
Global Memory Access Modelling for Efficient

Implementation of the LBM on GPUs

Christian Obrecht, Frederic Kuznik, Bernard Tourancheau, Jean-Jacques

Roux

To cite this version:

Christian Obrecht, Frederic Kuznik, Bernard Tourancheau, Jean-Jacques Roux. Global Mem-
ory Access Modelling for Efficient Implementation of the LBM on GPUs. Lecture notes in
computer science, springer, 2011, 6449, pp.151-161. <hal-01003059>

HAL Id: hal-01003059

https://hal.archives-ouvertes.fr/hal-01003059

Submitted on 9 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01003059


Global Memory Access Modelling for Efficient Implementation

of the Lattice Boltzmann Method on Graphics Processing Units

Christian Obrecht∗,1, Frédéric Kuznik1, Bernard Tourancheau2, and Jean-Jacques Roux1

1Centre de Thermique de Lyon (UMR 5008 CNRS, INSA-Lyon, UCB Lyon1),

69621 Villeurbanne Cedex, France
2Laboratoire de l’Informatique du Parallélisme (UMR 5668 CNRS, ENS-Lyon, INRIA,

UCB Lyon 1), 69364 Lyon Cedex 07, France

Published in Lecture Notes in Computer Science 6449, High Performance Computing for
Computational Science – VECPAR 2010 Revised Selected Papers, pages 151–161,

February 2011

Abstract

In this work, we investigate the global memory ac-

cess mechanism on recent GPUs. For the purpose of

this study, we created specific benchmark programs,

which allowed us to explore the scheduling of global

memory transactions. Thus, we formulate a model

capable of estimating the execution time for a large

class of applications. Our main goal is to facilitate

optimisation of regular data-parallel applications on

GPUs. As an example, we finally describe our CUDA

implementations of LBM flow solvers on which our

model was able to estimate performance with less

than 5% relative error.

Keywords: GPU computing, CUDA, lattice Boltz-

mann method, CFD

Introduction

State-of-the-art graphics processing units (GPU) have

proven to be extremely efficient on regular data-

parallel algorithms [3]. For many of these applica-

tions, like lattice Boltzmann method (LBM) fluid flow

solvers, the computational cost is entirely hidden by

global memory access. The present study intends to

give some insight on the global memory access mech-

anism of the nVidia’s GT200 GPU. The obtained re-

∗Corresponding author: christian.obrecht@insa-lyon.fr

sults led us to optimisation elements which we used

for our implementations of the LBM.

The structure of this paper is as follows. First, we

briefly review nVidia’s compute unified device archi-

tecture (CUDA) technology and the algorithmic as-

pects of the LBM. Then, we describe our measure-

ment methodology and results. To conclude, we

present our CUDA implementations of the LBM.

1 Compute Unified Device Archi-

tecture

CUDA capable GPUs, i.e. the G8x, G9x, and GT200

processors consist in a variable amount of texture

processor clusters (TPC) containing two (G8x, G9x)

or three (GT200) streaming multiprocessors (SM),

texture units and caches [6]. Each SM contains eight

scalar processors (SP), two special functions units

(SFU), a register file, and shared memory. Regis-

ters and shared memory are fast but in rather lim-

ited amount, e.g. 64 KB and 16 KB per SM for the

GT200. On the other hand, the off-chip global mem-

ory is large but suffers from high latency and low

throughput compared to registers or shared memory.

The CUDA programming language is an extension

to C/C++. Functions intended for GPU execution

are named kernels, which are invoked on an execu-

tion grid specified at runtime. The execution grid is

1

mailto:christian.obrecht@insa-lyon.fr


C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux

formed of blocks of threads. The blocks may have up

to three dimensions, the grid two. During execution,

blocks are dispatched to the SMs and split into warps

of 32 threads.

CUDA implementations of data intensive applica-

tions are usually bound by global memory through-

put. Hence, to achieve optimal efficiency, the number

of global memory transactions should be minimal.

Global memory transactions within a half-warp are

coalesced into a single memory access whenever all

the requested addresses lie in the same aligned seg-

ment of size 32, 64, or 128 bytes. Thus, improving

the data access pattern of a CUDA application may

dramatically increase performance.

2 Lattice Boltzmann Method

The Lattice Boltzmann Method is a rather innovative

approach in computational fluid dynamics [5, 11, 2].

It is proven to be a valid alternative to the numeri-

cal integration of the Navier-Stockes equations. With

the LBM, space is usually represented by a regular

lattice. The physical behaviour of the simulated fluid

is determined by a finite set of mass fractions associ-

ated to each node. From an algorithmic standpoint,

the LBM may be summarised as:

for each time step do

for each lattice node do

if boundary node then

apply boundary conditions

end if

compute new mass fractions

propagate to neighbouring nodes

end for

end for

The propagation phase follows some specific sten-

cil. Figure 1 illustrates D3Q19, the most commonly

used three-dimensional stencil, in which each node is

linked to 18 of its 27 immediate neighbours.1

1Taking the stationary mass fraction into account, the number

of mass fractions per node amounts to 19, hence D3Q19.

Figure 1: The D3Q19 stencil

CUDA implementations of the LBM may take ad-

vantage of its inherent data parallelism by assign-

ing a thread to each node, the data being stored

in global memory. Since there is no efficient global

synchronisation barrier, a kernel has to be invoked

for each time step [12]. CPU implementations of

the LBM usually adopt an array of structures (AoS)

data layout, which improves locality of mass frac-

tions belonging to a same node [10]. On the other

hand, CUDA implementations benefit from structure

of arrays (SoA) data layouts, which allows coalesced

global memory accesses [4]. However, this approach

is not sufficient to ensure optimal memory trans-

actions, since propagation corresponds to one unit

shifts of global memory addresses for the minor spa-

tial dimension. In other words, for most mass frac-

tions, the propagation phase yields misalignments. A

way to solve this issue consists in performing prop-

agation partially in shared memory [13]. Yet, as

shown in [7], this approach is less efficient than us-

ing carefully chosen propagation schemes in global

memory.

3 Methodology

To study transactions between global memory and

registers, we used kernels performing the following

operations :

1. Store time t0 in a register.

2. Read N words from global memory, with possi-

bly L misalignments.

3. Store time t1 in a register.

2



Global memory access modelling for efficient implementation of the LBM on GPUs

4. Write N words to global memory, with possibly

M misalignments.

5. Store time t2 in a register.

6. Write t2 to global memory.

Time is accurately determined using the CUDA

clock() function which gives access to counters

that are incremented at each clock cycle. Our ob-

servations enabled us to confirm that these counters

are per TPC, as described in [8], and not per SM as

stated in [6]. Step 6 may influence the timings, but

we shall see that it can be neglected under certain

circumstances.

The parameters of our measurements are N , L, M ,

and k, the number of warps concurrently assigned

to each SM. Number k is proportional to the occu-

pancy rate α, which is the ratio of active warps to the

maximum number of warps supported on one SM.

With the GT200, this maximum number being 32, we

have: k = 32α.

We used a one-dimensional grid and one-

dimensional blocks containing one single warp. Since

the maximum number of blocks supported on one SM

is 8, the occupancy rate is limited to 25%. Nonethe-

less, this rate is equivalent to the one obtained with

actual CUDA applications.

We chose to create a script generating the ker-

nels rather than using runtime parameters and loops,

since the layout of the obtained code is closer to the

one of actual computation kernels. We processed the

CUDA binaries using decuda [14] to check whether

the compiler had reliably translated our code. We

carried out our measurements on a GeForce GTX 295

graphics board, featuring two GT200 processors.2

4 Modelling

At kernel launch, blocks are dispatched to the TPCs

one by one up to k blocks per SM [1]. Since

the GT200 contains ten TPCs, blocks assigned to

the same TPC have identical blockIdx.x unit

digit. This enables to extract information about the

scheduling of global memory access at TPC level. In

order to compare the measurements, as the clock reg-

isters are peculiar to each TPC [8], we shifted the

2In the CUDA environment, the GPUs of the GTX 295 are con-

sidered as two distinct devices. It should be noted that our bench-

mark programs involve only one of those devices.

origin of the time scale to the minimal t0. We no-

ticed that the obtained timings are coherent on each

of the TPCs.

For a number of words read and written N ≤ 20,

we observed that:

• Reads and writes are performed in one stage,

hence storing of t2 has no noticeable influence.

• Warps 0 to 8 are launched at once (in a deter-

mined but apparently incoherent order).

• Subsequent warps are launched one after the

other every ∼ 63 clock cycles.

For N > 20, reads and writes are performed in two

stages. One can infer the following behaviour: if the

first n warps in a SM read at least 4,096 words, where

n ∈ {4, 5, 6}, then the processing of the subsequent

warps is postponed. The number of words read by

the first n warps being n×32N , this occurs whenever

n × N ≥ 128. Hence, n = 4 yields N ≥ 32, n = 5

yields N ≥ 26, and n= 6 yields N ≥ 21.

Time t0 for the first 3n warps of a TPC follow

the same pattern as in the first case. We also no-

ticed a slight overlapping of the two stages, all the

more as storing t2 should here be taken into account.

Nonetheless, the read time for the first warp in the

second stage is noticeably larger than for the next

ones. Therefore, we may consider, as a first approx-

imation, that the two stages are performed sequen-

tially.

In the targeted applications, the global amount

of threads is very large. Moreover, when a set of

blocks is assigned to the SMs, the scheduler waits

until all blocks are completed before providing new

ones. Hence, knowing the average processing time

T of k warps per SM allows to estimate the global

execution time.

For N ≤ 20, we have T = ℓ+ TR + TW , where ℓ is

time t0 for the last launched warp, TR is read time,

and TW is write time. Time ℓ only depends on k. For

N > 20, we have T = T0+ℓ
′+T ′

R
+T ′

W
, where T0 is the

processing time of the first stage, ℓ′(i) = ℓ(i−3n+9)

with i = 3k− 1, T ′
R

and T ′
W

are read and write times

for the second stage.

3



C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux

Figure 2: Launch delay in respect of warp rank

To estimate ℓ, we averaged t0 over a large number

of warps. Figure 2 shows, in increasing order, the

obtained times in cycles. Numerically, we have ℓ(i)≈

0 for i ≤ 9 and ℓ(i)≈ 63(i − 10) + 13 otherwise.

5 Throughput

5.1 N ≤ 20

Figures 3 and 4 show the distribution of read and

write times for 96,000 warps with N = 19. The bi-

modal shape of the read time distribution is due to

translation look-aside buffer (TLB) misses [15]. This

aspect is reduced when adding misalignments, since

the number of transactions increases while the num-

ber of misses remains constant. Using the average

read time to approximate T is acceptable provided

no special care is taken to avoid TLB misses.

Figure 3: Read time for N = 19

Figure 4: Write time for N = 19

We observed that average read and write times de-

pend linearly of N . Numerically, with k = 8, we ob-

tained:

TR ≈ 317(N −4)+440 TW ≈ 562(N −4)+1,178

TR′ ≈ 575(N−4)+291 TW ′ ≈ 983(N−4)+2,030

where TR′ and TW ′ are read and write times with

L = N and M = N misalignments. Hence, we see that

writes are more expensive than reads. Likewise, mis-

alignments in writes are more expensive than mis-

alignments in reads.

5.2 21≤ N ≤ 39

As shown in figures 5 and 6, T0, T ′
R
, and T ′

W
de-

pend linearly of N in the three intervals {21, . . . 25},

{26, . . . 32}, and {33, . . . 39}. As an example, for the

third interval, we obtain:

T0 ≈ 565(N − 32) + 15,164

T ′
R
≈ 112(N−32)+2,540 T ′

W
≈ 126(N−32)+3,988

4



Global memory access modelling for efficient implementation of the LBM on GPUs

Figure 5: First stage duration

Figure 6: Timings in second stage

5.3 Complementary studies

We also investigated the impact of misalignments and

occupancy rate on average read and write times. Fig-

ures 7 and 8 show obtained results for N = 19.

Figure 7: Misaligned reads

For misaligned reads, we observe that the average

write time remains approximatively constant. Read

time increases linearly with the number of misalign-

ments until some threshold is reached. From then on,

the average read time is maximal. Similar conclusion

can be drawn for misaligned writes.

Figure 8: Occupancy impact

Average read and write times seem to depend

quadratically on k. Since the amount of data trans-

ferred depends only linearly on k, this leads to think

that the scheduling cost of each warp is itself propor-

tional to k.

6 Implementations

We implemented several LBM fluid flow solvers: a

D3Q19 LBGK [11], a D3Q19 MRT [2], and a dou-

ble population thermal model requiring 39 words per

node [9]. Our global memory access study lead us to

multiple optimisations. For each implementation, we

used a SoA like data layout, and a two-dimensional

grid of one-dimensional blocks. Since misaligned

writes are more expensive than misaligned reads, we

experimented several propagation schemes in which

misalignments are deferred to the read phase of the

next time step. The most efficient appears to be

the reversed scheme where propagation is entirely

performed at reading, as outlined in figure 9. For

the sake of simplicity, the diagram shows a two-

dimensional version.

5



C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux

Figure 9: Reversed propagation scheme

Performance of a LBM based application is usu-

ally given in million lattice node updates per second

(MLUPS). Our global memory access model enables

us to give an estimate of the time T (in clock cycles)

required to process k warps per SM. On the GT200,

where the number of SMs is 30 and the warp size is

32, k warps per SM amounts to K = 30× k × 32 =

960k threads. Since one thread takes care of one sin-

gle node, T is therefore the number of clock cycles

needed to perform K lattice node updates. Hence,

using the global memory frequency F in MHz, the

expected performance in MLUPS is: P = (K/T )× F .

With our D3Q19 implementations, for instance,

we have N = 19 reads and writes, L = 10 mis-

aligned reads, no misaligned writes, and 25% occu-

pancy (thus k = 8). Using the estimation provided

by our measurements, we obtain: T = ℓ+ TR+ TW =

15,594. Since K = 7,680 and F = 999 MHz, we have

P = 492 MLUPS.

To summarize, table 1 gives both the actual and

estimated performances for our implementations on

a 1283 lattice. Our estimations appear to be rather

accurate, thus validating our model.

Summary and discussion

In this work, we present an extensive study of the

global memory access mechanism between global

memory and GPU for the GT200. A description of

the scheduling of global memory accesses at hard-

ware level is given. We express a model which al-

lows to estimate the global execution time of a regu-

lar data-parallel application on GPU. The cost of in-

dividual memory transactions and the impact of mis-

alignments is investigated as well.

We believe our model is applicable to other GPU

applications provided certain conditions are met:

• The application should be data-parallel and use

a regular data layout in order to ensure steady

data throughput.

• The computational cost should be negligible as

compared with the cost of global memory reads

and writes.

• The kernel should make moderate use of

branching in order to avoid branch divergence,

which can dramatically impact performance.

This would probably not be the case with an

application dealing, for instance, with complex

boundaries.

On the other hand, our model does not take pos-

sible TLB optimisation into account. Hence, some

finely tuned applications may slightly outvalue our

performance estimation.

The insight provided by our study, turned out to

be useful in our attempts to optimize CUDA imple-

mentations of the LBM. It may contribute to efficient

implementations of other applications on GPU.

References

[1] S. Collange, D. Defour, and A. Tisserand. Power

Consumption of GPUs from a Software Perspec-

tive. In Lecture Notes in Computer Science 5544,

Proceedings of the 9th International Conference

on Computational Science, Part I, pages 914–

923. Springer, 2009.

[2] D. d’Humières, I. Ginzburg, M. Krafczyk,

P. Lallemand, and L.S. Luo. Multiple-relaxation-

time lattice Boltzmann models in three dimen-

sions. Philosophical Transactions of the Royal So-

ciety A, 360:437–451, 2002.

[3] J. Dongarra, G. Peterson, S. Tomov, J. Allred,

V. Natoli, and D. Richie. Exploring new archi-

tectures in accelerating CFD for Air Force appli-

cations. In DoD HPCMP Users Group Conference,

pages 472–478. IEEE, 2008.

[4] F. Kuznik, C. Obrecht, G. Rusaouën, and J.-J.

Roux. LBM Based Flow Simulation Using GPU

Computing Processor. Computers and Math-

ematics with Applications, 59(7):2380–2392,

2010.

6



Global memory access modelling for efficient implementation of the LBM on GPUs

Model Occupancy Actual Estimated Relative error

D3Q19 LBGK 25% 481 492 2.3%

D3Q19 MRT 25% 516 492 4.6%

Thermal LBM 12.5% 195 196 1.0%

Table 1: Performance of LBM implementations (in MLUPS)

[5] G. R. McNamara and G. Zanetti. Use of

the Boltzmann Equation to Simulate Lattice-

Gas Automata. Physical Review Letters,

61(20):2332–2335, 1988.

[6] NVIDIA. Compute Unified Device Architecture

Programming Guide version 2.3.1, 2009.

[7] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J.

Roux. A New Approach to the Lattice Boltz-

mann Method for Graphics Processing Units.

Computers and Mathematics with Applications,

61(12):3628–3638, 2011.

[8] M.M. Papadopoulou, M. Sadooghi-Alvandi, and

H. Wong. Micro-benchmarking the GT200

GPU. Technical report, University of Toronto,

Canada, 2009.

[9] Y. Peng, C. Shu, and Y. T. Chew. A 3D incom-

pressible thermal lattice Boltzmann model and

its application to simulate natural convection in

a cubic cavity. Journal of Computational Physics,

193(1):260–274, 2004.

[10] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger,

and U. Rüde. Optimization and Profiling

of the Cache Performance of Parallel Lattice

Boltzmann Codes. Parallel Processing Letters,

13(4):549–560, 2003.

[11] Y. H. Qian, D. d’Humières, and P. Lallemand.

Lattice BGK models for Navier-Stokes equa-

tion. EPL (Europhysics Letters), 17(6):479–484,

1992.

[12] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.

Stone, D. B. Kirk, and W. W. Hwu. Optimization

principles and application performance evalua-

tion of a multithreaded GPU using CUDA. In

Proceedings of the 13th ACM SIGPLAN Sympo-

sium on Principles and practice of parallel pro-

gramming, pages 73–82. ACM, 2008.

[13] J. Tölke and M. Krafczyk. TeraFLOP computing

on a desktop PC with GPUs for 3D CFD. Interna-

tional Journal of Computational Fluid Dynamics,

22(7):443–456, 2008.

[14] W. J. van der Laan. Decuda G80 dis-

sassembler version 0.4. Available on

www.github.com/laanwj/decuda, 2007.

[15] V. Volkov and J.W. Demmel. Benchmarking

GPUs to tune dense linear algebra. In Proceed-

ings of the 2008 ACM/IEEE Conference on Super-

computing. IEEE, 2008.

7

https://github.com/laanwj/decuda

	Compute Unified Device Architecture
	Lattice Boltzmann Method
	Methodology
	Modelling
	Throughput
	N20
	21N39
	Complementary studies

	Implementations

