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On paths-based criteria for polynomial time

complexity in proof-nets

Matthieu Perrinel

ENS de Lyon, CNRS, Inria, UCBL, Université de Lyon. Laboratoire LIP
matthieu.perrinel@ens-lyon.fr

Abstract. Several variants of linear logic have been proposed to charac-
terize complexity classes in the proofs-as-programs correspondence. Light
linear logic (LLL) ensures a polynomial bound on reduction time, and
characterizes in this way the class Ptime. In this paper we study the
complexity of linear logic proof-nets and propose two sufficient criteria,
one for elementary time soundness and the other one for Ptime soundness,
based on the study of paths inside the proof-net. These criteria offer
several benefits: they provide a bound for any reduction sequence and
they can be used to prove the complexity soundness of several variants of
linear logic. As an example we show with our criteria a strong polytime
bound for the system L4 (light linear logic by levels).

1 Introduction

Implicit computational complexity is a research field aiming to characterize
complexity classes by syntactically restricting models of computation. The main
application is to achieve automated certification of a program’s complexity. Due
to its focus on resources management, linear logic (LL) [9] is a promising setting
for this field. One of the interests of the linear logic approach is that it admits
higher order types: functions are basic objects (e.g. functions can take functions
as arguments and return functions).

In the linear logic approach, programs are proofs and program execution is
done by the elimination of the cut rule in the proof. Proofs are either presented
as sequent calculus derivations or as proof-nets, a graph based syntax for proofs.
Programming in proof-nets is unnatural for most people. Fortunately, the proofs-
as-programs correspondence states that a logical system corresponds to a type
system for the λ-calculus [3]. λ-calculus is not used directly as a programming
language but functional programming languages (e.g. Haskell) are based on it.

Most of the works controlling complexity in linear logic define a subsystem of
LL enjoying some bounds on the length of cut-elimination sequences. Typically,
the subsystem is defined in such a way that the programs are decomposed in
strata and communication between strata is constrained. So syntax defines strata
which in turn controls interaction. However a bunch of distinct subsystems have
been defined in this way, corresponding to different notions of strata. How are
these systems related and are there general principles underlying them?
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To investigate these questions we propose here a kind of reverse approach:
instead of defining strata by syntax we will define them by interaction. We believe
this will contribute to establish these strata-based systems on solid ground. In a
second step this could help in designing more general systems, and possibly also
in analyzing the intrinsic limitations of strata-based systems.

Concretely we will consider a general language, LL, and define criteria on
proofs based on interaction, expressed here by relations between subterms. These
criteria entail bounds on the length of cut-elimination sequences. They can then
be used either directly, to prove bounds on the complexity of a LL proof, or
indirectly to prove that a LL subsystem entails complexity bounds. Concretely,
the relations between subterms that we consider are defined by studying some
paths in the proof, by means of context semantics [4].

Note that it is harder to control complexity in a higher order than in a
first-order language. Thus, variants of LL for Ptime have to enforce strict
control. Therefore, many polynomial time λ-terms can not be typed in those
variants. For example, the λ-calculus type-system DLAL [3] (obtained from the
LL subsystem LLL [10]) is Ptime extensionally complete. It means that for any
function f computable in polynomial time, there exists a λ-term computing f
typable in DLAL. This is proved by showing that it is possible to simulate any
Turing machine for a polynomial number of steps with a DLAL typed term.
However, DLAL is not intensionally complete: there are λ-terms which compute
in polynomial time but are not typable in DLAL.

Contributions In this paper, for any proof-net G, we define two relations ։
and <2 between some special elements of G called “boxes”. A proof-net is said
stratified if ։ is acyclic, and controls dependence if <2 is acyclic. A stratified
proof-net normalizes in a number of steps bounded by an elementary function
of its size. A proof-net satisfying both criteria normalizes in a number of steps
bounded by a polynomial on its size. The elementary function and the polynomial
only depend on the depth of the proof-net in terms of boxes and the depth of
the ։ and <2 relations. Our approach has a number of benefits:

(i) strong vs weak complexity bounds;
(ii) use of the criteria to prove complexity bounds for variants of linear logic;
(iii) better understanding of existing linear logic systems for complexity.

Concerning (i), a programming language comes with a reduction strategy which
determines the reduction order. For example: do we reduce the arguments before
passing them to functions (call by value) or not (call by name)? Complexity
bounds are sometimes proved for farfetched strategies, which are unlikely to be
implemented in a real programming language. The bounds proved in this paper
do not depend on the strategy (strong complexity bounds).

As to (ii), we show how to use our approach to study variants of linear
logic: we can establish the complexity soundness of a system by showing that
all its proofs satisfy our criteria. Here, we will apply this technique to L4, for
which only a weak Ptime bound was previously known. Note that it is relatively
easy to prove that all proof-nets of a given system are stratified and control
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dependence. The more difficult work is done in the proof that those properties
entail complexity bounds, and this is independent of the system. Factorizing
proofs of complexity bounds may ease the search and the understanding of such
proofs. Actually, an important progress had already been made in this direction
by Dal Lago with context semantics [4]: he provided a common method to prove
complexity bounds for several systems like ELL, LLL and SLL [11]. Here we go
a step further by designing higher level criteria, based on context semantics.

Concerning point (iii), we believe the present work can shed a new light
on variants of linear logic for complexity. Indeed, the elaboration of such a
system can be divided in two steps: first finding an abstract property implying a
complexity bound and then finding a way to entail this property by syntactic
means. Several extensions of LLL have been studied, like L4 [1] and MS [13].
As those systems verify our criteria, we think those criteria illustrate a common
property underlying these logics. Moreover we have found some λ-terms satisfying
our criteria without being in any system of the above list. Thus, it seems we
could define more expressive systems by being closer to our criteria.

Related works In the search for an expressive system for complexity properties,
Dal Lago and Gaboardi have defined the type system dlPCF [5] which charac-
terizes exactly the execution time of PCF programs. Type-checking in dlPCF
is undecidable, but one can imagine restricting dlPCF to a decidable fragment.
Their framework can be seen as a top-down approach. Here we follow a bottom-up
approach: we take inspiration from previous decidable type systems characterizing
Ptime and relax conditions losing neither soundness nor decidability.

Our main tool will be context semantics, a tool related to geometry of
interaction [7]. Baillot and Pedicini used geometry of interaction to characterize
elementary time [2]. Dal Lago adapted context semantics to study quantitative
properties of cut-elimination [4]. From this point of view, an advantage of context
semantics compared to the syntactic study of reduction is its genericity: some
common results can be proved for different variants of linear logic, which allows
to factor out proofs of complexity results for these various systems. We use the
context semantics of Dal Lago, adapted to classical linear logic.

Here, we only give the statement of theorems, proofs can be found in [12].

2 Linear Logic

Linear logic [9] can be thought of as a refinement of System F [8] which focuses
on the duplication of arguments. In LL, A ⇒ B is decomposed into !A⊸ B. !A
means “infinitely many proofs of A” and A⊸ B means “using one proof of A, I
can prove B”. In fact, A⊸ B is a notation of A⊥ `B. We can view ( )⊥ as a
negation and ` as a disjunction. The conjunction is written ⊗. Finally ∀ and
∃ allow us to quantify over the set of formulae. Compared to full linear logic,
we use neither additives, nor constants and we add a modality: §, introduced by
Girard for the expressive power of LLL. Precisely, formulae of LL are defined
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inductively as follows (X ranges over a countable set of variables).

F = X | X⊥ | F ⊗ F | F ` F | ∀XF | ∃XF | !F | ?F | §F

As examples, let us notice that ∀X.X ⊸ X is provable (for any formula X, using
one proof of X, we get a proof of X). On the contrary, ∀X.X ⊸ (X ⊗X) is not
provable because, in the general case, we need two proofs of X to prove X ⊗X.

We define inductively ( )⊥ on F , which can be viewed as a negation: (X)⊥ =
X⊥, (X⊥)⊥ = X, (A ⊗ B)⊥ = A⊥ ` B⊥, (A ` B)⊥ = A⊥ ⊗ B⊥, (∀X.A)⊥ =
∃X.A⊥, (∃X.A)⊥ = ∀X.A⊥, (!A)⊥ =?(A⊥), (?A)⊥ =!(A⊥) and (§A)⊥ = §(A⊥).

Definition 1. A proof-net is a graph-like structure defined inductively by the
graphs of Figure 1 (G and H being proof-nets). Edges are labelled by formulae.

ax
A⊥A

G H

cutA A⊥

G H

⊗
A B

A⊗B

G

`
A B

A`B

G

∃
A[B/X]

∃X.A

G

∀
A

∀X.A

G

?D
A

?A

G

?C

?A?A

?A

G ?W

?A

G

!P?P?P

A1 An B

?A1 ?An !B

G

§
A

§A

Fig. 1. Construction of proof-nets. For the ∀ rule, we require X not to be free
in the formulae labelling the other conclusions of G

Readers familiar with linear logic may notice the absence of the digging
principle (!A⊸ !!A). We removed it from this article to simplify the definitions.
The way we deal with digging is described in [12].

The set of edges is written EG. The rectangle in the left-most proof-net on
the second row of Figure 1 is called a box. Formally a box is a subset of the
nodes of the proof-net. We say that an edge (l,m) belongs to box B if l is in B.
The number of boxes containing an edge e is its depth written ∂(e). ∂G is the
maximum depth of an edge of G. The set of boxes of G is BG. Let us call B the
box in Figure 1. The node labelled !P is the principal door of B, its outgoing
edge is written σ(B). The ?P nodes are the auxiliary doors of box B. DG(B) is
the set of doors of B. The doors of box B do not belong to box B.

Lists are written in the form [a1; . . . ; an], l1@l2 represents the concatenation
of l1 and l2, and . represents “push” ([a1; . . . ; an].b = [a1; . . . ; an; b]). If X is a set,
|X| is the cardinal of X. If b, h, n ∈ N, we define bnh by bn0 = n and bnh+1 = bb

n
h .

The λ-terms correspond, through the proofs-as-programs paradigm, to proof-
nets. Intuitively, proof-nets are λ-terms where applications and abstractions are
respectively replaced by ⊗ and ` and with additional information on duplica-
tion. Cut-elimination is a relation, described in Figure 2, on proof-nets which
corresponds to β-reduction. Proof-nets are stable under cut-elimination.
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` ⊗

cut

cut cut

cut

ax

cut

cut
cut

∀ ∃
A⊥ A[B/X]

∀X,A⊥ ∃X,A

cut
A[B/X]⊥ A[B/X]

cut

cut

∀ ∃

cut

cut

G

!P?P?P
cut

?W

?W ?W

cut

G

!P?P?P
cut

?D

G

?D?D cut

cut

G

!P?P?P

H

!P?P?P

cut

G H

?P?P !P?Pcut

cut

!P?P?P

cut

?C !P?P?P !P?P?P

?C?C cutcut

cut

Fig. 2. Rules of cut-elimination. In the ∀/∃ rule, the substitution of the variable
X by B takes place on the whole net.

3 Context Semantics

Let us first give an informal explanation. The usual way to prove strong bounds
on a rewriting system is to assign a weight TG to each term G such that, if G
reduces to H , TG > TH . In LL, the !P/?C step makes the design of such a weight
hard: a whole box is duplicated, increasing the number of edges, cuts,... Let us
suppose that G reduces to H, an element (box, edge or node) x′ of H is said to
be a residue of an element x of G if x′ “comes” from x. In Figure 3, e, e1, e2,
e3 and e4 are residues of e. A duplicate of x ∈ G is a residue of x which has at
most 1 residue (it can not be copied). In Figure 3, the duplicates of e are e1, e3
and e4. Then,

∑

e∈EG
|{duplicates of e}| does not increase, even during !P/?C

steps. We will define a weight based on this sum.
Context semantics determines, among the paths in a proof-net G, which

paths are preserved by cut-elimination (such paths are called persistent in the
literature [7]). Computing those paths is somehow like reducing the proof-net,
and the persistent paths starting at the principal door of a box correspond to
the duplicates of this box. In context semantics, persistent paths are captured
by tokens (contexts) travelling across the proof-net according to some rules. The
following definitions introduce the components of the tokens.

A signature is a list of l and r. A signature corresponds to a list of choices of
premises of ?C nodes, to designate a particular duplicate of a box. The signature
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5
!P

`

ax

e

!P
B

a
?C

cut

?W ?D

?C ⊗
ax
ax

b c

d

f

g h

i
!P

`

ax

e1

!P
B1

?W
cut

!P

`

ax

e2

!P
B2

?D
cut

?C ⊗
ax
ax

⊗

!P !P

` `

ax ax

e3 e4

h

i

Fig. 3. Cut-elimination of a proof-net.

t. r means: “I choose the right premise, and in the next ?C nodes I will use t to
make my choices”. The set of signatures is written S.

A potential is a list of signatures: a signature corresponds to the duplication
of one box, but an element is copied whenever any of the boxes containing it
is cut with a ?C node. The set of potentials is written P. A potential is meant
to represent duplicates. The duplicates of e in Figure 3, e1, e3 and e4, will be
respectively represented by potentials [[l]; []], [[r]; [r]] and [[r]; [l]]. The canonical
potentials, will characterize exactly the potentials corresponding to a duplicate.

A trace element is one of the following characters: `l,`r,⊗l,⊗r, ∀, ∃, §, !t, ?t
with t a signature. A trace element means “I have crossed a node with this
label, from that premise to its conclusion”. A trace is a non-empty list of trace
elements. The set of traces is T. A trace is a memory of the path followed, up
to cut-eliminations. We define duals of trace elements: `⊥

l = ⊗l, !
⊥
t =?t,. . . and

extend the notion to traces by ([a1; · · · ; ak])
⊥ = [a⊥1 ; · · · ; a

⊥
k ].

A polarity is either + or −. It will tell us in which way we are crossing the
arrows. We define +⊥ = − and −⊥ = +.

A context is a tuple (e, P, T, p) with e ∈ EG, P ∈ P, T ∈ T and p a polarity.
It can be seen as a state of a token that will travel around the net. It is located
on edge e (more precisely its duplicate corresponding to P ) with orientation p
and carries information T about its past travel.

The nodes define two relations and →֒ on contexts. The rules are presented
in Figure 4. Observe that these rules are deterministic. For any rule (e, P, T, p) 
(g,Q, U, q) presented in Figure 4, we also define the dual rule (g,Q, U⊥, q⊥) 
(e, P, T⊥, p⊥). We define 7→ as the union of  and →֒. In other words, 7→ is the
smallest relation on contexts including every instance of  rules in Figure 4
together with every instance of their duals and every instance of the →֒ rule.

For every sequence (e1, P1, T1, p1) (e2, P2, T2, p2) · · · (en, Pn, Tn, pn),
the sequence of directed edges (e1, p1), · · · , (en, pn) is a path (i.e the head of ei
is the same node as the tail of ei+1). The →֒ relation breaks this property as
it is non-local, in the sense that it deals with two non-adjacent edges. It is the
main relation that distinguishes Dal Lago’s context semantics from geometry
of interaction. The trace keeps track of the history of previously crossed nodes
to enforce path persistence: the 7→ paths are preserved by cut-elimination. The
study of paths, sequences of the shape C1 7→ C2 7→ . . . , will give us information
on complexity.
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cut
e f

ax
g h

(e, P, T,+) (f, P, T,−)
(g, P, T,−) (h, P, T,+)

`

a b

c

⊗

e f

g

(a, P, T,+) (c, P, T.`l,+)
(b, P, T,+) (c, P, T.`r,+)
(e, P, T,+) (g, P, T.⊗l,+)
(f, P, T,+) (g, P, T.⊗r,+)

∀

e

f
∃

g

h

(e, P, T,+) (f, P, T.∀,+)
(g, P, T,+) (h, P, T.∃,+)

?D

e

f
?C

g h

i

(e, P, T,+) (f, P, T.?[],+)
(g, P, T.?t,+) (i, P, T.?t. l,+)
(h, P, T.?t,+) (i, P, T.?t. r,+)

?P

e

f
!P

g

h

(e, P.t, T,+) (f, P, T.?t,+)
(g, P.t, T,+) (h, P, T.!t,+)
(f, P, !t,−) →֒ (h, P, !t,+)

Fig. 4. Exponential rules of the context semantics

As an example, the path in the first proof-net of Figure 3 (e, [[r]; [l]], [`r],+) 7→
(a, [[r]], [`r; ![l]],+) 7→ (b, [], [`r; ![l]; ![r]],+) 7→ (c, [], [`r; ![l]; ![r]],−) 7→
(d, [], [`r; ![l]; ![]],−) 7→(f, [], [`r; ![l]],−) 7→(g, [], [`r; ![]],−) 7→(h, [], [`r; ![]],+) 7→
(i, [], [`r; ![];⊗r],+) becomes the path (e4, [[]], [`r],+) 7→ (h, [], [`r; ![]],+) 7→
(i, [], [`r; ![];⊗r],+) in the third proof-net of Figure 3.

We want to capture the potentials which correspond to duplicates of a box.
The definition can be difficult to understand. To give the reader a grasp of it,
we will introduce the notion of 7→-copy progressively, proceeding by successive
refinements. For the sake of simplicity, we will start with the case of depth 0.

– First, we could say that t corresponds to a duplicate of box B iff t corresponds
to a sequence of choices of residues along a cut-elimination sequence, and
the box residue we chose either will not be part of a cut, or the cut will
open it. The 7→-paths are exactly the paths preserved by cut-elimination.
So, we could make the first attempt: “t corresponds to a duplicate of B
iff (σ(B), [], [!t],+) 7→∗ (e, P, T, p) 67→”. However, this definition would allow
potentials which refuse choices, corresponding to residues which have several
residues themselves (e.g. [] for B in Figure 3). Indeed (σ(B), [], [![]],+) 7→∗

(c, [], [![]],−) 67→. The duplicates of B in this figure are B1 and B2, which
correspond to [l] and [r]. [] corresponds to B, which can be copied.

– Thus, our second try would be “(B, t) corresponds to a duplicate iff ∃n ∈
N, ∀u ∈ S, (σ(B), [], [!u.t],+) 7→n 67→”. However, this definition would allow
potentials which make too many choices. For example (B, [l; r]) in Figure 3
satisfies this definition. Indeed (σ(B), [], [![l;r]],+) 7→∗ (d, [], [![l]],−) 67→. So we
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add the condition that the left-most trace element in the last context must
be ![], the signature must be used entirely.

Such a signature will be called a copy of (B, []). If Bk ⊂ · · · ⊂ B1, duplicates
of Bk will be represented by [t1; · · · ; tk] with [t1; · · · ; tk−1] corresponding to a
duplicate of Bk−1 and tk a copy of (Bk, [t1; · · · ; tk−1]).

Definition 2. Let → be a relation on contexts, a →-copy of (B,P ) (with B ∈ BG

and P ∈ P) is a signature t such that there exists n ∈ N such that

∀u ∈ S, (σ(B), P, [!u.t],+) →n (e,Q, [!u],−) 6→

The set of →-copies of (B,P ) is denoted C→(B,P ). Intuitively, C 7→(B,P ) repre-
sents the duplicates of B, given the duplicates of the outer boxes.

Definition 3. Let → be a binary relation on contexts and e ∈ EG such that
e ∈ B∂(e) ⊂ ... ⊂ B1. The set L→(e) of canonical potentials for e is the set of
potentials [s1; ...; s∂(e)] such that ∀i ≤ ∂(e), si ∈ C→(Bi, [s1; · · · ; si−1]).

So, a →-canonical potential for e is the choice, for all box Bi containing e, of
a →-copy of Bi. In particular, in the case of →= 7→, L 7→(e) corresponds to all
duplicates of e. For example, in Figure 3 L 7→(e) = {[[l]; []]; [[r]; [l]]; [[r]; [r]]}. We
define L→(B) = L→(σ(B)).

The next theorem is due to Dal Lago [4]. The intuition behind it is that each
cut-elimination step either erases a node or copies a box. Thus, if we know the
number of duplicates of each edge, we can bound the number of cut-elimination
steps. This result allows to prove strong complexity bounds for several systems.

Theorem 1 (Dal Lago’s weight theorem). For every proof-net G, the length
of any cut-elimination sequence beginning by G is bounded by:

TG =
∑

e∈EG

|L 7→(e)|+ 2 ·
∑

B∈BG



|DG(B)|
∑

P∈L 7→(B)

∑

t∈C 7→(B,P )

|t|





Moreover, G is acyclic: there exists no path of the form (e, P, [!s], b) 7→
+ (e, P, [!t], b).

4 Stratification

4.1 Motivations

Stratification designates a restriction of a framework, which forbids the identifica-
tion of two objects belonging to two morally different “strata”. Russell’s paradox
in naive set theory relies on the identification of two formulae which belong
morally to different strata. The non-terminating λ-term Ω = (λx.(x)x)λy.(y)y
depends on the identification of a function and its argument. In recursion theory,
to create from the elementary sequences θm(n) = 2nm (tower of exponential of
height m in n), the non elementary sequence n 7→ 2nn, we also need to identify n
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and m which seem to belong to different strata. Stratification restrictions have
been applied to those frameworks (naive set theory, linear logic, lambda calculus
and recursion theory) to entail coherence or complexity properties [1].

ELL [10] can be seen as linear logic deprived of the dereliction (!X ⊸ X)
and digging (!X ⊸ !!X) principles. This is a stratification restriction on linear
logic. The stratum of an edge is the depth of the edge in terms of box inclusion.
One can observe in the rules of cut-elimination that without the ?D dereliction
node (here, we did not present the node of digging), the depth of an edge never
changes during cut-elimination, so during cut-elimination, a residue of e can
be cut with a residue of f only if e and f have same depth. Any proof-net of
ELL reduces to its normal form in a number of steps bounded by an elementary
function of its size [6]. In [1], Baillot and Mazza present an analysis of the concept
of stratification and L3, a generalization of ELL. Their stratification condition
is enforced by a labelling of edges and also entails elementary time.

Here, we present an even more general stratification condition. This general-
ization is not given by a LL subsystem but by a criterion on proof-nets. Then, to
prove that a system is elementary time sound, we only have to prove that all the
proof-nets of the system satisfy the criterion. ELL and L3 satisfy the criterion.

4.2 Preliminary intuition: stratification on λ-calculus

Our definition of stratification is based on context semantics paths and may be
difficult to grasp at first read. To motivate the criterion, we first state a criterion on
λ-calculus, the formal system whose terms are generated by Λ = x | λx.Λ | (Λ)Λ.

We define hole-terms as λ-terms with a variable ◦ appearing free exactly once.
If t ∈ Λ, h[t] denotes h[t/◦] and, if t is not a variable, t is said a subterm of h[t].
For t ∈ Λ, |t| is the size of t.

If g[u] →β v, the residues of u are the copies by β-reduction of u where free
variables may have been substituted. Let us consider t = (λx.λy.(x)(x)y)λz.z →β

λy.(λz.z)(λz.z)y = t′, then the residues of λz.z are the two occurrences of λz.z
in t′. The residue of (x)y is (λz.z)y. Finally t and λx.λy.(x)(x)y have no residue.

Let u, v be subterms of t, we capture “u belongs to a higher stratum than v”
by the following relation u։ v.

Definition 4. Let t ∈ Λ and u, v be subterms of t, u ։ v if t →∗
β t′ and there

exists a subterm of t′ of shape (v′)h[u′] with u′, v′ residues of u, v.

A λ-term is stratified if ։ is acyclic. Thus, Ω is not stratified because
Ω →β (λy.(y)y)λy.(y)y so λy.(y)y ։ λy.(y)y. For any stratified term t, we
define St as the depth of։ (i.e. the maximum n such that ∃(ti), t0 ։ · · ·։ tn).

Theorem 2. If t ∈ Λ is stratified, then there is a normalization sequence for t

of length ≤ |t|
|t|
3.St

.

Proof (sketch). Let t be a stratified λ-term. The strategy is to reduce first the
set R0 of subterms of t at stratum 0. By definition, these subterms have no
residue inside the right part of an application. So there are never copied, they
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only have one duplicate. Thus we can reduce all the elements of R0 in at most
|R0| steps, obtaining a term t′ in which elements of R0 have no residue. We have

|t′| ≤ |t|2
|R0|

≤ |t|2
|t|

.
If u′ and v′ are subterms of t′ such that u′ ։ v′ and u′, v′ are residues of u,

v, then u։ v. Thus, St′ < St. In at most St such rounds of reduction, we reach
a normal form.

4.3 Stratification on proof-nets

We define a relation ։ between boxes of proof nets. It loosely correspond to the
relation on Λ. In terms of context semantics paths, B ։ C means that there is a
path beginning by the principal door of B which enters C by its principal door.

B ։ C ⇔ ∃P,Q ∈ P, t ∈ S, T ∈ T, (σ(B), P, [!t],+) ∗ (σ(C), Q, T,−)

To illustrate the correspondence with the criterion on Λ, we can observe that
in the proof-net of Figure 5, (σ(Bu), [], [!e],+) 7→5 (σ(Bv), [], [!e;⊗l; ?e],−) so
Bu ։ Bv. Let u, v be the λ-terms corresponding to Bu and Bv, then the whole
proof-net corresponds to (λx.h[(x)u])v which reduces to h[(v)u] so u։ v.

`

?D

⊗

!P

Bu

· · ·

· · ·

⊗

cut

!P

· · ·

Bv

ax

Fig. 5. This proof-net corresponds to (λx.h[(x)u])v for some h.

Definition 5. A proof-net G is stratified if ։ is acyclic.

For example, in Figure 6, (σ(B), [], [![l]],+)  ∗ (σ(C), [], [![];⊗l; ![r]],−) so
B ։ C. This is the only relation in ։ so the proof-net is stratified.

The weak bounds for ELL and L3 were proved using a stratum by stratum
strategy, for a specific notion of stratum. They prove that reducing the cuts at
strata ≤ i does not increase too much the size of the proof-net at stratum i+ 1.
Similarly, we will bound the number of copies of a box when we only reduce
cuts in the strata ≤ i + 1 by the maximum number of copies of a box when
reducing only cuts in strata ≤ i. Thus, we need a notion of copy corresponding
to reduction of cuts only in strata ≤ i. This means we need a relation 7→i on
contexts which simulates cut-elimination restricted to strata ≤ i.

First, we define the stratum of a box B, written S(B) as the depth of B in
terms of ։, i.e. max{s | ∃(Bi)i≤s, B0 ։ B1. . . ։ Bs}. Then, the stratum of a
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?C ?C

` ⊗

`

?D ?D ?D

⊗ ⊗
ax ax

ax
ax

⊗
ax

⊗

!P

`

ax

!P?P?P

?C

⊗
ax
ax

`

∀ ∃

!P

cut

B C

Fig. 6. This proof-net corresponds to (λ〈f, g〉.〈(f)g, (g)f〉)〈λx.x, λy.〈y, y〉〉

context C is the stratum of the box from which the context comes from: more
formally, if there exists B ∈ BG, P ∈ P and t ∈ S such that (σ(B), P, [!t],+) ∗ C,
S(C) is defined as S(B). There are contexts such that S(C) is undefined (if the
left-most trace element is not a !u, for example). S(C) is not ambiguous because
 is injective and (σ(B), P, [!t],+) has no antecedent by  (because the trace
of a context is non-empty).

Let s ∈ N, we define C 7→s D by: C 7→s D iff C 7→ D and S(D) ≤ s.
Thus, if B is a box of stratum > s, then for every P, t, (σ(B), P, [!t],+) 67→ so
C 7→s

(B,P ) = {[]}. This is the expected behaviour: we forbid the reduction steps
involving a box of stratum > s, so B will never be duplicated. For matters of
readability, we will often write Ls(x) for L 7→s

(x) and Cs(x, P ) for C 7→s
(x, P ).

For any s ∈ N, 7→s⊆7→ so 7→s-copies of a box B are suffixes of 7→-copies of B.

Lemma 1. For any s ∈ N, any copy t ∈ C 7→(B,P ) there is a unique t/s ∈
Cs(B,P ) such that t/s is a suffix of t. For any s ∈ N and for any P =
[t1; . . . ; t∂(B)] ∈ L 7→(B), there is a unique P /s = [t′1; . . . ; t

′
∂(B)] ∈ Ls(B) such that

for all 1 ≤ i ≤ ∂(B), t′i is a suffix of ti.

By Theorem 1, proof-nets are acyclic. So no 7→ path may go through two con-
texts of the shape (e,Q, [!u], p) and (e,Q, [!v], p). In fact, we can prove the following
refinement. Let us assume e ∈ B∂(e) ⊂ · · · ⊂ B1, then no 7→ path beginning by
(σ(B), P, [!t],+) may go through two contexts of the shape (e, [q1; · · · ; q∂(e)], [!u], p)
and (e, [r1; · · · ; r∂(e)], [!v], p) where qi = ri whenever B ։ Bi. This gives us the
following “strong acyclicity” lemma.

Lemma 2 (strong acyclicity). Let us suppose that G is stratified and e ∈ EG.
If (e, P, [!t], p) 7→

+
s (e,Q, [!u], p) then P /s−1 6= Q/s−1.

Theorem 3. If a proof-net G is stratified, then the length of its longest reduction
sequence is bounded by 23.n3.SG+1 with n = |EG|.

Proof (sketch). Let us consider a 7→s path beginning by (σ(B), P, [!t],+). Lemma 2
bounds the number of times we can go through the same ?C node with a [!u] trace
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by max(C,Q) |Cs−1(C,Q)|∂G . So the length of any 7→s-copy of (B,P ) will be infe-

rior to |EG|·max(C,Q) |Cs−1(C,Q)|∂G . We get |Cs(B,P )| ≤ 2|EG|·max(C,Q) |Cs−1(C,Q)|∂G .
This gives an elementary bound on |Cs(B,P )|, by induction on s. Then, the
result folows by Theorem 1.

5 Dependence Control

5.1 Motivations

Though stratification gives us a bound on the length of the reduction, elementary
time is not considered as a reasonable bound. Figure 7 illustrates how the
complexity arises, despite stratification. On this proof-net, the box A duplicates
the box B and each copy of B duplicates C. If we extended this chain to n boxes,
it will normalize in time 2n. In [13], this situation is called a chain of spindles.
We call “dependence control condition” any restriction on linear logic which aims
to limit chains of spindles. The solution chosen by Girard [10] was to limit the
number of ?P -doors of each !-boxes to 1. To keep some expressivity, he introduced
a new modality § with §-boxes which can have an arbitrary number of ?P -doors.

!P
C

?P?P

?C

⊗
ax
ax

cut

!P
B

?P?P

?C

⊗
ax
ax

cut

!P
A

?P?P

?C

⊗
ax
ax

` ⊗

cut

ax

H

G

Fig. 7. If H is in normal form, this proof-net reduces in 32 cut-elimination steps

However, this solution forbids many proof-nets whose complexity is polynomial.
The complexity explodes in Figure 7 because two copies of a box B merge with
the same box A. A box with several auxiliary doors is harmful only if two of its
auxiliary edges are contracted. Besides, we study the complexity of functions,
not stand-alone proof-nets. We say that a proof-net G is in polynomial time if
there is a polynomial PG such that whenever G is cut with a proof-net H in
normal form, the resulting proof-net normalizes in time PG(|EH |). G is fixed and
PG depends on G. Thus, the sub-proof-net G of Figure 7 normalizes in constant
time.

In fact, what really leads to an exponential blowup is when the length of such
a chain of spindles depends on the input, as in Figure 8. If we replace the sub
proof-net H (which represents 3) by a proof-net H ′ representing n, the resulting
proof-net normalizes in time 2n.
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!P
B

?P?P

?C

⊗
ax
ax

`

∀ ∃

!P
⊗

?D

⊗

∃

`

ax

ax

∃

` ⊗

cut

ax

∀

`

!P
B2

?P ?P ?P

?C

?C

⊗ ⊗ ⊗

ax ax ax ax

`

G

H

Fig. 8. The sub proof-net G is not polynomial time

5.2 A Dependence Control Criterion

We will define a relation B <2 C on boxes meaning that at least 2 residues of
B have their principal doors cut with an auxiliary door of C (spindle from B
to C). We say that a proof-net controls dependence if <2 is acyclic. Then, if a
proof-net G is stratified and controls dependence, the length of a chain of spindles
in reducts of G is bounded by the number of boxes of G.

Definition 6.

B <2 C ⇔ ∃t 6= u ∈ S,

{

(σ(B), P, [!t],+) 7→+ (σ(C), Q, [!e],−)
(σ(B), P, [!u],+) 7→+ (σ(C), Q, [!e],−)

If G controls dependence and B ∈ BG, we define the nest of B (written N(B))
as the depth of B in terms of the <2 relation. NG refers to maxB∈BG

N(B).

Theorem 4. If G is stratified and controls dependence, let n = |EG|, N = NG+1,
S = SG + 1 and ∂ = ∂G + 1, the maximal reduction length of G is bounded by

n3+16N ·∂2·N·S

We can represent binary words in linear logic by the proof-nets of conclusion
B = ∀X.!(X ⊸ X)⊸ !(X ⊸ X)⊸ !(X ⊸ X). Let us notice that the number
of boxes in a cut-free binary words (or any other inductive data-type in Church
encoding) is fixed. Let us suppose that G is a proof-net of type B⊸ A (A being
a formula) and for any cut-free binary word l, G cut with l is stratified and
controls dependence. Then, there exists a polynomial P such that for all normal
proof-net l representing a binary word of length n, the application of G to l
normalizes in at most P (n) cut-elimination steps.

We can notice that the degree of the polynomial rises very fast. During the
proof we used rough bounds. Otherwise, the statement of the bound would have
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been too complex. The bound is so high because, given SG and NG, we must
consider the worst possible case (for example that there are boxes of nest NG in
each stratum). Given the exact ։ and <2 relations on a stratified proof-net G
controlling dependence, one can statically infer tighter bounds (if we are not in
the worst possible case) by following the proofs of Lemmas 24 and 25 in [12].

6 Applications

L4 (Light Linear Logic by Levels) is a system introduced by Baillot and Mazza [1]
which generalizes LLL. L4 is defined as the set of proof-nets for which we can
label each edge e with an integer l(e) verifying the rules of Figure 9, and whose
boxes have at most one auxiliary door. We define lG as max{l(e) | e ∈ EG}.
Baillot and Mazza proved a weak polynomial bound for L4 proof-nets for a
particular strategy [1], but no strong bound1. Obtaining a strong polynomial
bound is important to define a type system for λ-calculus based on L4, because it
is unclear whether the particular strategy on proof-nets of [1] could be converted
into a β-reduction strategy.

ax
AiA⊥i

cut
Ai A⊥i

⊗

Ai Bi

A⊗Bi
`

Ai Bi

A`Bi
∀

Ai

∀X.Ai
∃

Ai

∃X.Ai
?D

Ai

?Ai-1
?C

?Ai ?Ai

?Ai
§

Ai

§Ai-1
!P?P?P

Ai

!Ai-1

Ai

?Ai-1

Ai

?Ai-1

Fig. 9. Relations between levels of neighbour edges in L4

In L4, the level of a box is stable by cut-elimination. This property has an
equivalent in the context semantics presentation: the sum of the depth of the
edge and the number of exponential trace elements is stable. Let T ∈ T, the
number of !, ? and § trace elements in T is denoted ‖T‖. Notice that the following
Lemma only holds for the  relation, not for the 7→ relation. This makes the
reasonings on L4 more complex and partly explains why it was difficult to prove
a strong bound for L4.

Lemma 3. If G is a L4 proof-net and (e, P, T, p) ∗
G (f,Q,U, q), then

l(e) + ‖T‖ = l(f) + ‖U‖

Lemma 4. If G is a L4 proof-net and B ։ B′ then l(σ(B)) > l(σ(B′)).

Thanks to Lemma 4, we can prove that L4 proof-nets are stratified with strata of
boxes being bounded by the maximum level of edges. It gives us an elementary
bound on cut elimination. To prove a polynomial bound, one can prove that L4

proof-nets control dependence. In fact, in L4, the <2 relation is empty so acyclic.

1 In fact, a proof of a strong bound is claimed in [13], but it contains flaws which do
not seem to be easily patchable. See Appendix A and [12] for more details.
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Theorem 5. Let G be a L4 proof-net, with n = |EG|, of maximal level l, then
the length of the longest reduction path is inferior to

n3+16∂
2lG+2

G

In L4, binary words are represented using the Church encoding with the type:
B4 = ∀X.!(X ⊸ X)⊸!(X ⊸ X)⊸ §(X ⊸ X). In Theorem 5, the polynomial
only depends on the level and depth of the proof-net. Let G be a L4 proof-net
representing a function on binary words, i.e. the only conclusion of G has type
B4⊸ A for some A. Then, there exists a polynomial P such that for all normal
proof-net H representing a binary word of length n, the application of G to H
normalizes in at most P (n) cut-elimination steps.

Other systems The framework MS [13] is a set of subsystems of ELL where !
connectives are indexed by integers. ELL is stratified so all proof-nets of MS
are stratified. In [13], Vercelli characterizes the “most general” Ptime sound
subsystems of MS. Those systems allow !-boxes with several auxiliary doors. In
those systems, if B <2 B′, σ(B) and σ(B′) are labelled by formulae of respective
shape !nA and =!n′A′, then n < n′. The dependence control follows immediately.
The strong polynomial bound, however, was already proved in [13].

We also prove a strong bound for L4
0, a refinement of L4 [1]. L4

0 does not enjoy
stratification but we can derive a strong bound for L4

0 from the strong bound for
L4. No polynomial bound was previously proved for this system.

Comparison with L3. Our criteria allowed to show strong polynomial bounds
for systems for which only weak bounds were known. In addition, it shows that
the stratification constraints of L3 could be relaxed. Indeed, we found stratified
proof-nets controlling dependence corresponding to the λ-term ((2)λn.((n)S)1)0
(with n being the representation of n ∈ N in Church numerals) and the λ-term
with pair2 (λ〈f, g〉.〈(f)g, (g)f〉)〈λx.x, λy.〈y, y〉〉 (Figure 6). It seems that there
are no L3 proof-net corresponding to those terms. However, those examples are
contrived, and it is still not clear how much expressive power can be gained in
practice by relaxing the stratification conditions of L3.

Comparison with MS. For any Ptime sound MS system S, the length of chains
of spindles is bounded by an integer kS . Let us fix S, we can extend the chain of
spindles of G in Figure 7 to kS + 1 spindles, so that G is still constant time but
not in S. Our criteria are more general. First, we do not fix a priori a limit on the
length of chains of spindles, but only forbid cycles. So G, even with an extended
chain of spindles, satisfies our criteria. Let t = k(λ〈x, y, z〉.〈x, ((+)x)y, y〉) and
u = λ〈x, y, z〉.〈z, z, z〉, then (t)(u)(t) · · · (u)t is stratified and controls dependence,
whatever the length of the chain of applications, whereas in MS the maximum
length of such a chain is bounded. Moreover, our bound is still valid in presence
of dereliction (?D) and digging (dealing with the latter is more complex and is
only presented in the long version [12]).

2 The pairs are here represented by using the connective ⊗
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7 Conclusion

We defined two criteria on proof-nets which imply bounds on the complexity
of cut-elimination. These are then used to prove strong bounds for systems for
which only weak bounds were known. A major advantage of our approach is that,
once our general lemmas are established, proving bounds for various systems
is quite simple. There are Ptime proof-nets which do not verify our criteria,
however the expressive power of those criteria is still unclear. In future work, we
plan to define more expressive systems based on these.

Let us comment on decidability issues. One can compute all the 7→ paths
in a proof-net, for example by reducing the proof-net. So, stratification and
dependence control of a proof-net are decidable. However, as we are interested
by the complexity of functions, the interesting problem of certifying complexity
of a proof-net G is “Is there any cut-free proof-net H such that G cut with H is
not stratified or does not control dependence?”. This problem seems undecidable.
As a future work, we want to design a decidable type system, inspired by our
criteria, capturing Ptime.
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http://arxiv.org/abs/1201.2956


17

A Discussion on previous work on L
4 strong bound

In Section 8.2.2 of [13], Vercelli claims a proof of strong polynomial bounds for
some subsystems of MS†. L4 is one of these systems. However, the proof of the
strong bound contains some flaws. Indeed, the 7→ relation used in this section
has no rule to leave a box by its principal door. Moreover, the weight TG used
differs from the weight used by Dal Lago [4] and us. In the following, TG designs
the weight defined by Vercelli and we will show that the lemma 8.2.15 - which
corresponds to the “Dal Lago’s weight theorem” - is false. Indeed, in Figure 10,
G →cut H but TG = 0 + 2 + 2 + 10 = 14: 0 for box B door because no maximal
CS-path begin by σ(B), 2 for both boxes at depth 0, 1 for each node which is
neither an axiom nor a door. And TH = 2.4.2 + 2 + 2+ 10 = 22: 2.4.2 for B door
because each of the 4 B copies has length 2, 2 for the box at depth 0, 1 for each
node which is neither an axiom nor a door. So TG < TH .

!P
B

`

ax

!P ?P

cut

?C

?C?C

?W?W?W?W

!P

`

ax

cut
!P

B

`

ax

?C

?C?C

?W?W?W?W

cut
!P

`

ax

Fig. 10. The proof-net G reduces to H, but TG < TH

If we want the lemma 8.2.15 to hold, we could allow the contexts to leave
boxes by their principal door (as in our 7→ relation). Then there would be a
problem in the way the ?D is handled. Indeed, crossing a ?D node upwards adds a
signature on the potential without entering a box. Thus, the lemma 8.2.15 would
still fail, as shown on Figure 11: (σ(B), [[l]; []], [!t],+)  (a, [[l]], [!t; ![]],+)  
(b, [[l]], [!t; ![]],−) (c, [[l]; []], [!t],−) 2 (d, [[l]], [!t; ![]],+) (e, [[l]], [!t; ![]],−) 67→.

If we fix this problem by taking our 7→ relation, then lemma 8.2.17 would fail.
Indeed, crossing a ?D node changes the number of exponential stack element in
the stack without changing the length of the potential. If we fixed it by replacing
the length of the potential by the level of the edge in the enunciation of lemma
8.2.17 then the lemma would fail on the →֒ steps because the doors of a same
box may have different levels. So the correct form of the lemma is:

If G is a L4 proof-net and (e, P, T, p) ∗
G (f,Q,U, q), then

l(e) + ‖T‖ = l(f) + ‖U‖

This is exactly our lemma 3. However, proving that this weaker lemma is
enough is far from trivial.
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!P
B

`

ax

!P ?D
cuta b

!P

ax
c

?C

cut
d e

· · · · · ·

Fig. 11. The 7→-path beginning by (σ(B), [[l]; []], [!t],+) does not cross the
contraction node.
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