
Kleene Algebra with Converse

Paul Brunet, Damien Pous

To cite this version:

Paul Brunet, Damien Pous. Kleene Algebra with Converse. RAMiCS, Apr 2014, Marienstatt
im Westerwald, Germany. Springer, 8428, pp.101-118, 2014, LNCS. <hal-00938235>

HAL Id: hal-00938235

https://hal.archives-ouvertes.fr/hal-00938235

Submitted on 29 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52308779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00938235

Kleene Algebra with Converse

Paul Brunet and Damien Pous ?

LIP, CNRS, ENS Lyon, INRIA, Université de Lyon, UMR 5668

Abstract The equational theory generated by all algebras of binary
relations with operations of union, composition, converse and reflexive
transitive closure was studied by Bernátsky, Bloom, Ésik, and Stefanescu
in 1995. We reformulate some of their proofs in syntactic and elemen-
tary terms, and we provide a new algorithm to decide the corresponding
theory. This algorithm is both simpler and more efficient; it relies on
an alternative automata construction, that allows us to prove that the
considered equational theory lies in the complexity class PSpace.
Specific regular languages appear at various places in the proofs. Those
proofs were made tractable by considering appropriate automata recog-
nising those languages, and exploiting symmetries in those automata.

Introduction

In many contexts in computer science and mathematics operations of union, se-
quence or product and iteration appear naturally. Kleene Algebra, introduced by
John H. Conway under the name regular algebra [Con71], provides an algebraic
framework allowing to express properties of these operators, by studying the
equivalence of expressions built with these connectives. It is well known that the
corresponding equational theory is decidable [Kle51], and that it is complete for
language and relation models.

As expressive as it may be, one may wish to integrate other usual opera-
tions in such a setting. Theories obtained this way, by addition of a finite set
of equations to the axioms of Kleene Algebra, are called Extensions of Kleene
Algebra. We shall focus here on one of these extensions, where an operation of
converse is added to Kleene Algebra. The converse of a word is its mirror image
(the word obtained by reversing the order of the letters), and the converse R∨
of a relation R is its reciprocal (xR∨y , yRx). This natural operation can be
expressed simply as a set of equations that we add to Kleene Algebra’s axioms.

The question that arises once this theory is built is its decidability: given
two formal expressions built with the connectives product, sum, iteration and
converse, can one decide automatically if they are equivalent, meaning that
their equality can be proven using the axioms of the theory? Bloom, Ésik,

? Work partially funded by the french projects PiCoq (ANR-09-BLAN-0169-01) and
PACE (ANR-12IS02001).

2 Paul Brunet and Damien Pous

Stefanescu and Bernátsky gave an affirmative answer to that question in two
articles, [BÉS95] and [ÉB95], in 1995.

However, although the algorithm they define proves the decidability result,
it is too complicated to be used in actual applications. In this paper, beside
some simplifications of the proofs given in [BÉS95], we give a new and more
efficient algorithm to decide this problem, which we place in the complexity
class PSpace.

The equational theory of Kleene algebra cannot be finitely axiomatised [Red64].
Krob presented the first purely axiomatic (but infinite) presentation [Kro90].
Several finite quasi-equational characterisations have been proposed [Sal66,Bof90,
Kro90,Koz91,Bof95]; here we follow the one from Kozen [Koz91].

A Kleene Algebra is an algebraic structure 〈K,+, ·,? ,0,1〉 such that 〈K,+, ·,0,1〉
is an idempotent semi-ring, and the operation ? satisfies the following properties

1 + aa? 6 a? (1a)
1 + a?a 6 a? (1b)

b+ ax 6 x⇒ a?b 6 x (1c)
b+ xa 6 x⇒ ba? 6 x (1d)

(Here a 6 b is a shorthand for a+ b = b.)
The quasi-variety KA consists in the axioms of an idempotent semi-ring to-

gether with axioms and inference rules (1a) to (1d). Kleene Algebras are thus
models of KA. We shall call regular expressions over X, written RegX , the ex-
pressions built from letters of X, the binary connectives + and ·, the unary
connective ? and the two constants 0 and 1.

Two families of such algebras are of particular interest: languages (sets of
finite words over a finite alphabet, with union as sum and concatenation as
product) and relations (binary relations over an arbitrary set with union and
composition). KA is complete for both these models [Kro90, Koz91], meaning
that for any e, f ∈ RegX , KA ` e = f if and only if e and f coincide under
any language (resp. relational) interpretation. This last property will be written
e ≡Lang f (resp. e ≡Rel f).

More remarkably, if we denote by JeK the language denoted by an expression
e, we have that for any e, f ∈ RegX , KA ` e = f if and only if JeK = JfK.
By Kleene’s theorem (see [Kle51]) the equality of two regular languages can be
reduced to the equivalence of two finite automata, which is easy to compute.
Hence, the theory KA is decidable.

Now let us add a unary operation of converse to regular expressions. We
shall denote by Reg∨X the set of regular expressions with converse over a finite
alphabet X. While doing so, several questions arise:

1. Can the converse on languages and on relations be encoded in the same
theory?

2. What axioms do we need to add to KA to model these operations?

Kleene Algebra with Converse 3

3. Are the resulting theories complete for languages and relations?
4. Are these theories decidable?

There is a simple answer to the first question: no. Indeed the equation a 6
a·a∨·a is valid for any relation a (because if (x, y) ∈ a, then (x, y) ∈ a, (y, x) ∈ a∨,
and (x, y) ∈ a, so that (x, y) ∈ a ◦ a∨ ◦ a). But this equation is not satisfied for
all languages a (for instance, with the language a = {x}, a · a∨ · a = {xxx} and
x /∈ {xxx}). This means that there are two distinct theories corresponding to
these two families of models. Let us begin by considering the case of languages.

Theorem 1 (Completeness of KAC− [BÉS95]). A complete axiomatisation of
the variety Lang∨ of languages generated by concatenation, union, star, and
converse consists of the axioms of KA together with axioms (2a) to (2d).

(a+ b)
∨
= a∨ + b∨ (2a)

(a · b)∨ = b∨ · a∨ (2b)

(a?)
∨
= (a∨)? (2c)

a∨
∨
= a. (2d)

We call this theory KAC−; it is decidable.

As for relations, we write e ≡Lang∨ f if e and f have the same language
interpretations (for a formal definition, see the “Notation” subsection below). To
prove this result, one first associates to any expression e ∈ Reg∨X an expression
e ∈ RegX, where X is an alphabet obtained by adding to X a disjoint copy of
itself. Then, one proves that the following implications hold.

e ≡Lang∨ f ⇒ JeK = JfK (3)

JeK = JfK ⇒ KAC− ` e = f (4)

(That KAC− ` e = f entails e ≡Lang∨ f is obvious; decidability comes from
that of regular languages equivalence.) We reformulate Bloom et al.’s proofs of
these implications in elementary terms in Section 1.1.

As stated before, the equation a 6 a · a∨ · a provides a difference between
languages with converse and relations with converse. It turns out that it is the
only difference, in the sense that the following theorem holds:

Theorem 2 (Completeness of KAC [BÉS95, ÉB95]). A complete axiomatisa-
tion of the variety Rel∨ of relations generated by composition, union, star, and
converse consists of the axioms of KAC− together with the axiom (5).

a 6 a · a∨ · a. (5)

We call this theory KAC; it is decidable.

4 Paul Brunet and Damien Pous

The proof of this result also relies on a translation into regular languages.
Ésik et al. define a notion of closure, written cl (), for languages over X, and they
prove the following implications:

e ≡Rel∨ f ⇒ cl (JeK) = cl (JfK) (6)
cl (JeK) = cl (JfK) ⇒ KAC ` e = f (7)

(Again, that KAC ` e = f entails e ≡Rel∨ f is obvious.) The first implication (6)
was proven in [BÉS95]; we give a new formulation of this proof in Section 1.2.
The second one (7) was proven in [ÉB95].

The last consideration is the decidability of KAC. To this end, Bloom et al.
propose a construction to obtain an automaton recognising cl (L), when given an
automaton recognising L. Decidability follows: to decide whether KAC ` e = f
one can build two automata recognising cl (JeK) and cl (JfK) and check if they are
equivalent. Unfortunately, their construction tends to produce huge automata,
which makes it useless for practical application. We propose a new and simpler
one in Section 2; by analysing this construction, we show in Section 3 how it
leads to a proof that the problem of equivalence in KAC is PSpace.

Notation

For any word w, |w| is the size of w, meaning its number of letters; for any
1 6 i 6 |w|, we’ll write w(i) for the ith letter of w and w|i , w(1)w(2) · · ·w(i)
for its prefix of size i. Also, suffixes(w) , {v | ∃u : uv = w} is the set of all
suffixes of w. A deterministic automaton is a tuple 〈Q,Σ, q0, T, δ〉; with Q a set
of states, Σ an alphabet, q0 ∈ Q an initial state, T ⊆ Q a set of final states and
δ : Q×Σ → Q a transition function. A non-deterministic automaton is a tuple
〈Q,Σ, I, T,∆〉; with Q, Σ and T same as before, I ⊆ Q a set of initial states and
∆ ⊆ Q×Σ ×Q a set of transitions. We write L (A) for the language recognised
by the automaton A . For any a ∈ Σ, we write ∆(a) for {(p, q) | (p, a, q) ∈ ∆}.
We also use the compact notation p

w−−→A q to denote that there is in the
automaton A a path labelled by w from the state p to the state q. For a set
E ⊆ Q and a relation R over Q, we write E ·R for the set {y | ∃x ∈ E : xRy }.

Given a map σ from a set X to the languages on an alphabet Σ (resp. the
relations on a set S), there is a unique extension of σ into a homomorphism from
RegX to LangΣ (resp. RelS), which we denote by σ̂. The same thing can be done
with regular expressions with converse, and we will use the same notation for it.
We finally denote by ≡V the equality in a variety V (Lang, Rel, Lang∨ or Rel∨):
e ≡V f , ∀K,∀σ : X → VK , σ̂(e) = σ̂(f).

1 Preliminary material

1.1 Languages with converse: theory KAC−

We consider regular expressions with converse over a finite alphabet X. The
alphabet X is defined as X ∪ X ′, where X ′ , {x′ | x ∈ X } is a disjoint copy

Kleene Algebra with Converse 5

of X. As a shorthand, we use ′ as an internal operation on X going from X to
X ′ and from X ′ to X such that if x ∈ X, x′ , x′ ∈ X ′ and (x′)′ , x ∈ X. An
important operation in the following is the translation of an expression e ∈ Reg∨X
to an expression e ∈ RegX. We proceed to its definition in two steps.

Let τ(e) denote the normal form of an expression e ∈ Reg∨X in the following
convergent term rewriting system:

(a+ b)
∨ → a∨ + b∨ 0∨ → 0 (a?)

∨ → (a∨)?

(a · b)∨ → b∨ · a∨ 1∨ → 1 a∨
∨ → a

The corresponding equations being derivable in KAC−, one easily obtain that

∀e ∈ Reg∨X , KAC− ` τ(e) = e (8)

We finally denote by e the expression obtained by further applying the sub-
stitution ν , [x∨ 7→ x′, (∀x ∈ X)], i.e., e , ν(τ(e)). (Note that e ∈ RegX: it
is regular, all occurrences of the converse operation have been eliminated.) As
explained in the introduction, Bloom et al.’s proof [BÉS95] amounts to proving
the implications (3) and (4). We include a syntactic and elementary presentation
of this proof, for the sake of completeness.

Lemma 3. For all e, f ∈ Reg∨X , e ≡Lang∨ f entails JeK = JfK.

Proof. For any e ∈ Reg∨X , we have τ(e) ≡Lang∨ e (†) as an immediate conse-
quence of (8). Let us write X• , X] {•} and consider the following interpreta-
tions (which appear in [BÉS95, proof of Proposition 4.3]):

µ : X −→ P (X?
•) η : X −→ P (X?

•)

x 7−→ {x · •} x ∈ X 7−→ {x · •}
x′ ∈ X ′ 7−→ {• · x}

One can check (see Appendix A.1)that η̂ is injective modulo equality of denoted
languages, in the sense that for any expression e ∈ RegX, we have

η̂(e) = η̂(f) implies that JeK = JfK . (9)

By a simple induction on e, we get µ̂(τ(e)) = η̂(ν(τ(e))) = η̂(e). Combined
with (†), we deduce that µ̂(e) = η̂(e). All in all, we obtain: e ≡Lang∨ f ⇒ µ̂(e) =
µ̂(f)⇒ η̂(e) = η̂(f)⇒ JeK = JfK.

The second implication is even more immediate, using KA completeness.

Lemma 4. For all e, f ∈ Reg∨X , if JeK = JfK then KAC− ` e = f .

Proof. By completeness of KA [Kro90,Koz91], if JeK = JfK, then we know that
there is a proof π1 : KA ` e = f . As KA is contained in KAC−, the same proof
can be seen as π1 : KAC− ` e = f . By substituting x′ by (x∨) everywhere in
this proof, we get a new proof π2 : KAC− ` τ(e) = τ(f). By (8) and transitivity
we thus get KAC− ` e = f .

6 Paul Brunet and Damien Pous

We finally deduce that e ≡Lang∨ f ⇔ JeK = JfK⇔ KAC− ` e = f . Since the
regular expressions e and f can be easily computed from e and f , the problem
of equivalence in KAC− thus reduces to an equality of regular languages, which
makes it decidable.

1.2 Relations with converse: theory KAC

We now move to the equational theory generated by relational models. It turns
out that this theory will be characterised using “closed” languages on the ex-
tended alphabet X. To define this closure operation, we first define a mirror
operation w on words over X, such that ε , ε and for any x,w ∈ X × X?,
wx = x′w. Accordingly with the axiom (5) of KAC we define a reduction rela-
tion on words over X, using the following word rewriting rule.

www w .

We call www a pattern of root w. The last two thirds of the pattern are ww.
Following [BÉS95, ÉB95], we extend this relation into a closure operation on
languages.

Definition 5. The closure of a language L ⊆ X? is the smallest language
containing L that is downward-closed with respect to :

cl (L) , {v | ∃u ∈ L : u ? v } .

Example 6. If X = {a, b, c, d}, then X = {a, b, c, d, a′, b′, c′, d′}, and ab′ = ba′.
We have the reduction cab′ba′ab′d′ cab′d′, by triggering a pattern of root ab′.
For L = {aa′a, b, cab′ba′ab′d′}, we have cl (L) = L ∪ {a, cab′d′}.

Now we define a family of languages which play a prominent role in the
sequel.

Definition 7. For any word w ∈ X?, we define a regular language Γ (w) by:

Γ (ε) , {ε}
∀x ∈ X,∀w ∈ X?, Γ (wx) , (x′Γ (w)x)

?
.

An equivalent operator called G is used in [BÉS95]: we actually have Γ (w) =
G(w), and our recursive definition directly corresponds to [BÉS95, Proposi-
tion 5.11.(2)]. By using such a simple recursive definition, we avoid the need
for the notion of admissible maps, which is extensively used in [BÉS95].

Instead, we just have the following property to establish, which illustrates
why these languages are of interest: words in Γ (w) reduce into the last two
thirds of a pattern compatible with w. Therefore, in the context of recognition
by an automaton, Γ (w) contains all the words that could potentially be skipped
after reading w, in a closure automaton.

Proposition 8. For all words u and v, u ∈ Γ (v)⇔ ∃t ∈ suffixes(v) : u ? tt.

Kleene Algebra with Converse 7

//
0

v(n)′
//

oo 1

v(n−1)′
//

v(n)
oo 2

v(n−2)′
//

v(n−1)
oo · · ·

v(1)′
//

v(n−2)
oo n

v(1)
oo

Fig. 1: Automaton G (v) recognising Γ (v), with |v| = n.

Proof. The proof of the implication from left to right is routine but a bit lengthy,so
that we put it in Appendix A.2.

For the converse implication, we first define the following language: Γ ′(v) ,{
tt | t ∈ suffixes(v)

}
. We thus have to show that the upward closure of Γ ′(v)

is contained in Γ (v). We first check that this language satisfies Γ ′(ε) = ε and
Γ ′(vx) = ε + x′Γ ′(v)x, which allows us to deduce that Γ ′(v) ⊆ Γ (v) by a
straightforward induction.

It thus suffices to show that Γ (v) is upward-closed with respect to . For
this, we introduce the family of automata G (v) depicted in Figure 1. One can
check that G (v) recognises Γ (v) by a simple induction on v. One can moreover

notice that in this automaton, if p x−−→G (v) q, then q
x′−−→G (v) p. More generally,

for any word u, if p u−−→G (v) q, then q
u−−→G (v) p. So if u1wu2 ∈ Γ (v), then by

definition of the automaton we have 0
u1−−−→G (v) q1

w−−→G (v) q2
u2−−−→G (v) 0 , and

thus, by the previous remark:

0
u1

G (v)
// q1

w

G (v)
// q2

w

G (v)
// q1

w

G (v)
// q2

u2

G (v)
// 0 ,

i.e., u1wwwu2 ∈ Γ (v). In other words, for any words v and w and any u ∈ Γ (v),
if w u then w is also in Γ (v), meaning exactly that Γ (v) is upward-closed
with respect to .

Since Γ ′(v) ⊆ Γ (v), we deduce that Γ (v) contains the upward closure of
Γ ′(v), as expected.

We now have enough material to embark in the proof of the implication (6)
from the introduction, stating that if two expressions e, f ∈ Reg∨X are equal for
all interpretations in all relational models, then cl (e) = cl (f).

Proof. Bloom et al. [BÉS95] consider specific relational interpretations: for any
word u ∈ X? and for any letter x ∈ X, they define

φu(x) , {(i− 1, i) | u(i) = x} ∪ {(i, i− 1) | u(i) = x′ } ⊆ {0, . . . , n}2 ,

where n , |u|. The key property of those interpretations is the following:

(0, n) ∈ φ̂u(v)⇔ v ? u . (10)

We give a new proof of this property, by using the automaton Φ(u) depicted in
Figure 2. By definition of Φ(u) and φu, we have that

(i, j) ∈ φu(x)⇔ i
x−−→Φ(u) j .

8 Paul Brunet and Damien Pous

// 0

u(1)
//
1

u(2)
//

u(1)′
oo 2

u(3)
//

u(2)′
oo · · ·

u(n)
//

u(3)′
oo n

u(n)′
oo

//

Fig. 2: Automaton Φ(u), with |u| = n.

// 0
x //

x))

1′
u(1)
//

x′
oo 2′

u(2)
//

u(1)′
oo · · ·

u(n)
//

u(2)′
oo n′

u(n)′
oo

1

u(1)
//
2

u(2)
//

u(1)′
oo · · ·

u(n)
//

u(2)′
oo n

u(n)′
oo

//

Fig. 3: Automaton Φ′(xu), with |u| = n, language equivalent to Φ(xu).

Therefore, proving (10) amounts to proving

v ∈ L(Φ(u))⇔ v ? u . (11)

First notice that i x−−→Φ(u) j ⇔ j
x′−−→Φ(u) i. We can extend this to paths (as in

the proof of Proposition 8) and then prove that if s t and i
t−−→Φ(u) j then

i
s−−→Φ(u) j. As u is clearly in L(Φ(u)), any v such that v ? u is also in L(Φ(u)).
We proceed by induction on u for the other implication. The case u = ε

being trivial, we consider v ∈ L(Φ(xu)). We introduce a second automaton
Φ′(xu) given in Figure 3, that recognises the same language as Φ(xu). The upper
part of this automaton is actually the automaton G (xu) (as given in Figure 1),
recognising the language Γ (xu). Moreover, the lower part starting from state 1 is
the automaton Φ(u). This allows us to obtain that L(Φ(xu)) = Γ (xu)xL(Φ(u)).
Hence, for any v ∈ L(Φ(xu)), there are v1 ∈ Γ (xu) and v2 ∈ L(Φ(u)) such that
v = v1xv2. By induction, we get v2 ? u, and by Proposition 8 we know that
v1 ? ww, with w ∈ suffixes(xu). That means that xu = tw, for some word t,
so xu = tw = w t. If we put everything back together:

v = v1xv2
? v1xu

? wwxu = www t w t = xu .

This concludes the proof of (11), and thus (10).
We follow Bloom et al.’s proof [BÉS95] to deduce that the implication (6)

from the introduction holds: we first prove that for all e ∈ RegX, we have

u ∈ cl (JeK)⇔ ∃v ∈ JeK, v ? u (by definition)

⇔ ∃v ∈ JeK, (0, n) ∈ φ̂u(v) (by (10))

⇔ (0, n) ∈ φ̂u(e) .

Kleene Algebra with Converse 9

(For the last line, we use the fact that for any relational interpretation φ, we
have φ̂(e) =

⋃
w∈JeK φ̂(w).)

Furthermore, as φu(x′) = φu(x)
∨, we can prove that φ̂u(e) = φ̂u(e) (see

Appendix A.3). Therefore, for all expressions e, f ∈ Reg∨X such that e ≡Rel∨ f ,
we have φ̂u(e) = φ̂u(e) = φ̂u(f) = φ̂u(f), and we deduce that cl (JeK) = cl (JfK)
thanks to the above characterisation.

2 Closure of an automaton

The problem here is the following: given two regular expressions e, f ∈ Reg∨X ,
how to decide cl (JeK) = cl (JfK)? We follow the approach proposed by Bloom
et al.: given an automaton recognising a language L, we show how to construct
an automaton recognising cl (L). To solve the initial problem, it then suffices to
build two automata recognising JeK and JfK, to apply a construction to obtain two
automata for cl (JeK) and cl (JfK), and to check those for language equivalence.

As a starting point, we first recall the construction proposed in [BÉS95].

2.1 The original construction

This construction uses the transition monoid of the input automaton:

Definition 9 (Transition monoid). Let A = 〈Q,Σ, q0, T, δ〉 be a deterministic
automaton. Each word u ∈ Σ? induces a function uA : Q→ Q which associates
to a state p the state q obtained by following the unique path from p labelled
by u. The transition monoid of A , written MA , is the set of functions Q → Q
induced by words of Σ?, equipped with the composition of functions and the
identity function.

This monoid is finite, and its subsets form a Kleene Algebra. Bloom et al.
then proceed to define the closure automaton in the following way:

Theorem 10 (Closure automaton of [BÉS95]). Let L ⊆ X? be a regular lan-
guage, recognised by the deterministic automaton A = 〈Q,X, q0, Qf , δ〉. Let
MA be the transition monoid of A . Then the following deterministic automaton
recognises cl (L):

B , 〈P (MA)× P (MA) ,X, ({εA } , {εA }) , T, δ1〉
with T , {(F,G) | ∃uA ∈ F : uA (q0) ∈ Qf } ,

and δ1((F,G), x) ,
(
F · {xA } ·

(
({x′A } ·G · {xA })

?)
, ({x′A } ·G · {xA })

?)
.

An important idea in this construction, that inspired our own, is the transi-
tion rule for the second component above. Let us write δ2(G, x) for the expression
({x′A } ·G · {xA })?, so that the definition of δ1 can be reformulated as

δ1((F,G), x) = (F · {xA } · δ2(G, x), δ2(G, x)).

10 Paul Brunet and Damien Pous

With that in mind, one can see the second component as some kind of history,
that runs on its own, and is used at each step to enrich the first component. At
this point, it might be interesting to notice that the formula for δ2(G, x) closely
resembles the one for Γ (wx) = (x′Γ (w)x)

?, which we defined in Section 1.2.

2.2 Intuitions

Let us forget the above construction, and try to build a closure automaton. One
way would be to simply add transitions to the initial automaton. This idea comes
naturally when one realises that if u ? v, then v is obtained by erasing some
subwords from u: at each reduction step u1wwwu2 u1wu2 we just erase ww.
To “erase” such subwords using an automaton, it suffices to allow one to jump
along certain paths.

Suppose for instance that we start from the following automaton:

// q0
a // q1

b // q2
b′ // q3

a′ // q4
a // q5

b // q6 //

We can detect the pattern ababab, and allow one to “jump” over it when reading
the last letter of the root of the pattern, in this case the b in second position.
Our automaton thus becomes:

// q0
a // q1

b //

b

@@
q2

b′ // q3
a′ // q4

a // q5
b // q6 //

However, this approach is too naive, and it quickly leads to errors. If for in-
stance we slightly modify the above example by adding a transition labelled by
b′ between q0 and q1, the same method leads to the following automaton, by
detecting the patterns b′bb′ between q0 and q3 and abb′a′ab between q0 and q6.

// q0
a //

b′
//

b′

��

q1
b //

b

@@
q2

b′ // q3
a′ // q4

a // q5
b // q6 //

The problem is that the word b′b is now wrongly recognised in the produced
automaton. What happens here is that we can use the jump from q1 to q6,
even though we didn’t read the prerequisite for doing so, in this case the a
constituting the beginning of the root ab of pattern ababab. (Note that the dual
idea, consisting in enabling a jump when reading the first letter of the root of
the pattern, would lead to similar problems.)

A way to prevent that, which was implicitly introduced in the original con-
struction, consists in using a notion of history. The states of the closure au-
tomaton will be pairs of a state in the initial automaton and a history. That will
allow us to distinguish between the state q1 after reading a and the state q1 after
reading b′, and to specify which jumps are possible considering what has been

Kleene Algebra with Converse 11

previously read. In the construction given in [BÉS95], the history is given by an
element of P (MA), in the second component of the states (the “G” part). We
will define a history as a set of words allowing for the same jumps, using Γ (w).

2.3 Our construction

We have shown in Section 1.2 that ∀u ∈ Γ (w),∃v ∈ suffixes(w) : u ? vv, so we
do have a characterisation of the words “allowing jumps” after having read some
word w. The problem is that we want a finite number of possible histories, and
there are infinitely many Γ (w) (for instance, all the Γ (an) are different). To get
that, we will project Γ (w) on the automaton. Let us consider a non-deterministic
automaton A = 〈Q,X, I, T,∆〉 recognising a language L.

Definition 11. For any word w ∈ X? we define the relation γ(w) between states
of A by γ(ε) , IdQ and γ(wx) = (∆(x′) ◦ γ(w) ◦∆(x))

?.

One can notice right away the strong relationship between γ and Γ :

Proposition 12. ∀w, q1, q2, (q1, q2) ∈ γ(w) ⇔ ∃u ∈ Γ (w) : q1
u−−→A q2.

This result is straightforward once one realises that γ(w) = σ̂ (Γ (w)) with
σ(x) = ∆(x). By composing Propositions 8 and 12 we eventually obtain that
((q1, q2) ∈ γ(w)) iff ∃u : q1

u−−→A q2 and u ? vv, with v a suffix of w.
The set Q being finite, γ has a finite index and one can define a finite set of

histories as follows:

Definition 13. Let ∼γ be the kernel of γ: u ∼γ v iff γ(u) = γ(v). We define
the set G as the quotient of X? by ∼γ . We denote by [w] the elements of G, in
such a way that [u] = [v]⇔ u ∼γ v ⇔ γ(u) = γ(v).

We now have all the tools required for our construction of the closure of A :

Theorem 14 (Closure Automaton). The closure of the language L is recognised
by the automaton A ′ , 〈Q×G,X, I × {[ε]} , T ×G,∆′〉 with:

∆′ = {((q1, [w]), x, (q2, [wx])) | (q1, q2) ∈ ∆(x) ◦ γ(wx)} .

We shall write L′ for the language recognised by A ′. One can read the set
of transitions as “from a state q1 with an history w, perform a step x in the
automaton A , and then a jump compatible with wx, which becomes the new
history”. One can see, from the definition of ∆′ and Proposition 12 that :

(q1, [u])
x−−→A ′ (q2, [ux]) ⇔ ∃(q3, v) ∈ Q× Γ (ux) : q1

x−−→A q3
v−−→A q2. (12)

Now we prove the correctness of this construction. First recall the notion of
simulation [Mil89]:

Definition 15 (Simulation). A relation R between the states of two automata
A and B is a simulation if for all (p, q) ∈ R we have (a) if p x−−→A p′, then there
exists q′ such that q x−−→B q′ and (p′, q′) ∈ R, and (b) if p ∈ TA then q ∈ TB.

We say that A is simulated by B if there is a simulation R such that for any
p0 ∈ IA , there is q0 ∈ IB such that p0 R q0.

12 Paul Brunet and Damien Pous

The following property of γ is proved by exhibiting such a simulation:

Proposition 16. For all words u, v ∈ X? such that u v, we have γ(u) ⊆ γ(v).

Proof. First, notice that Γ (u) ⊆ Γ (v) ⇒ γ(u) ⊆ γ(v), using Proposition 12.
It thus suffices to prove u v ⇒ Γ (u) ⊆ Γ (v), which can be rewritten as
Γ (u1wwwu2) ⊆ Γ (u1wu2). We can drop u2 (it is clear that Γ (w1) ⊆ Γ (w2) ⇒
∀x ∈ X, Γ (w1x) ⊆ Γ (w2x), from the definition of Γ): we now have to prove
that Γ (u1www) ⊆ Γ (u1w). The proof of this inclusion relies on the fact that the
automaton G (u1www) is simulated by the automaton G (u1w), see Appendix A.4
for a formal definition of this simulation.

We define an order relation 4 on the states of the produced automaton
(Q×G), by (p, [u]) 4 (q, [v]) , p = q ∧ γ(u) ⊆ γ(v).

Proposition 17. The relation 4 is a simulation for the automaton A ′.

Proof. Suppose that (p, [u]) 4 (q, [v]) and (p, [u])
x−−→A ′ (p

′, [ux]), i.e., (p, p′) ∈
∆x ◦ γ(ux). We have p = q and γ(u) ⊆ γ(v), hence γ(ux) ⊆ γ(vx), and thus
(p, p′) ∈ ∆x ◦ γ(vx) meaning that (p, [v])

x−−→A ′ (p
′, [vx]). It remains to check

that (p′, [ux]) 4 (p′, [vx]), i.e., γ(ux) ⊆ γ(vx), which we just proved.

We may now prove that L′ = cl (L).

Lemma 18. L′ ⊆ cl (L)

Proof. We prove by induction on u that for all q0, q such that (q0, [ε])
u−−→A ′

(q, [u]), there exists v such that v ? u and q0
v−−→A q. The case u = ε is trivial.

If (q0, [ε])
u−−→A ′ (q1, [u])

x−−→A ′ (q, [ux]), by induction one can find v1 such
that q0

v1−−→A q1 and v1 ? u. We also know (by (12) and Proposition 8) that
there are some q2, v2 and v3 ∈ suffixes(ux) such that q1

x−−→A q2, v2 ? v3v3
and q2

v2−−→A q. We thus get

q0
v1−−→A q1

x−−→A q2
v2−−→A q and v1xv2 ? uxv2

? uxv3v3 ux.

By choosing q ∈ T , we obtain the desired result.

Lemma 19. L ⊆ L′

Proof. This is actually very simple. First notice that for all u, γ(u) is a reflexive
relation, hence q1

x−−→A q2 entails ∀u, (q1, [u])
x−−→A ′ (q2, [ux]). This means that

the relation R defined by p R (q, [w]) ⇔ p = q is a simulation between A and
A ′, and thus L = L(A) ⊆ L(A ′) = L′.

Lemma 20. L′ is downward-closed for .

A technical lemma is required to establish this closure property:

Lemma 21. If (q1, [uw])
x−−→A ′ (q2, [uwx])

wx wx−−−−−−→A ′ (q3, [uwx wx wx]), then
(q1, [uw])

x−−→A ′ (q3, [uwx]).

Kleene Algebra with Converse 13

Proof sketch. The proof being quite verbose and dry, we shall only give a sketch
of it here, referring to Appendix A.5 for a detailed one. If |w| = n and |u| = m,
the premise can be equivalently stated:

(q1, [(uw)|m+n−1])
w(n)−−−−→A ′ (q2, [uw])

ww−−−→A ′ (q3, [uwww]).

(Recall that u|i denotes the prefix of length i of a word u.) Let us write Γi =
Γ ((uwww)|m+n+i) = Γ (uw(ww)|i) and xi = (uwww)(n+m+i) for 0 6 i 6 2n.
By Proposition 12 and the definition of A ′, we can show that there are vi ∈ Γi
such that the execution above can be lifted into an execution in A :

q1
x0v0x1v1···xivi···x2nv2n−−−−−−−−−−−−−−−−−→A q3.

Then one can prove by recurrence on i and using Proposition 8 that:

∀i,∃ti ∈ Γ (uw) : (ww)|ivi ? ti(ww)|i. (13)

We deduce that v0x1v1 · · ·xivi · · ·x2nv2n ? t0t1 · · · t2nww ∈ Γ (uw)2n+2 ⊆
Γ (uw). By Proposition 8, this means that v0x1v1 · · ·xivi · · ·x2nv2n is in Γ (uw),

so that (q1, q3) ∈ ∆(w(n)) ◦ γ(uw), and (q1, [uw|n−1])
w(n)−−−−→A ′ (q2, [uw]).

With this intermediate lemma, one can obtain a succinct proof of Lemma 20:

Proof. The statement of the lemma is equivalent to saying that if u v with
u ∈ L′ then v is also in L′. Consider u = u1w · w · wu2 and v = u1wu2 with
|w| = n > 1 (the case where w = ε doesn’t hold any interest since it implies that
u = v). By combining Lemma 21 and Proposition 17 we can build the following
diagram:

(q0, [ε])
u1w|n−1// (q1, [u1w|n−1])

w(n) //

w(n)

Lem. 21 ''

(q2, [u1w])
ww // (q3, [u1www])

u2 // (qf , [u])

(q3, [u1w])
u2

Prop. 17
//

4

Prop. 16

(qf , [v])

4

Lemmas 19 and 20 tell us that L′ is closed and contains L, so by definition
of the closure of a language, we get cl (L) ⊆ L′. Lemma 18 gives us the other
inclusion, thus proving Theorem 14.

3 Analysis and consequences

3.1 Relationship with [BÉS95]’s construction

As suggested by an anonymous referee, one can also formally relate our con-
struction to the one from [BÉS95]: we give below an explicit and rather natural

14 Paul Brunet and Damien Pous

bisimulation relation between the automata produced by both these methods.
This results in an alternative correctness proof of our construction, by reducing
it to the correctness of the one from [BÉS95].

We first make the two constructions comparable: the original construction,
because it considers the transition monoid, takes as input a deterministic au-
tomaton. It returns a deterministic automaton. Instead, our construction does
not require determinism in its input, but produces a non-deterministic automa-
ton. We thus have to ask of both methods to accept as their input a non-
deterministic automaton, and to return a deterministic automaton.

For our construction, the straightforward thing to do would be to determinise
the automaton afterwards. We can actually do better, by noticing that from a
state (p, [u]), reading some x, there may be a lot of accessible states, but all of
their histories (second components) will be equal to [ux]. So in order to get a
deterministic automaton, one only has to perform the power-set construction on
the first component of the automaton. This way, we get an automaton A1 with
states in P (Q)×G and a transition function

δ1((P, [u]), x) = (P · (∆(x) ◦ γ(ux)) , [ux]) .

The original construction can also be adjusted very easily: first build a de-
terministic automaton D with the usual powerset construction, then apply the
construction as described in Theorem 10 to get an automaton which we call A2.
An important thing here is to understand the shape of the resulting transition
monoid MD : its elements are functions over sets of states (because of the power-
set construction) induced by words; more precisely, they are sup-semilattice ho-
momorphisms, and they are in bijection with binary relations on states.

Define the following KA-homomorphism from P (MD) to P
(
Q2
)
:

i(F) = {(p, q) | ∃uD ∈ F : q ∈ uD({p})} .

(That i is a KA-homomorphism comes from the fact that the elements of MD
are themselves sup-semilattice homomorphisms on P (Q).) We can check that
for all x ∈ X, we have

i ({xD}) = {(p, q) | q ∈ xD({p})} = {(p, q) | q ∈ δ({p} , x)}

=
{
(p, q)

∣∣∣ p x−−→A q
}
= ∆(x) ,

It follows that the following relation is a bisimulation between A1 and A2.

{((Q, [u]), (F,G)) | Q = I · i(F) and γ(u) = i(G)}

In Appendix A.6 we give a detailed proof of this.

3.2 Complexity

Because we are speaking about algorithms rather than actual programs, it is a
bit difficult to give accurate complexity bounds, considering the many possible

Kleene Algebra with Converse 15

data structures appearing during the computation. However, one may think that
a relevant complexity measure of the final algorithm (for deciding equality in
KAC) could be the size of the produced automata. In the following the size of
an automaton is its number of states. In order to give a fair comparison, we will
consider the generic algorithms given in the previous subsection, taking as their
input a non-deterministic automaton, and returning a deterministic automaton.

Let us begin by evaluating the size of the automaton produced by the method
in [BÉS95], given a non-deterministic automaton of size n. As explained above,
the states of the constructed transition monoid (MD) are in bijection with the
binary relations on Q. There are thus at most 2n

2

elements in this monoid. We
deduce that the final automaton, whose states are pairs of subsets of MD has at
most 22

n2

× 22
n2

= 22
n2+1

states.
Now with the deterministic version of our construction, the states are in the

set P (Q) × G. Since G is the set of equivalence classes of ∼γ and γ has values
in the reflexive binary relations over Q, we know that ∼γ has less than 2n×(n−1)

elements. Hence we can see that |P (Q)×G| 6 2n × 2n×(n−1) = 2n
2

, which is
significantly smaller than the 22

n2+1

states we get with the other construction.

3.3 A polynomial-space algorithm

The above upper-bound on the number of states of the automata produced by
our construction allows us to show that the problem of equivalence in KAC is
in PSpace (the problem was already known to be PSpace-hard since KAC is
conservative over KA, which is PSpace-complete [MS73]).

Recall that the equivalence of two deterministic automata A and B is in
LogSpace. The algorithm to show that relies on the fact that A and B are
different if and only if there is a word w in the difference of L(A) and L(B)
such that |w| 6 |A | × |B|. With that in mind, we can give a non-deterministic
algorithm, by simulating a computation in both automata with a letter chosen
non-deterministically at each step, with a counter to stop us at size |A | × |B|.
The resulting algorithm will only have to store the counter of size log(|A |× |B|)
and the two current states.

For our problem, the first step is to compute e and f from the regular ex-
pressions with converse e and f . It is obvious that such a transformation can
be done in linear time and space, by a single sweep of both e and f . Then we
have to build automata for e and f . Once again this is a very light operation: if
one considers for instance the position automaton (also called Glushkov’s con-
struction [Glu61]), we obtain automata of respective sizes n = |e| + 1 = |e| + 1
and m = |f |+ 1 = |f |+ 1, where | · | denotes the number of variable leaves of a
regular expression (possibly with converse).

Our construction then produces closed automata of size at most 2n
2

and 2m
2

,
so that the non-deterministic algorithm to check their equivalence needs to scan
all words of size smaller than by 2n

2×2m2

= 2n
2+m2

. The counter used to bound
the recursion depth can thus be stored in polynomial space (n2+m2). It is worth

16 Paul Brunet and Damien Pous

input : Two regular expressions with converse e, f ∈ Reg∨X
output: A Boolean, saying whether or not KAC ` e = f .

1 A1 = 〈Q1,X, I1, T1,∆1〉 ← Glushkov’ automaton recognising JeK;
2 A2 = 〈Q2,X, I2, T2,∆2〉 ← Glushkov’ automaton recognising JfK;
3 N ← (2(|e|+1)2 × 2(|f |+1)2); /* N gets a value > |cl (A1)| · |cl (A2)| */
4 ((P1, R1), (P2, R2))← ((I1, IdQ1), (I2, IdQ1));
5 while N > 0 do
6 N ← N − 1; /* N bounds the recursion depth */
7 f1 ← is_empty(P1 ∩ T1);
8 f2 ← is_empty(P2 ∩ T2);
9 if f1 = f2 then

10 x←random(X); /* Non-deterministic choice */
11 (R1, R2)← ((∆1(x

′) ◦R1 ◦∆1(x))
?, (∆2(x

′) ◦R2 ◦∆2(x))
?);

12 (P1, P2)← (P1 · (∆1(x) ◦R1), P2 · (∆2(x) ◦R2));
13 else
14 return false; /* A difference appeared for some word, e 6= f */
15 end
16 end
17 return true; /* There was no difference, KAC ` e = f */

Algorithm 1: A PSpace algorithm for KAC

mentionning here that with the automata constructed in [BÉS95], the counter
would have size 2n

2+1 + 2m
2+1 which is not a polynomial.

Now the last two important things to worry about are the representation of
the states of the closure automata, in particular their “history” component, and
the way to compute their transition function. Let us focus on the automaton for
e and let Q be the set of states of the Glushkov automaton built out of it.

– For the state representation, one needs to represent an equivalence class
[u] ∈ G by its image under γ: while the smallest word w ∈ [u] may be quite
long, γ(u) is just a binary relation on Q. We shall thus represent the states
in the determinised closure automaton as pairs of a set of states in Q and a
binary relation (set of pairs) over Q. Such a pair can be stored in polynomial
space (recall that |Q| = n = |e|+ 1).

– For computing the transition function, the image of a pair ({q1, · · · , qk} , R)
(with R ⊆ Q2) by a letter x ∈ X is done in two steps: first the rela-
tion becomes R′ = (∆(x′) ◦R ◦∆(x))

?, then the set of states becomes
{q | ∃i, 1 6 i 6 k : (qi, q) ∈ ∆(x) ◦R′ }. Those computations take place in
PSpace. (The composition of two relations in Q2 can be performed in space
O
(
|Q|2

)
, and the same holds for the reflexive and transitive closure of a

relation R by building the powers (R+ IdQ)
2k and keeping a copy of the

previous iteration to stop when the fixed-point is reached.)

Summing up, we obtain Algorithm 1, which is PSpace.

Kleene Algebra with Converse 17

Conclusion

Starting from the works of Bernátsky, Bloom, Ésik and Stefanescu, we gave a
new and more efficient algorithm to decide the theory KAC. This algorithm
relies on a new construction for the closure of an automaton, which allowed us
to show that the problem was in fact in the complexity class PSpace.

To prove the correctness of our construction, we used the family of regular
languages Γ (w) (G(w∨) in [BÉS95]), and we establish its main properties using
a proper finite automata characterisation. Moreover, this function allowed us to
reformulate the proof of the completeness of the reduction from equality in Rel∨

to equivalence of closed automata (implication (6) from the introduction).
As an exercise, we have implemented and tested the various constructions

and algorithms in an OCaml program which is available online1.
To continue this work, we would like to implement our algorithm in the proof

assistant Coq, as a tactic to automatically prove the equalities in KAC—as it has
already been done for the theories KA and KAT. The simplifications we propose
in this paper give us hope that such a task is feasible. The main difficulty cer-
tainly lies in the formalisation of the completeness proof of KAC (implication (7)
from the introduction): the proof given in [ÉB95] uses yet another automaton
construction for the closure, which is much more complicated than the one used
in [BÉS95], and which seems quite difficult to formalise in Coq. We hope to find
an alternative completeness proof, by exploiting the simplicity of the presented
construction.

Acknowledgements. We are grateful to the anonymous referees who suggested
us the alternative proof of correctness which we provide in Section 3.1, and who
helped us to improve this paper.

References

[BÉS95] Bloom, S. L., Ésik, Z., Stefanescu, G.: Notes on equational theories of rela-
tions. Algebra Universalis 33, 98–126 (1995)

[Bof90] Boffa, M.: Une remarque sur les systèmes complets d’identités rationnelles.
Informatique Théorique et Applications 24, 419–428 (1990)

[Bof95] Boffa, M.: Une condition impliquant toutes les identités rationnelles. Infor-
matique Théorique et Applications 29, 515–518 (1995)

[Con71] Conway, J. H.: Regular algebra and finite machines. Chapman and Hall
Mathematics Series (1971)

[ÉB95] Ésik, Z., Bernátsky, L.: Equational properties of Kleene algebras of relations
with conversion. Theoretical Computer Science 137, 237–251 (1995)

[Glu61] Glushkov, V. M.: The abstract theory of automata. Russian Mathematical
Surveys 16, 1 (1961)

[Kle51] Kleene, S. C.: Representation of Events in Nerve Nets and Finite Automata.
Memorandum. Rand Corporation (1951)

1 http://perso.ens-lyon.fr/paul.brunet/cka.html

http://perso.ens-lyon.fr/paul.brunet/cka.html

18 Paul Brunet and Damien Pous

[Koz91] Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra
of Regular Events. In: LICS, pp. 214–225. IEEE Computer Society (1991)

[Kro90] Krob, D.: A Complete System of B-Rational Identities. In: ICALP, Lecture
Notes in Computer Science, vol. 443, pp. 60–73. Springer (1990)

[MS73] Meyer, A., Stockmeyer., L. J.: Word problems requiring exponential time.
In: Proc. ACM symposium on Theory of computing, pp. 1–9. ACM (1973)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall (1989)
[Red64] Redko, V. N.: On defining relations for the algebra of regular events. Ukrain-

skii Matematicheskii Zhurnal pp. 120–126 (1964)
[Sal66] Salomaa, A.: Two Complete Axiom Systems for the Algebra of Regular

Events. J. ACM 13, 158–169 (1966)

Kleene Algebra with Converse 19

A Omitted proofs

A.1 Proof of Equation (9)

We will show here that η̂(e) = η̂(f) implies that JeK = JfK, for e and f regular
expressions over X.

It is well known that for any expression e ∈ RegX, for any σ : X −→ P (Σ?),

σ̂(e) =
⋃

w∈JeK

σ̂(w).

Consider the following partial function: i : X?
• −→ X?

ε 7−→ ε
x•w 7−→ x · i(w)
•xw 7−→ x′ · i(w).

We will write î the function [W 7→ {i(w) | w ∈W}]. We will show by induc-
tion on w ∈ X? that î ◦ η̂(w) = {w}:

– î ◦ η̂(ε) = î ({ε}) = {ε};
– if x ∈ X, then

î ◦ η̂(xw) = î(η(x) · η̂(w)) (η̂ is a morphism)

= î({x•} · η̂(w)) (definition of η)

= {x} · (̂i ◦ η̂(w)) (definition of i)
= {xw}; (induction hypothesis)

– and similarly if x′ ∈ X ′, then î ◦ η̂(x′w) = î({•x} · η̂(w)) = {x′} · (̂i ◦ η̂(w)) =
{x′w}.

Thus, we get that:

JeK =
⋃

w∈JeK

{w} =
⋃

w∈JeK

î ◦ η̂(w) = î

 ⋃
w∈JeK

η̂(w)

 = î(η̂(e)).

Thus we get JeK = î(η̂(e)) = î(η̂(f)) = JfK.

A.2 Proof of Proposition 8

Let us prove the first implication of Proposition 8:

∀w ∈ X?,∀u ∈ Γ (w),∃v ∈ suffixes(w) : u ? vv.

We will proceed by induction on w:

1. If w = ε, then u ∈ Γ (ε) = {ε}. So u = ε 0 εε and obviously ε ∈ suffixes(ε).

20 Paul Brunet and Damien Pous

2. Otherwise w = wx, and u ∈ Γ (wx) = (x′Γ (w)x)
?. Thus we know that for

some n ∈ N, u ∈ (x′Γ (w)x)
n. We now will prove by recurrence on n that

u ∈ (x′Γ (w)x)
n ⇒ ∃v ∈ suffixes(wx) : u ? vv:

(a) If n = 0 then u = ε 0 εε and ε ∈ suffixes(wx).
(b) If n = m + 1 then we can introduce u1 ∈ Γ (w) and u2 ∈ (x′Γ (w)x)m

such that u = x′u1xu2.
i. By induction hypothesis, ∃v1 ∈ suffixes(w) such that u1 ? v1v1.
ii. By reccurence hypothesis, ∃v2 ∈ suffixes(wx) such that u2 ? v2v2.
Thus we know that u = x′u1xu2 ? x′v1v1xv2v2. We will now do a case
analysis on the length of v2.
i. If |v2| = 0, then v2 = ε so u ? x′v1v1x = v1xv1x.
ii. If |v2| > 0, as v2 ∈ suffixes(wx), we can write v2 = v3x with v3 ∈

suffixes(w). We will now compare the sizes of v1 and v3, both being
suffixes of w.
A. If |v1| 6 |v3|, then v3 = v4v1. Thus we have:

u ? x′v1v1xv3xv3x = x′v1v1xx
′v1 v4v4v1x

= v1xv1xv1x v4v4v1x

 v1x v4v4v1x = v2v2

B. Otherwise we can write v1 = v5v3 and thus:

u ? x′v5v3v5v3xv3xv3x

 v3v5xv5v3x = v1xv1x

So we have shown that either u ? v1xv1x or u ? v2v2, and as we
know that both v1x and v2 are suffixes of wx, we have finished.

A.3 Proof of φ̂u(e) = φ̂u(e)

We first give an alternative definition of e: let χ and ξ be the following mutually
recursive functions:

χ(0),0 ξ(0),0
χ(1),1 ξ(1),1
χ(x),x ξ(x),x′

χ(e+ f),χ(e) + χ(f) ξ(e+ f),ξ(e) + ξ(f)

χ(e · f),χ(e) · χ(f) ξ(e · f),ξ(f) · ξ(e)
χ(e?),(χ(e))? ξ(e?),(ξ(e))?

χ(e∨),ξ(e) ξ(e∨),χ(e)

χ and ξ are both functions mapping an expression in Reg∨X to an expression in
RegX. It is quite immediate that e = ν(τ(e)) = χ(e).

Hence, what we want is to prove that φ̂u(e) = φ̂u(χ(e)). Because of the
mutually reccursive definition we gave, we will prove inductively on e ∈ Reg∨X
the following:

φ̂u(χ(e)) = φ̂u(e) ∧ φ̂u(ξ(e)) = φ̂u(e)
∨

Kleene Algebra with Converse 21

– χ(0) = 0 and φ̂u(ξ(0)) = φ̂u(0) = 0 = 0∨ = φ̂u(0)
∨
, so this case and the

case 1 don’t hold any difficulty.
– φ̂u(χ(x)) = φ̂u(x), so no problem there, but φ̂u(ξ(x)) = φ̂u(x

′) = φu(x
′). By

the definition of φu we get:

φu(x
′) = {(i− 1, i) | u(i) = x′} ∪ {(i, i− 1) | u(i) = x}
= {(i, i− 1) | u(i) = x′}∨ ∪ {(i− 1, i) | u(i) = x}∨

= ({(i, i− 1) | u(i) = x′} ∪ {(i− 1, i) | u(i) = x})∨

= φu(x)
∨

Every other case is then quite simple:
– e+ f : φ̂u(χ(e+ f)) = φ̂u(χ(e) + χ(f)) = φ̂u(χ(e)) ∪ φ̂u(χ(f))

= φ̂u(e) ∪ φ̂u(f) = φ̂u(e+ f)

φ̂u(ξ(e+ f)) = φ̂u(ξ(e) + ξ(f)) = φ̂u(ξ(e)) ∪ φ̂u(ξ(f))
= φ̂u(e)

∨
∪ φ̂u(f)

∨
=
(
φ̂u(e) ∪ φ̂u(f)

)∨
=
(
φ̂u(e+ f)

)∨
– e · f : φ̂u(χ(e · f)) = φ̂u(χ(e) · χ(f)) = φ̂u(χ(e)) ◦ φ̂u(χ(f))

= φ̂u(e) ◦ φ̂u(f) = φ̂u(e · f)
φ̂u(ξ(e · f)) = φ̂u(ξ(f) · ξ(e)) = φ̂u(ξ(f)) ◦ φ̂u(ξ(e))

= φ̂u(f)
∨
◦ φ̂u(e)

∨
=
(
φ̂u(e) ◦ φ̂u(f)

)∨
=
(
φ̂u(e · f)

)∨
– e?: φ̂u(χ(e?)) = φ̂u(χ(e)

?) =
(
φ̂u(χ(e))

)?
=
(
φ̂u(e)

)?
= φ̂u(e

?)

φ̂u(ξ(e
?)) = φ̂u(ξ(e)

?) =
(
φ̂u(ξ(e))

)?
=
(
φ̂u(e)

∨)?
=
(
φ̂u(e)

?
)∨

= φ̂u(e
?)
∨

– e∨: φ̂u(χ(e∨)) = φ̂u(ξ(e)) = φ̂u(e)
∨
= φ̂u(e

∨)

φ̂u(ξ(e
∨)) = φ̂u(χ(e)) = φ̂u(e) = φ̂u(e)

∨∨
= φ̂u(e

∨)
∨

A.4 Proof of Γ (uwww) ⊆ Γ (uw)

We will prove in this section that for any u,w ∈ X∗, Γ (uwww) ⊆ Γ (uw). First
recall that for any word w, the language Γ (w) is recognised by the automaton
given in Figure 1). With that in mind, we give in Figure 4 an abstract view
of the automata recognising Γ (uwww) and Γ (uw) defined as before. With the
notations of this figure, now define a relation 6 as follows (this relation is also
represented in dashed lines in Figure 4):

ai 6 bi for all i ≤ n+m ,

an+m+i 6 bn+m−i for all i ≤ n ,

a2n+m+i 6 bm+i for all i ≤ n ;

22 Paul Brunet and Damien Pous

��

a3n+m

OO

w

��

...

��

a2n+m

w

OO

w

��

...

...�� ��

an+m

w

OO

w

��

��

bn+m

OO

w

��

...
��

��

am

w

OO

u

��

...

bm

w

OO

u

��

OO

a0

u

OO

b0

u

OO

Fig. 4: Automata G (uwww) and G (uw), with |u| = m and |w| = n

One easily checks that this relation is a simulation, thus establishing in
particular that the language recognised by the left-hand side automaton (for
Γ (uwww)) is contained in that of the right-hand side (for Γ (uw)).

A.5 Proof of result (13)

Recall that n = |w| and m = |u|, and that for any 0 6 i 6 2n, we have:

– Γi = Γ ((uwww)|m+n+i) = Γ (uw(ww)|i)
– vi ∈ Γi.

We will give here a proof that

∀0 6 i 6 2n, ∃ti ∈ Γ (uw) : (ww)|ivi ? ti(ww)|i.

As vi is in Γ (uw(ww)|i), we know that there is some suffix t of uw(ww)|i
such that vi ? tt. We will do a case analysis on the size of t:

– if n + i 6 |t|, then there is a suffix s of u such that t = sw(ww)|i, so
(ww)|ivi ? (ww)|i(ww)|iw ssw(ww)|i.
• If i < n then there is a word p such that w = (ww)|ip so

(ww)|ivi ? (ww)|i(ww)|i(ww)|ipssw(ww)|i
 (ww)|ipssw(ww)|i = swsw(ww)|i.

Kleene Algebra with Converse 23

• Otherwise we can write (ww)|i = ww1 and w = w1w2, so

(ww)|ivi ? ww1ww1w ssw(ww)|i
= w2 w1w1w1ww ssw(ww)|i
 w2 w1ww ssw(ww)|i
= www ssw(ww)|i
 swsw(ww)|i.

As s ∈ suffixes(u) we know that sw ∈ suffixes(uw), hence swsw ∈ Γ (uw).
– If i 6 |t| < n+ i then w = w1w2 and t = w2(ww)|i so

(ww)|ivi ? (ww)|i(ww)|iw2w2(ww)|i

• If i < n then there is a word p such that w = (ww)|ip. As w = w2 w1,
we can also compare (ww)|i with w2:
∗ If (ww)|i = w2w3 then

(ww)|ivi ? w2w3w3w2w2w2(ww)|i
 w2w3w3w2(ww)|i
= (ww)|i(ww)|i(ww)|i

= (ww)|i (ww)|i(ww)|i

And as w = (ww)|ip, w = p(ww)|i so (ww)|i ∈ suffixes(w) ⊆
suffixes(uw), hence (ww)|i (ww)|i ∈ Γ (uw).

∗ If on the other hand w2 = (ww)|iw3, we have

(ww)|ivi ? (ww)|i(ww)|i(ww)|iw3w3(ww)|i(ww)|i
 (ww)|iw3w3(ww)|i(ww)|i
= w2w2(ww)|i

w2 ∈ suffixes(w) ⊆ suffixes(uw) so w2w2 ∈ Γ (uw).
• Otherwise we can write (ww)|i = ww3 and w = w3w4, so

(ww)|ivi ? ww3w3w3w4w2w2(ww)|i
 ww3w4w2w2(ww)|i
= www2w2(ww)|i
= ww1w2w2w2(ww)|i
 ww1w2(ww)|i
= ww(ww)|i

And obviously ww ∈ Γ (uw).
– If |t| < i then (ww)|i = st. In this case we have (ww)|ivi ? sttt st =
εε(ww)|i, and ε ∈ suffixes(uw) so εε ∈ Γ (uw).

In all cases, we have shown that (ww)ivi ? ti(ww)|i with ti ∈ Γ (uw).

24 Paul Brunet and Damien Pous

A.6 Proof of the bisimulation between the two closure constructions

Let us be more precise : starting from a non-deterministic automaton A =
〈Q,X, I, Qf , ∆〉, its determinised is D = 〈P (Q) ,X, I, T, δ〉 with

T = {P : P ∩Qf 6= ∅} and δ(P, x) = P ·∆(x).

We can build two automata recognising its closure. The first one, derived from
our construction, is

A1 = 〈P (Q)×G,X, (I, [ε]), T1, δ1〉

where G is the set of equivalence relations of ∼γ , T1 , {(P, [u]) | P ∩ Qf 6= ∅}
and

δ1((P, [u]), x) = (P · (∆(x) ◦ γ(ux)) , [ux]) .

The second one, given by the original construction, is

A2 = 〈P (MD)× P (MD) ,X, (ε, ε), T1, δ2〉

whereMD is the transition monoid of D, a set of endomorphisms of P (Q) induced
by words, w , {wD} is a singleton containing the interpretation of a word w in
MD , T2 , {(F,G) | ∃qf ∈ Qf ,∃f ∈ F : qf ∈ f(I)}, and the transition function
is

δ2((F,G), x) = (F � x� (x′ �G� x)?, (x′ �G� x)?).

(A � B , {g ◦ f | f ∈ A ∧ g ∈ B}.) The fact that the elements of MD are
semilattice-homomorphisms can be easily checked, as uD(P) is the only state of
D (i.e. a set of states of A) such that P u−−→D uD(P). Then is is straightforward
that :

uD(P1 ∪ P2) = {q ∈ Q | ∃p ∈ P1 ∪ P2 : p
u−−→A q}

= {q ∈ Q | ∃p ∈ P1 : p
u−−→A q} ∪ {q ∈ Q | ∃p ∈ P2 : p

u−−→A q}
= uD(P1) ∪ uD(P2).

Now, to give the bisimulation we need the following morphism i from P (MD)
to P

(
Q2
)
defined by

i(F) , {(p, q) | ∃f ∈ F : q ∈ f({p})}.

Note that i is a KA-homomorphism because the elements of the transition
monoid of the determinised automaton are semilattice-homomorphisms from

Kleene Algebra with Converse 25

P (Q) to P (Q). Let’s check that :

εD = IdP(Q), meaning that i(ε) = IdQ;
i(F1 ∪ F2) = {(p, q) | ∃f ∈ F1 ∪ F2 : q ∈ f({p})}

= {(p, q) | ∃f ∈ F1 : q ∈ f({p})} ∪ {(p, q) | ∃f ∈ F2 : q ∈ f({p})}
= i(F1) ∪ i(F2);

i(F1 � F2) = {(p, q) | ∃f ∈ F1 � F2 : q ∈ f({p})}
= {(p, q) | ∃f, g ∈ F1 × F2 : q ∈ g ◦ f({p})}
= {(p, q) | ∃f ∈ F1 : ∃p′ ∈ f({p}) : ∃g ∈ F2 : q ∈ g({p′})}

(g is a semilattice homomorphism)

= {(p, q) | ∃p′ : (p, p′) ∈ i(F1) ∧ (p′, q) ∈ i(F2)}
= i(F1) ◦ i(F2)

For the ? operation, recall that

∀F ∈ P (MD) ,∃n1(F) ∈ N : ∀m 6 n1(F), F ? = (F ∪ ε)m;

and that

∀R ∈ P (Q)
2
,∃n2(R) ∈ N : ∀m 6 n2(R), R? = (R ∪ IdQ)m.

Then, if we write m = max(n1(F), n2(uD(F))),

i(F ?) = i((F ∪ ε)m)

= (i(F) ∪ i(ε))m

= (i(F))?

We can also check that, for any x ∈ X :

i (x) = {(p, q) | q ∈ xD({p})}
= {(p, q) | q ∈ δ({p}, x)}

= {(p, q) | p x−−→A q}
= ∆(x).

The bisimulation ∼ can thus be expressed :

∼, {((Q, [u]), (F,G)) | Q = I · i(F) and γ(u) = i(G)}

where (Q, [u]) is a state of A1 and (F,G) is a state of A2. We will now show
prove that it is indeed a bisimulation.

1. We need the inital states to be related. This is obvious as εD = IdP(Q),
meaning that i(ε) = IdQ. Furthermore, γ(ε) = IdQ and I = I · IdQ. That
means (I, [ε]) ∼ (ε, ε).

26 Paul Brunet and Damien Pous

2. For the final states, it isn’t much more complicated :

(F,G) ∈ T2 ⇔ ∃qf ∈ Qf : ∃f ∈ F : qf ∈ f(I)
⇔ ∃qf ∈ Qf : qf ∈ I · i(F)
⇔ I · i(F) ∩Qf 6= ∅
⇔ (I · i(F), i(G)) ∈ T1.

3. What remains to be shown is that this relation is stable under transitions
from both sides. Suppose that (Q, [u]) ∼ (F,G), and consider x ∈ X. After
reading x we get in A2 (F � x � G′, G′), with G′ = (x′ � G � x)?, and in
A1 (Q · (∆(x) ◦ γ(ux)), [ux]). We will prove that they are still related in two
steps, first by looking at the second component, and then dealing with the
first one.
(a) We know that γ(u) = i(G), and that i(x) = ∆(x).

γ(ux) = (∆(x′) ◦ γ(u) ◦∆(x))?

= (i(x′) ◦ i(G) ◦ i(x))?

= i(G′) (i is a morphism)

(b) Now the first component comes quite easily :

Q · (∆(x) ◦ γ(ux)) = (I · i(F)) · (i(x) ◦ i(G′))
= I · (i(F) ◦ i(x) ◦ i(G′))
= I · i(F � x�G′).

	Kleene Algebra with Converse

