Introduction

Due to physical limitations, today computers all have explicit parallelism. This
is true over the whole power spectrum, from embedded systems to high perfor-
mance number crunchers, in which millions of cores must contribute to a common
task. Efficient programming of such architectures is one of the most important
challenge of the next decade. Among the many solutions which have been pro-
posed – parallel programming libraries, domain specific languages, automatic
parallelization – one of the most interesting is the use of parallel programming
languages: languages in which parallel constructs are first class citizens, on a par
with standard control constructs like the sequence or the loop. This approach
has two advantages. Firstly, it hides the intricate details of parallel program-
ming at the hardware or operating system level. Second, and most importantly,
the programmer can express the problem inherent parallelism. Such parallelism
might be difficult to infer from a sequential implementation.

The recent years have seen the creation of many such languages, among which
Titanium [1], Chapel [2], Co-Array Fortran [3], UPC [4], Habanero Java [5]. This
paper deals with X103 which is being developed at IBM Research. However,
we believe that our techniques – if not our results – can be adapted without
difficulties to other languages. Basically, parallelism is expressed by syntactic
constructions, async/finish in X10 or cobegin/coend in Chapel. For some
algorithms, it is necessary to restrict temporarily the degree of parallelism, using
synchronization objects, called clocks in X10 or phasers in Habanero Java. These
primitives are somewhat redundant, and may be used interchangeably in some
circumstances. The aim of this paper is to explore these redundancies for X10,
and to evaluate their impact on program performance.

Our key contributions are:

– we give a general scheme for clock elimination, which applies only to static
control programs,

– we show that this scheme is correct and does not lose parallelism,

– for polyhedral programs, the control overhead of the target program can be
reduced or even eliminated by loop transformations,

– experiments show that for the latest version of the X10 compiler and runtime,
the proposed transformation improves the running time for fine grain parallel
programs.

The rest of the paper is structured as follows. We will first give as much
information on X10 as necessary to understand our approach. We will then
define the polyhedral subset of X10. While our approach is not limited to this
subset, it gives the best results in the case of polyhedral programs. results.

1.1 The X10 Language

The Base Language X10 is an object oriented language of the Java family.
It has classes and methods, assignments and method invocation, and the usual
control constructs: conditionals and loops. Dealing with method invocation ne-
cessitates interprocedural analysis, and is beyond the scope of this paper. The
exact shape of assignments is irrelevant in this work.

X10 has two kind of loops: the ordinary Java loop:

for(<initialization>; <tests>; <increment>) S

and an enumerator loop:

for(x in <range>) S

where the type of the counter x is inferred from the type of the range.

3 x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

Concurrency Concurrency is expressed in X10 by two constructs, async S and
finish S, where S is an arbitrary statement or statement block. Such constructs
can be arbitrarily nested, except that the whole program is always embedded
in an implicit or explicit finish, which creates the main activity. The effect of
async S is to create a new activity or lightweight thread, which executes S in
parallel with the rest of the program. The effect of finish S is to launch the
execution of S, then to wait until all activities which were created inside S have
terminated.

X10 also allows the distribution of work on a set of logical places (typically,
various nodes of a compute cluster), in a way that is transparent to the orga-
nization of activities. This aspect is orthogonal to the work explained in this
paper, and will not be further evoked.

Synchronization In some cases, it may be necessary to synchronize several par-
allel activities. This can be achieved using clocks. Clocks are created by clocked

finish constructs. Activities are registered to the clock associated to the in-
nermost enclosing clocked finish if created by a clocked async construct. An
activity deregisters itself from its associated clock when it terminates. Synchro-
nization occurs when an activity executes the advance primitive. This activity
is held until all registered activities have executed an advance, at which time all
registered activities are released.

Clocks can be seen as generalization of the classical barriers. The main dif-
ferences are that activities may be distributed among several clocks which work
independently, and that this distribution is dynamic as it can change when an
activity is created or terminated. Refer to Figure 1 for a sample X10 program.

Intuitively, it should be clear that an unclocked finish or a set of advances
can be used interchangeably. In both cases, several activities are stalled until all
of them have reached a synchronization point. If a clock is used, then all clocked
activities are released for further processing, while in the case of a finish, they
are destroyed. The aim of this paper is to explore this analogy, both from the
point of view of expressiveness and from the point of view of performance.

1.2 The Polyhedral Subset of X10

In general, analysis of arbitrary programs in a high level language like X10 is
difficult, due to the presence of dynamic constructs like while loops, tests, and
method invocation. Hence, many authors [6] have defined the so-called polyhe-
dral model, in which many analyzes can be done at compile time. The polyhedral
subset of X10 has been defined in [7]. The present section is a summary of this
work. An X10 program is in the polyhedral model if its data structures are ar-
rays and its control structures are loops. An enumerator loop is polyhedral if the
range is an integer interval. The bounds of the range and the array subscripts
must be affine functions of surrounding loops counters and integer parameters.

If these conditions are met, one can define statement instances, iteration
domains, and an order of execution or happens-before relation. Statement in-

stances are named by position vectors, which are deduced from abstract syntax
trees (AST).

Consider the following example and its AST:

finish

for(i in 0..(n-1)) {

S1;

async

S2;

}

finish

for i

S1

0

async

S2

0

1

0

Fig. 1. A Sample Program

The position vector for an elementary statement S is obtained by following
the unique path in the AST from the root to S. In the example, the position
vector of S1 is [f, 0, i, 0] and that of S2 is [f, 0, i, 1, a, 0], where f stands for
finish and a stands for async. Let x and y be two position vectors, and let us
write x ≺ y for ”instance x happens before instance y”. To decide whether x ≺ y,
first expand x ≪ y, where ≪ is the ordinary lexicographic order. Then, remove
a term if, after elimination of a common prefix, the first letter one encounter
on the left is an a. This rule reflects the fact that the only temporal effect of
async S is to postpone the execution of S. The reader may care to check that
in the above example, instances of S2 are unordered, while S1(i) happens before
S2(i

′) if i < i′.

Another construction is necessary for programs that use clocks. The simplest
case is that of one-clock programs (or of innermost clocked finishes). One must
distinguish the unclocked happens-before relation, for which advances are treated
as ordinary statements, and the clocked happens-before, noted ≺≺. Let A be the
set of advances inside one clocked finish. The advance counter at operation u is
defined as:

φ(u) = Card{u′ ∈ A |u′ ≺ u}.

When the effect of clocks is taken into account, one can prove that if φ(u) < φ(v),
then u happens before v. As a consequence, the clocked happens-before relation
is:

u ≺≺ v ≡ φ(u) < φ(v) ∨ u ≺ v.

Since for polyhedral programs A is a union of disjoint polyhedra, and u′ ≺ u
is a disjunction of affine inequalities, the set {u′ ∈ A |u′ ≺ u} is the set of
integer points which belong to a union of polyhedra. The cardinal of this set can

be computed in closed form using the theory of Ehrhart polynomial, for which
there exists efficient libraries [8].

2 A Generic Transformation Strategy

Our goal is to remove clocks from X10 programs. To understand the idea of
this transformation, consider Figure 2: the center graph depicts the execution
of an imaginary X10 program, where activities are represented by vertical boxes
that contain regular instruction executions and clock synchronization operations.
These activities “align” on their calls to advance(). The code on the left side of
the figure is one possible source of this program. The idea of the transformation is
to extract “slices” (or phases) across activities, represented by horizontal dashed
boxes on the graph. A possible corresponding program appears on the right of
the figure: the usage of clocks has been replaced by the barrier ending finish

blocks. We will prove in the next section that both programs execute the same
operations in the same order, except for clocks and the number (and duration)
of activities.

clocked finish {

for (i ...)

clocked async

for (j ...) {

S;

advance();

}

i

j

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

S

adv

for (j ...)

finish

for (i ...)

async S;

Fig. 2. Parallelism and synchronization in X10, with and without clocks

This transformation, can be implemented by a straightforward technique.
Starting with a given clocked finish block, the result of the transformation
can be sketched as follows:

for (d ...) // where d is a monotonically increasing phase number
finish Sd // the original finish block restricted to phase d

Writing the transformed program this way assumes that it is possible 1) to
determine the number of phases of the program, either statically or dynamically,
2) to execute the given block for a given phase only (the restriction of the block
to that phase), and 3) to repeatedly execute the original block. The rest of this
section explores these three issues.

2.1 Motivating Example

Our goal in this section is three-fold. First, it is important to understand what
class of programs the transformation can be applied to. Second, the example
will help pinpointing potential optimizations. And third, we want to empirically
validate our intuition that managing clocks is more expensive than creating
activities.

Our working example appears on the left of Figure 3. The finish block
creates only two activities in addition to the main activity. Each of these execute
a loop that does some work (in abstract instructions S0 and S1), and then
conditionally synchronizes with the other. A set of input parameters, contained
in arrays a0 and a1, drives the control of the program and the synchronization
scheme. These parameters make it impossible to statically derive how many
phases the program has, and how many executions of S0 and S1 are performed
in each phase.

clocked finish {

clocked async {

for (i in 0..(N-1)) {

S0(i);

if (a0(i) > 0)

advance();

}

}

clocked async {

for (i in 0..(N-1)) {

S1(i);

if (a1(i) > 0)

advance();

}

}

}

1 cont = true;

2 for (d=0 ; cont ; d++) {

3 cont = false;

4 finish {φ := 0;

5 async { φ0 := φ;

6 for (i in 0..(N-1)) {

7 if (d == φ0) S0(i);

8 if (a0(i) > 0)

9 ++ φ0;

10 }

11 if (d<φ0) cont = true; }

12 async { φ1 := φ;

13 for (i in 0..(N-1)) {

14 if (d == φ1) S1(i);

15 if (a1(i) > 0)

16 ++ φ1;

17 }

18 if (d<φ1) cont = true; }

19 if (d<φ) cont = true; }

20 }

|

Fig. 3. An example program, before and after transformation

The resulting program appears on the right of Figure 3. The transformation
can be broken into four successive steps:

1. The finish block is wrapped inside a loop over d, whose iterations represent
the various phases of the execution (line 2 on Fig. 3). The exit condition is
represented with a boolean, named cont, whose role is detailed in the fourth
phase.

2. Every activity gets its own local “counter” (named φ, φ0 and φ1 in the
example),4 initialized at the start of the activity by capturing the value of
the parent activity’s counter if any (lines 4, 5, and 12). Local counters are
maintained by replacing calls to advance() by an incrementation (lines 9
and 16).

3. All instructions that have an effect visible outside the finish block are
guarded (lines 7 and 14), and the guard condition checks whether the value
of the local counter matches the currently executed phase (given by d).

4. Finally, when any activity reaches its end, the value of the local counter has
reached its maximum value for that activity. This maximum value is the
index of the last phase for which this activity has work to do. A simple test
decides whether the loop on d should continue iterating (lines 11, 18, and
19).5

To evaluate the performance impact of the transformation, we still need to
give some definition to S0(i) and S1(i). In the experiment below, we use some
“dummy” code of the form:

for (t in 1..T)

a(i) += garbage(k%4)

that is to say, two accesses to arrays plus two arithmetic operations (subject to
optimization). The T parameter is used to control the amount of work performed
by one call to either S0 and S1: on a recent laptop, we have observed that such
a loop takes roughly T nanoseconds. To run either the original or the modified
program, the arrays a0 and a1 are filled with randomly generated values with
equiprobable signs.

Figure 4 shows the execution times in milliseconds of both versions with
N = 100 as a function of the parameter T. The original version uses clocks
to synchronize both activities, whereas the modified version simply repeats the
whole finish block as many times as necessary (therefore creating many more
activities). These curves are surprisingly close to each other. For moderately
heavy instruction grain (here between 10 and 100 µs per call to S0 or S1), it seems
that the cost of handling clocks is approximately as high as executing around 50
instances of the block (including the creation of activities). This accomplishes
our third goal, and validates our intuition that clocks are expensive.

2.2 Applicability and Correctness

There are two main aspects in the generic transformation:

1. guarding the instructions, so as to have them execute during the right phase;
2. maintaining phase numbers (“dates”) during each iteration of the loop on d.

4 The local counter of the activity executing the body of finish, named φ, is useless
here and was left for completeness only.

5 Activities could be aborted once their local counter is above the value of d: this
aspect is more or less orthogonal to our goal, and is ignored here.

 0

 100

 200

 300

 400

 500

 600

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

clocked
clockless

Fig. 4. Clocked and clockless execution times (in milliseconds)

Let us for a moment assume that the second aspect is enforced. In that case,
it is easy to see that both versions of the program are equivalent. For, if two
instructions of the original block are executed during different phases, then they
will be executed inside different finish blocks in the transformed program. And
if they are executed during the same phase, they will still be executed in the
right order, since the transformed block is a copy of the original block, and thus
faithfully reproduces program order. Therefore, correctness of the transformation
is guaranteed if phase numbers can be correctly maintained.

Maintaining correct dates at all times, i.e., during every iteration of the d-
loop, however, is not possible for all programs. Here is a simple modification
of our previous example, where the body of the i-loop inside the first async

becomes:

if (a0(i) > 0) {

a0(i) = -1;

advance();

}

Here, code executed at date d updates a value that will be used at a later date
(an iteration d′ with d′ > d). This means that later iterations of the d-loop will
not be able to maintain phase numbers correctly, leading to an incorrect result.

The general criterion to distinguish programs that can be transformed cor-
rectly is the following: every iteration of the d-loop must perform exactly the
same sequence of advance counter incrementations. To formally capture this no-
tion, let us define control variables: a variable that is used in a conditional branch

(including loop back-edges), or to update another control variable (with arrays
considered as single variables).6 Then, a program will be correctly transformed,
if the history of each control variable is the same in each iteration of the d loop,
i.e. if no control variable is live in at the beginning of the d loop. For sequential
structured programs, this can be checked by many classical algorithms, includ-
ing reaching definition analysis and transformation to SSA. These algorithms
can be extended to parallel programs: see for instance [9], where a Concurrent
Static Single Assignment form is defined for programs with parallel construct
similar to those of X10, including post / wait synchronization. The results of
this analysis are approximate. For polyhedral X10 programs, it is possible to do
better, as shown in [7].

2.3 Optimization Opportunities

The generic transformation described above uses a very costly strategy: re-
executing the original code again and again, inhibiting the execution of almost
all instructions at each iteration. Even though this cost seems to be amortized
even for moderately heavy computations, the whole structure of the transformed
program is unsatisfactory. This section tries to highlight characteristics of the
transformed program that may lead to further simplification. The various steps
of the intuitive transformation provide important clues on classes of programs
where this applies.

The first aspect is about the local counters that have to be maintained to
model the “date” inside an activity. In some cases, the date may be available at
compile time as a closed form function of loop counters. Or it can be precom-
puted to avoid repeated incrementations of the local counter. In our example,
precomputation would fill two arrays d0 and d1, indexed on i and containing
the date at iteration i. The code of the first activity becomes:

for (i in 0..(N-1))

if (d == d0(i)) S0(i);

In other cases, like the ones described in the next section, dates are functions of
the enclosing loop counters, and do not need dedicated storage.

The second aspect is very much related to the first, and relates to the upper
bound of the enclosing loop. When dates are available, it is immediate to compute
or memorize their maximal value (which is the upper bound on d) . This also
removes the need of a boolean variable and tests at the end of activities.

The third aspect relates to the interplay between statement guards and loop
bounds. In our example, we have reached a situation where a loop iterates from
0 to N − 1, but where only a sub-range of this iteration space leads to actual
execution. It is therefore possible to adjust the range of the loop to cover only
the relevant sub-range. In our example, the first activity becomes:

6 In practice, the collection of control-variables can be restricted to programming
constructs containing at least one call to advance().

while (d0(i0) == d) {

S0(i0);

++ i0;

}

where i0 is a global counter, suitably initialized and preserved across activities.
We have given an informal account on how a program with clocks removed

can be further simplified and optimized. The next section describes a class of
programs where these optimizations can be systematically applied, and details
their implementation.

2.4 General Polyhedral Programs

Polyhedral programs with clocks have the property that a date can be com-
puted directly for any instruction, by counting the number of calls to advance()
performed before an instance of the given instruction. This removes the need
to maintain explicit counters, and provides symbolic expressions involving loop
counters and symbolic parameters. One can always evaluate the number of in-
teger poins inside a (parametrized) polyhedron, and therefore assign a mono-
tonically increasing rank to any instance of an instruction. Under reasonable
assumptions, i.e., that loops have unit steps, such ranks are integer-valued poly-
nomials with rational coefficients [10].

An example program appears on Figure 5, with date expressions placed in
comments. Note that the counting happens in two phases: first, the starting date
of an activity is computed, and second the date of instructions are computed
relative to the activity’s starting date.

clocked finish

for (i in 0..(N-1)) {

clocked async { // i

for (j in 0..(M-1)) {

S0(i,j); // i+j*(j-1)/2

for (k in 0..(j-1)) {

S1(i,j,k); // i+j*(j-1)/2+k

advance();

} } }

advance();

}

for (d in 0..(N-2+M*(M-1)/2))

finish

for (i in 0..(N-1)) {

async {

for (j in 0..(M-1)) {

if (d == i+j*(j-1)/2)

S0(i,j);

for (k in 0..(j-1)) {

if (d == i+j*(j-1)/2+k)

S1(i,j,k);

} } }

}

Fig. 5. A polyhedral program with polynomial dates (in comments) on the left, and
the result of the transformation, on the right.

The transformation process starts by computing the maximal date at which
an instruction of the original finish block executes. This can be done by max-
imizing for each instruction individually, and then taking the maximum of the

results. This maximum, N − 2 + M(M − 1)/2 in our example, is the upper
bound of the loop wrapped around the original block. Then, calls to advance()

are removed, and guards are placed around statements. The result appears on
the right part of Figure 5.

After having inserted guards around statements, the last step is to examine
whether the guards have an impact on the bounds of the loops that enclose
the statement. Our example illustrates this situation: after transformation, the
innermost loop becomes:

for (k in 0..(j-1))

if (d == i+j*(j-1)/2+k)

S1(i,j,k);

A trivial rewriting of the guard shows that even though the loop iterates over
a range of values for k, the whole loop will actually execute S1(i,j,k) at most
once. This construct can therefore be replaced by:

k = d - i - j*(j-1)/2;

if (0<=k && k<=j-1)

S1(i,j,k);

which tests whether the single value selected by the guard is inside the range of
the loop.

Note that we started with a depth three loop nest. Then a new loop level was
added around this nest. And finally the deepest level is removed. This is likely to
reduce the overhead introduced by the transformation. This optimization may be
extended to loops containing several statements (at the same or different dates).
However, it applies only when date expressions are linear in the nearest enclosing
loop counter, which we think is a very common case. Actually, for this not to be
the case, an innermost statement-bearing loop should also contain another loop
1) containing only calls to advance(), and 2) with a bound being a function of
its parent loop counter. Here is the simplest example of such a construction:

for (y in ...) {

S(...);

for (z in 0..y)

advance();

}

We think this pathological case and its variations are sufficiently infrequent not
to cause real trouble in practice.

Note that after a loop is removed, the statement is still guarded, but with a
condition involving inequalities. Therefore, there is no possibility of re-applying
the same “iteration space collapsing”, but nothing says that the new guard may
not imply bound adjustments on the enclosing loops. The next section shows an
example of such chained loop adjustments.

2.5 Polyhedral Programs with Affine Dates

We have seen that when polynomial dates are available, the resulting program
can be optimized by combining guards and loop bounds. However, dealing with
polynomials of high degree is difficult and may restricts how far optimizations
can go. It is therefore interesting to consider the particular case of affine dates.
In that case, all obstacles to optimization are lifted, and one can hope to be
able to optimize the transformed program up to the point where it has the same
complexity as the original program.7

Whenever the original program induces dates that are all affine forms in the
enclosing loop counters (and parameters), we are guaranteed that the deepest
loop level can be removed. In fact, this last level of loop contains only guarded
statements, and the guards are of the form d = α0i0+ . . .+αnin, where i0, . . . , in
are the counters of the enclosing loops. Such a guard always determines at most
one value of the counter of the nearest loop. This property appears in the pro-
gram in Figure 6. The left part shows the original clocked finish block (dates
appear in comments), whereas the right part shows the mechanically transformed
program. Since dates are affine, one can immediately apply the “iteration space
collapsing” optimization mentioned in the previous section. The first loop on j

then becomes:

if (i<=d && d<=N-1)

S0(i,d);

and the second loop on j can be transformed as well (note that we do not keep
a variable to store the value of j, but rather substitute it immediately).

The major advantage of having affine dates is the fact that the resulting
program can be further optimized. We are going to illustrate these additional
optimizations on the example program in Figure 6, and then we will show how
the program transformations involved are strongly related to the problem of
code generation from a polyhedral model of a program. We will then show, in
the next section, how existing tools can be adapted to directly produce the
optimized version.

Regarding the example of Figure 6, the first step is to replace constructs of
the form async if (...) S(...) with if (...) async S(...), because there
is no need to create an activity that does nothing. All these initial modifications
lead to the following program:

for (d in 0..(2*N-2))

finish

for (i in 0..(N-1)) {

if (i<=d && d<=N-1)

async S0(i,d);

7 Note that the complexity in terms of the number of executions of individual in-
structions is always the same on both versions. Here we refer to the complexity of
the associated control, i.e., the number of times guards and loop exit conditions are
evaluated.

clocked finish {

for (i in 0..(N-1)) {

clocked async // i

for (j in i..(N-1)) {

S0(i,j); // i+j-i = j

advance();

}

advance();

clocked async // i+1

for (j in 0..(i-1)) {

S1(i,j); // i+1+j

advance();

}

}

}

for (d in 0..(2*N-2))

finish {

for (i in 0..(N-1)) {

async

for (j in i..(N-1)) {

if (d == j)

S0(i,j);

}

async

for (j in 0..(i-1)) {

if (d == i+j+1)

S1(i,j);

}

}

}

Fig. 6. A polyhedral program with affine dates on the left, and the corresponding
program after clock removal and before optimization on the right.

if (i+1<=d && d<=2*i)

async S1(i,d-i-1);

}

At this point, all remaining optimizations are made possible by the comparison of
the various inequalities that apply to the individual instructions. Since our goal
is to reduce the time taken by evaluating the guards, we are going to rearrange
this code to eliminate useless guards and uselessly large bounds.

The first batch of useless evaluations of guards is caused by the d<=N-1

condition, because at this point d is supposed to iterate from zero to 2*N-2.
This means that half of the values of d will simply fail to satisfy the condition.
Eliminating these useless tests requires that the range of d is split into two
sub-ranges, the first of which makes the condition trivially true, and the second
which makes it false. The result appears in Figure 2.5. Range-splitting globally
enlarges the code, but removes any occurrence of S0 in the loop iterating over
the second sub-range. Note also that condition i+1<=d around S1 has become
trivially true in the second loop, and is therefore also omitted.

The second set of unnecessary tests is caused by the remaining conditions,
which in all cases are stricter than the surrounding loop bounds. The range of
the first loop on i can be split into three sub-ranges, namely 0..(d-1), d, and
(d+1)..(N-1): the first leads to the bulk of the work, the second selects only
S0, and the third leads to nothing. The result of bound adjustment appears in
Figure 2.5. What was just done on upper bounds can now be done on lower
bounds as well: the condition d<=2*i appears twice inside loops whose lower
bound on i is zero, for any value of d. Therefore, the lower bound can be adjusted
as well. The details are left to the reader.

for (d in 0..(N-1))

finish

for (i in 0..(N-1)) {

if (i<=d)

async S0(i,d);

if (i+1<=d && d<=2*i)

async S1(i,d-i-1);

}

for (d in N..(2*N-2))

finish

for (i in 0..(N-1)) {

if (d<=2*i)

async S1(i,d-i-1);

}

(a) After range splitting on
d

for (d in 0..(N-1))

finish {

for (i in 0..(d-1)) {

async S0(i,d);

if (d<=2*i)

async S1(i,d-i-1);

}

async S0(d,d);

}

for (d in N..(2*N-2))

finish

for (i in 0..(N-1)) {

if (d<=2*i)

async S1(i,d-i-1);

}

(b) After bound adjust-
ments

Fig. 7. The program transformed from Fig. 6, after various further optimizations

3 Polyhedral Implementation and Optimized Control

The approach we have taken in the previous section consists in a succession of
elementary transformations: wrapping a loop around the original code, placing
guards around elementary statements, and adjusting iteration domains accord-
ing to the guards. In contrast, in the polyhedral model, all these transformations
can be represented in a uniform framework, and polyhedral operations can be
used to manipulate the program. A polyhedral model of an instruction (a poly-
hedron, for short) is made up from two distinct parts: first, an ordered list of
dimensions, and second a set of constraints (inequalities) on the values of the
various dimensions. There are three types of dimensions: 1) syntactic dimen-
sions, which are usually constants, 2) loop iterators, and 3) parallel constructs
indicators, which are the abstract symbols f(inish) and a(sync). Figure 8
displays the polyhedra corresponding to the instructions appearing in the orig-
inal program of Figure 6. The left part of the figure shows an abstract syntax
tree, which is convenient to read the various dimensions. The right part shows
the polyhedra, using the notation of the iscc polyhedral calculator, part of the
barvinok library [8]. Note that polyhedra can be parametrized (by N in our case),
and that constant dimensions can be written literally, i.e., {[f,0,...]: ...}

is equivalent to {[f,p_0,...]: p_0=0 and ...}.
All manipulations necessary for the elimination of clocks can now be formu-

lated as operations on polyhedra:

1. Introducing dates is performed by adding a dimension, at the very end of
the list of dimensions since the date may depend on any of the enclosing
loop counters. For instance, the definition of S0 becomes:

finish

for i

async

for j

S0

0

advance

1

0

0

advance

1

async

for j

S1

0

advance

1

0

2

0 S0 := [N] ->

{[f,0,i,0,a,0,j,0]:

0<=i<N and

i<=j<N };

S1 := [N] ->

{[f,0,i,2,a,0,j,0]:

0<=i<N and

0<=j<i };

Fig. 8. An AST for the program on Figure 6, and the corresponding polyhedra

S0 := [N]->{[f,0,i,0,a,0,j,0,d]: 0<=i<N and i<=j<N and d=j};

2. Representing the whole program simply consists in computing the union of
the individual instruction polyhedra:

P := S0+S1;

Here P represents the set of instances of S0 and S1, in the order of the original
program.8

3. Iterating on dates first is performed by changing the order of the dimensions.
This is written as:

U := {[f,p0,i,p1,a,p2,j,p3,d]->[d,f,p0,i,p1,a,p2,j,p3]}(P);

This actually doesn’t do anything, but is an important indication to the next
step.

4. Producing the final code is performed by generating a program scanning the
resulting polyhedron U. We use the CLooG algorithm [11], which produces a
new loop nest with a loop scanning dates (d) first, and whose body contains
various constructions (finish, async, loops, and instructions) in the order
prescribed by the various other dimensions (the original CLooG algorithm
had to be hacked to handle finish and async).

The final code (after trivial cosmetic post-processing) appears on Figure 9:
CLooG has adjusted all loop bounds (even though it could have gone further).
This code generation phase actually under-uses CLooG, which is able to ap-
ply a “scattering function” (taking its default value, the identity, in our case).
The same result could be obtained by applying, e.g., some variation of Fourier-
Motzkin elimination for bound adjustment [12]. However, reconstructing the
structure would still need additional work. CLooG does both iteration domain
computation and code generation.

8 For this union operation to have any meaning, the dimension lists of the various
must coincide; this is trivially achieved by padding with zeros. No modification is
necessary in our example.

for (d in 0..(N - 1))

finish

for (i in 0..d) {

async S0(i, d);

if (d >= i + 1 && 2 * i >= d)

async S1(i, d - i - 1);

}

for (d in N..(2 * N - 2))

finish

for (i in (d - d / 2)..(N - 1))

async S1(i, d - i - 1);

Fig. 9. The final result, produced by CLooG

4 Experimental Results

To evaluate the effect of eliminating clocks on execution time, we have used
eight different polyhedral programs with affine dates. All these programs are
parametrized by a number N that determines the number of activities and the
number of iterations of loops in various ways. Their execution is depicted on
Figure 10 for N = 6: vertical lines represent activities, dots represent individual
instruction executions, and horizontal dashed lines represent phases of execution.

Fig. 10. Example iteration spaces, here for N = 6. All examples spawn O(N) activities,
last for O(N) clock steps, and execute O(N2) instructions.

To compare the clocked and clockless versions of each program, we have
measured their execution times (averaged over 20 executions). We have used
a not-quite-recent X86-64 compatible AMD machine with 24 cores (two sock-
ets of 12 cores). X10 programs were compiled with the official release of X10,

version 2.3.1, available from http://x10-lang.org/. All programs have been run
with N = 100. Because the elimination of clocks affects only the control of the
program, and not its actual work, we have varied the time taken by a single
instruction execution (a call of the form Sk(i, j) in all cases) the same way we
did in Section 2.1: a single parameter T controls how much time a single exe-
cution of any Sk(i, j) takes. The goal of the experiment is therefore to measure
the difference in execution times as a function of T .

The results are shown on Figure 11. Every graph shows the execution time
of both versions. In all cases, the clockless version runs faster than the version
with clocks. Rows of three graphs show the times of a given program for various
values of T (the workload): every graph displays ten evenly spaced values of T ,
with one order of magnitude variation from one graph to the next. The vertical
scales are different from one graph to the other, but all scales are zero-based.

Since X10 is not the only language allowing finish/async programming, we
have also conducted preliminary experiments with Habanero-Java [5] (version
1.3.1), with results similar to those presented here.

There are several lessons to learn from Figure 11. First, eliminating clocks
always has a positive impact on execution time. This validates our intuition
that clocks are expensive to manage. At least their use is more expensive than
launching more activities (by a factor O(N) in our case). We acknowledge that
this is fairly dependent on implementation issues, but we also think that it will
be easier to optimize activity creation rather than clock synchronization. Future
implementations of X10 (and related languages, like Habanero and Chapel [2])
may change this situation.

Examination of the leftmost column of Figure 11 shows the relatively ir-
regular behavior of programs using clocks with fine-grain instructions: it looks
as if the frequent calls to advance() make the actual time difficult to predict,
whereas clockless programs display a smoother, quasi-linear curve. Again, this
heavily depends on the implementation of the activity scheduler, but it seems
clear that clockless programs are “easier” to schedule over an arbitrary number
of threads.

The third lesson learned is that, as expected, the difference between versions
vanishes when the workload is reasonably large, because the time spent in con-
trol becomes negligible compared to the time spent on computation. What is less
obvious is that this happens for values of T around one million (which, on our
machine, is about 1 millisecond). Considering the kind of programs we have used
(basically loops over arrays, where every instruction accesses one element of one
or more arrays), there is little chance that this workload is reached. This means
that for fine-grain programs, the transformation is probably advantageous, pro-
viding significant speedup in most cases.

5 Related Work

There exists a large body of literature on barriers and clocks, their analysis,
optimization and verification. Nearest to the subject of this paper is work on

T from 1K to 10K T from 10K to 100K T from 100K to 1M

Fig. 11. Execution times for clocked () and clockless () versions, for various scales
of workload. Vertical scales vary from graph to graph, but are all zero-based.

optimal barrier placement [13–15] and verification [16]. While apparently re-
lated to the present work, Chau-Weng Tseng paper [17] deals in fact with a
completely different problem, namely how to distribute work among threads in
order to minimize synchronization. Several authors have argued that barriers or
clocks can be implemented more efficiently than task or activity creation, and
have advocated algorithms for minimizing the number of tasks. To the best of
our knowledge, the word SPMDization was coined by Padua and Paek in [18]. A
recent discussion of the same idea is by Zaho et. al. [19] in which an algorithm,
which amount to moving parallel loops outside sequential loops with barrier in-
sertion is proposed. Our contention here is that moving in the opposite direction
may be beneficial in some cases. Choosing between the two solutions depends
on many factors: the target system, the compiler and runtime and the source
program. For instance, if the target is hardware, where it is almost impossible to
dynamically create activities and synchronization is cheap, using clocks might
be the best solution. Our work shows that the situation is exactly the reverse
for software.

6 Conclusion

When one has to generate a parallel program, either manually or automatically,
one has to choose between two extreme program shapes: one a sequence of paral-
lel constructs, the other a parallel composition of sequential threads. Obviously,
these two extreme cases can be combined to produce many intermediate solu-
tions.

In the first approach, it is usually possible to restrict synchronization to one
barrier after each parallel block. This corresponds to the exclusive use of async
/ finish in X10, and is especially suitable for vector or data-parallelism. In the
second approach, it is usually not possible, except in the case of embarassingly
parallel programs, to construct independent threads. Residual dependences must
be satisfied using clock or phasers [5]. This work shows that deciding which
approach gives the best performance is not obvious, and must be approached
experimentally. Our main contribution is a systematic method for converting a
large class of clocked programs into unclocked ones. Our algorithms can easily
be automated, thus simplifying the comparison process.

This paper has introduced a program transformation that acts on an explic-
itly parallel program, an unusual characteristic in the polyhedral framework.
Such an ability opens up a large space of new potential optimizations, extending
the scope of automatic parallelization. Taking the cost of synchronization prim-
itives into account must also be extended and further generalized, to cover cases
where implementations may have different semantics and/or relative overheads.
Also, the cost of synchronization is only one part of the picture, and more work is
needed to combine synchronization costs with more ”traditional” transformation
objectives in the polyhedral framework, like, e.g., temporal and spatial locality.
Finally, we plan to investigate the use of parallel-to-parallel program transfor-
mations in dynamic optimization frameworks, where switching between various

versions of the same program can alleviate the variation of synchronization costs
linked to changing runtime conditions.

References

1. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A.,
Hilfinger, P., Graham, S., Gay, D., Colella, P., et al.: Titanium: A high-performance
Java dialect. Concurrency Practice and Experience 10(11-13) (1998) 825–836

2. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. International Journal of High Performance Computing Applications
21(3) (2007) 291–312

3. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN
Fortran Forum 17(2) (August 1998) 1–31

4. Consortium, U., et al.: UPC language specifications. Lawrence Berkeley National
Lab Tech Report LBNL–59208 (2005)

5. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-java: the new adventures of
old X10. In: PPPJ ’11, ACM (2011) 51–61

6. Feautrier, P., Lengauer, C.: The polyhedral model. In Padua, D., ed.: Encyclopedia
of Parallel Programming. Springer (2011)

7. Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow analysis for
polyhedral X10 programs. In: PPoPP. (2013)

8. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. In:
Algorithmica. (2007)

9. Lee, J., Padua, D.A., Midkiff, S.P.: Basic compiler algorithms for parallel programs.
In: PPoPP ’99, ACM (1999) 1–12

10. Clauss, P.: Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: applications to analyze and transform scientific programs. In: ICS
’96, ACM (1996) 278–285

11. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT’13, Juan-les-Pins (september 2004) 7–16

12. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: Proc. third
SIGPLAN Symp. on Principles and Practice of Parallel Programming, ACM Press
(April 1991) 39–50

13. Aiken, A., Gay, D.: Barrier inference. In: POPL’98. (1998) 342–354
14. Kamil, A., Yelick, K.: Concurrency analysis for parallel programs with textually

aligned barriers. In: LCPC. (2005)
15. Darte, A., Schreiber, R.: A linear-time algorithm for optimal barrier placement.

In: PPoPP ’05, ACM (2005) 26–35
16. Vasudevan, N., Tardieu, O., Dolby, J., Edwards, S.A.: Compile-time analysis and

specialization of clocks in concurrent programs. In: Compiler Construction. CC
’09, Springer-Verlag (2009) 48–62

17. Tseng, C.W.: Compiler optimizations for eliminating barrier synchronization. In:
PPoPP ’95, ACM (1995) 144–155

18. Padua, D.A., Paek, Y.: Compiling for scalable multiprocessors with Polaris. Par-
allel Processing Letters 07(04) (1997) 425–436

19. Zhao, J., Shirako, J., Nandivada, V.K., Sarkar, V.: Reducing task creation and
termination overhead in explicitly parallel programs. In: PACT ’10, ACM (2010)
169–180

