
On Context Semantics and Interaction Nets

Matthieu Perrinel

To cite this version:

Matthieu Perrinel. On Context Semantics and Interaction Nets. CSL-LICS, Jul 2014, Austria.
pp.10, 2014, <10.1145.2603088.2603155>. <hal-00992579>

HAL Id: hal-00992579

https://hal.archives-ouvertes.fr/hal-00992579

Submitted on 19 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

Context semantics is a tool inspired by Girard’ s geometry of
interaction. It has had many applications from study of optimal
reduction to proofs of complexity bounds. Yet, context semantics
have been defined only on λ-calculus and linear logic.

In order to study other languages, in particular languages with
more primitives (built-in arithmetic, pattern matching,...) we de-
fine a context semantics for a broader framework: interaction nets.
These are a well-behaved class of graph rewriting systems.

Here, two applications are explored. First, we define a notion of
weight, based on context semantics paths, which bounds the length
of reduction of nets. Then, we define a denotational semantics for
a large class of interaction net systems.

Categories and Subject Descriptors F [3]: 2—Denotational se-
mantics

Keywords interaction nets, geometry of interaction, context se-
mantics, denotational semantics

1. Introduction

Context semantics (CS) is a tool related to geometry of interaction
(GoI) [6, 11]. CS is a mean of studying the evaluation of a program
(a λ-term or a proof-net of linear logic) by means of paths in the
program. Those paths are defined by a token travelling across the
program according to some rules. It has first been used to study op-
timal reduction in λ-calculus [11] and linear logic [12]. It has also
been used for the design of interpreters for λ-calculus [16]. Finally,
it has been used to prove complexity bounds on subsystems of Sys-
tem T [4] and linear logic [2, 5, 20]. For this latter application, an
advantage of context semantics compared to the syntactic study of
reduction is its genericity: some common results can be proved for
different variants of linear logic, which allows to factor out proofs
of complexity results for these various systems.

Since CS had many interesting developments in λ-calculus and
linear logic, we would like to have a similar tool for programming
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languages. For instance, we want pattern-matching, inductive data-
types (as opposed to Church encoding) and built-in arithmetic op-
eration. As the set of features needed is not precisely defined, a
general framework of systems would be preferred to a single sys-
tem. This way, we would need to define the CS and prove the gen-
eral theorems only once, and they will stand for any system of the
framework. The framework we chose is interaction nets [13].

Interaction nets are a model of asynchronous deterministic com-
putation. They are based on rewriting rules on graphs and were in-
spired by the proof-nets of linear logic [10]. Interaction nets can,
in particular, encode proof-nets [17] and λ-calculus [15]. More-
over, interaction nets are general enough to encode functional pro-
gramming languages containing pattern-matching and built-in re-
cursion [9]. A non-deterministic extension is powerful enough to
encode the full π-calculus [18].

A net is a graph-like structure whose nodes are called cells. Each
cell is labelled by a symbol. A library defines the set of symbols and
the rewriting rules for the symbols. Thus, a library corresponds to a
programming language. Interaction nets as a whole, correspond to
a set of programming languages.

Contributions

In this paper, we define CS for any library and we show that the
CS paths are stable along reduction. We present two applications
of this CS:

• For any netN , we define a weightWN ∈ N∪{∞} based on CS
paths. We prove that if M reduces to N , then WN =WM − 1.
Thus, if N normalizes, WN is the length of the reduction
path, else WN = ∞. This could be used to prove complexity
bounds on programming languages which are either defined or
encodable in interaction nets.

• We define a notion of observational equivalence for each li-
brary. Then we define a denotational semantics which is, on
a class of libraries named crossing libraries, sound and fully
abstract with respect to our equivalence.

Related works

As CS is a model of GoI, the closest work to this paper, is the
definition of a GoI for an arbitrary library by De Falco [7]. De
Falco defines a notion of paths in nets and a notion of reduction
of those paths. Then, he defines a GoI of a library as a weighing of
paths by elements of a semi-group such that the weights are stable
along reduction. However, he exhibits such a semi-group only for
some particular libraries (based on linear logic). Thus, there is no
complete GoI model of interaction nets yet.

Concerning our first application, we are not aware of other
works aiming at proving complexity bounds on generic interaction
nets. There are also few tools to analyze the semantics of generic
libraries. Lafont defined an observational equivalence, based on



ζ
b0

b1

b2
ǫ

e0

δ
a0

a1

a2 m1|m2
δ c0

c1

c2
f1

f2

Figure 1: Net N . Names of ports and labels of cells are represented
while names of cells are not.

paths, for a special library called interaction combinators [14].
Then, he defines a GoI for interaction combinators: he assigns a
weight to each path in the nets such that two nets are equivalent
if and only if their paths have the same weights. Thus, the set
of weights of paths is a denotational semantics sound and fully
abstract for his equivalence.

In [19], Mazza designed an observational equivalence for every
library. This equivalence is similar, but not equal to Lafont’s on
interaction combinators. Then, he defines a denotational semantics
for symmetric combinators, a variant of interaction combinators [3,
19]. Symmetric combinators are Turing-complete and can encode a
large class of libraries (called polarized libraries). However, as we
will detail later, defining the semantics of a net as the semantics of
its translation in interaction combinators does not give quite a good
semantics. It would differentiate nets that behave similarly. Our
definition of observational equivalence is strongly inspired from
Mazza’s.

Finally, in [8], Fernandez and Mackie define an observational
equivalence for every library. This equivalence is stronger than
Mazza’s semantics on symmetric combinators but, in general, they
are orthogonal.

2. Interaction nets

Interaction nets can be defined in many ways. Here, to define
properly the CS paths, we had to use a formal definition.

We fix a symbol set S = (S, α) with S a countable set whose
elements will be called symbols and α a mapping from S to N

associating an arity to each symbol.
A net is a set of cells joined by wires. Wires may have one (or

both) ends unattached. We will often connect nets, those connec-
tions are made by those unattached ends. Formally, the ends of
wires will be represented by a set PN of ports. There are three
types of ports: ports attached to a cell (the set PNc ), free ports (the
set PNf ) and merging ports (the set PNm ).

Definition 1. A netN is a tuple (PN , CN , lN , σNw , σ
N
m, σ

N
c ) with:

• PN = PNc ⊎ PNf ⊎ PNm is a finite set called set of ports.

• CN is a finite set whose elements will be called cells

• lN : CN → S labels each cell with a symbol.
• σNw is an involution on PN with no fixpoint. We also write p

for σNw (p). σNw represents the wires: if there is a wire between
the ports p and p′, then p = p′ and p′ = p.

• σNm is an involution on PNm with no fixpoint. This mapping
associates two merging ports.

• σNc is a bijection from PNc to {(c, i)|c ∈ CN , 0 ≤ i ≤
α(lN (c))}. σNc represents the cells.

Example 1. Let Scomb = {ζ, δ, ǫ} be symbols with α(ζ) =
α(δ) = 2 and α(ǫ) = 0. Then, Figure 1 represents the net N
with: PN = {a0, a1, a2, b0, b1, b2, c0, c1, c2, e0, f1, f2,m1,m2},

CN = {A,B,C,E}, lN = {A 7→ δ,B 7→ ζ, C 7→ δ, E 7→ ǫ},

σNw = {a1 ↔ a2, a0 ↔ b0, b2 ↔ e0, b1 ↔ m1,m2 ↔
c2, c1 ↔ c0, f1 ↔ f2}, σMm = {m1 ↔ m2} and σNc =
{a0 7→ (A, 0), a1 7→ (A, 1), a2 7→ (A, 2), b0 7→ (B, 0), b1 7→

i1
iα(s) o1

oα(t)
s t

(a) The net Rs,t

O1

Oα(t)

ψ(iα(s))

ψ(i1)
R

I1

Iα(s1)

(b) The reduct Ns,t of s/t

Figure 2: Interaction rule with explicit bijection (Ok = ψ(ok)).

(B, 1), b2 7→ (B, 2), c0 7→ (C, 0), c1 7→ (C, 1), c2 7→ (C, 2), e0 7→
(E, 0)}.

The merging ports are introduced for technical reasons but are
not essential. Let p, q be merging ports of a net N such that p 6= q.

Let N ′ be the net equal to N where p|qp q is replaced by

p q , then we write N →m N ′ and we say that p is merged

with q. We define the equivalence relation ⇆m as the reflexive
symmetric transitive closure of →m. The nets will be considered
up to ⇆m equivalence and α-equivalence (renaming of the ports
and cells). Notice that →m is confluent and strongly normalizing,
we will usually represent a net by its →m normal form (the only

merging ports are the cycles of shape p|q ).

Let c be a cell of N . We write pi(c) the port p such that

σNc (p) = (c, i). The principal port of c denotes p0(c). If i ≥ 1,
pi(c) is called the i-th auxiliary port of c.

The interaction between two nets is done by merging some of
their free ports. This operation is called gluing and will be the
main tool to define the dynamics of nets. Let M and N be nets
and φ be a partial injection from PMf to PNf , then M1φN is the
net whose ports and cells are those of M and N , the free ports
in the domain and codomain of φ become merging nodes with

σ
M1φN
m (p) = φ(p) and σ

M1φN
m (φ(p)) = p. For instance, let

M = ζ
ǫ

δ m1

and N = m2 δ f1 f2 and

φ = {m1 7→ m2}, then M1φN is the net of Figure 1.
The computation in interaction nets is done by reduction of

active pairs. An active pair is a set of two cells linked by their
principal ports. Libraries will define which pairs of symbols can
interact. When an active pair is labelled by symbols which can
interact together, we may reduce it: those cells are replaced by a
net Ns,t which only depends on the symbols of the active pair. The
rest of the interaction net is left untouched.

Definition 2. Let s, t ∈ S, Rs,t is the net of Figure 2a.
An interaction rule for (s, t) is a tuple (R,ψ) where R is a net

and ψ is a bijection from P
Rs,t

f to PRf . For 1 ≤ j ≤ α(s), we

name Ij the edge ψ(ij) of R. For 1 ≤ j ≤ α(t), we name Oj the
edge ψ(oj) of R, as in Figure 2b.

In practice, we will describe interaction rules by displaying an
active pair and the reduct linked by an arrow as in Figure 3. The
bijection is given implicitly by the position of the ports.

Definition 3 (library). A library for the symbol set (S, α) is a
partial mapping L on S × S. To each (s1, s2) in the domain of
L, L associates an interaction rule for (s1, s2). Let us suppose that
L(s1, s2) = (R,ψ). Then we require that L(s2, s1) is defined and
equal to the symmetric of L(s1, s2) where inputs and outputs are
switched, i.e. L(s2, s1) = (R,ψ ◦ {ik ↔ ok}). Reduction → is
defined by N1φRs1,s2 → (N1ψ◦φR).

Because of the symmetry condition, the rules shown in Figure
3 are enough to describe the whole library Lcomb of symmetric
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Figure 4: Example of reduction with the library Lcomb.
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Figure 5: Lsort library. The rules stand for any a, b ∈ A, m =
min(a, b) and M = max(a, b)

combinators. The net of Figure 1 successively reduces to the nets
of Figure 4 (note that we use the notation _ to denote an object
whose name and value has no importance).

Example 2. As another example, let us consider an ordered set
(A,≤), and the symbols {S, []} ∪ A ∪ {Ia|a ∈ A} ∪ {a|a ∈ A}.
The arities and the library Lsort are defined by Figure 5. Then,

a1[] an S b1[] bn

with [b1; · · · ; bn] the sorted list corresponding to [a1; · · · ; an].
More precisely, it is an implementation of insertion sort.

3. Context semantics

In this section, we fix a library L. For any (s1, s2) in the do-
main of L, we write (Ns1,s2 , φs1,s2) = L(s1, s2). This sec-
tion uses many lists. Lists are written in the form [a1; · · · ; an],
l1@l2 represents the concatenation of l1 and l2, . represents “push”
([a1; · · · ; an].b = [a1; · · · ; an; b]) and |l| is the length of l.

Let N be a net, we will represent the ports that can appear dur-
ing the reduction of N by objects called potential ports. However,
the definition of potential ports may be difficult to grasp. Therefore,
we first present informally a notion of potential net to guide the in-
tuition on potential ports. The potential net of N aims to represent
all the cells and ports that can appear during the reduction of N .
The potential net of N is a tree of nets of root N such that, if the
cell c labelled by s will interact with a cell c′ labelled by s′, the
net Ns′,s (which replaces the active pair c, c′ during reduction) is

stacked on c. As an example, we present in Figure 6 a part1 of the
potential nets of N (Figure 1) and N1 (Figure 4). A potential port
can be understood as an address of a port in a potential net:

The set PotN of potential ports of net N is the set of lists
[(p0, N); (p1, Ns1,t1); · · · ; (pk, Nsk,tk )] such that for each i: pi
is a port of Nsi,ti and pi−1 is the principal port of a cell labelled
by ti. For instance, in Figure 6, the potential ports of N [(b0, N)],
[(b0, N); (d2, Nδ,γ)] and [(b0, N); (d2, Nδ,γ); (e1, Nǫ,δ)] point to
the ports of the potential net of N they represent. For P.(p,N ′) ∈

PotN , we set P.(p,N ′) = P.(p,N ′). Note that P.(p,N ′) corre-
sponds to the port wired with P.(p,N ′) in the potential net of N .

We can notice that when we reduce a net, it flattens its potential
net. Moreover, if N is a net in normal form, then the potential net
of N is equal to N (the root has no child). We will define paths in
potential nets. Those paths will be stable by reduction, thus they
will give us information about the reduction of N . Concretely,
we define contexts as tuples (P, T ) with P a potential port and
T a trace. Then we define a relation 7→ on contexts. The trace
represents information about the beginning of the 7→ path, we need
this information for the 7→ paths to be stable by reduction. In
Figure 6, we represent (by thick arrows) the path ([(b2, N)], []) 7→
([(a0, N)], [(ζ, 2)]) 7→ ([(a0, N); (d2, Nζ,δ)]) on the potential net
of N and its reduction ([(b2, N1)], []) 7→ ([(d2, N1)], []).

A positive trace element is (s, i) with s ∈ S and 1 ≤ i ≤ α(s).
The meaning of (s, i) is “I have crossed a cell of symbol s, from its
i-th auxiliary port to the principal port”. A positive trace is a list of
positive trace elements. The set of positive traces is written Tra+.

A negative trace element is (s, i) with s ∈ S and 1 ≤ i ≤ α(s).

The meaning of (s, i) is “I will arrive at the principal port of a cell
of symbol s. When this happens I will choose to leave it by its i-th
auxiliary port”. A trace element is either a positive trace element or

1 On the complete potential net of N , Nζ,ζ should also be stacked on the
lower ζ cells of Nδ,ζ , they were omitted for the sake of clearness.
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Figure 6: Intuitive representation of potential ports.

a negative trace element. A trace is a list of trace elements. The set
of traces is written Tra.

The set of contexts of N1 is ContN1 = PotN1 × Tra.

Definition 4. For any net N , we define a relation 7→ on ContN by
the rules of Figure 7. In those rules, we suppose s, s′ ∈ S, c, c′ ∈
CN , lN (c) = s, lN (c′) = s′, 1 ≤ k ≤ α(s), 1 ≤ k′ ≤ α(s′) and

m,m′ ∈ PNm with σNm(m) = m′.

The intuition underlying the definition of 7→ is that, if (P, []) 7→∗

(Q, [(s1, i1); · · · ; (sn, in)]) then there is a path in the potential net
of N from P to Q such that: N reduces to a net N ′ and the reduct
of the path in N ′ has the following shape:

s1i1 s2i2 snin

Let us notice that the trace is transformed into a net consisting
of a line of cells labelled by the symbols of the trace, the wire
linking the cells according to the indices of the trace. We will use
this construction again, representing the net corresponding to T by

T .

The 7→ relation is deterministic and incomplete (there are con-
texts C such that C 67→, i.e. ∀D ∈ ContN ,¬(C 7→ D)). Let

C = (P, T ) ∈ ContN , the possible context D such that C 7→ D
is defined depending on the rightmost port p of P .

If p is an auxiliary port, we cross the cell and add the informa-
tion on the trace (rule a).

If p is a merging port, we cross the merging port (rule f ).
If p is a principal port, the behaviour depends on whether the

rightmost trace element t is positive or negative (if the trace is
empty, C 67→L):

• If t is positive (rule c), then t = (s, k) it corresponds to an
active pair {c, c′} of symbols {s, s′}. According to the intuition

we gave of 7→, N reduces to a net N ′ and the reduct of the path
in N ′ has the following shape:

s1 sk s s′
k

Ns,s′
Ik

So, the cell c′ is reduced with a cell c labelled by s. So, by
definition of the potential net, Ns,s′ is stacked on c′. We can
jump to the port Ik of Ns,s′ without breaking our invariant
because Ik will be merged with pk(c) during the reduction.

• Else if t is negative (rule b), then t = (s′, k′). According to the
intuitive meaning we gave to negative trace elements, we have
to leave c′ by its k′-th auxiliary port. We will see below how
negative trace elements can appear.

If p is free, we are in the net Ns,s′ corresponding to the inter-
action of the future active pair {c, c′}.So N reduces to a net N ′

containing:

Ok

s s′

Ns,s′
Ik

The behaviour depends on whether p is a Ok′ (rule d) or a Ik
(rule e). In the first case, we know that during reduction Ok′ will

be merged with pk′(c′) so we may move the token to pk′ without
breaking the invariant. In the second case, we know that Ik will be

merged with pk(c). However, we do not know where is c. We know
that cwill form an active pair with c′ inN ′, but c and c′ can be very

far apart in the potential net ofN . How can we find pk(c)? The idea
is to use the intuition underlying the 7→ relation: we know that c and

c′ will form an active pair, so (p0(c′), []) 7→
∗ (p0(c), []). According

to rule b, (p0(c′), [(s, k)]) 7→∗ (p0(c), [(s, k)]) 7→ (pk(c), []).

Thus, to find pk(c), we move the context to p0(c′) with (s, k) on
the trace.

Let us recall that we consider the interaction nets up to α-
conversion and port merging. So we need to verify that the re-
lation is the same on equivalent nets. The names of the ports
play no role in the definition of the 7→ relation, so 7→ is the
same on α-equivalent nets (up to the renaming of the ports in
the potential ports of the contexts). We can verify that whenever
([(p1,M1); · · · ; (pk,Mk)], T ) 7→

∗ ([(q1, N1); · · · ; (ql, Nl)], U),
with:

• For all 1 ≤ i ≤ k, pi is not a merging port and there exists a
net M ′

i such that Mi ⇆m M ′
i .

• For all 1 ≤ j ≤ l, qj is not a merging port and there exists a net
N ′
j such that Nj ⇆m N ′

j .

Then, the following path is valid:

([(p1,M
′
1); · · · ; (pk,M

′
k)], T ) 7→

∗ ([(q1, N
′
1); · · · ; (ql, N

′
l )], U)

Example 3. The following 7→-path in the net N of Figure 1,
goes from the principal port of E to the δ cell which will form
an active pair with E. Notice that this δ cell does not exist



a) (P.(pk(c), N) ,T ) 7→ (P.(p0(c), N) ,T.(s, k))

b) (P.(p0(c), N) ,T.(s, k) ) 7→ (P.(pk(c), N) ,T )

c) (P.(p0(c
′), N) ,T.(s, k) ) 7→ (P.(p0(c

′), N).(Ik, Ns,s′) ,T )

d) (P.(p0(c
′), N).(Ok′ , Ns,s′) ,T ) 7→ (P.(pk′(c), N) ,T )

e) (P.(p0(c
′), N).(Ik, Ns,s′) ,T ) 7→ (P.(p0(c), N) ,T.(s, k))

f) (P.(m,N) ,T ) 7→ (P.(m′, N) ,T )

Figure 7: Rules of context-semantics

yet (it will be created by the ζ/δ reduction): ([(b2, N)], []) 7→
([(a0, N)], [(ζ, 2)]) 7→ ([(a0, N); (I2, Nζ,δ)], []).

Example 4. As a more involved example, we will study in the net
N , the path between the two ǫ cells created during the δ/ǫ step of
reduction (first step of Figure 4).

([(e0, N); (r1, Nδ,ǫ)], []) 7→ ([(b2, N)], [(δ, 1)])

7→ ([(a0, N)], [(δ, 1); (ζ, 2)]) 7→ ([(a0, N); (d2, Nζ,δ)], [(δ, 1)])

7→ ([(a0, N); (z21 , Nζ,δ)], []) 7→ ([(a0, N); (O1, Nζ,δ)], [(ζ, 2)])

7→ ([(a1 = a2, N)], [(ζ, 2)]) 7→ ([(b0, N)], [(ζ, 2); (δ, 2)])

7→ ([(b0, N); (z2, Nδ,ζ)], [(ζ, 2)])

7→ ([(b0, N); (z2, Nδ,ζ); (I2 = O2, Nζ,ζ)], [])

7→ ([(b0, N); (d22, Nδ,ζ)], []) 7→ ([(b0, N); (d2, Nδ,ζ)], [(δ, 2)])

7→ ([(e0, N)], [(δ, 2)]) 7→ ([(e0, N); (e2, N)], [])

We wrote that 7→ simulates the reduction of the net. We will
prove that the 7→-paths are stable by reduction. Formally, if N →
N ′, we will define a projection Π from the potential ports of N to
potential ports ofN ′ so that (P, T ) 7→∗ (Q,U) ⇔ (Π(P ), T ) 7→∗

(Π(Q), U).
In this section, we suppose thatN → N ′ by reducing the active

pair {c1, c2} labelled by s1, s2. We set (R1, φ1) = L(s2, s1)
and (R2, φ2) = L(s1, s2). So N = N01φ2

Rs1,s2 and N ′ =

N01ψ◦φ2
R2. We define a mapping Π from PotN to PotN

′

which
depends on the leftmost port p:

• If p ∈ PN0 , we set Π([(p,N)]@P ) = [(p,N ′)]@P .

• If p = p0(ci) for i ∈ {1, 2}. We set:

Π([(p0(ci), N); (r,Ri)]@P ) = [(r,N ′)]@P

• Otherwise, Π is undefined.

The two next propositions show that the projection behaves
as expected. Lemma 1 shows that the paths are preserved along
reduction. It requires the potentials P and Q to be in the domain
of the projection, this condition is the counterpart of the “long
enough” condition on paths in GoI settings [7].

Proposition 1. Let P ′ ∈ PotN
′

, then there exists P ∈ PotN such
that Π(P ) = P ′.

Proposition 2. Let P ∈ PotN such that Π(P ) is defined, then

Π(P ) is defined and Π(P ) = Π(P ).

Lemma 1. If T, U ∈ Tra, P,Q ∈ PotN , Π(P ) = P ′ and
Π(Q) = Q′ then (P, T ) 7→∗ (Q,U) ⇒ (P ′, T ) 7→∗ (Q′, U)

If T, U ∈ Tra, P ′, Q′ ∈ PotN
′

and (P ′, T ) 7→+ (Q′, U)
then there exists P,Q such that Π(P ) = P ′, Π(Q) = Q′ and
(P, T ) 7→+ (Q,U)

Proof. We will only prove the first statement. The proof of the
second is quite similar.

We will prove it for minimal such paths: let us suppose that
(P, T ) 7→∗ (Q,U) and that for every other context (R, V ) in the
path, Π(R) is undefined. We will show that (P ′, T ) 7→∗ (Q′, U).
Then, the lemma is straightforward because any 7→∗ path between
potentials in the domain of Π can be decomposed in such smaller
paths.

We set [(p,N)]@P1 = P and [(q,N)]@Q1 = Q.

• If p, q ∈ PN0 , then (P, T ) 7→ (Q,U) (the path has length 1),
P ′ = [(p,N ′)]@P1 and Q′ = [(q,N ′)]@Q1. Given that all
7→ rules are local, and that ports of N0 are unaffected by the
reduction, (P ′, T ) 7→ (Q′, U).

• If p and q belong respectively to PRi and PRj with i, j ∈
{1, 2}, then a careful observation of the 7→ rules shows that the
only possibility is i = j and (P, T ) 7→ (Q,U). Because Π(P )
and Π(Q) are defined, we have P = [(p0(ci), N); (r,Ri)]@P1

and Q = [(p0(ci), N); (s,Ri)]@Q1 for some r, s ∈ PRi . So
P ′ = [(r,N ′)]@P1 and Q′ = [(s,N ′)]@Q1. Considering that
7→ is local, (P ′, T ) 7→ (Q′, U).

• If p ∈ PN0 and q ∈ PRi (with i ∈ {1, 2}, we will write j =
3− i to refer to the other cell), then the only possibility is that p
is a free port of N0 which, in N , is merged with the free port ik
of Rs1,s2 and, in N ′, is merged with the free port ψ(ik) of Ri.
So, we have (P, T ) = ([(p,N)], T ) 7→ ([(pk(cj), N)], T ) 7→
([(p0(ci), N)], T.(sj , k)) 7→ ([(p0(ci), N); (Ik, Ri)], T ) =
(Q,U). We can notice thatP ′ = [(p,N ′)] andQ′ = [(Ik, N

′)].

We get (P ′, T ) 7→ ([(σN′

m (p), N ′)], T ) = (Q′, U).
• If p ∈ PRi (with i ∈ {1, 2}, we will write j = 3 − i) and

q ∈ PN0 , then q is a free port of N0 which, in N , is merged
with a free port of Rs1,s2 and, in N ′, is merged with a free port

ψ(ik) ofRi. And, either p = Ik = ψ(ik) (and 1 ≤ k ≤ α(sj))
or p = Ok (and 1 ≤ k ≤ α(si)).

If p = Ik, (P, T ) = ([(p0(ci), N); (Ik, Ri)], T ) 7→

([(p0(cj), N)], T.(sj , k)) 7→ ([(pk(cj), N)], T ) 7→
([(q,N)], T ) = (Q,U). We observe thatP ′ = [(ψ(ik), N

′)]
and Q′ = [(q,N ′)]. In N ′, ψ(ik) is merged with q so
(P ′, T ) 7→ (Q′, T ) = (Q′, U).
If p = Ok, (P, T ) = ([(p0(ci), N); (Ok, Ri)], T ) 7→

([(pk(ci), N)], T ) 7→ ([(q,N)], T ) = (Q,U). We can
notice that P ′ = [(Ok, N

′)] and Q′ = [(q,N ′)]. In N ′,
Ok is merged with q so (P ′, T ) 7→ (Q′, U).

In particular, the successive projections of free ports of a net will
always be defined along a reduction sequence. So a path between
two free ports of a net will always be stable along reduction, as
stated by Corollary 1.



Corollary 1. If M →∗ N , p, q ∈ PMf and T, U ∈ Tra, then

([(p,M)], T ) 7→∗ ([(q,M)], U) ⇔ ([(p,N)], T ) 7→∗ ([(q,N)], U)

Let Π1, Π2, Π3 and Π4 be the projections corresponding to the
reduction steps of Figures 1 and 4. If Π1([(e0, N); (r1, Rδ,ǫ)]) =
[(e0, N1); (r1, Rδ,ǫ)], then Π2([(e0, N1); (r1, Rδ,ǫ)]) = [(h1, N2)],
next Π3([(h1, N2)]) = [(i2, N3)] and Π4([(i2, N3)]) is not de-
fined.

The path ([(e0, N); (r1, Rδ,ǫ)], []) 7→
13 ([(e0, N); (e2, N)], [])

reduces to ([(e0, N1); (r1, Rδ,ǫ)], []) 7→
2 ([(d2, N1)], [(δ, 1)]) 7→

4

([(a′2, N1)], [(ζ, 2)]) 7→5 ([(e0, N); (e2, N)], []) in N1, then
([(h1, N2)], []) 7→3 ([(i2, N2)], []) in N2 and ([(i2, N3)], []) 7→0

([(i2, N3)], []) in N3.

4. Context semantics for complexity bounds

In this section, we define canonical cells, which are the poten-
tial ports which correspond to cells that will really appear dur-
ing reduction. Then we use the canonical cells to define a weight
WN ∈ N ∪ {∞} for any net N such that, if M → N , then
WM ≥ WN + 1. It follows that the length of any reduction se-
quence from M is bounded by WM . Notice that it is not true that
WM > WN because if WM = ∞, then WN = ∞.

The approach is inspired by Dal Lago’s context semantics for
linear logic [5]. First, Dal Lago’s weight allowed to show that
every proof-net of some linear logic subsystem verified complexity
properties (e.g. every proof-net of LLL reduces in polynomial time
w.r.t the size of the argument, whatever the reduction strategy).
These bounds were previously known, but Dal Lago’s proofs were
much shorter. Then, his tool was used to prove strong bounds which
were previously unknown [1, 20]. We hope that our tool will lead
to similar results.

We want to capture the “cells which will appear during reduc-
tions beginning by N”. Such a cell is either a cell of N , or appears
during the reduction of two cells c1 and c2 such that: c1 and c2 both
appear during reductions beginning by N , and {c1, c2} will form
an active pair. This is the intuition behind the following definition
of canonical cells.

Definition 5. We define the set CanN of canonical cells of N by
induction:

• For every cell c of N , [(p0(c), N)] is a canonical cell

• If P1.(p0(c1), N1) is a canonical cell, (P1.(p0(c1), N1), []) 7→
(P2.(p0(c2), N2), []), l

N (c1) = s1, lN (c2) = s2 andL(s1, s2)
is defined. Then for every cell c of Ns2,s1 :

P1.(p0(c1), N1).(p0(c), Ns2,s1) ∈ CanN

Lemma 2. Let us suppose that N →L N
′ by reducing the active

pair {c1, c2} and Π is the associated projection.

If P ∈ CanN , then either Π(P ) is defined and Π(P ) ∈

CanN
′

or P corresponds to one of the ports of the active pair:
P ∈ {[(p0(c1), N)], [(p0(c2), N)]}.

If Π(P ) exists and is in CanN
′

, then P ∈ CanN .

Example 5. Let us consider the net N of Figure 1. We can
show that C1 = [(e0, N); (e1, Rδ,ǫ)] is a canonical cell. In-
deed, b0 is a principal port of N so [(b0, N)] is a canonical

cell. We know that ([(b0, N)], []) 7→0 ([(a0, N)], []) and L(ζ, δ)
is defined so [(b0, N); (d2, Nδ,ζ)] is a canonical cell. Finally,

([(b0, N); (d2, Nδ,ζ)], []) 7→
1 ([(e0, N)], []) and L(δ, ǫ) is defined

so [(b0, N); (d2, Nδ,ζ); (e1, Rǫ,δ)] is canonical.

Similarly, C2 = [(a0, N); (d2, Nζ,δ); (e1, Nǫ,δ)] and C3 =
[(e0, N); (e1, Nδ,ǫ)] are canonical. Let Π1, Π2, be the projections
corresponding to N → N1 and N1 → N2 ( Figures 1 and 4). We

can observe that Π2 ◦ Π1(C1) = Π2 ◦ Π1(C2) = Π2 ◦ Π1(C3)
so, intuitively, there are three canonical cells corresponding to the
same future cell.

The following theorem corresponds to the main result of [5].
The intuition behind it is that each reduction step erases two canon-
ical potentials: the ones corresponding to the active pair.

Theorem 1. For every interaction-net N , the length of any inter-
action sequence beginning by N is equal to:

TN =
∑

P∈CN

1

2|P |

Proof. We suppose that N reduces to N ′ by reducing the active
pair {c, d} labelled by s, t, Π is the associated projection and D its

domain. For any P ′ ∈ CanN
′

,

• Either P ′ = [(p′, N ′)]@Q with p′ a port of Rs,t then p′ is
also a port of Rt,s (or vice versa). So, Π−1(P ′) is equal to
{[(p0(c), N); (p′, Rt,s)]@Q, [(p0(d), N); (p′, Rs,t)]@Q}.

• Or P ′ = [(p′, N ′)]@Q and Π−1(P ′) = {[(p′, N)]@Q}.

So, for any P ′ ∈ CanN
′

, we have:

∑

P∈Π−1(P ′)

1

2|P |
=

1

2|P ′|

This gives the following equations:

TN =
∑

P∈CN∩D

1

2|P |
+

∑

P∈CN−D

1

2|P |

TN =
∑

P ′∈CN′

1

2|P ′|
+

1

2|[(p0(c),N)]|
+

1

2|[(p0(c),N)]|

TN = TN′ + 1

However it seems we need further tools (corresponding to the
notion of copies, acyclicity of proof-nets and subtree properties in
[5]) to ease the use of Theorem 1 to prove bounds for interaction
nets system. This is left for future work.

5. Context semantics as a denotational semantics

5.1 Observational equivalence

Corollary 1 shows us that the paths from a free port to a free port
are stable along the reduction. Hence, it seems natural to define a
denotational semantics based on those paths. We would like our
semantics to enjoy a full abstraction property, i.e. a theorem stating
that two interaction nets have the same semantics if and only if they
are observationally equivalent.

Let us recall that, in general, two programs P and Q are said
observationally equivalent if for all contexts C[ ], such that the
execution of C[P ] outputs some value v, the execution of C[N ]
outputs the same value v2. In a framework as general as interac-
tion nets, there are several possible notions of “outputting a value”,
each gives a different observational equivalence. The observational
equivalence ≈ we will consider is based on an observational equiv-
alence ≃ defined by Mazza [19]. We modified a bit the equivalence,

because in some farfetched libraries, a b
c d

≃ a b
c d

. In

our point of view, interaction nets are about “what can interact with

2 Notice that the word “context” is not used here in our meaning of “token
travelling through the net”, but in the usual meaning of a “program with a
hole”.



what”. So, if in a net a can only interact with b, it can not be equiv-
alent to a net where a can only interact with d. In every system
studied by Mazza in [19], the property (N1 ≈ N2) ⇔ (N1 ≃ N2)
holds.

Both observational equivalences are based on observable paths.
Let N be an interaction net, an observable path of N is a sequence
p0, p1, · · · , pk of ports of N such that we do not cross active pairs
(if pi is an auxiliary port, for i < j ≤ k, pj is not a principal port)
and for every i < k:

• If pi = pj(c) (with j > 0), then pi+1 = p0(c) (crossing a cell
from an auxiliary port to the principal port).

• If pi = p0(c), then either there exists j > 0 such that pi+1 =

pj(c) (crossing a cell from the principal port to an auxiliary

port) or pi+1 = p0(c) (bouncing on a principal port).

• If pi ∈ PNm , pi+1 = σNm(pi) (crossing a merging port).

The observable and 7→-path are closely linked. If (P1, T1) 7→
· · · 7→ (Pn, Tn), and [(p1, N)], · · · , [(pk, N)] is the subsequence
of P1, · · · , Pn of potentials of length 1, then p1, · · · , pk is an
observable path. In fact the observable paths which can be obtained
in this way are exactly the observable paths which can not be
eliminated by reduction.

Let p, q be free ports of N . If N →∗ N ′ and there exists an

observable path from σN
′

w (p) to q, then we write N⇓pq .

Definition 6 (observational equivalence). Let N1, N2 be nets with

PN1

f = PN2

f , then we write N1 ≈ N2 if for all nets N , φ partial

injection from PN1

f to PNf , and p, q ∈ P
N11φN

f :

(N11φN)⇓pq ⇔ (N21φN)⇓pq

We wrote that our definition is inspired by Mazza’s observa-
tional equivalence. Mazza defines N1 ≃ N2 as: for every net N
and φ partial injection from PN1

f to PNf ,

∃p, q ∈ P
N11φN

f (N11φN)⇓pq ⇔ ∃p, q ∈ P
N21φN

f (N21φN)⇓pq

We can notice that (N1 ≈ N2) ⇒ (N1 ≃ N2). However, the other
implication is not true in general.

Example 6. Let us define the library L (resp. Le) whose symbols
are {a, b} (resp. {a, b, c, e}), the reduction rules are given in Figure
8. One can observe that c duplicates every cell, e erases every cell,
the other interactions (a/a, a/b and b/b) create wires between the
free ports (b/b also creates a cycle).

In the library L, for any net N and p ∈ PNf , there ex-

ists q ∈ PNf such that N ⇓pq . So, for any N1 and N2 with
the same number of free ports, N1 ≃ N2. On the contrary,

N1 = a a 6≈ a a = N2. Indeed, let N = aa p
q ,

then (N11N)⇓pq and ¬((N21N)⇓pq).
In Le, we can prove a ≈ b and c c ≈ c c . On

the contrary, a 6≈ c . Indeed, let N = qp a ee ,

then ¬
(

(N11N)⇓pq
)

and (N21N)⇓pq as we can observe by re-
duction:

a q
eae

pN11φN=
∗ e e
p q

a q
ece

pN21φN=
∗
p qa ce e

Finally, if we extended the library Lsort with another cell T
performing sort in any way (for example merge sort), then we
would have S ≈ T . But S 6≈ .

5.2 Definition of a denotational semantics

To define a denotational semantics matching our observational
equivalence ≈, we need a mapping |_, _, _, _| from (Tra+)4 to
set of pairs of positive traces.

Definition 7. Let S, T, U, V ∈ Tra+ and let us define the net N
as p qS T U V , then we define |S, T, U, V | as

{

(X,Y ) ∈ (Tra+)2
∣

∣

∣

∣

∃P ∈ CanN ,
(P, []) 7→∗ ([(p,N)], X)
(P , []) 7→∗ ([(q,N)], Y )

}

We have (X,Y ) ∈ |S, T, U, V | iff p qS T U V

reduces to a net N ′ such that p qX Y is a subnet of

N ′. For example, in Le, |[(a, 1); (b, 2)], [(c, 1)], [], [(a, 2)]| =
{([(c, 1)], [(a, 1)])} because

p qc aba c

c

a

a

p
b

c

q

∗

The interpretation [N ] of a net will be the set of unordered pairs
{{(p, S), (q, V )}} with p, q free ports of N and S, V positive traces

such that, if we defineM as the net a b
S N V
p q

then M ⇓ab . So, [N ] corresponds to the observations of N when
glued with a net consisting of only two lines of cells. Thus, the
full abstraction of the semantics means “If for every netN ,N11N
and N21N have the same observations, then they have the same
observations whenN consists of two lines of cells.” Thus, the proof
of the full abstraction offers no real difficulty.

The soundness means that “If whenever N consists of two lines
of cells, N11N and N21N have the same observations, then
this is also true for an arbitrary net N”. In fact, soundness is not
true in the general case. However, we did prove soundness in the
case of crossing libraries. A library is said bouncing if there is an

interaction rule (R,ψ) and free ports Ik, Il ofR such thatR⇓
Ik

Il
. A

typical bouncing rule is r s
j1

j2

I2

I1
.A crossing

library is a library which is not bouncing. For the rest of the paper,
we consider that L is crossing.

Definition 8. Let N be an interaction net, [N ] is the set






{{(p, S), (q, V )}}
p, q ∈ PNf
S, V ∈ Tra+

∣

∣

∣

∣

∣

∣

∃
P ∈ PotN+
T, U ∈ Tra

,
(P, []) 7→∗ ([(p,N)], T )
(P , []) 7→∗ ([(q,N)], U)

|S, T, U, V | 6= ∅







Where {{(p, S), (q, V )}} represents a multiset (unordered pair in
this case).

5.3 Stability of [_] by reduction and gluing

Theorem 2. If N → N ′, then [N ] = [N ′]

Proof. Follows from Lemma 1 and the definition of [N ].

The proof of stability of [ ] by gluing is the most complex of this
paper. It is necessary to prove the soundness of [ ] with respect to
≈. The proof requires the following lemmas.

Lemma 3.
⋃

(Z,W )∈|[],[],V,Y | |X,T, U, Z| ∼ |X,T, U@V, Y |

Lemma 4.
⋃

(X,Y )∈|[],[],U,V | |S,X@T, Y, V |∼|S, T, U, Z@V |
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Figure 8: Reduction rules for libraries L and Le

Lemma 5. Let P,Q ∈ PotN and T, U ∈ Tra,

(P, []) 7→ (R, T )
(Q, []) 7→ (R,U)
|[], [], T, U | = (S, V )







⇒ ∃R′ ∈ PotN ,
(R′, []) 7→ (P , S)
(R′, []) 7→ (Q,V )

Sketch of the proof. Let us suppose that |[], [], T, U | = (S, V ), then

by definition N = p qT U reduces to a net N ′ contain-

ing p qS Vr . So ([(r,N ′)], []) 7→ ([(p,N ′)], S) and

([(r,N ′)], []) 7→ ([(q,N ′)], V ). By Lemma 1, there exists some
potential port R of N such that (R, []) 7→ ([(p,N ′)], S) and

(R, []) 7→ ([(q,N ′)], V ).
The lemma is stated for arbitrary potential ports P , Q and R. In

this case, the idea is to reduce the net until we reach a net N1 of
the shape p qT U then we can apply the above reasoning

to get paths in N1 of the shape (R1, []) 7→ ([(p,N1)], S) and

(R1, []) 7→ ([(q,N1)], V ). Finally, we use Lemma 1 to get the
paths in N .

Theorem 3. Let M1, N1,M2, N2 be nets such that [M1] = [N1],
[M2] = [N2] and φ an injection from PM1

f = PM2

f to PN1

f =

PN2

f , then [M1 ⊲⊳φ N1] = [M2 ⊲⊳φ N2].

Proof. For concision, we will write G1 = M1 ⊲⊳φ N1 and G2 =
M2 ⊲⊳φ N2. We will not consider the 7→m normal versions of R1

and R2 but will leave the merging ports created on the connecting
ports (the ports in the domain or codomain of φ) untouched. We
need a notion of 7→-path with a bounded number of alternations
between ports of M1 and ports of N1. For every i ∈ N, we define
a relation i on ContG1 by: (P, T ) i (Q,U) iff we are in one
of those cases:






i = 0 and (P, T ) = (Q,U)

(P, T ) 7→([(p,G1)], V )i−1 (Q,U) with p ∈ PM1

f ∪ PN1

f

(P, T ) 7→(R, V )i (Q,U) with R 6∈ [((PM1

f ∪ PN1

f ), G1)]

We define the i relations on ContG2 similarly. We will prove
the following property P(i+ j) by induction on i+ j:

“Let p, q ∈ PM1

f ∪PN1

f and P1 ∈ PotG1 such that (P1, []) i

([(p,G1)], T1), (P1, []) j ([(q,G1)], U1) and |S, T1, U1, V | is

defined, then there exists P2 ∈ PotG2 such that (P2, []) 7→∗

([(p,G2)], T2), (P2, []) 7→∗ ([(q,G2)], U2) and |S, T2, U2, V | is
defined.”

This directly implies that [G1] ⊆ [G2] because PG1

f ⊆ PM1

f ∪

PN1

f . Because the roles of (M1, N1) and (M2, N2) are symmetri-

cal, it will imply [G2] ⊆ [G1] so [G1] = [G2].
Let us suppose that P(i+j−1) is true. Let p, q, r ∈ PM1

f ∪PN1

f

and P1 ∈ PotG1 such that (P1, []) i ([(r,G1)], U
r
1 ) 1

([(p,G1)], T
p
1 ), (P1, []) j ([(q,G1)], T

q
1 ) and |X,T q1 , T

p
1 , Y |

is defined.

T q1 Ur1

V r
′

1
V p1

q
_

r
r′

_
p

M1

N1

=V q11

p1 p1

q1 q1

X

Y

=

Xp

Yp

Figure 9: Sketch of the net G1 in the proof of Theorem 3.

Without loss of generality, we will suppose that r ∈ PM1

f .

Thus, r ∈ PG1
m , let us write r′ = φ(r) = σG1

m (r). Then,
([(r,G1)], U

r
1 ) 7→ ([(r′, G1)], U

r
1 ) 1 ([(p,G1)], T

p
1 ).

We reduce M1 and N1 to nets M ′
1 and N ′

1 such that, if we
write G′

1 = M11φN1, Π(P1) has shape [(p1, G
′
1)] and the paths

([(p′1, G
′
1), []) i ([(r,G

′
1)], U

r
1 ), ([(p

′
1)], []) j ([(q,G

′
1)], T

q
1 )

and ([(r,G′
1)], U

r
1 ) 1 ([(p,G1)], T

p
1 ) do not cross active pairs.

The net G′
1 is sketched in Figure 9.

The path ([(r′, G′
1)], U

r
1 ) 1 ([(p,G′

1)], T
p
1 ) does not cross

active pairs so the potential ports are first principal ports, then
auxiliary ports and finally the free port [(p,G′

1)]. Let [(q1, G
′
1)] be

the first non-principal potential port of length 1 of the path. We have
([(p,G′

1)], []) 7→∗ ([(q1, G
′
1)], V

q1
1 ) 7→∗ ([(p,G′

1)], V
q1
1 @V p1 )

with T p1 = V q11 @V p1 .

We supposed that L is crossing, so there exists V r
′

1 ∈ Tra+

such that ([(q1,G
′
1)],[]) 7→

∗ ([(r′, G′
1)], V

r′

1 ) and |[],[],V r
′

1 , U
r
1 | =

([], V p11 ).
By Lemma 3, there exists (Y p, Xp) ∈ |[], [], V p1 , Y |, such

that |X,T q1 , U
r
1 , Y

p@V r
′

1 | is not empty. By induction hypothesis,

there exists P2 ∈ PotG2 such that (P2, []) 7→∗ ([(r,G2)], U
r
2 ),

(P2, []) 7→
∗ ([(q,G2)], T

q
2 ) and |X,T q2 , U

r
2 , Y

p@V r
′

1 | is defined.
By Lemma 3, there exists (Y q, Xq) ∈ |X,T q2 , [], []|, such

that |Xq, [], Ur2 , Y
p@V r

′

1 | 6= ∅. But |Xq, [], Ur2 , Y
p@V r

′

1 | =

|Xq@Ur2 , V
r′

1 , [], Y p| so, by Lemma 3 |Xq@Ur2 , V
r′

1 , V p1 , Y | 6=
∅. We know that [N ′

1] = [N1] = [N2] so there exists some

Q2 ∈ CanN2 such that (Q2, []) 7→
∗ ([(p,N2)], V

p
2 ), (Q2, []) 7→

∗

([(r′, N2)], V
r′

2 ) and |Xq@Ur2 , V
r′

2 , V p2 , Y | is defined.

By Lemma 4, there exists (W p
2 ,W

q
2 ) ∈ |[], [], V r

′

2 , Ur2 | such
that |Xq,W q

2 ,W
p
2 @V

p
2 , Y | 6= ∅. By Lemma 3, we can deduce

that |X,W q
2@T

q
2 ,W

p
2 @V

p
2 , Y | 6= ∅. From Lemma 5, there ex-

ists some potential port R2 ∈ CanG2 such that (R2, []) 7→∗

(Q2,W
p
2 ) 7→

∗ ([(p,G2)],W
p
2 @V

p
2 ) and (R2, []) 7→

∗ (P2,W
q
2 ) 7→

∗

([(q,G2)],W
q
2@T

q
2 ).



5.4 Soundness and full abstraction

Lemma 6. If P,Q ∈ CanN and (P, T ) 7→∗ (Q,U), then we can
reduce N to a net N ′ such that Π is the associated composition
of projections, Π(P ) and Π(Q) have shape [(p,N ′)] and [(q,N ′)],
and the path ([(p,N ′)], T ) 7→∗ ([(q,N ′)], U) does not cross active
pairs

Proof. We prove it by induction on |P |+ |Q|. If |P |+ |Q| = 2 and
the path crosses an active pair, then we can reduce the pair. Notice
that the path ([(p,N ′)], T ) 7→∗ ([(q,N ′)], U) is strictly shorter
than the path (P, T ) 7→∗ (Q,U). So we get the result after finitely
many such reductions.

Else,P = P1.(p0(c), N1).(r,Rs,t) and (P1.(p0(c), N1), []) 7→
∗

([P2.(p0(d), N2)], []) (with lN (c) = s and lN (d) = t). By induc-
tion hypothesis, we can reduce N so that this path does not cross
active pairs. So this path has length 0, {c, d} becomes an active
pair that we can reduce. Then |Π(P )| < |P | and |Π(Q)| ≤ Q, so
we can apply the induction hypothesis.

Lemma states that if [N1] = [N2] then the observations (the
(N1) ⇓

p
q ) on N1 and N2 are the same. As we proved that [ ] is

stable by context, we will get that if [N1] = [N2], for any N , the
observations on N11N and N21N are the same. This is exactly
the soundness of [ ] with respect to ≈.

Lemma 7. If [N1] = [N2] and p, q ∈ PN1

f = PN2

f , then:

N1⇓
p
q ⇔ N2⇓

p
q

Proof. We consider the →m-normal representations ofN1 andN2.
Notice that N1 and N2 play symmetric roles so we only need to
prove one implication. Let us suppose that N1⇓

p
q , then there exists

some net N ′
1 such that N1 →∗ N ′

1 and there exists an observable
path in N ′

1 from p to q.
By definition, the observable path is a (possibly empty) se-

quence of principal ports followed by a (possibly empty) sequence
of auxiliary ports and the free port q. Let us consider r, the first port
of the path which is not a principal port.

Then there is an observable path from r to q with only auxiliary
ports (except q which is free), and there is an observable path
from r to p with only auxiliary ports (except p which is free).
Thus there exists T1, U1 ∈ Tra+ such that ([(r,N ′

1)], []) 7→∗

([(p,N ′
1)], T1) and ([(r,N ′

1)], []) 7→∗ ([(q,N ′
1)], U1). We can

notice that |[], T1, U1, []| is defined.
We know that (p, q, [], []) ∈ [N ′

1] = [N1] = [N2]. Thus,

there exists Q ∈ CanN2 , T2, U2 ∈ Tra+ such that (Q, []) 7→∗

([(p,N)], T2) and (Q, []) 7→∗ ([(q,N)], U2). Thanks to Lemma
6, we know that we can reduce N2 to a net N ′

2 such that the
projection ofQ has shape [(s,N ′

2)] and the paths ([(s,N ′
2)], []) 7→

∗

([(p,N)], T2) and ([(s,N ′
2)], []) 7→∗ ([(q,N)], U2) do not cross

active pairs.
Thus, inN ′

2, there are observable paths from s to p and from s to
q with only auxiliary ports. This means that there is an observable
paths, in N ′

2, from p to q. So N2⇓
p
q .

Theorem 4 (soundness). If PN1

f = PN2

f and [N1] = [N2], then
N1 ≈ N2

Proof. Let us consider a net N and φ a partial injection from PN1

f

to PNf and p, q ∈ P
N11φN

f , we need to prove that (N11φN)⇓pq⇔
(N21φN)⇓pq .

By Theorem 3, we know that [N11φN ] = [N21φN ]. So, the
result is given by Lemma 7.

Theorem 5 (full abstraction). If PN1

f = PN2

f and N1 ≈ N2, then

[N1] = [N2]

Proof. Let us consider {{(p, S), (q, V )}} ∈ [N1], we will prove
that {{(p, S), (q, V )}} ∈ [N2]. We know that there exists P ∈
CanN and T, U ∈ Tra+ such that (P, []) 7→∗ ([(p,N1)], T ),
(P , []) 7→∗ ([(q,N1)], U) and |S, T, U, V | 6= ∅ . We use Lemma
6 to reduce N1 to a net N ′

1 such that the projection |Π(P )| = 1

and the paths (Π(P ), []) 7→∗ ([(p,N1)], T ) and (Π(P ), []) 7→∗

([(q,N1)], U) do not cross active pairs. So p qT U is

a subterm of N ′
1. We set N = rq′o p′ VS and φ =

{p 7→ p′, q 7→ q′}. Then N11φN reduces to a net which has

o rS T U V as a subnet. We know that |S, T, U, V | 6=

∅ so (N11φN)⇓or . We know that N1 ≈ N2 so (N21φN)⇓or .
Thus, N21φN reduces to a net N ′

2 with an observable path
from o to r. We consider s the first port of the path which is
not a principal port. Then ([(s,N ′

2)], []) 7→∗ ([(o,N ′
2)], T2) and

([(s,N ′
2)], []) 7→∗ ([(r,N ′

2)], U2). By Lemma 1, we know that

s is the projection of Q ∈ CanN21φN and that the paths ex-
ist in N21φN . Those paths begin in N2 and end N , let us
consider the traces T ′

2 and U ′
2 at the interfaces. Then, we have

(Q, []) 7→∗ ([(o,N21φN)], T ′
2), (Q, []) 7→∗ ([(r,N21φN)], U ′

2)
and |S, T ′

2, U
′
2, V

′| 6= ∅.

6. Application on interaction combinators

As we stated, our observational equivalence is strongly inspired
by Mazza’s equivalence [19]. If he defines it for any interaction
net library, he only defines a sound and fully abstract semantics
J _K for symmetric combinators. The two equivalences coincide on
symmetric combinators. In particular, JN1K = JN2K ⇔ [N1] =
[N2]. Here, we will even see that the structures of those semantics
are quite similar.

Mazza defines an arch for the interaction N as a multiset
{{(p, Sδ, Sζ), (q, Vδ, Vζ)}} where p, q are free ports of N , and

Sδ, Sζ , Vδ, Vζ ∈ {1, 2}N. We can notice that the shape is similar
to our semantics, highlighted by the use of similar names for corre-
sponding objects. One of the differences is that the information in
the trace S is divided in a sequence Sδ corresponding to the δ cells
and a sequence Sζ corresponding to the ζ cells. The link is made
more precise by the mappings (_)δ and (_)ζ from traces S to finite
sequences on {1, 2}, defined by induction on |S|: []δ = []ζ = [],
(T.(δ, i))ζ = Tζ , (T.(ζ, i))δ = Tδ , (T.(δ, i))δ = Tδ.i and
(T.(ζ, i))ζ = Tζ .i.

Let N be a net, the edifice of N is the set E(N) =






















{{(p, Sδ@X,Sζ@Y ), (q, Vδ@X,Vζ@Y )}}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X,Y ∈ {1, 2}N

N →∗ S V

R

p q























However, it is possible that nets are observationally equivalent
but have different edifices. To be fully abstract, we will define a
distance on arches and consider the metric completion of edifices.
First, let us consider the usual distance on infinite sequences: if
S, V ∈ {1, 2}N, we define d(S, V ) = 2−k where k is the length

of the longest common prefix between S and V . On PNf , we will
use the discrete topology: if p = q then ddisc(p, q) = 0, else
ddisc(p, q) = 1. We use those distances to define a distance on

PNf × {1, 2}N × {1, 2}N:

d
(

(p, S, S′), (q, V, V ′)
)

= max
{

d(S, V ), d(S′, V ′), ddisc(p, q)
}

Finally, we can define a distance on arches. If a = {{µ, µ′}} and
b = {{ν, ν′}}, then

d(a, b) = min{d(µ, ν) + d(µ′, ν′), d(µ, ν′) + d(µ′, ν)}



In other words, as the pairs are unordered, we compare them in the
two possible ways and we choose the best matching. Finally, we
define JNK as the metric completion of E(N).

Our semantics [_] is based on the |_, _, _, _| function, we will
study its behaviour on symmetric combinators. We denote the pre-
fix order on sequences by ≤ (i.e. T ≤ U ⇔ ∃V, T@V = U ), and
we define ≶ as ≤ ∪ ≥. We also define T−U as (T@T ′)−T = T ′

and otherwise T − U = []. Then, we can observe that for every
T, U ∈ Tra+,

|S, T, U, V | 6= ∅ ⇔

{

Sδ ≶ Tδ, Uδ ≶ Vδ, Sδ − Tδ ≶ Vδ − Uδ
Sζ ≶ Tζ , Uζ ≶ Vζ , Sζ − Tζ ≶ Vζ − Uζ

We can verify that [N ] is the set of prefixes of merging (meaning
that the {1, 2} sequences for δ and ζ are merged into traces) of
elements of E(N):

[N ] =

{

{{(p, S), (q, V )}}

∣

∣

∣

∣

∃S′, V ′ ∈ Tra+, S ≤ S′, V ≤ V ′

{{(p, S′
δ, S

′
ζ), (q, V

′
δ , V

′
ζ )}} ∈ E(N)

}

We wrote that one of the differences between [N ] and JNK
is that, in the first, the information corresponding to δ and ζ are
merged whereas they are separated in the second. On this point,
Mazza’s specialized semantics is better than our general semantics,
because JNK is closer to full-completeness. Indeed, the structure
of [N ] allows to have {{(p, [(δ, 1); (ζ, 2)]), (q, [])}} ∈ [N ] and
{{(p, [(ζ, 2); (δ, 1)]), (q, [])}} 6∈ [N ] but the operational semantics
of interaction combinators makes this impossible.

The second difference is that [N ] is defined by prefixes of
arches, while JNK is defined by a metric completion. Thus, we

noticed that if E,F ⊆ {1, 2}N, then the completions of E and
F are equal iff {S|∃T ∈ E,S ≤ T} = {S|∃T ∈ F, S ≤ T}.
So we could interpret nets by the following semantics ⌊_⌋ which
is equivalent to J_K but which we consider simpler to understand
because it does not use metric completions.

⌊N⌋ =



































{{(p, S1, S2), (q, V1, V2)}}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X,Y ∈ {1, 2}N

N →∗ T U

R

p q

S1 ≤ Tδ@X,S2 ≤ Tζ@Y
V1 ≤ Uδ@X,V2 ≤ Uζ@Y



































6.1 Comparison with semantics of encodings in symmetric
combinators

As one can encode numerous libraries in symmetric combinators,

one could try to define the semantics of a net N as [Ñ ] with Ñ the
encoding ofN in interaction combinators. However, this semantics
does not match ≈. Indeed, let us consider the following encoding
of library L (of Figure 8) in interaction combinators.

ã = ζ

ζ

ζ
b̃ = ζ

ζ

ζ

ǫ

ǫ

We wrote that in the library L every pair of nets with the same
number of free ports are equivalent. In particular, inL, a ≈ b .

One can observe that {{(p, [(ζ, 1)]), (p, [(ζ, 2)])}} ∈
[

ã
]

whereas {{(p, [(ζ, 1)]), (p, [(ζ, 2)])}} 6∈

[

b̃

]

so ã 6≈

b̃ in Lcomb. The difference is that, in Lcomb, we can test nets

with traces which do not exist in L.

7. Conclusion

We defined a context semantics for any library of interaction nets,
and explored some possible applications.

Our weight could for example be used to prove the Ptime
soundness of LLL (subsystem of linear logic) and LPL (type
system for λ-calculus with pattern matching) in a uniform way.
This may ease the transformation of other linear logic subsystems
(QBAL, L4) into programming languages.

Our semantics could be used as a first step towards more abstract
or fully complete semantics for systems definable in interaction
nets.

References

[1] P. Baillot, P. Coppola, and U. Dal Lago. Light logics and optimal
reduction: Completeness and complexity. Information and Computa-

tion, 209(2), 2011.

[2] P. Baillot and M. Pedicini. Elementary complexity and geometry of
interaction. Fundamenta Informaticae, 45(1-2), 2001.

[3] U. Dal Lago. The geometry of linear higher-order recursion. In Logic

in Computer Science, 2005. LICS 2005. Proceedings. 20th Annual

IEEE Symposium on. IEEE, 2005.

[4] U Dal Lago. Context semantics, linear logic, and computational
complexity. ACM Transactions on Computational Logic, 10(4), 2009.

[5] V. Danos and L. Regnier. Proof-nets and the Hilbert space. London

Mathematical Society Lecture Note Series, 1995.

[6] M. De Falco. Géométrie de l’interaction et réseaux différentiels. These

de doctorat, Université Aix-Marseille, 2, 2009.

[7] M. Fernández and I. Mackie. Operational equivalence for interaction
nets. Theoretical Computer Science, 297(1), 2003.

[8] M. Fernández, I. Mackie, S. Sato, and M. Walker. Recursive func-
tions with pattern matching in interaction nets. Electronic Notes in

Theoretical Computer Science, 253(4), 2009.

[9] J.Y. Girard. Proof-nets: the parallel syntax for proof-theory. Logic and

Algebra, 180, 1996.

[10] G. Gonthier, M. Abadi, and J.J. Lévy. The geometry of optimal
lambda reduction. In Proceedings of the 19th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. ACM, 1992.

[11] G. Gonthier, M. Abadi, and J.J. Lévy. Linear logic without boxes.
In Logic in Computer Science, 1992. LICS’92., Proceedings of the

Seventh Annual IEEE Symposium on. IEEE, 1992.

[12] Y Lafont. Interaction nets. In Principles of programming languages,

17th ACM SIGPLAN-SIGACT symposium on. ACM, 1989.

[13] Yves Lafont. Interaction combinators. Information and Computation,
137(1), 1997.

[14] S. Lippi. Encoding left reduction in the lambda-calculus with interac-
tion nets. Mathematical Structures in Computer Science, 12(6), 2002.

[15] I. Mackie. The geometry of interaction machine. In Ron K. Cytron
and Peter Lee, editors, POPL. ACM Press, 1995.

[16] I. Mackie and J.S. Pinto. Encoding linear logic with interaction
combinators. Information and Computation, 176(2), 2002.

[17] D. Mazza. Multiport interaction nets and concurrency. In CONCUR

2005–Concurrency Theory. Springer, 2005.

[18] D. Mazza. Interaction nets: Semantics and concurrent extensions.
These de doctorat, Université Aix-Marseille II/Universita degli Studi

Roma Tre, 2006.

[19] D. Mazza. Observational equivalence and full abstraction in the
symmetric interaction combinators. Logical Methods in Computer

Science, 5(4:6), 2009.

[20] M. Perrinel. Ston paths-based criteria for polynomial time complexity
in proof-nets (long version). http://arxiv.org/abs/1201.2956,
2013.


