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‘Particle genetics’: treating every cell as
unique§

Gaë l Yvert

Laboratoire de Biologie Molé culaire de la Cellule, Ecole Normale Supé rieure de Lyon, CNRS, Université de Lyon, Lyon, France

Opinion
Glossary

Expression probabilistic trait locus (ePTL): a PTL where the trait of interest is

the abundance of a gene product.

Expression quantitative trait locus (eQTL): a QTL where the trait of interest is

the abundance of a gene product. In some studies, eQTL refers to traits of

mRNA levels and pQTL refers to traits of protein levels.

Penetrance: probability that an individual of genotype g displays a phenotype

[44]. Usually associated with qualitative traits, such as disease versus control.

Probabilistic trait locus (PTL): a DNA polymorphism modifying a quantitative

trait density function. A PTL is not necessarily associated with a change in

mean trait value. It may affect the variance, skewness, normality, bimodality, or

any other property of the trait density function. Genetic buffers of environ-

mental or genetic perturbations are not PTL under this definition. They may

affect interindividual variability across different environments or genotypes

without necessarily modifying a trait density function defined within a precise

environmental and isogenic context.

Quantitative trait density function: probability density function f of a

quantitative trait among individuals of the same genotype g, such that

P ¼
Zt2

t1

f ðg; tÞ

is the probability that one individual of genotype g displays a trait value falling

within the interval [t1,t2]. To be informative, this function must be defined for

given values of environmental, age, gender, and other factors that may obvi-

ously affect the trait in a deterministic manner. Here, ‘same genotype’ refers to

fully isogenic individuals, such as isogenic strains or lines of experimental

organisms. For many outbred organisms, trait density functions cannot be

directly observed.

Quantitative trait locus (QTL): a DNA polymorphism underlying the genetic

variation of a quantitative trait [45]. It is usually mapped within genetic

intervals defined by markers. If it is precisely identified, its molecular

implication can be studied. In most studies, QTL are associated with a change

in mean or median trait value.

Single cell probabilistic trait locus (scPTL): a DNA polymorphism modifying a

single cell quantitative trait density function. A scPTL is not necessarily a PTL if

the difference in single cell properties does not modify the probability of a
Genotype–phenotype relations are usually inferred from a
deterministic point of view. For example, quantitative
trait loci (QTL), which describe regions of the genome
associated with a particular phenotype, are based on a
mean trait difference between genotype categories. How-
ever, living systems comprise huge numbers of cells (the
‘particles’ of biology). Each cell can exhibit substantial
phenotypic individuality, which can have dramatic con-
sequences at the organismal level. Now, with technology
capable of interrogating individual cells, it is time to
consider how genotypes shape the probability laws of
single cell traits. The possibility of mapping single cell
probabilistic trait loci (PTL), which link genomic regions to
probabilities of cellular traits, is a promising step in this
direction. This approach requires thinking about pheno-
types in probabilistic terms, a concept that statistical
physicists have been applying to particles for a century.
Here, I describe PTL and discuss their potential to enlarge
our understanding of genotype–phenotype relations.

Genetics has largely remained ‘Newtonian’
When Isaac Newton described the link between forces and
energy (momentum) in what is known as his 2nd principle,
classical mechanics was born. Scientists could compute
speeds and trajectories, and this knowledge initiated a
profound transformation of occidental societies. New tech-
niques appeared and the philosophical apprehension of the
world was modified. It is tempting to consider that the
Newtonian revolution of genetics took place during the
mid-20th century. When heredity (genes) was linked to
biochemistry (enzymes), molecular biology was born. As
happened three centuries earlier with mechanics, this
discovery profoundly transformed society, in technological
and philosophical terms. Over a few decades, it became
plausible to explain and predict phenotypes from combina-
tions of genetic and environmental determinants. Current
research in genetics is probably still largely influenced by
this excitement. Genomics has scaled up investigations
and findings but did not profoundly change the (sometimes
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caricatural) view of a deterministic genotype–phenotype
control.

Most quantitative genetics studies are based on QTL
(see Glossary) mapping or whole-genome association. In
both cases, the phenotype is assumed to derive from the
genotype in a deterministic manner. Mutations that are
searched are those that cause an increase in trait values in
individuals carrying them. An arsenal of statistical meth-
ods can efficiently detect them when this increase is large
enough. However, mutations contributing little to the
macroscopic trait of an individual.

Single cell quantitative trait density function: probability density function of a

single cell quantitative trait, defined for cells of a given genotype, differentia-

tion state, and environmental context. This can refer to individual cells of the

same tissue within an individual (Figure 1C, main text), or cells of a clonal

microbial colony.

Trait expressivity: degree to which trait expression varies among individuals

of genotype g. Often used to describe traits that can be discretized, such as the

clinical severity of syndromes. Expressivity E of trait T reflects the extent of trait

variation but not the probability that an individual expresses T at a given level.

If f is the quantitative trait density function of T for genotype g, then E(T,g)

corresponds to all values of T where f >0.
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phenotype escape detection because their effect is small
compared with intragenotype variation. Unfortunately for
our understanding, these ‘small-effect’ variants seem to be
particularly important: they are abundant [1]; they were
proposed to contribute to the ‘missing heritability’ of com-
plex traits [1,2]; and evolutionary selection might largely
act through them [3]. Detection of these loci can be im-
proved by studying larger cohorts and by applying judi-
cious models that include cofactors (e.g., environmental
factors) and nonadditivity. However, staying in a deter-
ministic framework might be limiting when the small
contribution of the locus is due to incomplete penetrance
of the trait. If the genotype does not comprehensively
predict the phenotype, as seen in heritable cardiac ar-
rhythmia [4], polydactyly [5], and various cancer-predis-
posing syndromes [6], then adopting a probabilistic
approach might be more appropriate.

Major macroscopic events can result from microscopic
properties
Rare events occurring in a few cells can have dramatic
consequences at the macroscopic level. We are all examples
of this, because the macroscopic physiology of our body
largely results from only two germ cells contributed by our
parents. Peculiarities in these cells or their progenitors can
potentially change our everyday life. Another striking
example is cancer: macroscopic tumors appear from a
single cell that escaped proliferation controls. Anticancer
treatments do not eradicate all tumor cells, and the (few)
cells that persist represent the major threat for clinical
outcomes. Therefore, cancer is a statistical issue of control-
ling the probability that cells become tumorous (risk fac-
tors), and the probability that they escape elimination by
the organism and treatment (persistence). The latency of
infectious pathogens is also a statistical issue. HIV-1 can
persist in a small reservoir of resting cells that later
‘reactivate’ infection and disease. This mechanism of per-
sistence represents an enormous challenge for long-term
therapy [7,8]. Bacterial resistance to antibiotics represents
a similar challenge [9]. Thus, some macroscopic pheno-
types cannot be fully apprehended without taking into
account cell-to-cell differences.

However, if genetics has remained Newtonian, are we
prepared for microscopic considerations? Objects of atomic
scale violate Newton’s laws. Colleagues from physics can
study and manipulate these objects because their prede-
cessors formulated the quantum theory. The revolutionary
concept considered that the parameters of a particle did not
determine its position and speed but changed the proba-
bility that the particle be at a given position or have a
certain speed. Colleagues from statistical physics describe
particles by wave functions, which carry this probabilistic
information. Without this description, the diffraction of
light or the spreading of liquid helium away from its
container escape understanding.

As any other matter, cells comprise atoms and the fact
that quantum properties appear at higher and higher
resolution is obvious. However, the consideration that
multicellular organisms are statistical systems of cells
has not been clearly formulated. Until only recently, bio-
chemistry and molecular biology tests have typically been
50
conducted on extracts of millions of molecules or cells.
Therefore, most experimental readouts report averaged
values. Physiological trait measurements often reflect
the averaged contribution of billions of cells to the function
of an organ. However, biological processes, as mechanics,
look profoundly different at lower scales. When gene ex-
pression is monitored at the single cell level, bursts can be
observed corresponding to activity fired in some cells and
not others. This had been noticed long ago [10] and is now
extensively studied. Therefore, our scientific language is
changing: what we used to call the ‘level’ of transcription is
replaced by more discrete terms such as ‘burst size’ and
‘burst frequency’ [11]. Single molecule studies have also
revealed unanticipated activity dynamics [12].

Regarding phenotypes, microscopic heterogeneities can
become apparent when traits are observed at single cell
resolution. For example, the induction of apoptosis by
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) in cancer cell lines was shown to vary among
individual cells [13], as did the activation of nuclear factor
(NF)-kB by TNF-a in mouse fibroblasts [14] and the trig-
gering of proliferation in response to epidermal growth
factor (EGF) stimulation [15]. Phenotypic variability
among human cell cultures can be driven by local popula-
tion contexts, such as local cell density [16], and non-
uniform mechanical stress can generate heterogeneities
within tissues [17]. Thus, the deterministic view of genetic
control seems to be challenged by single cell analysis. Even
though macroscopic traits result from the collective contri-
bution of billions of cells, they do not necessarily follow the
average of these contributions. Therefore, our classical
apprehension of phenotypes might have long been blurred
by the law of large numbers.

Cells and molecules: the particles in biological sciences
The boundary between Newtonian and quantum mechan-
ics is a frontier between orders of magnitude. For the law of
large numbers to apply, identical particles must be numer-
ous enough in the object considered so that probabilistic
considerations are not needed. What are the typical orders
of magnitude under consideration in biological systems?
For example, in a system such as a human body, how many
particles (cells) are there? With the very crude approxima-
tion of an average cell size of 10 mm and a density of 1, a
100-kg human body comprises 1014 cells. Given that vari-
ous body parts are devoid of cells, a lower estimate (1013)
was proposed based on DNA mass [18]. However, many
cells divide, and the total number of cell divisions in a
human body in the course of a lifetime was said to be in the
order of 1016 [19]. Notably, these numbers cover only
human cells and not our microbiome, which is approxi-
mately ten times more abundant [20] and much more
proliferative. To realize how big these numbers are, one
can visit the Great Dune of Pyla near Arcachon, France.
This tall (>100 m) sand dune is made of tiny quartz grains
and its volume is estimated at 60 million m3. A 50-ml
sample of sand from the dune weighed 80 g and 97 grains
weighed 4 mg; therefore, the dune has approximately
2.5 � 1018 grains. Thus, the few hundred campers staying
near the dune will altogether have produced in their
lifetime as many human cells as the dune grains.
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Not only are cells incredibly numerous, but they also
differ substantially. Cell identity is often categorized as a
cell ‘type’, which reflects a particular tissue, function,
morphology, and differentiation state. However, even with-
in cell types, cells have a large amount of variability. The
stochastic nature of gene expression mentioned above
illustrates that intracellular concentrations of molecules
can range significantly among so-called ‘identical’ cells
[21]. And cells also differ in the identity of these molecules.
First, somatic mutations generate intra-cell type hetero-
geneities. Considering a somatic mutation rate of 10–6 per
cell division for a human protein of middle size [22], the
chance that one of the 20 000 human protein-coding se-
quence [23] gets mutated at every division is very high
(approximately 2%). In addition, mutations also arise in
nondividing cells, as shown recently for active transposi-
tion in brain neurons [24]. Second, fidelity of mRNA mole-
cules is largely imperfect, with abundant nucleotide
misincorporations and splicing errors [25], and transcript
boundaries are extremely heterogeneous among individual
molecules [26]. Third, DNA-coding sequences do not strict-
ly dictate the final identity of intracellular proteins. Errors
in translation can generate ‘mistakes’ in approximately
15% of the proteome [25]. Finally, individual protein mole-
cules change with time. They are dynamically modified at
many sites, accumulate oxidative damages, occasionally
fail to fold into functionally equivalent conformations, and
do not necessarily localize to the same subcellular com-
partments and macromolecular complexes. For all these
reasons, multicellular organisms are dynamic mosaics of a
huge number of cells that differ far beyond their differen-
tiation type, and all these aspects can impact the relation
between genotype and phenotype.

Nondeterministic genetic effects
The nonlinearity of biochemical reactions sometimes
makes the analysis of single cell statistics essential. Prop-
erties such as cooperation, threshold effects, or feedback
loops provide cells with the ability to switch between
phenotypic states [27,28]. Genetic variation affecting these
properties might change the probability of single cell out-
comes without necessarily affecting the average trait val-
ue. Understanding trait variation in this context requires a
statistical description of the behavior of individual cells.

Nondeterministic outcomes of genetic mutations can be
studied on experimental organisms. In the Caenorhabditis
elegans nematode, skinhead (skn)-1 mutants were shown
to generate elevated variability in expression of ending
(end)-1 transcripts. As a result, some but not all skn-1
mutant embryos did not achieve proper intestinal develop-
ment [29]. Nonlinear dependencies between phenotypic
outcomes and molecular regulations can also be studied
by directly manipulating the dosage of genes involved in
developmental pathways. A recent study described how C.
elegans vulval development can tolerate up to a fourfold
variation in EGF signaling without any phenotypic per-
turbation. Combining dosage perturbations in EGF and
Notch signaling enabled the authors to draft an experi-
mental phase diagram of developmental outcomes as a
function of quantitative variation in the two pathways [30].
These experiments are important because they estimate
the boundaries within which developmental processes are
robust.

In humans, a particularly interesting example is the
case of autosomal dominant (AD) mutations predisposing
to cancer [6]. A large number of such mutations cause
diseases characterized by a wide spectrum of symptoms
(syndromes), with varying clinical expressivity, and sever-
al considerations on AD mutations illustrate the need to
perform genetics in a nondeterministic framework (Box 1).
In addition, a surprising correlation was recently reported
between morbidities of Mendelian disorders and complex
diseases, suggesting that many Mendelian disease-causing
mutations have probabilistic effects on complex traits [31].

Other informative observations are those collected on
fluctuating asymmetry. Some organs, such as animal limbs
or plant leaves, are represented more than once in the
same individual. This offers the possibility to observe
nondeterministic trait variation directly. For example,
any difference between the left and right wing of a fly
cannot be attributed to age, diet, or any environmental
effect because the two wings developed simultaneously in
the same animal. Fluctuating asymmetry (FA) quantifies
such intraindividual morphological differences and pro-
vides a valuable readout of nondeterministic phenotypic
outcomes. When measured on numerous individuals, FA
enables phenotypic variability to be quantified, even if the
causes of these differences remain unknown at the molec-
ular and cellular level. A remarkable experiment showed
that elevated FA and, therefore, phenotypic variability,
can have large heritability. By designing successive crosses
between Drosophila melanogaster flies displaying high FA,
the authors were able to fix elevated FA from an outbred
population [32]. This demonstrates that different levels of
phenotypic noise can segregate in the wild. This likely
explains the different levels of cell–cell trait variability
that were recently observed in natural yeast strains
[33,34]. Finding sources of phenotypic noise in the wild
complements an earlier observation from an in-lab evolu-
tion experiment. Extreme selection on Pseudomonas fluor-
escens bacteria for phenotypic switching generated
genotypes causing intraclonal trait bimodality [35]. These
examples show that some genotypes can have nondeter-
ministic consequences on phenotypic traits. To really un-
derstand how these genetic effects contribute to the
physiology and evolution of living systems, classical genet-
ics must be revised.

Mapping macroscopic and single cell probabilistic trait
loci
From Mendelian mapping to current whole-genome asso-
ciation studies (GWAS), genetic linkage is always based on
a simple principle: observing phenotype and genotype on a
set of individuals, and deriving correlations. A genetic
locus of sufficiently large effect on the phenotype is
detected because data points (individuals) display covari-
ation between the genotype at the locus and the phenotype.
In this framework, all the microscopic diversity discussed
above is compressed in a single parameter: the phenotype
of the individual. The ability to acquire parameters on
single cells from every individual has not yet been fully
exploited.
51



Box 1. Possible nondeterministic effects of haploinsufficiency

Neurofibromatosis 1 is a typical case of an autosomal dominant

disorder displaying a range of disease severity. It is caused by

heterozygous loss-of-function mutations of the NF1 gene, and

symptoms vary from café au lait stains on the skin to severe

malignancy [46]. Variability in disease appearance and expressivity

can be interpreted in two complementary ways. Mutations might

appear in ‘two hits’: a first mutation is inherited from the parental

germline and a second one occurs later somatically. This secondary

mutation can occur via loss of heterozygosity, or via a novel mutation

hitting the wild type allele. In this two-hit model, the probabilistic

nature of the trait among carriers of the first mutation is strictly

associated with the probability of the occurrence of the secondary

mutation. The model remains deterministic in terms of genotype–

phenotype control: heterozygous cells are healthy and homozygous

�/� cells are pathogenic. The alternative interpretation is that

haploinsufficiency alone might produce a subpopulation of patho-

genic cells as a result of improper regulation of enzymatic activity in

some heterozygous cells. In this case, the genotype–phenotype

control is probabilistic because most heterozygous cells are healthy

but some of them become pathogenic.

Note that this alternative model does not necessarily exclude the

‘two-hit’ interpretation: if the probabilistic cellular trait affects the

mutation rate of the wild type allele, then haploinsufficiency facilitates

secondary mutations and the two-hit model also applies. Possible

nondeterministic consequences of haploinsufficiency have been dis-

cussed [47] and explored in simulations [48,49]. Two scenarios are

particularly plausible. First, haploinsufficiency might increase sensitiv-

ity to differential allelic expression. Two alleles of a gene are not

necessarily ‘fired’ simultaneously. If they both encode a fully functional

protein, these temporal allelic differences do not generate significant

fluctuations in gene activity. By contrast, firing a null allele is a dead-

end and fluctuations between allelic transcription rates might generate

variable enzymatic activity in �/+ heterozygous cells (Figure IA).

Second, haploinsufficiency can render cells particularly sensitive to

molecular noise because of the nonlinearity of enzymatic reactions.

This is illustrated in Figure IB, where heterozygosity suppresses

buffering against fluctuations. Experimental evidence supporting such

scenarios is scarce, but an important observation is the elevated

variability in single cell traits that has been observed among Nf1�/+

melanocytes compared with Nf1+/+ control samples [50].
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Figure I. Possible nondeterministic consequences of haploinsufficiency. (A)

Diversity from fluctuations in allele-specific expression. Color of the cytoplasm

represents the concentration of functional gene product (darker color indicates a

higher concentration). (B) A cellular outcome is represented as a quantitative

trait, from disease-causing low levels to healthy full levels, as a function of the

activity of a gene product. The heterozygous genotype produces normal mean

level activity but an increased variability in the outcome. Note that the ‘input

noise’ reflects variability in enzymatic activity, which can correspond to various

parameters, such as variation in concentration or in the proportion of molecules

that have the required post-translational modifications, subcellular localization,

or conformation.
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Common traits are classically dissected by mapping QTL.
A QTL is detected when one can reliably reject the null
hypothesis of no difference in mean trait value between
carriers of one allele and carriers of other alleles at the
locus. Sometimes, the test is applied on the median value
instead. In multilocus scans, more genotype combinations
are considered, and the null hypothesis is also an equal
mean (or median) trait value across genotypes. Therefore,
QTL are mapped within a statistical framework, but they
have a deterministic nature because they affect the average
or median trait value of all individuals of the same genotype.
If a genetic locus changes trait properties other than its
mean or median, it is likely not detected. For example,
interindividual variance might be changed, thereby gener-
ating more individuals with extreme trait values
(Figure 1B). To better account for the probabilistic nature
of common traits, one can consider the trait probability
density function instead of the observed trait values only.
This function not only relates to the trait expressivity, but
also provides the probability of observing the trait at a given
value, as does penetrance for dichotomous traits. Using this
function, it is possible to refine the concept of QTL by
considering any change of the trait density function in
response to genetic variation. Let us define a probabilistic
trait locus (PTL) as any DNA polymorphism that modifies a
52
trait probability density function. Under this definition, all
QTL are PTL because they affect the mean or median trait
value and, therefore, the trait density function. However,
the reverse is not true: a PTL may change various properties
of the trait probability without necessarily affecting its
average.

Although not specifically named this way, PTL mapping
has already been reported in several studies that looked at
within-genotype interindividual trait variation. The earli-
est example was a QTL mapping strategy applied to sto-
chastic variation in yeast gene expression [36]. The
approach was recently followed up to derive additional
PTL [37]. In these studies, the trait of interest was the
expression level of a GFP construct reporting the activity of
the yeast methionine-requiring (MET)17 promoter. Prob-
ability density functions were tracked by flow cytometry
and several loci were associated with a change in variance
and not mean of MET17 promoter activity. These loci can
be qualified as expression (e)PTL because they affect the
density function of a gene expression trait. Notably, three
DNA polymorphisms causing increased variability were
discovered. One was a uracil-requiring (ura)3 mutation
that is widely used as an auxotrophic marker in yeast
laboratories. Given that URA3 activity can affect tran-
scriptional elongation efficiency, this ePTL revealed that
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Figure 1. Quantitative trait loci (QTL), probabilistic trait loci (PTL), and single cell (sc)PTL effects. In each case, two genotypes at a given locus are compared, as indicated by

the color outline of individuals (green versus purple). (A) The locus is a QTL and the purple genotype increases the trait value, as indicated by the size of individuals. (B) The

genotype is a PTL and the purple genotype increases the trait variance without changing the mean trait value of individuals. (C) Individual cells of a tissue are represented

by dots, colored by their value of a single cell quantitative trait. Here, the locus is a scPTL: the purple genotype increases single cell trait variance within the tissue. This may

or may not change the macroscopic phenotype of individuals.
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elongation impairments increased the levels of stochasti-
city in gene expression [36]. Another ePTL was a frame-
shift mutation in ethionine resistance conferring (ERC)-1,
a transmembrane transporter gene, which reduced
MET17-GFP expression variability. A third one was the
promoter region of the methionine uptake (MUP)1 gene,
also encoding a transmembrane transporter, which proba-
bly increased the sensitivity of cells to microenvironmental
fluctuations [37]. Another study also mapped ePTL using a
transcriptomic data set of Arabidopsis thaliana [38]. With-
in-genotype coefficient of variation of mRNA levels were
considered as quantitative traits and genetic loci linked to
them were identified. Many, but not all of them were also
eQTL affecting mean expression. An apparently similar
observation was made in humans, where the fat mass and
obesity associated (FTO) gene locus was associated with
both mean and variability of obesity in a GWAS study [39].
However, in this case, variability was measured across
individuals sharing a common allele at the FTO locus, but
differing at numerous other loci and each having a specific
history of exposure to various environmental factors.
Therefore, the observed PTL effect of FTO could result
from fully deterministic gene–gene or gene–environment
interactions that remain challenging to characterize. In
this regard, the effect is comparable to results from a
previous study mapping QTL of genetic and environmental
robustness in mice [40]. Using approximately 20 animals
from each of 19 inbred lines, the authors mapped numerous
‘robustness QTL’ conferring different levels of across ge-
netic-background or interindividual variability without
altering median trait values. A detailed dissection of the
underlying gene–gene and gene–environment interactions
would require more lines and animals, but the results
already indicate the presence of abundant genetic loci
implicated in trait buffering. Interestingly, the nonpara-
metric method described in this mouse study can be ap-
plied to variability among isogenic individuals sharing a
common environment and, therefore, provides a direct way
to map ePTL systematically [40].

These pilot studies illustrate the feasibility and potential
of PTL mapping. However, carrying out genetic mapping at
the level of individuals without exploiting single cell data
53
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faces a major limitation: sample size. It is well known in
statistics that testing differences in variance or other high-
order moments of a distribution requires larger samples
than testing differences in median or mean. This issue has
been explored in a quantitative genetics model: a single
nucleotide polymorphism (SNP) causing a change in pheno-
typic variance with a 1.1 multiplicative effect requires a
minimum of 10 000 observations to be detected by GWAS
[41]. Given the large samples already needed for classical
QTL and GWAS studies, the experimental effort to identify
PTL in a systematic approach seems enormous. To bypass
this limitation, an attractive possibility is to remember that
a single individual can provide of a huge number of cells.

If a genetic locus has an intrinsically nondeterministic
effect on molecular or cellular regulation, then it likely
affects the density function of one or more single cell traits.
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This trait can be a gene expression level or any other
intracellular concentration, a cellular shape, a cell division
rate, a rate of secretion, or any other quantity relevant to
the macroscopic phenotype under study. When this single
cell trait can be measured experimentally on many cells
collected from each individual of a cohort, the single cell
trait density function can be estimated. This is the case, for
example, if the trait is the cell size of a class of macro-
phages. Its density function can be obtained by drawing
blood from donors, extracting macrophages, labeling the
ones of interest with appropriate cell surface markers and
analyzing them by flow-cytometry. I now define a single
cell (sc)PTL as a genetic locus changing a single cell trait
density function. Mapping scPTL can bypass the issue of
statistical power because samples of large size (many cells)
are available from every individual. Thus, comparing
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variances or other higher order moments of the single cell
trait density function becomes possible. Therefore, using
flow cytometry or other high-throughput single cell mea-
surements [42] to map scPTL might prove more powerful
than mapping PTL of traits exhibited by the individual.

In what situation would scPTL mapping succeed and
QTL detection fail? A scenario is presented in Figure 2,
where a cellular quantitative trait is monitored and cells
with high trait values are pathogenic. A trait like this can
be, for example, the expression level of an oncogene such as
v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
(ERBB2), which can trigger tumorigenic processes when it
is overexpressed in a single cell [43]. Alleles at a scPTL
locus can change the statistical distribution of the trait
among cells without necessarily changing the mean ex-
pression level (Figure 2A). This can be, for example, a
variant in the promoter of the ERBB2 gene that increases
cell-to-cell variability in ERBB2 expression [11]. In this
case, some ERBB2 genotypes will increase the fraction of
pathogenic cells appearing in the body and, therefore, will
increase disease risk. The phenotype of the individuals
(disease versus healthy) is poorly contrasted by the geno-
type because many individuals at risk are healthy (e.g.,
their immune system managed to clear the pathogenic
cells). Owing to this low penetrance, standard QTL or
GWAS detection has poor power (Figure 2B). By contrast,
if single cell data are available, it becomes apparent that
all carriers of the predisposition allele display a modified
distribution of the single cell trait. Every individual is then
highly informative for the genetic linkage test, and the
scPTL can be detected (Figure 2C).

Concluding remarks
The huge mosaic of cells that forms an individual consti-
tutes both a challenge and an opportunity. There is no
chance that we will exhaustively describe this complex
system by ‘Newtonian’ deterministic laws inherited from
molecular biology, and this might seem bad news. But
fortunately, experimental measures are accessible to esti-
mate probability functions from single cells and, therefore,
the genetic properties of these functions can be dissected. A
‘particle’ approach will probably not revolutionize genetics
in general. However, for diseases that depend on the
behavior of rare cells, several genetic factors might have
been missed by classical QTL studies and GWAS because
their reduced penetrance makes their overall effect small.
The scPTL approach has the potential to reveal such
variants. It is now, more than ever, time to talk to statisti-
cal physicists, to invite them to train our students, and to
think in probabilistic terms about the roots of phenotypic
control.
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