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The development of highly dispersive lower and higher order claddingmodes and their degeneration with
respect to the fundamental core mode in a bent photonic crystal fiber is rigorously studied by use of
the full-vectorial finite element method. It is shown that changes in the bending radius can modify
the modal properties of large-area photonic crystal fibers, important for a number of potential practical
applications. © 2009 Optical Society of America

OCIS codes: 060.5295, 060.0060.

1. Introduction

Photonic crystal fibers (PCFs) [1] are seen as poten-
tially important specialized optical waveguides due
to their inherent advantages arising from their
modal properties, such as controllable spot size, bire-
fringence, and their dispersion properties, achieved
through tailoring their structural parameters. In
many practical applications, such PCFs will encoun-
ter bends, twists, and stress. It is also well known
that when a fiber is bent, the modal field shifts in the
outward direction and suffers from radiation loss.
One of the main disadvantages suffered by standard
silica fiber has been that significant bending loss
arises due to the low index contrast between the core
and the cladding when compared to that of a PCF.
However, sometimes the need for a small bending ra-
dius may be unavoidable in a specific optical wave-
guide: on the other hand, bending effects have also
been exploited to design functional devices such as
ring resonators [2], arrayed waveguide filters [3], op-
tical delay lines [4], S-bend attenuators [5], or to sup-
press higher order modes [6]. Similarly, efforts have

also been expended to better understand the behav-
ior of bent PCFs [7–9]. We report on the variation of
the key modal parameters in such fibers that arises
from the change in the coupling between the funda-
mental core mode and the localized cladding mode
across the airholes: this analysis is done by using a
rigorous full-vectorial finite element method.

Numerical Solutions. Various methods have
been considered to date in the study of the modal
characteristics of PCFs. One of the first methods
used was the effective index method [10], which is a
scalar field approach that treats the PCF as an eq-
uivalent step-index fiber but that cannot yield the ac-
tual modal field profile and the modal birefringence
of the PCF. The plane wave method (PWM) [11], a
more widely used approach, requires a larger “super-
cell” that demands the periodicity of the PCF clad-
ding and suffers from an inefficient computation
time. The localized basis function method [12], the
multipole method [13], and the supercell lattice
method [14] are more effective methods than the
PWM, but these methods have limitations in defin-
ing practical PCFs with a finite lattice period. These
methods are often unable to consider an arbitrary
transverse variation of the PCF cross section, such
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as is required in describing noncircular airholes or
nonidentical multiple defects. On the other hand,
the more powerful and versatile finite difference
method (FDM) [15], the finite element method (FEM)
[16], and the beam propagation method (BPM) [17]
are more effective when studying such complex mi-
crostructured fibers. A full-vectorial FEM [18] can
be used efficiently in determining the quasi-TE and
quasi-TM fundamental and higher order modes. A
real value eigenvalue problem determined by the H
field formulation can be solved with higher comput-
ing efficiency, compared to other methods, in deter-
mining important modal properties of a PCF such as
the effective index, spot size, dispersion, and cutoff of
fundamental and higher order modes [19].
In the modal solution approach based on the FEM,

the intricate cross section of a PCF can be accurately
represented by using nearly a million triangles of dif-
ferent shapes and sizes. The flexibility of the irregu-
lar mesh makes the FEM preferable when compared
to the FDM, which not only uses inefficient regular
spaced meshing, but also cannot be used to represent
adequately slanted or curved dielectric interfaces of
the airholes. The optical modes in a PCF with two-
dimensional confinement and high index contrast
air/silica interfaces are also hybrid in nature, with all
six components of the E and H fields being present.
Hence, only a vectorial formulation should be used to
calculate accurately PCF modal solutions. The H
field formulation with the augmented penalty func-
tion technique is given below [18]:

ω2 ¼

�R ð∇ × ~HÞ � ·ε̂−1ð∇ × ~HÞdΩ
�
þ
�R ðη=εoÞð∇ · ~HÞ � ð∇ · ~HÞdΩ

�
R
~H � · μ̂~HdΩ

; ð1Þ

where ~H is the full-vectorial magnetic field,ε̂ and μ̂
are the permittivity and permeability, respectively,
of the waveguide, ε0 is the permittivity of the free-
space, and ω2 is the eigenvalue, where ω is the
angular frequency of the wave. The dimensionless
parameter η is used to impose the divergence-free
condition of the magnetic field in a least squares
sense to eliminate spurious solutions. A highly effi-
cient sparse solver with the subspace iteration tech-
nique is used to solve the resulting large eigenvalue
equations with orders often larger than 100,000.
To study arbitrary bends, various numerical meth-

ods have been developed and used to simulate the
light propagation in bent waveguides with the aim of
characterizing the bending, transition, and polariza-
tion losses. The conformal transformation [20] has
most widely been used to represent such bent wave-

guides by converting a curved dielectric waveguide to
its equivalent straight waveguide with a modified in-
dex profile. The coordinate transformation allows a
bent optical waveguide in the x plane to be repre-
sented by an equivalent straight waveguide with
modified refractive index distribution, neqðx; yÞ:

neqðx; yÞ ¼ nðx; yÞ
�
1þ x

R

�
; ð2Þ

where nðx; yÞ is the original refractive index profile of
the bent waveguide, neqðx; yÞ is the equivalent index
profile of a straight guide, R is the radius of the cur-
vature, and x is the distance from the center of the
waveguide. This equation is valid for the range
2x ≪ R, which is well within the ranges considered
in this paper. Subsequently, the straight waveguide
with a transformed index profile can be analyzed by a
number of modal solution techniques, such as the
eigenmode expansion [21], the methods of lines [22],
the FDM [23], the variational method [24], the ma-
trix approach [25], the Wentzel–Kramers–Brillouin
(WKB) analysis [26], and the FEM approach [27–29].
The beam propagation approach [30,31] has been
used successfully, but this makes the problem three
dimensional (3D) with additional computational
costs. Similarly the finite-difference time-domain
(FDTD) [32] approach has also been used, but with
the inclusion of an additional time variation, it is
more computer intensive than the modal solution or
the BPM approaches.

When a waveguide is bent, change in the refractive
index due to the elasto-optic effect can also increase
the modal loss [33]. This can be represented by mod-
ifying the bending radius value by a simple linear
transformation, as reported earlier [34]:

neqðx; yÞ ¼ nðx; yÞ
�
1þ ð1 − χÞ

�
x
R

��

¼ nðx; yÞ
�
1þ x

R
0

�
: ð3Þ

When the linear coefficient value χ is taken as −0:22
for silica [34], then the modified R0 would be 1 − χ
times or 1.22 times smaller than the actual bending
radius, R.

In the original H-field formulation [18], which con-
sidered a real eigenvalue equation, the perfectly
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matched layer (PML) [35,36] can be introduced
around the orthodox computation window. The PML
allows the electromagnetic waves to leak out of
the bent waveguides and avoids the reflection at
the hard boundary of the orthodox computational
window by using the bi-anisotropic constitutive pa-
rameters that results in a set of perfectly matched
permeability and permittivity tensors [35,36], which
is also equivalent to coordinate stretching [37]. This
allows the calculation of the power loss out of the
computation window, but the introduction of the
complex refractive index in the PML region also
modifies the real eigenvalue to a complex eigenvalue
equation. The modal loss value is calculated from the
imaginary part (α) of the complex propagation con-
stant γ ¼ β þ jα. The width of the PML layer has been
chosen such that the modal solutions are stable with
respect to the variations of the PML and the refrac-
tive indices of the local elements in the PML layer
are matched with the local refractive indices at the
edge of the cladding. Only one-half of the PCF cross
section is considered here, as the existing onefold
mirror symmetry of a bent PCF has been exploited.

2. Results

In this study, silica photonic crystal fiber with air-
holes arranged in a triangular lattice is considered,
with the diameter of airhole denoted by d and dis-
tance between two airholes given byΛ. The refractive
index of silica is taken as 1.444 at the operating
wavelength of 1:55 μm. It has been reported earlier
[28] that, when d=Λ is lower than 0.42, a PCF can
only support two fundamental Hy

11 (quasi-TE) and
Hx

11 (quasi-TM) modes for all the values of pitch
length Λ; however, for higher Λ and d=Λ values, it
can also support additional higher order modes of
a given polarization.
It is well known that such a PCF suffers from leak-

age loss as the modal index is lower than the refrac-
tive index of the outer cladding silica region. This
leakage loss can be reduced by increasing the num-
ber of airhole rings or considering a well confined
mode operating far away from its cutoff condition. It
is also well known that an optical waveguide suffers
from increased bending loss as its bending radius is
reduced. The variations of the total loss for the fun-
damental quasi-TM (Hx

11) mode with the bending
radius R, for three different pitch values, are shown
in Fig. 1. In this caseN is the number of airhole rings,
and the d=Λ is taken to be constant and equal to 0.5.
For a lower pitch length,Λ ¼ 1:6 μm, the bending loss
increases monotonically as the bending radius is re-
duced. However, in this case, the leakage loss (for a
straight waveguide or when R is very large) is also
high as the PCF is operating close to its modal cutoff.
Using a PCF with such a smaller pitch length is often
not preferred due to its higher leakage losses. As the
pitch length is increased, for Λ ¼ 2:6 μm, the leak-
age loss is reduced by 3 orders of magnitude (at
R ¼ 104 μm the total loss contains mainly the leak-
age loss, as the pure bending loss is nearly zero).

For this case, as the bending radius is reduced, the
bending loss increases progressively, and as a result
the total loss also increases. It can be noted that in-
creases in the bending loss with the bending radius
are more rapid as the bending radius is reduced,
compared to the case with a lower pitch length,
Λ ¼ 1:6 μm. At a lower bending radius, the nonmono-
tonic nature is also seen with oscillations in the total
loss values. In these cases, it has been observed that
the modal and leakage properties of both the quasi-
TE and the quasi-TMmodes are almost similar along
with the transition in their loss properties, also at
similar locations. When the pitch length is increased
further, for Λ ¼ 5:0 μm the leakage loss is signifi-
cantly reduced to 10−3 dB=m, and a PCFwith a larger
dimension is often then preferred. However, in this
case the PCF is more susceptible to bending, and
the total loss value increases rapidly as the bending
radius is reduced: for some fixed radii, this value can
even be higher than that of a PCF with a lower pitch
value. However, in this case of a larger Λ, the oscilla-
tions in the loss values are more frequent and appear
to be random in nature. Similar features have also
been observed experimentally [9].

To study mode degeneration more closely, the
smaller bending radius range is considered in some
further detail using an expanded range and creating
many additional simulated results. The variation of
the effective index for the quasi-TM mode with the
bending radius is shown in Fig. 2. In this region,
two distinct modes can be easily identified (their field
profiles are shown below). The solid line in Fig. 2 re-
presents the firstHx

1 eigenmode, with a higher effec-
tive index, and the second eigenmode, Hx

2, is shown
by a dashed line: it has a lower effective index for the
range of bending radius shown here. In a way similar
to the formation of the even and odd-like supermodes
of two nonidentical coupled waveguides [7], these two
curves never cross each other, but these twomodes go
through a transition near R∼ 1445 μm, when they
are phase matched. The horizontal sections of these
two lines represent the Hx

11 core mode confined at

Fig. 1. (Color online) Variation of the total losses with the bend-
ing radius R for the quasi-TM modes.
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the center of the PCF. The slanted line represents a
highly dispersive Hx

c1 cladding mode, which is lo-
cated on the right side of the core and between the
two airholes for a bent PCF. This cladding mode has
a smaller core area but with a progressively higher
local equivalent refractive index value as the bend-
ing radius is reduced. For a specific bending radius,
the effective index of this cladding mode becomes
equal to that of the core mode, and they become de-
generate. It should be noted that the dispersion prop-
erties of the TE and TM polarized modes for both the
core and the cladding modes are similar.
The loss values for these first Hx

1 and second Hx
2

modes are shown in Fig. 3 by a solid and a dashed
line, respectively. Parts of these two curves form the
lower section, which shows the loss values of the
Hx

11 core mode, is around 100dB=m. On the other
hand, the upper lines represent the Hx

c1 cladding
modes with significantly higher loss values, around
12000dB=m. However, these two curves also go
through a transition near R∼ 1445 μm, which is
similar to the effective index curves shown in Fig. 2.
The upper curve goes through a local minimum
(which is not clearly visible) near the mode degenera-

tion point, being mixed with a less lossy Hx
11 core

mode. Similarly the loss value of the lower curve also
peaks near the resonance due to being mixed with a
highly lossy cladding mode. This local peak is clearly
shown in Fig. 1 for Λ ¼ 5 μm around a value of R ¼
1445 μm. In a similar way for the transition in the
effective indices and loss values, the spot sizes of
these modes also go through a transition. There are
different alternative definitions for the mode-size
area, such as the spot size, σ, and the effective area,
Aeff . Here the spot size is defined as the area with a
power density greater than 1=e2 times its maximum
value, and the effective area, Aeff , [38] is defined as

Aeff ¼

�RR
s jEtj2dxdy

�
2

�RR
s jEtj4dxdy

� ; ð4Þ

where Et represents the transverse electric field
vectors and S represents the whole fiber area cross
section. Although for a circular and Gaussian mode
shape they may yield similar values, for a non-
circular, non-Gaussian, or for a nonmonotonic mode
shape profile, they can yield different values. How-
ever, as a mode transforms from core mode to clad-
ding mode or vice versa, all these parameters also
show rapid changes when the modes degenerate.

The variation of theHx field for theHx
11 core mode

along the center of the guide in the x direction is
shown in Fig. 4 when R ¼ 1460 μm. It can be ob-
served that field is predominantly confined at the
center of the PCF core: however, its maximum value
is shifted slightly to the right of the waveguide
center, shown by an arrow. Two local peaks are also
visible and are located in the silica bridge region be-
tween the first and second airhole rings and the
second and third airhole rings (shown as 1, 2, and
3 in the figure), respectively. These peaks are only
visible on the right of the core, not on the left side,
which can be understood by considering that in

Fig. 3. (Color online) Variation of the total losses with the bend-
ing radius R.

Fig. 4. (Color online) Hx field profile of the Hx
11 core mode along

the X axis through the center of the core when R ¼ 1460 μm.

Fig. 2. (Color online) Variation of the effective indices with the
bending radius R.
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the conformal transformation, the higher local
equivalent index value allows such local modes to
be formed on the right side of the core. Its spot size
and effective area are 31.5 and 30:0 μm2, respectively.
At this particular bending radius (where R ¼

1460 μm), a local cladding mode also exists with its
effective index slightly lower than the Hx

11 core
mode. The Hx field contour for this Hx

c1 cladding
mode is shown in Fig. 5. The locations of the airholes
are shown by circles. It can clearly be observed that
this cladding mode is formed between the airholes of
the second and third rings. The spot-size area of this
mode is smaller (σ ¼ 26:1 μm2), being restricted to a
smaller silica bridging region (but its Aeff ¼ 37:4 μm2

is rather large as the field spreads slowly), but this
mode is highly dispersive with a higher loss value.
When the bending radius is reduced below the de-

generation point (R < 1445 μm) the effective index of
the cladding mode becomes higher than that of the
Hx

11 core mode, and the eigenvalues change their po-
sitions. The 3DHx field profile of theHx

11 core mode,
when R ¼ 1430 μm, is shown in Fig. 6. The local
peaks on the right of the main peak are visible. How-
ever, it can be observed that the sign of second peak
in the cladding area is negative, which is also an in-
dication of the change in mode order.
The 3D Hx field profile of the Hx

c1 cladding mode,
when R ¼ 1430 μm, is shown in Fig. 7. Its narrower
peak, existing between two airholes (marked by 1
and 2), is clearly visible. Besides that, one local peak
in the core region and another between the second
and the third airhole rings are also visible.
It has been mentioned that the modal properties

of the quasi-TM and quasi-TM modes are almost
identical, as the original straight PCF has a sixfold
rotational symmetry, before the effect of bending is
considered. In Fig. 1, it is also noted that the bending
loss curve for Λ ¼ 5 μm shows several local perturba-
tions. To study this more thoroughly, the bending
radius is further reduced, and the variations of

the effective index values for the other polarization,
quasi-TE core, and cladding modes are shown in
Fig. 8. The effective index variations of the first Hy

1
and second Hy

2 modes are shown by a dashed and a
solid line, respectively. It can be noted that the effec-
tive index of the fundamental core mode is higher
than that shown in Fig. 2, as the bending radius is
now significantly reduced. In a similar way to what
is shown in Fig. 2, these two effective index curves do
not cross each other but transform from theHy

11 core
mode to the Hy

c2 cladding mode or vice versa around
a value of R∼ 835 μm. The lower bending radius
further increases the local refractive index on the
right-side of the PCF center. The dispersion slope

Fig. 5. (Color online) Hx field contour for Hx
c1 cladding mode

when R ¼ 1460 μm.

Fig. 6. (Color online)Hx field profile for theHx
11 core mode when

R ¼ 1430 μm.

Fig. 7. (Color online) Hx field profile for the Hx
c1 cladding mode

when R ¼ 1430 μm.
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of the Hy
c2 cladding mode is also higher in this case

than that of the Hx
c1 cladding mode.

The variations of the total loss values for the Hy
11

core and Hy
c2 cladding modes are shown in Fig. 9. In

this case, the core mode with a lower loss value trans-
forms to a higher loss cladding mode near the degen-
eration position. In this case, theHy

11 cladding mode
has a higher loss value than that of the Hx

11 core
mode around R∼ 1445 μm, since the bending radius
is now significantly reduced. Its loss value also peaks
near the degeneration point, R∼ 835 μm, by being
mixed with a higher loss cladding mode. Similarly,
the loss value of the cladding mode is reduced near
the degeneration point, due to being mixed with a
lower loss core mode.
To understand the modal properties of this clad-

ding mode at the lower bending radius range, the cor-
responding field plots are shown. TheHy field profile
along the x axis for the Hy

11 core mode is shown in
Fig. 10, when R ¼ 840 μm, just right of the degenera-
tion point. The existence of a second peak between
the first and the second airhole rings is clearly visi-
ble. In this case, the secondary peak is of a higher
magnitude, as the local equivalent refractive index
is much higher due to a smaller bending radius being

considered here. The Hy field profile of the Hy
11 core

mode when R ¼ 830 μm, just left of the degeneration
point, is shown in Fig. 11. In this case, the secondary
peaks are also clearly visible. However, the change in
its sign indicates that this mode is now a higher order
mode, as its eigenvalue position has been shifted by
the cladding mode.

The two-dimensional (2D) Hy contour of the Hy
c2

cladding mode just below the degeneration point,
when R ¼ 833 μm, is shown in Fig. 12. The locations
of the airholes are also shown by circles. It can be
clearly observed that the modal field is confined in
the silica bridge region between the first and the sec-
ond airhole rings. It can also be noticed that the field
spreads to link the three silica bridging areas. How-
ever, one feature is very clear: that this is a higher
order cladding mode with two positive and negative
peaks shown by different colored contours. It should
also be noted that the local equivalent index value
between the first and the second airhole rings would
be lower than that between second and third airhole
rings. Thus, with this cladding mode also being a

Fig. 8. (Color online) Variation of the effective indices with the
bending radius for the quasi-TE modes.

Fig. 9. (Color online) Variation of the total losses with the bend-
ing radius R.

Fig. 10. (Color online) Hy field profile along the X axis for the
Hy

11 core mode when R ¼ 840 μm above the degeneration point.

Fig. 11. (Color online) Hy field profile along the X axis for the
Hy

11 core when R ¼ 830 μm below the degeneration point.
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higher order mode, its effective index is significantly
lower (compared to Hx

c1, shown in Fig. 5) for a larger
bending radius. Hence, its effective index value only
crosses that of the fundamental core mode at a much
lower bending radius, when this value is increased
significantly.

3. Conclusions

The above figures clearly show the origin of localized
cladding modes in the silica bridging regions be-
tween the airholes. These areas are smaller than the
PCF core (where an airhole is missing) and for a
straight PCF, those modes with the lower effective
indices do not interact with the PCF core mode. How-
ever, for a bent PCF, as the local equivalent index is
increased, the dispersion slopes of these modes are
higher, and for smaller bending radii they can be
phase matched to the core mode to form coupled
supermodes. It is also shown that these cladding
modes can also cover several bridging regions simul-
taneously and also support the higher order modes.
This mode degeneration causes a mixing of these
modes, the formation of the supermodes and the
transformation from one mode to another. These
cause rapid changes in their modal properties and
the effective index, the spot size, and the bending loss
values. A higher pitch value or larger d=Λ ratio in-
creases the silica bridging regions, and suchmode de-
generation can appear at a higher bending radius,
which may often be encountered in practical applica-
tions. In these cases, the mode degeneration appears
more frequently and shows as noisy loss values in ex-
perimental measurements [32,39].
The origin of these fundamental and higher order

cladding modes, the coupling between them, and ul-
timately the coupling of these cladding supermodes
with the fundamental coremode can affect the design
of various PCF-based applications. The study of this
mode degeneration gives insight to the practical ap-
plication of PCFs and the optimum handing condi-

tions during many “real world” applications. This
understanding can also be useful in the study of
PCF-based devices, thereby exploiting bending loss,
for example by using effectively single mode wave-
guides with differential modal losses and single
polarization waveguides with highly differential po-
larization dependent bending losses, or additionally,
in the design of optical attenuators, for example.
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