
Image Transfer and Storage Cost Aware Brokering

Strat. for Multiple Clouds

Frédéric Desprez, Jose-Luis Lucas-Simarro, Rafael Moreno Vozmediano,

Jonathan Rouzaud-Cornabas

To cite this version:

Frédéric Desprez, Jose-Luis Lucas-Simarro, Rafael Moreno Vozmediano, Jonathan Rouzaud-
Cornabas. Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds.
[Research Report] RR-8445, INRIA. 2014. <hal-00924351>

HAL Id: hal-00924351

https://hal.inria.fr/hal-00924351

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52309065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00924351


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
4

4
5

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8445
November 2013

Project-Team Avalon

Image Transfer and

Storage Cost Aware

Brokering Strat. for

Multiple Clouds

F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J.

Rouzaud-Cornabas





RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Image Transfer and Storage Cost Aware

Brokering Strat. for Multiple Clouds

F. Desprez∗, J. L. Lucas-Simarro†, R. Moreno-Vozmediano†, J.

Rouzaud-Cornabas∗

Project-Team Avalon

Research Report n° 8445 — November 2013 — 15 pages

Abstract: Nowadays, Clouds are used for hosting a large range of services. But between
different Cloud Service Providers, the pricing model and the price of individual resources are very
different. Furthermore hosting a service in one Cloud is the major cause of service outage. To
increase resiliency and minimize the monetary cost of running a service, it becomes mandatory to
span it between different Clouds. Moreover, due to dynamicity of both the service and Clouds, it
could be required to migrate a service at run time. Accordingly, this ability must be integrated
into the multi-Cloud resource manager, i.e. the Cloud broker. But, when migrating a VM to a new
Cloud Service Provider, the VM disk image must be migrated too. Accordingly, data storage and
transfer must be taken into account when choosing if and where an application will be migrated.
In this paper, we extend a cost-optimization algorithm to take into account storage costs to ap-
proximate the optimal placement of a service. The data storage management consists in taking
two decisions: where to upload an image, and keep it on-line during the experiment lifetime or
delete it when unused. Although the default approach can be to upload an image on demand and
delete it when it is no more used, we demonstrate that by adopting other policies the user can
achieve better economical results.

Key-words: Cloud Brokering, Resource Allocation, Storage, Data Transfer, SimGrid Cloud
Broker

∗ INRIA, LIP ENS Lyon, France, Email: FirstName.LastName@inria.fr
† Dept. de Arquitectura de Computadores y Automatica, Universidad Complutense de

Madrid, Madrid, Spain

FirstName.LastName@inria.fr


Transfert d’images et algorithmes de gestion de

ressources prenant en compte les coûts pour les

fédérations de clouds

Résumé : De nos jours, les Clouds sont utilisés pour héberger un grand
ensemble de services. Mais entre les différents fournisseurs de service Cloud,
les modéles de prix et le prix de chaque ressource sont très différents. De
plus, héberger un service dans un unique Cloud est une des causes princi-
pales d’interruption de service. Pour améliorer la résistance et diminuer le
coût monétaire d’une application, il devient obligatoire de la distribuer dans
plusieurs Clouds. En outre, à cause de la dynamicité de l’application et des
Clouds, il peut être nécessaire de migrer l’application pendant l’exécution. Par
conséquence, cette capacité doit être intégrée dans le gestionnaire de ressources
multi-Cloud i.e. le Cloud Broker. Mais, quand une VM migre vers un nou-
veau fournisseur de service Cloud, l’image disque de la VM doit être migrée
également. Par conséquence, le stockage et transfert de donnée doivent être pris
en compte quand il est choisi si une application doit migrer et où.

Dans ce papier, nous étendons un algorithme d’optimisation de coût pour
prendre en compte le coût du stockage afin d’approximer le placement optimal
d’une application. La gestion du stockage de donnée consiste à devoir prendre
2 décisions: où l’image doit être envoyée et doit-elle être conservée ou sup-
primée quand elle n’est plus utilisée. Même si l’approche par défaut peut être
d’envoyer l’image à la demande et la supprimer quand elle n’est plus utilisée,
nous démontrons qu’en adoptant d’autres politiques l’utilisateur peut réussir à
atteindre de meilleurs résultats économiques.

Mots-clés : Cloud Brokering, Resource Allocation, Storage, Data Transfer,
SimGrid Cloud Broker



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds3

1 Introduction

The use of Cloud computing technology has gained popularity in recent years
both in industry and academia [2]. Nowadays, many companies are moving their
business to the Cloud, by deploying their services and executing their workloads
in private or public Clouds, following their particular business models. Cloud
platforms are more and more used for the deployment and execution of service-
based applications that consist of different components providing business ser-
vices. However, the growing number of Cloud Service Providers (CSPs) has
created a diverse Cloud market with different pricing models, different prices
within the same pricing model, different instance types, or different agreement
conditions. To serve as intermediary between end users and CSPs, Cloud bro-
kers emerged as a powerful tool [3, 8]. A Cloud broker can help Cloud users to
choose the right virtual machine (VM) placement when deploying their services
across multiple Clouds, also allowing them to switch between providers in order
to always get the best conditions.

When moving from a single Cloud to a multi-Cloud environment, migrating
a service from a Cloud to another becomes a basic operation. In previous works
[11], migrating a service (and the related VMs) was modeled as the termination
of VM(s) in the source CSP and the startup of VM(s) in the destination CSP.
But this model just addresses the case of using CSP’s pre-defined images, which
are available in every commercial Cloud. In case of customized images, before
starting a VM, it is required to transfer its Virtual Machine Image (VMI) to
the Cloud. Accordingly, when migrating a VM from a CSP to another one, it
is required to upload the VMI to the destination CSP. Transferring and stor-
ing VMI has a monetary cost on top of the time it takes to do the transfer.
Consequently, when a Cloud broker chooses a VM placement, it must take into
account the management of VMI, otherwise it could take improper decisions.
For example, the cost of transferring and storing a VMI in a new Cloud can be
greater than the cost saved by migrating to this new Cloud.

From the beginning of the Cloud technology adoption, Amazon EC2 [1] has
been consolidated as one of the major Infrastructure as a Service (IaaS) CSPs.
Amazon provides users with a wide range of possibilities for the deployment of
their infrastructure, in terms of the instance types or pricing schemes. Moreover,
Amazon offers different regions which users can envisage as different Clouds with
different conditions, such as price or performance. Furthermore, Amazon was
the first CSP to offer Spot Instances (SIs) to sell their cluster’s spare capacity.
Spot prices change dynamically according to free capacity and actual demand,
which opens a new challenge for price-aware Cloud brokers. Spot instances
requested with bid price higher than or equal the current spot price will be
served, but otherwise, the provider will terminate out-of-bid instances abruptly.

Nowadays, with the inclusion of Cloud brokers to help users to process Cloud
market information, the innovation on Cloud brokering algorithms is an open
research issue. The proposal of new placement algorithms and policies in the
broker for optimal deployments of virtual services among multiple Clouds, based
on different optimization criteria (cost optimization, performance optimization,
energy efficiency, etc.) is critical. Moreover, several research works have studied
how to take advantage from the different Cloud features in case when provider
and user conditions remain unchanged [15] or change along time [11].

In this paper, we propose a Cloud brokering algorithm improvement that

RR n° 8445



4F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J. Rouzaud-Cornabas

optimizes the infrastructure deployment cost considering different data storage
and transfer policies. We propose several storage policies and we include the
algorithm in the SimGrid Cloud Broker [7], a simulation tool for multi-Cloud
environments. Finally, we test the policies’ behavior using simulation, and select
one as the best policy for Cloud brokering.

The rest of this paper is organized as follows: Related work is discussed in
Section 2. Section 3 describes the problem, while the system architecture, and
the detailed design of the proposed solution are explained in Section 4. The
experimental environment, conditions, and the results are described in Section
5. Finally, Section 6 contains the conclusions and future directions for this work.

2 Related Work

This work is an extension of [11], where the authors explored the Cloud brokering
issue applied to dynamic scenarios, especially when pricing conditions change
along time. In this previous work, the placement action was done periodically in
order to reallocate the virtual infrastructure to the best fitting Clouds. Hence,
the concept of performance degradation as a placement constraint due to the
periodic reallocation action is introduced. Moreover, a comparison is made be-
tween static and dynamic deployments showing the cost improvement potential
of the use of brokering mechanisms. However, in this work, they do not take
into account the image storage cost neither than the image transfer cost.

Two key concepts to take into account when using Cloud brokering algo-
rithms are data checkpointing and migration. How to improve both techniques
and how to combine them are still an open challenge. In [19], the authors
investigate several approaches to reduce monetary cost and task completion
time using migration and checkpointing techniques with Amazon EC2 spot in-
stances. However, they assume negligible storage cost of checkpointing and also
negligible migration costs. There are also some efforts in minimizing migration
disadvantages from clusters to Clouds, i.e. migration periods or application
downtimes. At first, these efforts showed solutions to improve virtual machine
migration inside clusters [6]. Later, the researchers focused their investigation
on Cloud environments, where physical clusters are geographically distributed.
For example, Travostino et al. in [16] migrate virtual machines on a WAN area
with just 1-2 seconds of application downtime.

Simulators are often seen as a technical validation mean, and most of the
time, a custom tool is developed for each paper. The problem is that most sim-
ulators have not gone through a proper validation. Accordingly, their accuracy
and the reproducibility of their results have not been verified. Cloud simula-
tors are essential to test both Cloud brokering algorithms and VM migration
techniques. There are different simulation tools that can be used for the ex-
perimental development of Cloud infrastructures, such as CloudSim, SGCB, or
iCanCloud. CloudSim [4, 9] is an extensible toolkit used to model and simulate
Cloud infrastructures, including data centers, users, user workloads, and appli-
cation provisioning. CloudAnalyst [18] is built on top of the CloudSim toolkit;
it provides visual modeling, easy to use graphical user interfaces, and large-scale
application simulations deployed on the Cloud infrastructure. Application de-
velopers can use CloudAnalyst to determine the best approaches for allocating
resources among available data centers to serve specific requests and determine

Inria



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds5

Figure 1: SimGrid Cloud Broker architecture.

the related costs for these operations. But as shown in [14], CloudSim is not
scalable and lacks a proper validation process for its network model. Alberto
Nuñez et al. [13] introduce a novel simulator of Cloud infrastructures called
iCanCloud. It reproduces the instance types provided by a given CSP, and con-
tains a user-friendly GUI for configuring and launching simulations, that goes
from a single VM to large Cloud computing systems composed of thousands of
machines. But they simulate a Cloud as viewed by a CSP and not by an Cloud
user. Furthermore, they lack a proper validation process for their models and
show a limited scalability in term of number of VMs.

To avoid accuracy and reproducibility issues, SimGrid Cloud Broker
(SGCB) [7] has been implemented on top of SimGrid [5]. SimGrid is an open-
source, generic distributed systems simulation framework providing very real-
istic and flexible simulation capabilities. SimGrid was conceived as a scientific
instrument and the validity of its analytical models were thoughtfully stud-
ied [17]. It has been used as simulator in 119 scientific publications1. SGCB
provides researchers and engineers with a multi-Clouds environment to evaluate
their provisioning and elastic algorithms and full applications through simula-
tion before running them on a full fledge Cloud. Furthermore, SGCB provides
a simulation of a Cloud and multiple Clouds as seen by a Cloud User and not
as seen by the CSP as other simulators do. As most of the interactions between
a Cloud and an user is done through an API interface, SGCB reproduces the
same approach. Moreover AWS is the most known and used Cloud and the
related APIs (EC2 and S3) are defacto standards. SGCB replicates them to
ease the transition toward AWS or other Clouds providing the APIs. Figure 1
describes the inner-architecture of SGCB and all its different components. In
this paper, we used SGCB because it is the best fitting simulator for our case
(multi-Clouds, Cloud user point of view, validated models). Moreover, we use
SGCB as it and did not modify its inner-architecture. We have just used the
S3 and EC2 interface as we will have done on the real AWS platform.

1http://simgrid.gforge.inria.fr/Publications.html

RR n° 8445

http://simgrid.gforge.inria.fr/Publications.html


6F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J. Rouzaud-Cornabas

3 Problem Description

In this work we explore the convenience of using brokering mechanisms to re-
allocate part or the entire infrastructure to another placement not only taking
into account compute cost, but also image storage cost. Although this is a
multi-Clouds challenge, in the evaluation section, we consider only Amazon EC2
to simulate different Clouds by using its regions as particular isolated Clouds.
Other Cloud infrastructures can easily be added to our simulator, provided that
we have an accurate model of their costs and overall architecture.

Amazon offers the following two types of storage:

• Elastic Block Storage (EBS), which is designed specifically for EC2 in-
stances, and which allows users to create remote block storage volumes
that can be mounted as devices by EC2 instances.

• Simple Storage Service (S3), which provides a simple web services interface
that can be used to store and retrieve any amount of data, at any time,
from anywhere on the web. It is billed in GB of data per month, and there
are some billing intervals with which Amazon bills less $ per GB as more
amount of data is consumed.

Due to annual failure estimations, EBS users should keep an up-to-date
snapshot on S3, or have a backup of the contents somewhere else that they can
restore quickly enough to meet their needs in the case of a failure. On the other
hand, S3 is subject to eventual consistency, which means that there may be a
delay in writes appearing in the system whereas EBS has no consistency delays.
Also EBS can only be accessed by one machine at a time whereas snapshots on
S3 can be shared between different VMs. EBS volumes can only be accessed
from an EC2 instance in the same availability zone whereas snapshots on S3
can be accessed from any availability zone in one region.

In previous works [11, 12] we have taken the EBS option (launching pre-
defined instances and contextualizing them at boot time) in order to avoid
storage costs at brokering level. However, we did not consider storage failures
neither user-made images. Our algorithms leverage dynamic spot prices and
the combination of different instance types to build the required infrastructure
while optimizing costs.

In this work, the challenge is to make our algorithms aware of S3 storage cost
in order to allow users to deploy theirs infrastructures among multiple Clouds.

4 Proposal

Our proposal consists in adding storage price information to the decision algo-
rithm process introduced in [12], and validate our algorithms on SimGrid Cloud
Broker (SGCB).

Focusing on the algorithm design, we want to deploy a given number n

of VMs, v1...vn, across the m available Clouds (here Amazon EC2 regions),
c1...cm, using a given number instance types, it1...itl. As Amazon also offers
Spot Instance (SI) prices that continuously change, we define t as any one-hour
period we use for scheduling. We consider a integer programming formulation
where Xi,j,k(t) = 1 if virtual machine i, which belongs to instance type j, is

Inria



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds7

placed on Cloud k (1 ≤ i, j, k ≤ n, l,m respectively); 0 otherwise. As SGCB is
coded in Java, we have selected Choco Constraint Programming Library [10] to
develop the algorithm within the simulator.

We want to minimize the Total Cost of the Infrastructure (TIC), which is
formulated as follows:

TIC(t, x) =
n∑

i

l∑

j

m∑

k

Xi,j,k(t) ∗ Cj,k(t, x) (1)

with

Cj,k(t, x) = Pj,k(t) ∗ Sck(x) (2)

where: Pj,k refers to the price of an instance type j in a Cloud k under Amazon’s
SI pricing scheme; and Scx,k refers to the price of storing x bytes in Cloud k.

Finally, in the rest of this work we use for our deployments several brokering
constraints presented in [12]. They are defined as follow:

• Performance constraint:

Perf(t) ≥ Perfmin (3)

This means that the virtual infrastructure has to reach a minimum per-
formance at each moment t. This performance can be measured in sev-
eral ways, such as number of CPU cores, FLOPS, GB of RAM, or using
application-defined indicators. To show an example, we choose the virtual
infrastructure’s number of cores as a performance measuring unit, so

Perf(t) =
∑

i,j,k

Xi,j,k(t) ∗ Coresj (4)

where Coresj is the number of CPU cores of instance type j.

• Reallocation constraint: It provides the possibility of reallocating only
a certain number of CPU cores in each scheduling decision. It is useful
when it is critical to keep part of the virtual infrastructure working without
stop to guarantee a certain number of CPU cores working at any moment.
Moreover, it allows the control of infrastructure performance degradation
while saving some money by taking advantage of dynamic pricing.

Rmin(t) ≤ reallocation(t) ≤ Rmax(t) (5)

In Equation 5, Rmin and Rmax refer to the minimum and maximum num-
ber of CPU cores, respectively, that the broker can reallocate. Realloca-
tion is defined as the difference between the last deployment performed
and the next deployment to perform, in terms of number of CPU cores
deployed in each Cloud. For that purpose, the Cloud broker compares the
current placement of the VMs with the new one.

reallocation(t) =
∑i

n

∑l

j

∑m

k Abs(Xi,j,k(t)−Xi,j,k(t− 1)) ∗ Coresj

2
(6)

RR n° 8445



8F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J. Rouzaud-Cornabas

In Equation 6, the reallocation parameter is divided by 2 because only
the number of CPU cores needed to start in a new Cloud is taken into
account. In other words, Equation 6 means the number of CPU cores to
move across Clouds.

• Instance type constraint: It provides the possibility of using only a
certain type of VMs in each deployment. It is then for instance possible
to specify to ‘only use small instance type’ or ‘use all available instance
types’. In Equation 7, itmin and itmax refer to the minimum and maximum
percentage of the instance types to use in each deployment.

itmin(j) ≤

∑n

i

∑m

k Xi,j,k

n
≤ itmax(j)

, 1 ≤ j ≤ l (7)

• Placement constraint: It provides the possibility to maintain a certain
number of VMs in each cloud placement. I can be used to express the
requirement of ‘using only one particular Cloud’ or ‘using every available
Cloud’. In Equation 8, locmin and locmax refer to the minimum and
maximum percentage of the virtual infrastructure to deploy in the selected
providers.

locmin(k) ≤

∑n

i

∑l

j Xi,j,k

n
≤ locmax(k)

, 1 ≤ k ≤ m (8)

As previously explained, we propose four different policies for Virtual Ma-
chine Image (VMI). These policies can be divided into 3 sub-policies (uploading,
transferring and deletion of VMI). The first sub-policies specify when a VMI is
uploaded to a Cloud, the second one expresses the method selected to trans-
fer the VMI and the third one describes when the VMI can be deleted from
a Cloud. For the uploading policy, we propose two strategies. The first one
is called Everywhere (E) and it specifies that the VMI must be uploaded into
all the potentially used Clouds at the beginning. Accordingly, even if a Cloud
is not used but is considered by the Cloud brokering algorithm, the VMI will
be uploaded there. This strategy has a monetary cost as the VMI is stored in
all Clouds during the whole life-time of the application. The second uploading
strategy is called On-Demand (O) and it specifies that the VMI is uploaded to
a Cloud only when the Cloud brokering algorithm has specified that at least
one VM will be started there. Accordingly when a Cloud is not used, the VMI
is not stored in it. But this approach requires to upload the VMI to a Cloud
before being able to start a VM there. Therefore it can induce delay on the VM
startup, i.e. it adds the uploading time of the VMI.

For the VMI transfer policy, we evaluate two different strategies to transfer
the VMI to a Cloud. The first one (Get) specifies that the VMI is uploaded by
the user to the Cloud. The second one (Copy) specifies that the VMI is uploaded
once by the user to the first Cloud and then the VMI is copied from a Cloud to
another one. The second strategy must able transfer the VMI faster as network
links between Clouds are faster than the ones between the user and each Cloud.

Inria



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds9

But, in AWS at least, uploading data from a user to a region is free but copying
between region has a cost.

For the deletion policy, we also propose two strategies. The first one is called
Never (N) and it specifies that once a VMI is uploaded to a Cloud it will never
be deleted, i.e. until the end of the application’s life. Accordingly, even if no VM
are running in a Cloud, the VMI is still stored on it. Therefore, this strategy has
a monetary cost as the VMI is stored on a Cloud even when it is not used. The
second deletion strategy is called Always (A) and it specifies that when there is
no VM running on a Cloud, the VMI must be deleted there. Accordingly, this
strategy allows to reduce the monetary cost by only storing the VMI where it
is needed. But, as the O strategy for uploading the VMI, it can induce a delay
on the VM startup as it could be required to reupload several times a VMI to
the same Cloud.

5 Evaluation

The experiments have been done using SGCB [7]. We have used the full AWS
platform with all regions (8) and instance types (10). Furthermore, the Cloud
broker is connected to all the regions through a 10Mb/s network link. For all
experiments, we have used the random Spot Instance price statistical distribu-
tion of SGCB and all other prices have been retrieved on the AWS website 2 on
the 20th of July 2013. We want to evaluate the impact on our algorithms of 3
parameters: the VMI size (0.5, 1, 2, and 5 GB), the number of VMs required
(2, 5, 10 VMs), and the number of cores required (2, 5, 10, 15 cores). For
each triple of parameters, we test each combination of storage, transfer, and
deletion policies, as introduced in Section 4. The aim of these experiments is
to know what is the best combination of VMI storage-transfer-deletion policy
for different scenarios, and also to know the advantage of using Cloud brokering
mechanisms, if any.

For the first set of experiments, we define the following constraints: 2 VMs
with a least 2 cores, and using a 0.5 GB VMI. Furthermore, we always use the
transfer policy Get at the moment. Obviously, the instance types used in this
case are “small”, since it is the only instance type that provides 1 core. Figure 2
shows the results of the simulation.

As one can see, the best combination of policies, in this case, is
Everywhere-Never (E-N). In previous works [11, 12], we have considered EBS
storage with VMI uploaded on-demand and deleted when not necessary, i.e. O-A
policy. Indeed, our thoughts were not to pay for unused resources, i.e. upload-
ing the VMI everywhere and never deleting them. But as it can be observed,
in Figures 2(a), 2(b), and 2(c), with a S3 storage, it is clearly better to use the
E-N policy.

These results can be explained as follows:

• E-N is the best solution because once the VMI has been uploaded in every
Cloud at the beginning of the deployment, the algorithm is aware of the
availability of a VMI in each Cloud, assumes its cost, and does not take
into account the VMI upload cost in the deployment decision. Therefore,

2For EC2 http://aws.amazon.com/ec2/pricing/ and for S3 http://aws.amazon.com/s3/
pricing/

RR n° 8445

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/


10F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J. Rouzaud-Cornabas

(a) Cost: 2 VMs 2 cores. (b) Cost: 5 VMs 5 cores (c) Cost: 10 VMs 10 cores

(d) Percentage: 2 VMs 2 cores. (e) Percentage: 5 VMs 5 cores. (f) Percentage: 10 VMs 10 cores.

Figure 2: Simulation: 0.5GB of VMI.

the brokering algorithm focuses only on the best prices of each particular
Cloud in time t, and gets full benefits of them by choosing the better one.
Obviously, storage cost gets clearly incremented, but it is demonstrated
that the total cost decreases in every case. Indeed, we can react much
faster to changing prices as we do not have the delay of transferring the
VMI to a new Cloud.

• O-N is not as good as the previous one, but its performance gets close to it,
as long as the VMI is uploaded in more Clouds. Indeed, after some time
the VMI tends to be stored in all Clouds because of the “never delete”
policy, and the situation became similar to the aforementioned case (E-N
policy). The decisions with this strategy get conditioned by the fact that
the VMI is or is not already available in the Cloud with the best price. If
not, the algorithm may reallocate the VM in another Cloud with a higher
compute price, but lower cost considering the VMI upload.

• For the other combined policies, E-A shows better behavior than O-A. This
is because once the VMIs have been uploaded, the algorithm can choose
the best placement in the first decision without worrying about storage
costs. Once the first decision has been taken, the VMIs in the unused
Clouds are deleted, and therefore the next decision will be taken in a

Inria



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds11

similar way in both cases, since both have to upload the VMI again.

(a) Cost percentage: 1GB. (b) Cost percentage: 2GB. (c) Cost percentage: 5GB.

Figure 3: Simulation: 2 VMs, 2 cores, different VMI sizes.

(a) Cost: 5 VMs 10 cores. (b) Cost: 5 VMs 15 cores

Figure 4: Combination of instance types + get VMI.

Finally, we have to notice that the storage cost (linked to right axis) remains
equal in each case as expected, since the VMI’s size is similar in all of them.
Moreover, the results show that the deletion policy is more deterministic than
the storage policy.

Results from Figures 2(d), 2(e), and 2(f) show the percentage of storage cost
over the overall cost. It can be observed how N policies have a higher monetary
cost on storage than A policies. This is obvious as A policies delete the VMI when
it is no longer used. Moreover, the more VMs we deploy in the same Cloud,
the less percentage of storage cost we will have. It can be easily explained as
we only need one VMI per Cloud whatever the number of VMs we start in each
Cloud.

In Figure 3, we present the results of running experiments with different
size of VMIs (1GB, 2GB, and 5GB) to see if our previous result with a VMI
size of 0.5GB can be applied to bigger VMI size. It can be observed that
the aforementioned best combination of policies (E-N) is confirmed as the best

RR n° 8445



12F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J. Rouzaud-Cornabas

one whatever the combinations of VMs, cores selected, or VMI size are. And
obviously, the bigger the VMI is, the higher percentage of storage use we obtain.

The following experiments are requiring more cores per VM. Accordingly,
small instance type (1 core) is not enough to reach the goal. Hence, the algo-
rithm has to use multiple instance types in these experiments. For instance, we
require 10 cores with 5 VMs in Figure 4(a), and 15 cores with 5VMs in Fig-
ure 4(b). This fact can lead to use more than one region at once. Accordingly,
the broker must upload the VMI to different regions, so the total amount of data
uploaded can be doubled or tripled in the worst case, i.e. 1 XL (4 cores), 2 L (2
cores), and 2 S (1 core), to achieve 10 cores using 5 VMs, and deploying them
in three different regions. It confirms the intuition we described in Section 4:
“on-demand” and “always” policies are increasing the startup time of VMs, and
also that, even with larger number of VMs, E-N is still the best one.

However, we noticed that this kind of experiments have some inconvenients.
As the VMIs have to be uploaded in several Clouds, the price could have changed
meanwhile the VMs are being started, so it renders unusable the decision taken
by the Cloud brokering algorithm.

(a) Cost: 5 VMs 10 cores. (b) Cost: 5 VMs 15 cores.

Figure 5: Combination of instance types + copy VMI.

To address this issue, we have studied another way of uploading the VMI
and we have implemented it into the simulator. It uses the option offered by
Amazon to copy data from one S3 region to another. Copying files among
regions is quicker than upload the VMI from the broker, so once the first upload
has been made, it is possible to copy the VMI to the location indicated by the
algorithm.

Therefore, we have studied the impact of the different strategies to handle the
transfer of VMI, i.e. Get, and Copy. The results are presented in Figures 5(a)
and 5(b). We can observe in both figures that the storage consumption follows
the same trends as previously expected. The storage cost is higher for the
cases where the N strategy is used than the cases where it is the A that is
used. Furthermore, the data transfer cost is higher for the cases that use the
A strategy than the ones that use the N strategy as more data is transfered
between regions.

Inria



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds13

6 Conclusions and Future Work

In this work we have presented an extended version of our previous Cloud bro-
kering algorithm that takes into account data storage. Although other works
exist on Cloud brokering algorithms, none of them take into account data stor-
age and transfer. As a result, we have proposed two strategies for VMI stor-
age, two strategies for VMI deletion, and also we have introduced two different
VMI transfer strategies. In the experimental section, we have studied through
simulation our modified algorithm under different combinations of VMI stor-
age, deletion, and transfer strategies. Our experimental results highlight the
significance of data transfer, deletion and storage policies for multi-Clouds en-
vironments. Thanks to the experiments, we can conclude that keeping images
in every Cloud results in higher storage costs but lower final bill. Although
total cost reduction is quite good, this work is mainly focused on select the
best strategies and apply it to the brokering algorithm, instead of obtaining
cost improvement percentages. We have also shown that although using a copy
mechanism between Clouds can be more expensive, the final bill became lower
because of the reduced transfer time.

As future work, we have observed that the algorithm takes too much time
when dealing with a higher number of VMs, and the deployment of hundred
or thousand of VMs is really interesting in some environments like HPC or for
scalability reasons. Therefore, we plan to work on heuristics that do not explore
the full set of solutions looking for the optimal one, but try to approximate it
by exploring a reduced subset of them. Moreover, we are interested in taking in
consideration data transfer costs for brokering mechanisms. Amazon EC2 bills
for many different types of data transfer, and this should be taken into account
in case, for instance, of tightly coupled VMs.

Acknowledgments

The research leading to these results has received funding from Consejeŕıa de
Educación of Comunidad de Madrid, Fondo Europeo de Desarrollo Regional,
and Fondo Social Europeo through MEDIANET Research Program S2009/TIC-
1468; and from Ministerio de Economı́a y Competitividad of Spain through
research grant TIN2012-31518 (ServiceCloud). This work is also partially sup-
ported by the french ANR (Agence National de Recherche), project reference
ANR 11 INFRA 13 (SONGS).

References

[1] Amazon. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/
ec2/, June 2013.

[2] R. Buyya, Chee Shin Yeo, and S. Venugopal. Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing util-
ities. In High Performance Computing and Communications, 2008. HPCC
’08. 10th IEEE International Conference on, pages 5 –13, September 2008.

[3] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud computing and emerging {IT} platforms: Vi-

RR n° 8445

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/


14F. Desprez, J. L. Lucas-Simarro, R. Moreno-Vozmediano, J. Rouzaud-Cornabas

sion, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6):599 – 616, 2009.

[4] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F.
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper., 41(1):23–50, January 2011.

[5] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a
Generic Framework for Large-Scale Distributed Experiments. In Proceed-
ings of the Tenth International Conference on Computer Modeling and Sim-
ulation, UKSIM ’08, pages 126–131, Washington, DC, USA, 2008. IEEE
Computer Society.

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA, 2005. USENIX Association.

[7] Frédéric Desprez and Jonathan Rouzaud-Cornabas. SimGrid Cloud Broker:
Simulating the Amazon AWS Cloud. Technical Report RR-8380, INRIA,
October 2013.

[8] Ana Juan Ferrer, Francisco Hernandez, Johan Tordsson, Erik Elmroth,
Ahmed Ali-Eldin, Csilla Zsigri, Raul Sirvent, Jordi Guitart, Rosa M. Ba-
dia, Karim Djemame, Wolfgang Ziegler, Theo Dimitrakos, Srijith K. Nair,
George Kousiouris, Kleopatra Konstanteli, Theodora Varvarigou, Benoit
Hudzia, Alexander Kipp, Stefan Wesner, Marcelo Corrales, Nikolaus Forgo,
Tabassum Sharif, and Craig Sheridan. OPTIMIS: A Holistic Approach to
Cloud Service Provisioning. Future Generation Computer Systems, 28(1):66
– 77, 2012.

[9] S.K. Garg and R. Buyya. Networkcloudsim: Modelling parallel applications
in cloud simulations. In Utility and Cloud Computing (UCC), 2011 Fourth
IEEE International Conference on, pages 105–113, 2011.

[10] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco: an Open
Source Java Constraint Programming Library. In CPAIOR’08 Workshop
on Open-Source Software for Integer and Contraint Programming (OS-
SICP’08), pages 1–10, Paris, France, France, 2008.

[11] J.L. Lucas-Simarro, R. Moreno-Vozmediano, R.S. Montero, and I.M.
Llorente. Scheduling strategies for optimal service deployment across mul-
tiple clouds. Future Generation Computer Systems, in press, 2012.

[12] J.L. Lucas-Simarro, R. Moreno-Vozmediano, R.S. Montero, and I.M.
Llorente. Cost optimization of virtual infrastructures in dynamic multi-
cloud scenarios. Concurrency and Computation: Practice & Experience,
2013.

[13] Alberto Nunez, JoseL. Vazquez-Poletti, AgustinC. Caminero, GabrielG.
Castané, Jesus Carretero, and IgnacioM. Llorente. icancloud: A flexible

Inria



Image Transfer and Storage Cost Aware Brokering Strat. for Multiple Clouds15

and scalable cloud infrastructure simulator. Journal of Grid Computing,
10(1):185–209, 2012.

[14] Martin Quinson, Cristian Rosa, and Christophe Thiery. Parallel simula-
tion of peer-to-peer systems. In Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), CCGRID ’12, pages 668–675, Washington, DC, USA, 2012. IEEE
Computer Society.

[15] Johan Tordsson, Rubén S. Montero, Rafael Moreno-Vozmediano, and Ig-
nacio M. Llorente. Cloud brokering mechanisms for optimized placement
of virtual machines across multiple providers. Future Generation Computer
Systems, 28(2):358 – 367, 2012.

[16] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Ceest de Laa,
Joe Mambretti, Inder Monga, Bas van Oudenaarde, Satish Raghunath, and
Phil Yonghui Wang. Seamless live migration of virtual machines over the
man/wan. Future Generation Computer Systems, 22(8):901 – 907, 2006.

[17] Pedro Velho and Arnaud Legrand. Accuracy Study and Improvement of
Network Simulation in the SimGrid Framework. In Proceedings of the 2nd
International Conference on Simulation Tools and Techniques, Simutools
’09, pages 13:1–13:10, ICST, Brussels, Belgium, Belgium, 2009. ICST (In-
stitute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[18] B. Wickremasinghe, R.N. Calheiros, and R. Buyya. Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications. In Advanced Information Networking and Ap-
plications (AINA), 2010 24th IEEE International Conference on, pages
446–452, 2010.

[19] Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary cost-aware
checkpointing and migration on amazon cloud spot instances. IEEE Trans.
Serv. Comput., 5(4):512–524, January 2012.

RR n° 8445



RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399


	Introduction
	Related Work
	Problem Description
	Proposal
	Evaluation
	Conclusions and Future Work 

