
Fair Resource Sharing for Dynamic Scheduling of

Workflows on Heterogeneous Systems

Hamid Arabnejad, Jorge Barbosa, Frédéric Suter

To cite this version:

Hamid Arabnejad, Jorge Barbosa, Frédéric Suter. Fair Resource Sharing for Dynamic Schedul-
ing of Workflows on Heterogeneous Systems. Emmanuel Jeannot and Julius Zilinskas. High-
Performance Computing on Complex Environments, Wiley, 2014, Parallel and Distributed
Computing series. <hal-00926460>

HAL Id: hal-00926460

https://hal.inria.fr/hal-00926460

Submitted on 13 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-ENS-LYON

https://core.ac.uk/display/52308989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00926460

CHAPTER 1

FAIR RESOURCE SHARING FOR

DYNAMIC SCHEDULING OF

WORKFLOWS ON HETEROGENEOUS

SYSTEMS

Hamid Arabnejad1, Jorge G. Barbosa1, Frédéric Suter2

1LIACC, Departamento de Engenharia Informática, Faculdade de Engenharia, Universidade

do Porto, Portugal
2 IN2P3 Computing Center, CNRS, IN2P3, LyonVilleurbanne, France

Scheduling independent workflows on shared resources in a way that satisfy users

Quality of Service is a significant challenge. In this study, we describe method-

ologies for off-line scheduling, where a schedule is generated for a set of known

workflows, and on-line scheduling, where users can submit workflows at any mo-

ment in time. We consider the on-line scheduling problem in more detail and present

performance comparisons of state-of-the-art algorithms for a realistic model of a

heterogeneous system.

Keywords: Quality of Service, independent jobs, on-line scheduling, concurrent

jobs

1.1 INTRODUCTION

Heterogeneous computing systems (HCSs) are composed of different types of com-

putational units and are widely used for executing parallel applications, predom-

inantly scientific workflows. A workflow consists of many tasks with logical or

data dependencies that can be dispatched to different compute nodes in the HCS. To

Fair resource sharing for dynamic scheduling of workflows on Heterogeneous Systems, 1st Edition.

By H. Arabnejad, J.G. Barbosa, F. Suter Copyright c⃝ 2013 John Wiley & Sons, Inc.

1

2 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

achieve an efficient execution of a workflow and minimize its turnaround time, an

effective scheduling strategy that decides when and which resource must execute the

tasks of the workflow is necessary. When scheduling multiple independent work-

flows that represent user jobs and are thus submitted at different moments in time,

the common definition of makespan must be extended to account for the waiting time

and execution time of a given workflow. The metric to evaluate a dynamic scheduler

of independent workflows must represent the individual execution time instead of a

global measure for the set of workflows to reflect the Quality of Service (QoS) expe-

rienced by the users, which is related to the response time of each user application.

The efficient usage of any computing system depends on how well the workload

is mapped to the processing units. The workload considered in this study consists

of workflow applications that are composed of a collection of several interacting

components or tasks that must be executed in a certain order for the successful ex-

ecution of the application as a whole. The scheduling operation, which consists in

defining a mapping and an order of task execution, has been addressed primarily

for single workflow scheduling, i.e., a schedule is generated for a workflow and a

specific number of processors, used exclusively throughout the workflow execution.

When several workflows are submitted, they are considered as independent applica-

tions that are executed on independent subsets of processors. However, because of

task precedence, not all processors are fully used when executing a workflow, thus

leading to low efficiency. One way to improve system efficiency is to consider con-

current workflows, i.e., sharing processors among workflows. In this context, there

is no exclusive use of processors by a workflow; thus, throughout its execution, the

workflow can use any processor available in the system. Although the processors are

not used exclusively by one workflow, only one task runs on a processor at any one

time.

We first introduce the concept of an application and the heterogeneous system

model. Next, the performance metrics that are commonly used in workflow schedul-

ing and a metric for accounting for the total execution time are introduced. Finally,

we present a review of concurrent workflow scheduling and an extended comparison

of dynamic workflow scheduling algorithms for randomly generated graphs.

1.1.1 APPLICATION MODEL

A typical scientific workflow application can be represented as a Directed Acyclic

Graph (DAG). In a DAG, nodes represent tasks and the directed edges represent

execution dependencies and the amount of communication between nodes.

A workflow for this application is modeled by the DAG G = (V,E), where

V = {nj , j = 1 . . . v} represents the set of v tasks (or jobs) to be executed and

E is a set of e weighted directed edges that represents communication requirements

between tasks. Each edge(i, j) ∈ E represents the precedence constraint that task

nj cannot start before successful completion of task ni. Data is a v × v matrix of

communication data, where datai,j is the amount of data that must be transferred

from task ni to task nj .

INTRODUCTION 3

The target computing environment consists of a set P of p heterogeneous pro-

cessors organized in a fully connected topology in which all inter-processor com-

munications are assumed to be performed without contention, as explained in Sect.

1.1.2.

The data transfer rates between the processors, i.e., bandwidth, are stored in a

matrix B of size p × p. The communication startup costs of the processors, i.e.,

the latencies, are given in a p-dimensional vector L. The communication cost of the

edge(i, j), which transfers data from task ni (executed on processor pm) to task nj

(executed on processor pn), is defined as follows:

ci,j = Lm +
datai,j

Bm,n
. (1.1)

When both tasks ni and nj are scheduled on the same processor, ci,j = 0. Typically,

the communication cost is simplified by introducing an average communication cost

of an edge(i, j) defined as follows:

ci,j = L+
datai,j

B
, (1.2)

where B is the average bandwidth among all processor pairs and L is the average

latency. This simplification is commonly considered to label the edges of the graph

to allow for the computation of a priority rank before assigning tasks to processors

[1].

Due to heterogeneity, each task may have a different execution time on each pro-

cessor. Then, W is a v×p matrix of computation costs in which each wi,j represents

the execution time to complete task ni on processor pj . The average execution cost

of task ni is defined as follows:

wi =

p
∑

j=1

wi,j

p
. (1.3)

With respect to the communication costs, the average execution time is commonly

used to compute the priority ranking for the tasks.

An example is shown in Fig. 1.1 that presents a DAG and a target system with

three processors and the corresponding communication and computation costs. In

Fig. 1.1, the weight of each edge represents its average communication cost and the

numbers in the table represent the computation time of each task at each of the three

processors. This model represents a general heterogeneous system.

In this section, we present some of the common attributes used in task scheduling,

which we will use in the following sections.

• pred(ni): denotes the set of immediate predecessors of task ni in a given DAG. A

task with no predecessors is called an entry task, nentry . If a DAG has multiple

entry nodes, a dummy entry node with zero weight and zero communication

edges is added to the graph.

4 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

Figure 1.1 Application model and computation time matrix of the tasks in each processor.

• succ(ni): denotes the set of immediate successors of task ni. A task with no

successors is called an exit task, nexit. Like the entry node, if a DAG has mul-

tiple exit nodes, a dummy exit node with zero weight and zero communication

edges from current multiple exit nodes to this dummy node is added.

• makespan or Schedule Length: it is the elapsed time from the beginning of the

execution of the entry node to the finish time of the exit node in the scheduled

DAG, and is defined by:

makespan = AFT (nexit)−AST (nentry), (1.4)

where AFT (nexit) is the Actual Finish Time of the exit node and AST (nentry)
is the Actual Start Time of the entry node.

• level(ni): the level of task ni is an integer value representing the maximum

number of edges composing the paths from the entry node to ni. For the entry

node the level is level(nentry) = 1 and for other tasks it is given by:

level(ni) = max
q∈pred(ni)

{level(q)}+ 1. (1.5)

• Critical Path(CP): the CP of a DAG is the longest path from the entry node

to the exit node in the graph. The length of this path |CP | is the sum of the

computation costs of the nodes and inter-node communication costs along the

path. The |CP | value of a DAG is the lower bound of the schedule length.

• EST (ni, pj): denotes the Earliest Start Time of a node ni on a processor pj and

is defined as:

EST (ni, pj) = max

{

TAvailable(pj), max
nm∈pred(ni)

{

AFT (nm) + cm,i

}

}

,

(1.6)

where TAvailable(pj) is the earliest time at which processor pj is ready. The

inner max block in the EST equation is the time at which all data needed

by ni has arrived at the processor pj . For the entry task EST
(

nentry, pj
)

=

INTRODUCTION 5

max{Ts, TAvailable(pj)}, where Ts is the submission time of the DAG in the

system.

• EFT (ni, pj): denotes the Earliest Finish Time of a node ni on a processor pj
and is defined as:

EFT (ni, pj) = EST (ni, pj) + wi,j , (1.7)

which is the Earliest Start Time of a node ni on a processor pj plus the execution

time of task ni on processor pj .

The objective function of the scheduling problem from the user perspective, a single

workflow, is to determine an assignment of tasks of this workflow to processors such

that the Schedule Length is minimized. After all nodes in the workflow are scheduled,

the schedule length will be the makespan, defined by (1.4).

1.1.2 SYSTEM MODEL

Typically, for executing complex workflows, a high-performance cluster or grid plat-

form is used. As defined in [2], a cluster is a type of parallel or distributed processing

system that consists of a collection of interconnected stand-alone computing nodes

working together as a single, integrated computing resource. A compute node can be

a single or multiprocessor system with memory, input/output (I/O) facilities, acceler-

ator devices, such as graphics processing units (GPUs), and an operating system. A

cluster generally refers to two or more computing nodes that are connected together.

The nodes can exist in a single cabinet or be physically separated and connected via

a local area network (LAN). Figure 1.2 illustrates the typical cluster architecture.

Figure 1.2 Conceptual cluster architecture.

The algorithms for concurrent workflow scheduling may be useful when there are

a significant number of workflows compared to the computational nodes available;

otherwise, the workflows could use a set of processors exclusively without concur-

rency. Therefore, in the context of the experiments reported in this study, we con-

sider a cluster formed by nodes of the same site, connected by a single-bandwidth,

6 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

switched network. In a switched network, the execution of tasks and communications

with other processors can be achieved for each processor simultaneously and without

contention. These characteristics allow for the simplification of the communication

costs computation in the DAG (Fig. 1.1) by considering the average communication

parameters.

The target system can be as simple as a set of devices (e.g., central processing

units (CPUs) and GPUs) connected by a switched network that guarantees parallel

communication between different pairs of devices. The machine is heterogeneous

because CPUs can be from different generations and other very different devices,

such as GPUs, can be included. Another common machine is the one that results

from selecting processors from several clusters at the same site. Although a clus-

ter is homogeneous, the set of processors selected forms a heterogeneous machine.

The processor latency can differ in a heterogeneous machine, but such differences

are negligible. For low communication-to-computation ratios (CCRs), the commu-

nication costs are negligible; for higher CCRs, the predominant factor is the net-

work bandwidth, and as mentioned above, we assume the bandwidth is the same

throughout the entire network. Additionally, the execution of any task is considered

nonpreemptive.

1.1.3 PERFORMANCE METRICS

Performance metrics are used to evaluate the effectiveness of the scheduling strategy.

Because some metrics may conflict with others, any system design cannot accom-

modate all metrics simultaneously; thus, a balance according to the final goals must

be found. The metrics used in this study are described below.

Makespan

Also referred to as schedule length, makespan is the time difference between

the application start time and its completion. Most scheduling algorithms use

this metric to evaluate their results and their solutions as compared to other

algorithms. A smaller makespan implies better performance.

Turnaround Time

Turnaround time is the difference between submission and final completion of

an application. Different than makespan, turnaround time includes the time

spent by the workflow application waiting to get started. It is used to measure

the performance and service satisfaction from a user perspective.

Turnaround Time Ratio

The turnaround time ratio (TTR) measures the additional time spent by each

workflow in the system to be executed in relation to the minimum makespan

obtained for that workflow. The TTR for a workflow is defined as:

TTR =
TurnaroundTime

∑

ni∈CP minpj∈P (w(i,j))
, (1.8)

CONCURRENT WORKFLOW SCHEDULING 7

where P is the set of processors of the HCS. The denominator in the TTR

equation is the minimum computation cost of the tasks that compose the critical

path (CP), which is the lower bound of the execution time for a workflow.

Normalized Turnaround Time

The normalized turnaround time (NTT) is obtained by the ratio of the minimum

turnaround time and actual turnaround time for a given workflow G and an

algorithm ai, defined as follows:

NTT(G, ai) =
minak∈A{TurnaroundTime(G, ak)}

TurnaroundTime(G, ai)
, (1.9)

where A is the set of algorithms being compared and ai ∈ A. For an algo-

rithm ai, NTT provides the distance that its scheduling solutions are from the

minimum TTR obtained for a given workflow G. NTT is distributed in the in-

terval [0, 1]. The algorithm with a lower spread in NTT with values near one, is

the algorithm that generates more results closer to the minimum, i.e., the best

algorithm.

Win(%)

The percentage of wins is used to compare the frequency of best results for

Turnaround Time for the set of workflows being scheduled. The algorithm with

higher percentage of wins implies that it obtains better results from the user

perspective, i.e., it obtains more frequently the shortest elapsed time from sub-

mission to completion of a user job. Note that the sum of this value for all algo-

rithms may be higher than 100%; this is because when more than one algorithm

wins, for a given workflow, it is accounted for all those winning algorithms.

1.2 CONCURRENT WORKFLOW SCHEDULING

Recently, several algorithms have been proposed for concurrent workflow scheduling

to improve the execution time of several applications in an HCS system. However,

most of these algorithms were designed for off-line scheduling or static schedul-

ing, i.e., all the applications are known at the same time. This approach, although

relevant, imposes limitations on the management of a dynamic system where users

can submit jobs at any time. For this purpose, there are a few algorithms that were

designed to address dynamic application scheduling. In the following, a review of

off-line scheduling is presented, followed by a review of on-line scheduling.

1.2.1 OFF-LINE SCHEDULING OF CONCURRENT WORKFLOWS

In off-line scheduling, the workflows are available before the execution starts, i.e.,

at compile time. After a schedule is produced and initiated, no other workflow is

considered. This approach, although limited, is applicable in many real-world ap-

plications, e.g., when a user has a set of nodes to run a set of workflows. This

8 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

methodology is applied by the most common resource management tools, where a

user requests a set of nodes to execute his/her jobs exclusively.

Several algorithms have been proposed for off-line scheduling, where workflows

compete for resources, and the goal is to ensure a fair distribution of those resources,

while minimizing the individual completion time of each workflow. Two approaches

based on a fairness strategy for concurrent workflow scheduling were presented in

[3]. Fairness is defined based on the slowdown that each DAG would experience (the

slowdown is the ratio of the expected execution time for the same DAG when sche-

duled together with other workflows to that when scheduled alone). They proposed

two algorithms, one fairness policy based on finish time and another fairness policy

based on current time. Both algorithms first schedule each DAG on all processors

with static scheduling (like HEFT [1] or Hybrid.BMCT [4]) as the pivot scheduling

algorithm, save their schedule assignment, and keep their makespan as the slowdown

value of the DAG. Next, all workflows are sorted in descending order of their slow-

down. Then, until there are unfinished workflows in the list, the algorithm selects

the DAG with the highest slowdown and then selects the first ready task that has not

been scheduled in this DAG. The main point is to evaluate the slowdown value of

each DAG after scheduling a task and make a decision regarding which DAG should

be selected to schedule the next task. The difference between the two proposed

fairness-based algorithms is that the fairness policy based on finish time calculates

the slowdown value of the selected DAG only, whereas the slowdown value is recal-

culated for every DAG in the fairness policy based on current time.

In [5], several strategies were proposed based on the proportional sharing of re-

sources. This proportional sharing was defined based on the critical path length,

width, or work of each workflow. A type of weighted proportional sharing was

also proposed that represents a better tradeoff between fair resource sharing and

makespan reduction of the workflows. The strategies were applied to mixed par-

allel applications, where each task could be executed on more than one processor.

The proportional sharing, based on the work needed to execute a workflow, resulted

in the shortest schedules on average but was also the least fair with regard to re-

source usage, i.e., the variance of the slowdowns experienced by the workflows was

the highest.

In [6], a path clustering heuristic was proposed that combines the clustering sche-

duling technique to generate groups (clusters) of tasks and the list scheduling tech-

nique to select tasks and processors. Based on this methodology, the authors propose

and compare four algorithms: a) sequential scheduling, where workflows are sched-

uled one after another; b) gap search algorithm, which is similar to the former but

searches for spaces between already-scheduled tasks; c) interleave algorithm, where

pieces of each workflow are scheduled in turns; and d) group workflows, where the

workflows are joined to form a single workflow and then scheduled. The evaluation

was made in terms of schedule length and fairness and concluded that interleaving

the workflows leads to lower average makespan and higher fairness when multiple

workflows share the same set of resources. This result, although relevant, considers

the average makespan, which does not distinguish the impact of the delay on each

workflow, as compared to exclusive execution.

CONCURRENT WORKFLOW SCHEDULING 9

In [7], the algorithms for off-line scheduling of concurrent parallel task graphs on

a single homogeneous cluster were evaluated extensively. The graphs, or workflows,

that have been submitted by different users share a set of resources and are ready

to start their execution at the same time. The goal is to optimize user-perceived

notions of performance and fairness. The authors proposed three metrics to quantify

the quality of a schedule related to performance and fairness among the parallel task

graphs.

In [8], two workflow scheduling algorithms were presented, multiple workflow

grid scheduling, MWGS4 and MWGS2, with four and two stages, respectively. The

four stages version comprises labeling, adaptive allocation, prioritization and parallel

machine scheduling. The two stages version applies only adaptive allocation and

parallel machine scheduling. Both algorithms, MWGS4 and MWGS2, are classified

as off-line strategies and both schedule a set of available and ready jobs from a batch

of jobs. All jobs that arrive during a time interval will be processed in a batch and

start to execute after the completion of the last batch of jobs. These strategies were

shown to outperform other strategies in terms of mean critical path waiting time and

critical path slowdown.

1.2.2 ON-LINE SCHEDULING OF CONCURRENT WORKFLOWS

On-line scheduling exhibits dynamic behavior where users can submit the workflows

at any time. When scheduling multiple independent workflows that represent user

jobs and are thus submitted at different moments in time, the completion time (or

turnaround time) includes both the waiting time and execution time of a given work-

flow, extending the makespan definition for single workflow scheduling [9]. The

metric to evaluate a dynamic scheduler of independent workflows must represent the

individual completion time instead of a global measure for the set of workflows to

measure the QoS experienced by the users related to the finish time of each user

application.

Some algorithms have been proposed for on-line workflow scheduling; they will

be described briefly in this section. Three other algorithms were proposed specif-

ically to schedule concurrent workflows to improve individual QoS. These algo-

rithms, on-line workflow management (OWM), rank hybrid (Rank Hybd), and fair-

ness dynamic workflow scheduling (FDWS), are described here and compared in the

results section. The first two algorithms improve the average completion time of all

workflows. In contrast, FDWS focuses on the QoS experienced by each application

(or user) by minimizing the waiting and execution times of each individual workflow.

In [10], the min-min average (MMA) algorithm was proposed to efficiently sched-

ule transaction-intensive grid workflows involving significant communication over-

heads. The MMA algorithm is based on the popular min-min algorithm but uses

a different strategy for transaction-intensive grid workflows with the capability of

adapting to the change of network transmission speed automatically. Transaction-

intensive workflows are multiple instances of one workflow. In this case, the aim is

to optimize the overall throughput rather than the individual workflow performance.

10 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

Because min-min is a popular technique, we consider one implementation of min-

min for concurrent workflow scheduling in our results.

In [11], an algorithm was proposed for scheduling multiple workflows, with mul-

tiple QoS constraints, on the cloud. The resulting multiple QoS-constrained schedul-

ing strategy of multiple workflows (MQMW) minimizes the makespan and the cost

of the resources and increases the scheduling success rate. The algorithm considers

two objectives, time and cost, that can be adapted to the user requirements. MQMW

was compared to Rank Hybd, and Rank Hybd performed better when time was the

major QoS requirement. In our study application, we consider time as the QoS re-

quirement and thus consider Rank Hybd in our results section.

In [12], a dynamic algorithm was proposed to minimize the makespan of a batch

of parallel task workflows with different arrival times. The algorithm was proposed

for on-line scheduling but with the goal of minimizing a collective metric. This

model is applied to real-world applications, such as video surveillance and image

registration, where the workflows are related and only the collective result is mean-

ingful. This approach is different from the independent workflows execution that we

consider in this study.

1.2.2.1 Rank Hybrid algorithm A planner-guided strategy, the Rank Hybd algo-

rithm, was proposed by Yu and Shi [13] to address dynamic scheduling of workflow

applications that are submitted by different users at different moments in time. The

Rank Hybd algorithm ranks all tasks using the ranku priority measure [1], which

represents the length of the longest path from task ni to the exit node, including the

computational cost of ni, and is expressed as follows:

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)}, (1.10)

where succ(ni) is the set of immediate successors of task ni, ci,j is the average

communication cost of edge(i, j), and wi is the average computation cost of task ni.

For the exit task, ranku(nexit) = 0.

Algorithm 1.1

getReadyPool algorithm {
if (a new workflow has arrived)

{calculate ranku for all tasks of the new workflow}
Ready Pool← Read all ready tasks from all DAGs

multiple← number of DAGs with ready tasks in Ready Pool

if (multiple == 1)

{Sort all tasks in Ready Pool in descending order of ranku}
else

{Sort all tasks in Ready Pool in ascending order of ranku}
return Ready Pool

}

In each step, the algorithm reads all of the ready tasks from the DAGs and selects

the next task to schedule based on their rank. If the ready tasks belong to different

CONCURRENT WORKFLOW SCHEDULING 11

DAGs, the algorithm selects the task with lowest rank; if the ready tasks belong to

the same DAG, the task with the highest rank is selected. The Rank Hybd heuristic

is formalized in Algorithm 1.2.

Algorithm 1.2

Rank Hybrid algorithm {
while (there are workflows to schedule){

Ready Pool← getReadyPool()

Resourcesfree ← get all idle resources

while (Ready Pool ̸= φ AND Resourcesfree ̸= φ){
taskselected ← the first task in Ready Pool

resourceselected ← the processor with the lowest Finish

Time for taskselected on Resourcesfree
Assign taskselected to resourceselected
Remove resourceselected from Resourcesfree
Remove taskselected from Ready Pool

}}}

With this strategy, Rank Hybd allows the DAG with the lowest rank (lower make-

span) to be scheduled first to reduce the waiting time of the DAG in the system.

However, this strategy does not achieve high fairness among the workflows because

it always gives preference to shorter workflows to finish first, postponing the longer

ones. For instance, if a longer workflow is being executed and several short work-

flows are submitted to the system, the scheduler postpones the execution of the longer

DAG to give priority to the shorter ones.

1.2.2.2 On-line Workflow Management The on-line workflow management al-

gorithm (OWM) for the on-line scheduling of multiple workflows was proposed in

[14]. Unlike the Rank Hybd algorithm that puts all ready tasks from each DAG into

the ready list, OWM selects only a single ready task from each DAG, the task with

the highest rank (ranku). Then, until there are some unfinished DAGs in the system,

the OWM algorithm selects the task with the highest priority from the ready list.

Then, it calculates the earliest finish time (EFT) for the selected task on each pro-

cessor and selects the processor that will result in the smallest EFT. If the selected

processor is free at that time, the OWM algorithm assigns the selected task to the

selected processor; otherwise, the selected task stays in the ready list to be scheduled

later. The OWM heuristic is formalized in Algorithm 1.3.

In the results presented by Hsu et al. [14], the OWM algorithm performs better

than the Rank Hybd algorithm [13] and the Fairness Dynamic algorithm (a modified

version of the fairness algorithm proposed by Zhao and Sakellariou [3]) in handling

on-line workflows. Similar to Rank Hybd, the OWM algorithm uses a fairness strat-

egy; however, instead of scheduling smaller DAGs first, it selects and schedules tasks

from the longer DAGs first. Moreover, OWM has a better strategy by filling the ready

list with one task from each DAG so that all of the DAGs have the chance to be se-

lected in the current scheduling round. In their simulation environment, the number

of processors was always equal to the number of workflows so that the scheduler

12 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

typically has a suitable number of processors on which to schedule the ready tasks.

This choice does not expose a fragility of the algorithm that occurs when the num-

ber of DAGs is significantly higher than the number of processors, this is for more

heavily loaded systems.

Algorithm 1.3

OWM algorithm {
while (there are workflows to schedule){

Ready Pool← getReadyPool()

Resourcesfree ← get all idle resources

while (Ready Pool ̸= φ and Resourcesfree ̸= φ){
taskselected ← the first task in Ready Pool

resourceselected ← the processor with the lowest Finish

Time for taskselected on Resourcesfree
if (number of free clusters == 1 AND the Finish Time

on a busy cluster < Finish Time on resourceselected)

{Keep taskselected for next schedule call}
else {

Assign taskselected to resourceselected
Remove resourceselected from Resourcesfree
Remove taskselected from Ready Pool

}}}}

1.2.2.3 Fairness Dynamic Workflow Scheduling The fairness dynamic work-

flow scheduling (FDWS) algorithm was proposed in [15]. FDWS implements new

strategies for selecting the tasks from the ready list and for assigning the processors

to reduce the individual completion time of the workflows, e.g., the turnaround time,

including execution time and waiting time.

The FDWS algorithm comprises three main components: (1) workflow pool, (2)

task selection, and (3) processor allocation. The workflow pool contains the sub-

mitted workflows that arrive as users submit their applications. At each scheduling

round, this component finds all ready tasks from each workflow. The Rank Hybd

algorithm adds all ready tasks into the ready pool (or list), and the OWM algorithm

adds only one task with the highest priority from each DAG into the ready pool. Con-

sidering all ready tasks from each DAG leads to an unbiased preference for longer

DAGs and the consequent postponing of smaller DAGs resulting in higher TTR and

unfair processor sharing. In the FDWS algorithm, only a single ready task with

highest priority from each DAG is added to the ready pool, similar to the OWM al-

gorithm. To assign priorities to tasks in the DAG, it uses an upward ranking, ranku
(1.10).

The task selection component applies a different rank to select the task to be

scheduled from the ready pool. To be inserted into the ready pool, ranku is com-

puted individually for each DAG. To select from the ready pool, rankr for task ni

belonging to DAGj is computed, as defined by (1.11), and the task with highest

rankr is selected:

CONCURRENT WORKFLOW SCHEDULING 13

rankr(ni,j) =
1

PRT (DAGj)
× 1

|CP (DAGj)|
. (1.11)

The rankr metric considers the percentage of remaining tasks (PRT) of the DAG

and its critical path length (|CP |). The PRT prioritizes DAGs that are nearly com-

pleted and only have a few tasks to execute. The use of CP length results in a different

strategy then the smallest remaining processing time (SRPT) [16]. With SRPT the

application with the smallest remaining processing time is selected and scheduled at

each step. The remaining processing time is the time needed to execute all remain-

ing tasks of the workflow. However, the time needed to complete all tasks of the

DAG does not consider the width of the DAG. A wider DAG has a shorter |CP | than

other DAGs with the same number of tasks; it also has a lower expected finish time.

Therefore, in this case, FDWS would give higher priority to DAGs with smaller |CP |
values.

In both Rank Hybd and OWM, only the individual ranku is used to select tasks

into the workflow pool and to select a task from the pool of ready tasks. This scheme

leads to a scheduling decision that does not consider the DAG history in the workflow

pool.

The processor allocation component considers only the free processors. The pro-

cessor with the lowest finish time for the current task is selected. In this study, we

use the FDWS without processor queues to highlight the influence of the rank rankr
in the scheduling results. The algorithm is formalized in Algorithm 1.4.

Algorithm 1.4

FDWS algorithm {
while (Workflow Pool ̸= φ) {

if (new workflow has arrived){
Compute ranku for all tasks of the new Workflow

Insert the Workflow into Workflow Pool }
Ready Pool← one ready task from each DAG (highest ranku)

Compute rankr(ni,j) for each task ni ∈ DAGj in Ready Pool

Resourcesfree ← get all idle resources

while (Ready Pool ̸= φ and Resourcesfree ̸= φ) {
taskselected ← the task with highest rankr from Ready Pool

resourceselected ← the processor with the lowest Finish

Time for taskselected on Resourcesfree
Assign taskselected to Resourceselected
Remove taskselected from Ready Pool

}}}

1.2.2.4 On-line Min-Min and On-line Max-Min The min-min and max-min algo-

rithms have been studied extensively in the literature [17], and therefore, we imple-

mented an on-line version of these algorithms for our problem. In the first phase,

min-min prioritizes the task with the minimum completion time (MCT). In the sec-

ond phase, the task with the overall minimum expected completion time is chosen

and assigned to its corresponding resource. In each calling, our on-line version first

14 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

collects a single ready task from each available DAG with the highest ranku value

and then puts all of these ready tasks into the ready pool of tasks. It then calcu-

lates the MCT value for each ready task. In the selection phase, the task with the

minimum MCT value is selected and assigned to the corresponding processor. The

calculation of the MCT value for the tasks in the ready pool only considers available

(free) processors. The max-min algorithm is similar to the min-min algorithm, but in

the selection phase, the task with the maximum MCT is chosen to be scheduled on

the resource that is expected to complete the task at the earliest time.

1.3 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the relative performance of the Rank Hybd, OWM,

FDWS, min-min and max-min algorithms. For this purpose, this section is divided

into three parts: the DAG structure is described, the infrastructure is presented, and

results and discussions are presented.

1.3.1 DAG STRUCTURE

To evaluate the relative performance of the algorithms, we used randomly generated

workflow application graphs. For this purpose, we use a synthetic DAG generation

program1. We model the computational complexity of a task as one of the three fol-

lowing forms, which are representative of many common applications: a.d (e.g., im-

age processing of a
√
d×

√
d image), a.d log d (e.g., sorting an array of d elements),

d3/2 (e.g., multiplication of
√
d×

√
d matrices), where a is chosen randomly between

26 and 29. As a result, different tasks exhibit different communication/computation

ratios.

We consider applications that consist of 20-50 tasks. We use four popular pa-

rameters to define the shape of the DAG: width, regularity, density, and jumps. The

width determines the maximum number of tasks that can be executed concurrently.

A small value will lead to a thin DAG, similar to a chain, with low task parallelism,

and a large value induces a fat DAG, similar to a fork-join, with a high degree of

parallelism. The regularity indicates the uniformity of the number of tasks in each

level. A low value means that the levels contain very dissimilar numbers of tasks,

whereas a high value means that all levels contain similar numbers of tasks. The

density denotes the number of edges between two levels of the DAG, where a low

value indicates few edges and a large value indicates many edges. A jump indicates

that an edge can go from level l to level l + jump. A jump of one is an ordinary

connection between two consecutive levels.

In our experiment, for random DAG generation, we consider the number of tasks

n = {20 . . . 50}, jump = {1, 2, 3}, regularity = {0.2, 0.4, 0.8}, fat = {0.2, 0.4,
0.6, 0.8}, and density = {0.2, 0.4, 0.8}. With these parameters, we call the DAG

1https://github.com/frs69wq/daggen

EXPERIMENTAL RESULTS AND DISCUSSION 15

generator for each DAG, and it randomly chooses the value for each parameter from

the parameter dataset.

1.3.2 SIMULATED PLATFORMS

We resort to simulation to evaluate the algorithms from the previous section. It al-

lows us to perform a statistically significant number of experiments for a wide range

of application configurations (in a reasonable amount of time). We use the SimGrid

toolkit2 [18] as the basis for our simulator. SimGrid provides the required fundamen-

tal abstractions for the discrete-event simulation of parallel applications in distributed

environments. It was specifically designed for the evaluation of scheduling algo-

rithms. Relying on a well-established simulation toolkit allows us to leverage sound

models of a HCS, such as the one described in Fig. 1.2. In many research papers

on scheduling, authors assume a contention-free network model in which proces-

sors can simultaneously send to or receive data from as many processors as possible

without experiencing any performance degradation. Unfortunately, that model, the

multi-port model, is not representative of actual network infrastructures. Conversely,

the network model provided by SimGrid corresponds to a theoretical bounded multi-

port model. In this model, a processor can communicate with several other proces-

sors simultaneously, but each communication flow is limited by the bandwidth of

the traversed route and communications using a common network link have to share

bandwidth. This scheme corresponds well to the behavior of TCP connections on a

LAN. The validity of this network model has been demonstrated in [19].

To make our simulations even more realistic, we consider platforms derived from

clusters in the Grid5000 platform deployed in France3 [20]. Grid5000 is an exper-

imental testbed distributed across 10 sites and aggregating a total of approximately

8,000 individual cores. We consider two sites that comprise multiple clusters. Table

1.1 gives the name of each cluster along with its number of processors, processing

speed expressed in flop/s and heterogeneity. Each cluster uses an internal Gigabit-

switched interconnect. The heterogeneity factor (σ) of a site is determined by the

ratio between the speeds of the fastest and slowest processors.

From these five clusters, which comprise a total of 280 processors (118 in Greno-

ble and 162 in Rennes), we extract four distinct heterogeneous cluster configurations

(two per site). For the Grenoble site, we build heterogeneous simulated clusters by

choosing three and five processors for each of the three actual clusters for a respec-

tive total of nine and 15 processors. We apply the same method to the Rennes site by

selecting two and four processors per cluster for a total of eight and 16 processors.

This approach allows us to have heterogeneous configurations in terms of both pro-

cessor speed and network interconnect that correspond to a set of resources a user

can reasonably acquire by submitting a job to the local resource management system

at each site.

2http://simgrid.gforge.inria.fr
3http://www.grid5000.fr

16 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

Table 1.1 Description of the Grid5000 clusters from which the platforms used in our

experiments are derived

Site Name Cluster Name Number of CPUs Power in GFlop/s Site Heterogeneity

grenoble

adonis 12 23.681

σ = 1.12edel 72 23.492

genepi 34 21.175

rennes

paradent 64 21.496

σ = 2.34
paramount 33 12.910

parapluie 40 27.391

parapide 25 30.130

1.3.3 RESULTS AND DISCUSSION

In this section, the algorithms are compared in terms of TTR, percentage of wins

and NTT. We present results for a set of 30 and 50 concurrent DAGs that arrive with

time intervals that range from zero (off-line scheduling) to 90% of completed tasks,

i.e., a new DAG is inserted when the corresponding percentage of tasks from the last

DAG currently in the system is completed. We consider a low number of processors

compared to the number of DAGs to analyze the behavior of the algorithms with

respect to the system load. The maximum load configuration is observed for eight

processors and 50 DAGs.

Figures 1.3, 1.4, 1.5, and 1.6 present results for the Grenoble and Rennes sites

for two configurations and two sets of DAGs. For the case of zero time interval,

equivalent to off-line scheduling, for eight and nine processors and 30 and 50 DAGs,

FDWS results in a lower distribution for TTR but with similar average values to

Rank Hybd and OWM. The small box for FDWS indicates that 50% of the results

fall in a lower range of values, and therefore, the individual QoS for each submitted

job is better. FDWS generated better solutions more often, but from the NTT graphs,

we conclude that the distance of its solutions to the minimum turnaround time is

similar to that of Rank Hybd. For HCS configurations with more resources (15 and

16 processors for Grenoble and Rennes, respectively), the same behavior is observed

for both cases of 30 and 50 concurrent DAGs.

In general, the max-min algorithm yielded poorer results. The min-min algorithm

performed the same as Rank Hybd and performed better than OWM for time inter-

vals of 20 and higher.

For time intervals of 10 and higher, FDWS performed consistently better for

higher numbers of concurrent DAGs. For the Rennes site, at 10 time intervals,

30 DAGs, and eight CPUs, the degree of improvement of FDWS over Rank Hybd,

OWM, min-min, and max-min are 16.2%, 19.3%, 27.4%, and 63.3%, respectively.

Increasing the number of DAGs to 50, the improvements are 17.5%, 23.4%, 31.5%,

and 71.0%. Increasing the time intervals between the DAGs arrival times reduces the

concurrency, and thus, the improvements decrease. For the same conditions with 30

EXPERIMENTAL RESULTS AND DISCUSSION 17

(a) (b)

(c) (d)

(e) (f)

Figure 1.3 Results of TTR, percentage of wins and NTT on Grenoble site with 9 processors.

(a)(c)(e) 30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

DAGs and a time interval of 50, the improvement of FDWS over the others, in the

same order, are 5.5%, 11.7%, 4.8%, and 8.9%. For 50 DAGs and 50 time intervals,

the improvements are 5.9%, 13.0%, 3.2%, and 11.1%. For the Grenoble site, with

nine and 15 processors, the improvements are of the same order for the same time

intervals and number of DAGs, with eight and 16 processors in the Rennes site.

With respect to the percentage of wins, FDWS always results in a higher rate

of best results, for time intervals equal to or higher than 10. The results in the NTT

graphs illustrate that FDWS also has a distribution closer to one, which indicates that

its solutions are closer to the minimum turnaround time than the other algorithms.

18 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

(a) (b)

(c) (d)

(e) (f)

Figure 1.4 Results of TTR, percentage of wins and NTT on Grenoble site with 15 processors.

(a)(c)(e) 30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

1.4 CONCLUSIONS

In this study, we presented a review of off-line and on-line concurrent workflow

scheduling and compared five algorithms for on-line scheduling when the goal was

to maximize the user QoS defined by the completion time of the individual submitted

jobs. The five algorithms are FDWS [15], OWM [14], Rank Hybd [13], on-line min-

min, and on-line max-min, which can all handle multiple workflow scheduling in

dynamic situations. Based on our experiments, FDWS leads to better performance

in terms of TTR, win(%), and NTT, showing better QoS characteristics for a range

CONCLUSIONS 19

(a) (b)

(c) (d)

(e) (f)

Figure 1.5 Results of TTR, percentage of wins and NTT on Rennes site for 8 processors.

(a)(c)(e) 30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

of time intervals from 10 to 90. For the time interval of zero, equivalent to off-line

scheduling, Rank Hybd also performed well, but the schedules produced by FDWS

had better QoS characteristics.

ACKNOWLEDGEMENTS

This work was supported in part by the Fundação para a Ciência e Tecnologia, PhD

Grant FCT-DFRH-SFRH/BD/80061/2011. We would like also to thank the support

given by the European Cost Action IC0805 Open Network for High-Performance

20 FAIR RESOURCE SHARING FOR DYNAMIC SCHEDULING OF WORKFLOWS

(a) (b)

(c) (d)

(e) (f)

Figure 1.6 Results of TTR, percentage of wins and NTT on Rennes site with 16 processors.

(a)(c)(e) 30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

Computing on Complex Environments, Working Group 3: Algorithms and tools for

mapping and executing applications onto distributed and heterogeneous systems.

REFERENCES

1. H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-complexity task

scheduling for heterogeneous computing,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

2. M. Bakery and R. Buyya, “Cluster computing at a glance,” High Performance Cluster

Computing: Architectures and Systems, pp. 3–47, 1999.

3. H. Zhao and R. Sakellariou, “Scheduling multiple DAGs onto heterogeneous systems,”

in International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–14,

IEEE, 2006.

4. R. Sakellariou and H. Zhao, “A hybrid heuristic for dag scheduling on heterogeneous

systems,” in International Parallel and Distributed Processing Symposium (IPDPS),

pp. 111–123, IEEE, 2004.

5. T. N’takpé and F. Suter, “Concurrent scheduling of parallel task graphs on multi-clusters

using constrained resource allocations,” in International Symposium on Parallel and Dis-

tributed Processing (IPDPS), pp. 1–8, IEEE, 2009.

6. L. Bittencourt and E. Madeira, “Towards the scheduling of multiple workflows on com-

putational grids,” Journal of Grid Computing, vol. 8, pp. 419–441, 2010.

7. H. Casanova, F. Desprez, and F. Suter, “On cluster resource allocation for multiple paral-

lel task graphs,” Journal of Parallel and Distributed Computing, vol. 70, pp. 1193–1203,

2010.

Fair resource sharing for dynamic scheduling of workflows on Heterogeneous Systems, 1st Edition.

By H. Arabnejad, J.G. Barbosa, F. Suter Copyright c⃝ 2013 John Wiley & Sons, Inc.

21

22 REFERENCES

8. A. Carbajal, A. Tchernykh, R. Yahyapour, J. Garcı́a, T. Röblitz, and J. Alcaraz, “Multiple

workflow scheduling strategies with user run time estimates on a grid,” Journal of Grid

Computing, vol. 10, pp. 325–346, 2012.

9. Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs

to multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999.

10. K. Liu, J. Chen, H. Jin, and Y. Yang, “A min-min average algorithm for scheduling

transaction-intensive grid workflows,” in Proceedings of the Seventh Australasian Sym-

posium on Grid Computing and e-Research, pp. 41–48, Australian Computer Society,

Inc., 2009.

11. M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple QoS constrained scheduling strategy of

multiple workflows for cloud computing,” in International Symposium on Parallel and

Distributed Processing with Applications (ISPA), pp. 629–634, IEEE, 2009.

12. J. Barbosa and B. Moreira, “Dynamic scheduling of a batch of parallel task jobs on

heterogeneous clusters,” Parallel Computing, vol. 37, no. 8, pp. 428–438, 2011.

13. Z. Yu and W. Shi, “A planner-guided scheduling strategy for multiple workflow appli-

cations,” in International Conference on Parallel Processing-Workshops (ICPP-W’08),

pp. 1–8, IEEE, 2008.

14. C. Hsu, K. Huang, and F. Wang, “Online scheduling of workflow applications in grid

environments,” Future Generation Computer Systems, vol. 27, no. 6, pp. 860–870, 2011.

15. H. Arabnejad and J. Barbosa, “Fairness resource sharing for dynamic workflow schedul-

ing on heterogeneous systems,” in International Symposium on Parallel and Distributed

Processing with Applications (ISPA), pp. 633–639, IEEE, 2012.

16. D. Karger, C. Stein, and J. Wein, “Scheduling algorithms,” CRC Handbook of Computer

Science, 1997.

17. M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, and R. F. Freund, “Dynamic matching

and scheduling of a class of independent tasks onto heterogeneous computing systems,”

in Proceedings of the Eighth Heterogeneous Computing Workshop, pp. 30–44, IEEE,

1999.

18. H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a generic framework for large-

scale distributed experiments,” in Proceedings of the Tenth International Conference on

Computer Modeling and Simulation, pp. 126–131, IEEE Computer Society, 2008.

19. P. Velho and A. Legrand, “Accuracy Study and Improvement of Network Simulation

in the SimGrid Framework,” in Proccedings of the 2nd International Conference on

Simulation Tools and Techniques (SIMUTools), March 2009.

20. F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri, J. Leduc,

N. Melab, G. Mornet, R. Namyst, P. Primet, and O. Richard, “Grid5000: A Large Scale,

Reconfigurable, Controlable and Monitorable Grid Platform,” in Proceedings of the 6th

IEEE/ACM International Workshop on Grid Computing, pp. 99–106, Nov. 2005.

