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émanant des établissements d’enseignement et de
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Abstract: This paper investigates the execution of tree-shaped task graphs using multiple
processors. Each edge of such a tree represents some large data. A task can only be executed if
all input and output data fit into memory, and a data can only be removed from memory after
the completion of the task that uses it as an input data. Such trees arise, for instance, in the
multifrontal method of sparse matrix factorization. The peak memory needed for the processing
of the entire tree depends on the execution order of the tasks. With one processor the objective of
the tree traversal is to minimize the required memory. This problem was well studied and optimal
polynomial algorithms were proposed.
Here, we extend the problem by considering multiple processors, which is of obvious interest in the
application area of matrix factorization. With multiple processors comes the additional objective
to minimize the time needed to traverse the tree, i.e., to minimize the makespan. Not surprisingly,
this problem proves to be much harder than the sequential one. We study the computational
complexity of this problem and provide inapproximability results even for unit weight trees. We
design a series of practical heuristics achieving different trade-offs between the minimization of peak
memory usage and makespan. Some of these heuristics are able to process a tree while keeping the
memory usage under a given memory limit. The different heuristics are evaluated in an extensive
experimental evaluation using realistic trees.
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Ordonnancement parallèle d’arbres de tâches avec mémoire

limitée

Résumé : Dans ce rapport, nous nous intéressons au traitement d’arbres de tâches par plusieurs
processeurs. Chaque arête d’un tel arbre représente un gros fichier d’entrée/sortie. Une tâche peut
être traitée seulement si l’ensemble de ses fichiers d’entrée et de sortie peut résider en mémoire, et
un fichier ne peut être retiré de la mémoire que lorsqu’il a été traité. De tels arbres surviennent, par
exemple, lors de la factorisation de matrices creuses par des méthodes multifrontales. La quantité
de mémoire nécessaire dépend de l’ordre de traitement des tâches. Avec un seul processeur,
l’objectif est naturellement de minimiser la quantité de mémoire requise. Ce problème a déjà été
étudié et des algorithmes polynomiaux ont été proposés.

Nous étendons ce problème en considérant plusieurs processeurs, ce qui est d’un intérêt évident
pour le problème de la factorisation de grandes matrices. Avec plusieurs processeurs se pose
également le problème de la minimisation du temps nécessaire pour traiter l’arbre. Nous montrons
que comme attendu, ce problème est bien plus compliqué que dans le cas séquentiel. Nous étudions
la complexité de ce problème et nous fournissons des résultats d’inaproximabilité, même dans le
cas de poids unitaires. Nous proposons plusieurs heuristiques qui obtiennent différents compromis
entre mémoire et temps d’exécution. Certaines d’entre elles sont capables de traiter l’arbre tout en
gardant la consommation mémoire inférieure à une limite donnée. Nous analysons les performances
de toutes ces heuristiques par une large campagne de simulations utilisant des arbres réalistes.

Mots-clés : Algorithmes d’approximation, consommation mémoire, optimisation multi-critères,
ordonnancement, graphe de tâches
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1 Introduction

Parallel workloads are often modeled as task graphs, where nodes represent tasks and edges rep-
resent the dependencies between tasks. There is an abundant literature on task graph scheduling
when the objective is to minimize the total completion time, or makespan. However, with the
increase of the size of the data to be processed, the memory footprint of the application can have
a dramatic impact on the algorithm execution time, and thus needs to be optimized. This is best
exemplified with an application which, depending on the way it is scheduled, will either fit in the
memory, or will require the use of swap mechanisms or out-of-core techniques. There are very few
existing studies on the minimization of the memory footprint when scheduling task graphs, and
even fewer of them targeting parallel systems.

We consider the following memory-aware parallel scheduling problem for rooted trees. The
nodes of the tree correspond to tasks, and the edges correspond to the dependencies among the
tasks. The dependencies are in the form of input and output files1: each node takes as input
several large files, one for each of its children, and it produces a single large file, and the different
files may have different sizes. Furthermore, the execution of any node requires its execution file to
be present; the execution file models the program and/or the temporary data of the task. We are
to execute such a set of tasks on a parallel system made of p identical processing resources sharing
the same memory. The execution scheme corresponds to a schedule of the tree where processing
a node of the tree translates into reading the associated input files and producing the output file.
How can the tree be scheduled so as to optimize the memory usage?

Modern computing platforms exhibit a complex memory hierarchy ranging from caches to
RAM and disks and even sometimes tape storage, with the classical property that the smaller
the memory, the quicker. Thus, to avoid large running times, one usually wants to avoid the use
of memory devices whose IO bandwidth is below a given threshold: even if out-of-core execution
(when large data are unloaded to disks) is possible, this requires special care when programming
the application and one usually wants to stay in the main memory (RAM). This is why in this
paper, we are interested in the question of minimizing the amount of main memory needed to
completely process an application.

Throughout the paper, we consider in-trees where a task can be executed only if all its children
have already been executed (This is absolutely equivalent to considering out-trees as a solution
for an in-tree can be transformed into a solution for the corresponding out-tree by just reversing
the arrow of time, as outlined in [12]). A task can be processed only if all its files (input, output,
and execution) fit in currently available memory. At a given time, many files may be stored in
the memory, and at most p tasks may be processed by the p processors. This is obviously possible
only if all tasks and execution files fit in memory. When a task finishes, the memory needed for its
execution file and its input files is released. Clearly, the schedule which determines the processing
times of each task plays a key role in determining which amount of main memory is needed for a
successful execution of the entire tree.

The first motivation for this work comes from numerical linear algebra. Tree workflows (as-
sembly or elimination trees) arise during the factorization of sparse matrices, and the huge size of
the files involved makes it absolutely necessary to reduce the memory requirement of the factoriza-
tion. The sequential version of this problem (i.e., with p = 1 processor) has already been studied.
Liu [17] discusses how to find a memory-minimizing traversal when the traversal is required to
correspond to a postorder traversal of the tree. A follow-up study [18] presents an optimal algo-
rithm to solve the general problem, without the postorder constraint on the traversal. Postorder
traversals are known to be arbitrarily worse than optimal traversals for memory minimization [12].
However, they are very natural and straightforward solutions to this problem, as they allow to
fully process one subtree before starting a new one. Therefore, they are thus widely used in sparse
matrix software like MUMPS [2, 3], and in practice, they achieve close to optimal performance on
actual elimination trees [12].

1The concept of file is used here in a very general meaning and does not necessarily correspond to a classical

file on a disk. Essentially, a file is a set of data.
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The parallel version of this problem is a natural continuation of these studies: when processing
large elimination trees, it is very meaningful to take advantage of parallel processing resources.
However, to the best of our knowledge, no theoretical study exists for this problem. A preliminary
version of this work, with fewer complexity results and proposed heuristics, was presented at
IPDPS 2013 [19]. The key contributions of this work are:

• A new proof that the parallel variant of the pebble game problem is NP-complete (simpler
than in [19]). This shows that the introduction of memory constraints, in the simplest cases,
suffices to make the problem NP-hard (Theorem 1).

• The proof that no schedule can simultaneously achieve a constant-ratio approximation for
the memory minimization and for the makespan minimization (Theorem 2); bounds on the
achievable approximation ratios for makespan and memory when the number of processors
is fixed (Theorems 3 and 4).

• A series of practical heuristics achieving different trade-offs between the minimization of peak
memory usage and makespan; some of these heuristics are guaranteed to keep the memory
under a given memory limit.

• An exhaustive set of simulations using realistic tree-shaped task graphs corresponding to
elimination trees of actual matrices; the simulations assess the relative and absolute perfor-
mance of the heuristics.

The rest of this paper is organized as follows. Section 2 reviews related studies. The notation
and formalization of the problem are introduced in Section 3. Complexity results are presented in
Section 4 while Section 5 proposes different heuristics to solve the problem, which are evaluated
in Section 6.

2 Background and Related Work

2.1 Sparse matrix factorization

As mentioned above, determining a memory-efficient tree traversal is very important in sparse
numerical linear algebra. The elimination tree is a graph theoretical model that represents the
storage requirements, and computational dependencies and requirements, in the Cholesky and LU
factorization of sparse matrices. In a previous study [12], we have described how such trees are
built, and how the multifrontal method [16] organizes the computations along the tree. This is the
context of the founding studies of Liu [17, 18] on memory minimization for postorder or general
tree traversals presented in the previous section. Memory minimization is still a concern in modern
multifrontal solvers when dealing with large matrices. Among other, efforts have been made to
design dynamic schedulers that take into account dynamic pivoting (which impacts the weights
of edges and nodes) when scheduling elimination trees with strong memory constraints [9], or to
consider both task and tree parallelism with memory constraints [1]. While these studies try to
optimize memory management in existing parallel solvers, we aim at designing a simple model to
study the fundamental underlying scheduling problem.

2.2 Scientific workflows

The problem of scheduling a task graph under memory constraints also appears in the processing
of scientific workflows whose tasks require large I/O files. Such workflows arise in many scientific
fields, such as image processing, genomics or geophysical simulations. The problem of task graphs
handling large data has been identified in [20] which proposes some simple heuristic solutions.
Surprisingly, in the context of quantum chemistry computations, Lam et al. [14] have recently
rediscovered the algorithm published in 1987 in [18].

2.3 Pebble game and its variants

On the more theoretical side, this work builds upon the many papers that have addressed the
pebble game and its variants. Scheduling a graph on one processor with the minimal amount of
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memory amounts to revisiting the I/O pebble game with pebbles of arbitrary sizes that must be
loaded into main memory before firing (executing) the task. The pioneering work of Sethi and
Ullman [22] deals with a variant of the pebble game that translates into the simplest instance of
our problem when all input/output files have weight 1 and all execution files have weight 0. The
concern in [22] was to minimize the number of registers that are needed to compute an arithmetic
expression. The problem of determining whether a general DAG can be executed with a given
number of pebbles has been shown NP-hard by Sethi [21] if no vertex is pebbled more than once
(the general problem allowing recomputation, that is, re-pebbling a vertex which has been pebbled
before, has been proven Pspace complete [6]). However, this problem has a polynomial complexity
for tree-shaped graphs [22].

To the best of our knowledge, there have been no attempts to extend these results to parallel
machines, with the objective of minimizing both memory and total execution time. We present
such an extension in Section 4.

3 Model and objectives

3.1 Application model

We consider in this paper a tree-shaped task-graph T composed of n nodes, or tasks, numbered
from 1 to n. Nodes in the tree have an output file, an execution file (or program), and several
input files (one per child). More precisely:

• Each node i in the tree has an execution file of size ni and its processing on a processor takes
time wi.

• Each node i has an output file of size fi. If i is not the root, its output file is used as input
by its parent parent(i); if i is the root, its output file can be of size zero, or contain outputs
to the outside world.

• Each non-leaf node i in the tree has one input file per child. We denote by Children(i) the
set of the children of i. For each child j ∈ Children(i), task j produces a file of size fj for i.
If i is a leaf-node, then Children(i) = ∅ and i has no input file: we consider that the initial
data of the task either resides in its execution file or is read from disk (or received from the
outside word) during the execution of the task.

During the processing of a task i, the memory must contain its input files, the execution file,
and the output file. The memory needed for this processing is thus:





∑

j∈Children(i)

fj



+ ni + fi

After i has been processed, its input files and execution file (program) are discarded, while its
output file is kept in memory until the processing of its parent.

3.2 Platform model and objectives

In this paper, our goal is to design a simple platform model which allows to study memory
minimization on a parallel platform. We thus consider p identical processors sharing a single
memory.

Any sequential optimal schedule for memory minimization is obviously an optimal schedule
for memory minimization on a platform with any number p of processors. Therefore, memory
minimization on parallel platforms is only meaningful in the scope of multi-criteria approaches
that consider trade-offs between the following two objectives:

RR n° 8606
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root
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1 L1
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. . . L1
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1 L2

2
. . . L2

3m×a2

. . . N3m

L3m
1 L3m

2
. . . L3m

3m×a3m

Figure 1: Tree used for the NP-completeness proof

• Makespan: the classical makespan, or total execution time, which corresponds to the time-
span between the beginning of the execution of the first leaf task and the end of the processing
of the root task.

• Memory: the amount of memory needed for the computation. At each time step, some
files are stored in the memory and some task computations occur, inducing a memory usage.
The peak memory is the maximum usage of the memory over the whole schedule, hence the
memory that needs to be available, which we aim to minimize.

4 Complexity results in the pebble game model

Since there are two objectives, the decision version of our problem can be stated as follows.

Definition 1 (BiObjectiveParallelTreeScheduling). Given a tree-shaped task graph T with file
sizes and task execution times, p processors, and two bounds BCmax

and Bmem , is there a schedule
of the task graph on the processors whose makespan is not larger than BCmax

and whose peak
memory is not larger than Bmem?

This problem is obviously NP-complete. Indeed, when there are no memory constraints
(Bmem = ∞) and when the task tree does not contain any inner node, that is, when all tasks
are either leaves or the root, then our problem is equivalent to scheduling independent tasks on
a parallel platform which is an NP-complete problem as soon as tasks have different execution
times [15]. Conversely, minimizing the makespan for a tree of same-size tasks can be solved in
polynomial-time when there are no memory constraints [10]. In this section, we consider the sim-
plest variant of the problem. We assume that all input files have the same size (∀i, fi = 1) and no
extra memory is needed for computation (∀i,ni = 0). Furthermore, we assume that the processing
of each node takes unit time: ∀i,wi = 1. We call this variant of the problem the Pebble Game
model since it perfectly corresponds to the pebble game problems introduced above: the weight
fi = 1 corresponds to the pebble one must put on node i to process it; this pebble must remain
there until the parent of node i has been completed, because the parent of node i uses as input
the output of node i. Processing a node is done in unit time.

In this section, we first show that, even in this simple variant, the introduction of memory
constraints (a limit on the number of pebbles) makes the problem NP-hard (Section 4.1). Then,
we show that when trying to minimize both memory and makespan, it is not possible to get a
solution with a constant approximation ratio for both objectives, and we provide tighter ratios
when the number of processors is fixed (Section 4.2).

4.1 NP-completeness

Theorem 1. The BiObjectiveParallelTreeScheduling problem is NP-complete in the Pebble Game
model (i.e., with ∀i, fi = wi = 1,ni = 0).

Proof. First, it is straightforward to check that the problem is in NP: given a schedule, it is easy
to compute its peak memory and makespan.

RR n° 8606
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To prove the problem NP-hard, we perform a reduction from 3-Partition, which is known to
be NP-complete in the strong sense [5]. We consider the following instance I1 of the 3-Partition
problem: let ai be 3m integers and B an integer such that

∑

ai = mB. We consider the variant
of the problem, also NP-complete, where ∀i, B/4 < ai < B/2. To solve I1, we need to solve the
following question: does there exist a partition of the ai’s in m subsets S1, . . . , Sm, each containing
exactly 3 elements, such that, for each Sk,

∑

i∈Sk
ai = B? We build the following instance I2 of

our problem, illustrated in Figure 1. The tree contains a root r with 3m children, the Ni’s, each
one corresponding to a value ai. Each node Ni has 3m×ai children, L

i
1, ..., L

i
3m×ai

, which are leaf
nodes. The question is to find a schedule of this tree on p = 3mB processors, whose peak memory
is not larger than Bmem = 3mB + 3m and whose makespan is not larger than BCmax

= 2m+ 1.
Assume first that there exists a solution to I1, i.e., that there are m subsets Sk of 3 elements

with
∑

i∈Sk
ai = B. In this case, we build the following schedule:

• At step 1, we process all the nodes Li1
x , Lj1

y , and Lk1

z with S1 = {ai1 , aj1 , ak1
}. There are

3mB = p such nodes, and the amount of memory needed is also 3mB.

• At step 2, we process the nodes Ni1 , Nj1 , Nk1
. The memory needed is 3mB + 3.

• At step 2n + 1, with 1 ≤ n ≤ m − 1, we process the 3mB = p nodes Lin
x , Ljn

y , Lkn
z with

Sn = {ain , ajn , akn
}. The amount of memory needed is 3mB+3n (counting the memory for

the output files of the Nt nodes previously processed).

• At step 2n + 2, with 1 ≤ n ≤ m − 1, we process the nodes Nin , Njn , Nkn
. The memory

needed for this step is 3mB + 3(n+ 1).

• At step 2m+ 1, we process the root node and the memory needed is 3m+ 1.

Thus, the peak memory of this schedule is Bmem and its makespan BCmax
.

Reciprocally, assume that there exists a solution to problem I2, that is, there exists a schedule
of makespan at most BCmax

= 2m+1. Without loss of generality, we assume that the makespan is
exactly 2m+1. We start by proving that at any step of the algorithm, at most three of theNi nodes
are being processed. By contradiction, assume that four (or more) such nodes Nis , Njs , Nks

, Nls

are processed during a certain step s. We recall that ai > B/4 so that ais + ajs + aks
+ als > B

and thus ais +ajs +aks
+als ≥ B+1. The memory needed at this step is thus at least (B+1)3m

for the children of the nodes Nis , Njs , Nks
, and Nls and 4 for the nodes themselves, hence a total

of at least (B + 1)3m + 4, which is more than the prescribed bound Bmem . Thus, at most three
of Ni nodes are processed at any step. In the considered schedule, the root node is processed
at step 2m + 1. Then, at step 2m, some of the Ni nodes are processed, and at most three of
them from what precedes. The ai’s corresponding to those nodes make the first subset S1. Then
all the nodes Lj

x such that aj ∈ S1 must have been processed at the latest at step 2m − 1, and
they occupy a memory footprint of 3m

∑

aj∈S1
aj at steps 2m− 1 and 2m. Let us assume that a

node Nk is processed at step 2m− 1. For the memory bound Bmem to be satisfied we must have
ak +

∑

aj∈S1
aj ≤ B. (Otherwise, we would need a memory of at least 3m(B+1) for the involved

Lj
x nodes plus 1 for the node Nk). Therefore, node Nk can as well be processed at step 2m instead

of step 2m− 1. We then modify the schedule so as to schedule Nk at step 2m and thus we add k
to S1. We can therefore assume, without loss of generality, that no Ni node is processed at step
2m−1. Then, at step 2m−1 only the children of the Nj nodes with aj ∈ S1 are processed, and all
of them are. So, none of them have any memory footprint before step 2m− 1. We then generalize
this analysis: at step 2i, for 1 ≤ i ≤ m − 1, only some Nj nodes are processed and they define a
subset Si; at step 2i− 1, for 1 ≤ i ≤ m− 1, are processed exactly the nodes Lk

x that are children
of the nodes Nj such that aj ∈ Si.

Because of the memory constraint, each of the m subsets of ai’s built above sum to at most B.
Since they contain all ai’s, their sum is mB. Thus, each subset Sk sums to B and we have built
a solution for I1.

RR n° 8606
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4.2 Joint minimization of both objectives

As our problem is NP-complete, it is natural to wonder whether approximation algorithms can
be designed. In this section, we prove that there does not exist any scheduling algorithm which
approximates both the minimum makespan and the minimum peak memory with constant factors.
This is equivalent to saying that there is no Zenith (also called simultaneous) approximation. We
first state a lemma, valid for any tree-shaped task graph, which provides lower bounds for the
makespan of any schedule.

Lemma 1. For any schedule S on p processors with a peak memory M , we have the two following
lower bounds on the makespan Cmax:

Cmax ≥
1

p

n
∑

i=1

wi

M × Cmax ≥
n
∑

i=1



ni + fi +
∑

j∈Children(i)

fj



wi

In the pebble game model, these equations can be written as:

Cmax ≥ n/p

M × Cmax ≥ 2n− 1

Proof. The first inequality is a classical bound that states that all tasks must be processed before
Cmax.

Similarly, each task i uses a memory of ni + fi +
∑

j∈Children(i) fj during a time wi. Hence,

the total memory usage (i.e., the sum over all time instants t of the memory used by S at time t)

needs to be at least equal to
∑n

i=1

(

ni + fi +
∑

j∈Children(i) fj

)

wi. Because S uses a memory that

is not larger than M at any time, the total memory usage is upper bounded by M × Cmax. This
gives us the second inequality. In the pebble game model, the right-hand-side term of the second
inequality can be simplified:

n
∑

i=1



ni + fi +
∑

j∈Children(i)

fj



wi =

(

n
∑

i=1

fi

)

+





n
∑

i=1

∑

j∈Children(i)

fj



 = n+ (n− 1)

In the next theorem, we show that it is not possible to design an algorithm with constant
approximation ratios for both makespan and maximum memory, i.e. approximation ratios inde-
pendent of the number of processors p. In Theorem 3, we will provide a refined version which
analyzes the dependence on p.

Theorem 2. For any given constants α and β, there does not exist any algorithm for the pebble
game model that is both an α-approximation for makespan minimization and a β-approximation
for peak memory minimization when scheduling in-tree task graphs.

Proof. We consider in this proof the tree depicted in Figure 2. The root of this tree has m children
a1, . . . , am. Any of these children, ai, has m children bi,1, . . . , bi,m. Therefore, overall this tree
contains n = 1+m+m×m nodes. On the one hand, with a large number of processors (namely,
m2), this tree can be processed in C∗

max = 3 time steps: all the leaves are processed in the first
step, all the ai nodes in the second step, and finally the root in the third and last step. On the
other hand, the minimum memory required to process the tree is M∗ = 2m. This is achieved
by processing the tree with a single processor. The subtrees rooted at the ai’s are processed one
at a time. The processing of the subtree rooted at node ai requires a memory of m + 1 (for the

RR n° 8606



Parallel scheduling of task trees with limited memory 9

root

a1

b1,1 b1,2

...

b1,m

a2

b2,1 b2,2

...

b2,m

. . . am

bm,1 bm,2

...

bm,m

Figure 2: Tree used for establishing Theorem 2.

processing of its root ai once the m leaves have been processed). Once such a subtree is processed
there is a unit file that remains in memory. Hence, the peak memory usage when processing the
j-th of these subtrees is (j − 1) + (m + 1) = j +m. The overall peak M∗ = 2m is thus reached
when processing the root of the last of these subtrees.

Let us assume that there exists a schedule S which is both an α-approximation for the makespan
and a β-approximation for the peak memory. Then, for the tree of Figure 2, the makespan Cmax of
S is at most equal to 3α, and its peak memoryM is at most equal to 2βm. Because n = 1+m+m2,

Lemma 1 implies that M × Cmax ≥ 2n − 1 = 2m2 + 2m + 1. Therefore M ≥ 2m2+2m+1
3α . For a

sufficiently large value of m, this is larger than 2βm, the upper bound on M . This contradicts the
hypothesis that S is a β-approximation for peak memory usage.

Theorem 2 only considers approximation algorithms whose approximation ratios are constant.
In the next theorem we consider algorithms whose approximations ratios may depend on the
number of processors in the platform.

Theorem 3. When scheduling in-tree task graphs in the pebble-game model on a platform with p ≥
2 processors, there does not exist any algorithm that is both an α(p)-approximation for makespan
minimization and a β(p)-approximation for peak memory minimization, with

α(p)β(p) <
2p

⌈log(p)⌉+ 2
·

Proof. We establish this result by contradiction. We assume that there exists an algorithm that
is an α(p)-approximation for makespan minimization and a β(p)-approximation for peak memory
minimization when scheduling in-tree task graphs, with α(p)β(p) = 2p

(⌈log(p)⌉+2) − ǫ with ǫ > 0.

The proof relies on a tree similar to the one depicted in Figure 3 for the case p = 13. The
top part of the tree is a complete binary subtree with ⌈p2⌉ leaves, l1, . . . , l⌈ p

2
⌉, and of height m.

Therefore, this subtree contains 2⌈p2⌉ − 1 nodes, all of its leaves are at depth either m or m − 1,
and m = 1 + ⌈log(⌈p2⌉)⌉ = ⌈log(p)⌉. To prove the last equality, we consider whether p is even:

• p is even: ∃l ∈ N, p = 2l. Then, 1 + ⌈log(⌈p2⌉)⌉ = ⌈log(2⌈
2l
2 ⌉)⌉ = ⌈log(2l)⌉ = ⌈log(p)⌉.

• p is odd: ∃l ∈ N, p = 2l + 1. Then, 1 + ⌈log(⌈p2⌉)⌉ = ⌈log(2⌈
2l+1
2 ⌉)⌉ = ⌈log(2l + 2)⌉. Since

2l + 1 is odd, ⌈log(2l + 2)⌉ = ⌈log(2l + 1)⌉ = ⌈log(p)⌉.
Each node li is the root of a comb subtree of height k (except the last node if p is odd); each comb
subtree contains 2k− 1 nodes. If p is odd, the last leaf of the binary top subtree, l⌈ p

2
⌉, is the root

of a chain subtree with k − 1 nodes. Then, the entire tree contains n = pk − 1 nodes (be careful
not to count twice the roots of the comb subtrees):

• p is even: ∃l ∈ N, p = 2l. Then,

n =
(

2
⌈p

2

⌉

− 1
)

+
(⌈p

2

⌉

(2k − 2)
)

= (2l − 1) + l(2k − 2) = pk − 1.
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root

l1 l2 l3 l4 l5 l6

l7

m levels

k levels

k − 1 levels

Figure 3: Tree used to establish Theorem 3 for p = 13 processors.

• p is odd: ∃l ∈ N, p = 2l + 1. Then,

n =
(

2
⌈p

2

⌉

− 1
)

+
((⌈p

2

⌉

− 1
)

(2k − 2)
)

+ (k − 2)

= (2(l + 1)− 1) + (l + 1− 1)(2k − 2) + (k − 2) = (2l + 1)k − 1 = pk − 1.

With the p processors, it is possible to process all comb subtrees (and the chain subtree if p
is odd) in parallel in k steps by using two processors per comb subtree (and one for the chain
subtree). Then, m− 1 steps are needed to complete the processing of the binary reduction (the li
nodes have already been processed at the last step of the processing of the comb subtrees). Thus,
the optimal makespan with p processors is C∗

max = k +m− 1.
We now compute the optimal peak memory usage, which is obtained with a sequential pro-

cessing. Each comb subtree can be processed with 3 units of memory, if we follow any postorder
traversal starting from the deepest leaves. We consider the sequential processing of the entire tree
that follows a postorder traversal that process each comb subtree as previously described, that
process first the leftmost comb subtree, then the second leftmost comb subtree, the parent node
of these subtrees, and so on, and finishes with the rightmost comb subtree (or the chain subtree
if p is odd). The peak memory is reached when processing the last comb subtree. At that time,
either m− 2 or m− 1 edges of the binary subtree are stored in memory (depending on the value
of ⌈p2⌉). The processing of the last comb subtree itself uses 3 units of memory. Hence, the optimal
peak memory is not greater than m+ 2: M∗ ≤ m+ 2.

Let Cmax denote the makespan achieved by the studied algorithm on the tree, and let M
denote its peak memory usage. By definition, the studied algorithm is an α(p)-approximation for
the makespan: Cmax ≤ α(p)C∗

max. Thanks to Lemma 1, we know that

M × Cmax ≥ 2n− 1 = 2pk − 3.

Therefore,

M ≥
2pk − 3

Cmax
≥

2pk − 3

α(p)(k +m− 1)
.

The approximation ratio of the studied algorithm with respect to the peak memory usage is, thus,
bounded by:

β(p) ≥
M

M∗
≥

2pk − 3

α(p)(k +m− 1)(m+ 2)
·

Therefore, if we recall that m = ⌈log(p)⌉,

α(p)β(p) ≥
2pk − 3

(k +m− 1)(m+ 2)
=

2pk − 3

(k + ⌈log(p)⌉ − 1)(⌈log(p)⌉+ 2)
−−−−→
k→∞

2p

⌈log(p)⌉+ 2
·

RR n° 8606



Parallel scheduling of task trees with limited memory 11
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Figure 4: Tree used for establishing Theorem 4.

Hence, there exists a value k0 such that, for any k ≥ k0,

α(p)β(p) ≥
2p

⌈log(p)⌉+ 2
−

ǫ

2
·

This contradicts the definition of ǫ and, hence, concludes the proof.

Readers may wonder whether the bound in Theorem 3 is tight. This interrogation is especially
relevant because the proof of Theorem 3 uses the average memory usage as a lower bound to the
peak memory usage. This technique enables to design a simple proof, which may however be very
crude. In fact, in the special case where α(p) = 1, that is, for makespan-optimal algorithms, a
stronger result holds. For that case, Theorem 3 states that β(p) ≥ 2p

⌈log(p)⌉+2 . Theorem 4 below

states that β(p) ≥ p − 1 (which is a stronger bound when p ≥ 4). This result is established
through a careful, painstaking analysis of a particular task graph. Using the average memory
usage argument on this task graph would not enable to obtain a non-trivial bound.

Theorem 4. There does not exist any algorithm that is both optimal for makespan minimization
and that is a (p − 1 − ǫ)-approximation algorithm for the peak memory minimization, where p is
the number of processors and ǫ > 0.

Proof. To establish this result, we proceed by contradiction. Let p be the number of processors.
We then assume that there exists an algorithm A which is optimal for makespan minimization
and which is a β(p)-approximation for peak memory minimization, with β(p) < p − 1. So, there
exists ǫ > 0 such that β(p) = p− 1− ǫ.

The tree. Figure 4 presents the tree used to derive a contradiction. This tree is made of p−1
identical subtrees whose roots are the children of the tree root. The value of δ will be fixed later
on.

Optimal peak memory. A memory-optimal sequential schedule processes each subtree
rooted at cpi1 sequentially. Each of these subtrees can be processed with a memory of δ + 1
by processing first the subtree rooted at di1, then the one rooted at di2, etc., until the one rooted
at diδ−1, and then the chain of cij nodes, and the remaining cpij nodes. The peak memory, reached

when processing the last subtree rooted at cpi1, is thus δ + p− 1.
Optimal execution time. The optimal execution time with p processors is at least equal to

the length of the critical path. The critical path has a length of δ + k, which is the length of the
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path from the root to any cik node, with 1 ≤ i ≤ p− 1. We now define k for this lower bound to
be an achievable makespan, with an overall schedule as follows:

• Each of the first p− 1 processors processes one of the critical paths from end to end (except
obviously for the root node that will only be processed by one of them).

• The last processor processes all the other nodes. We define k so that this processor finishes
processing all the nodes it is allocated at time k + δ − 2. This allows, the other processors
to process all p− 1 nodes cp11 through cpp−1

1 from time k + δ − 2 to time k + δ − 1.
In order to find such a value for k, we need to compute the number of nodes allocated to the last
processor. In the subtree rooted in cpi1, the last processor is in charge of processing the δ − 1
nodes di1 through diδ−1, and the descendants of the dij nodes, for 1 ≤ j ≤ δ − 1. As node dij has

δ − j + 1 descendants, the number of nodes in the subtree rooted in cpi1 that are allocated to the
last processor is equal to:

(δ − 1) +

δ−1
∑

j=1

(δ − j + 1) = δ − 2 +
δ(δ + 1)

2
=

δ2 + 3δ − 4

2
=

(δ + 4)(δ − 1)

2
.

All together, the last processor is in charge of the processing of (p − 1) (δ+4)(δ−1)
2 nodes. As we

have stated above, we want this processor to be busy from time 0 to time k + δ − 2. This gives
the value of k:

k + δ − 2 = (p− 1)
(δ + 4)(δ − 1)

2
⇔ k =

(p− 1)δ2 + (3p− 5)δ + 4(2− p)

2
.

Remark, by looking at the first equality, that the expression on the right-hand side of the second
equality is always an integer; therefore, k is well defined.

To conclude that the optimal makespan with p processors is k + δ − 1 we just need to provide
an explicit schedule for the last processor. This processor processes all its allocated nodes, except
node d11, and nodes a1,11 through a1,1δ−3, in any order between the time 0 and k. Then, between

time k and k + δ − 2, it processes the remaining a1,1j nodes and then node d11.
Lower bound on the peak memory usage. We first remark that, by construction, under

any makespan-optimal algorithm the p−1 nodes cij are processed during the time interval [k−j, k−

j+1]. Similarly, the p−1 nodes cpij are processed during the time interval [k+δ− j−1, k+δ− j].
Without loss of generality, we can assume that processor Pi, for 1 ≤ i ≤ p − 1, processes nodes
cik through ci1 and then nodes cpiδ−1 through cpi1 from time 0 to time k + δ − 1. The processor
Pp processes the other nodes. The only freedom an algorithm has is in the order processor Pp is
processing its allocated nodes.

To establish a lower bound, we consider the class of schedules which are makespan-optimal
for the studied tree, whose peak memory usage is minimum among makespan-optimal schedules,
and which satisfy the additional properties we just defined. We first show that, without loss of
generality, we can further restrict our study to schedules which, once one child of a node dij has

started being processed, process all the other children of that node and then the node dij itself

before processing any children of any other node di
′

j′ .
We also establish this property by contradiction by assuming that there is no schedule (in

the considered class) that satisfies the last property. Then, for any schedule B, let t(B) be the

first date at which B starts the processing of a node ai,jm while some node ai
′,j′

m′ has already been

processed, but node di
′

j′ has not been processed yet. We consider a schedule B which maximizes
t(B) (note that t can only take values no greater than δ + k − 1 and that the maximum and B
are thus well defined). We then build from B another schedule B′ whose peak memory is not
greater and that does not overlap the processing of nodes dij and di

′

j′ . This schedule is defined as

follows. It is identical to B except for the time slots at which node dij , node di
′

j′ or any of their

children was processed. If, under B node dij was processed before node di
′

j′ (respectively, node di
′

j′

was processed before node dij), then under the new schedule, in these time slots, all the children of

dij are processed first, then dij , then all the children of di
′

j′ and finally di
′

j′ (resp. all the children of
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di
′

j′ are processed first, then di
′

j′ , then all the children of dij and finally dij). The peak memory due

to the processing of nodes dij and di
′

j′ and of their children is now max{δ− j +2, δ− j′ +3} (resp.
max{δ−j′+2, δ−j+3}). In the original schedule it was no smaller than max{δ−j+3, δ−j′+3}
because at least the output of the processing of one of the children of node di

′

j′ (resp. dij) was in

memory while node dij (resp. di
′

j′) was processed. Hence the peak memory of the new schedule B′

is no greater than the one of the original schedule. The new schedule satisfies the desired property
at least until time t + 1. Hence t(B′) is larger than t(B), which contradicts the maximality of B
with respect to the value t.

From the above, in order to establish a lower bound on the peak memory of any makespan-
optimal schedule, it is sufficient to consider only those schedules that do not overlap the processing
of different nodes dij (and of their children). Let B be such a schedule. We know that, under
schedule B, processor Pp processes nodes without interruption from time 0 until time k + δ − 2.
Therefore, in the time interval [k+ δ−3, k+ δ−2] processor Pp processes a node di1, say d11. Then
we have shown that we can assume without loss of generality that processor Pp exactly processes
the δ children of d11 in the time interval [k − 3, k + δ − 3]. Therefore, at time k, processor Pp has
processed all nodes allocated to it except node d11 and δ − 3 of its children. Therefore, during the
time interval [k, k + 1] the memory must contain:

1. The output of the processing of all dij nodes, for 1 ≤ i ≤ p−1 and 1 ≤ j ≤ δ−1, except for the

output of node d11 (which has not yet been processed). This corresponds to (p−1)(δ−1)−1
elements.

2. The output of the processing of 3 children of node d11 and a additional unit to store the result
of a fourth one. This corresponds to 4 elements.

3. The result of the processing of the ci1 nodes, for 1 ≤ i ≤ p− 1 and room to store the results
of the cpiδ−1 nodes, for 1 ≤ i ≤ p− 1. This corresponds to 2(p− 1) elements.

Overall, during this time interval the memory must contain:

((p− 1)(δ − 1)− 1) + 4 + 2(p− 1) = (p− 1)δ + p+ 2

elements. As the optimal peak memory is δ + p− 1 this gives us a lower bound on the ratio ρ of
the memory used by B with respect to the optimal peak memory usage:

ρ ≥
(p− 1)δ + p+ 2

δ + p− 1
−−−→
δ→∞

p− 1.

Therefore, there exists a value δ0 such that

(p− 1)δ0 + p+ 2

δ0 + p− 1
> p− 1 +

1

2
ǫ.

As algorithm A cannot have a strictly lower peak memory than algorithm B by definition of B,
this proves that the ratio for A is at least equal to p− 1 + 1

2ǫ, which contradicts the definition of
ǫ.

Furthermore, a similar result can also be derived in the general model (with arbitrary execution
times and file sizes), but without the restriction that α(p) = 1. This is done in the next lemma.

Lemma 2. When scheduling in-tree task graphs in the general model on a platform with p ≥ 2
processors, there does not exist any algorithm that is both an α(p)-approximation for makespan
minimization and a β(p)-approximation for peak memory minimization, with α(p)β(p) < p.

Proof. Consider the tree drawn in Figure 5. This tree can be scheduled in time C∗
max = 1 on p

processors if all non-root nodes are processed simultaneously (by using a peak memory of p), or
sequentially in time p by using only M∗ = 1 memory. Lemma 1 states that for any schedule with
makespan Cmax and peak memory M , we have MCmax ≥ p. This immediately implies that any
algorithm with approximation ratio α(p) for makespan and β(p) for peak memory minimization
must verify α(p)β(p) ≥ p. This bound is tight because, in this model, any memory-optimal
sequential schedule is an approximation algorithm with β(p) = 1 and α(p) = p.
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n0 = 0,
w0 = 0,
f0 = 0

n1 = 1,
w1 = 1,
f1 = 0

n2 = 1,
w2 = 1,
f2 = 0

. . .
np = 1,
wp = 1,
fp = 0

Figure 5: Tree used for the proof of Lemma 2.

5 Heuristics

Given the complexity of optimizing the makespan and memory at the same time, we have inves-
tigated heuristics and we propose six algorithms. The intention is that the proposed algorithms
cover a range of use cases, where the optimization focus wanders between the makespan and the
required memory. The first heuristic, ParSubtrees (Section 5.1), employs a memory-optimizing
sequential algorithm for each of its subtrees, the different subtrees being processed in parallel.
Hence, its focus is more on the memory side. In contrast, ParInnerFirst and ParSubtrees

are two list scheduling based algorithms (Section 5.2), which should be stronger in the makespan
objective. Nevertheless, the objective of ParInnerFirst is to approximate a postorder in par-
allel, which is good for memory in sequential. The focus of ParDeepestFirst is fully on the
makespan. Then, we move to memory-bounded heuristics (Section 5.3). Initially, we adapt the
two list-scheduling heuristics to obtain bounds on their memory consumption. Finally, we design
a heuristic, MemBookingInnerFirst (Section 5.3.3), that proposes a parallel execution of a
sequential postorder while satisfying a memory bound given as input.

5.1 Parallel execution of subtrees

The most natural idea to process a tree T in parallel is arguably to split it into subtrees, to
process each of these subtrees with a sequentially memory-optimal algorithm [12, 18], and to have
these sequential processings happen in parallel. The underlying idea is to assign to each processor
a whole subtree in order to enable as much parallelism as there are processors, while allowing
to use a single-processor memory-optimal traversal on each subtree. Algorithm 1 outlines such
an algorithm, using Algorithm 2 for splitting T into subtrees. The makespan obtained using
ParSubtrees is denoted by CParSubtrees

max .

Algorithm 1: ParSubtrees (T , p)

1 Split tree T into q subtrees (q ≤ p) and a set of remaining nodes, using SplitSubtrees (T ,
p).

2 Concurrently process the q subtrees, each using a memory minimizing algorithm, e.g., [12].
3 Sequentially process the set of remaining nodes, using a memory minimizing algorithm.

In this approach, q subtrees of T , q ≤ p, are processed in parallel. Each of these subtrees is a
maximal subtree of T . In other words, each of these subtrees includes all the descendants (in T )
of its root. The nodes not belonging to the q subtrees are processed sequentially. These are the
nodes where the q subtrees merge, the nodes included in subtrees that were produced in excess (if
more than p subtrees were created), and the ancestors of these nodes. An alternative approach, as
discussed below, is to process all produced subtrees in parallel, assigning more than one subtree
to each processor when q > p. The advantage of Algorithm 1 is that we can construct a splitting
into subtrees that minimizes its makespan, established shortly in Lemma 3.
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As wi is the computation weight of node i, Wi denotes the total computation weight (i.e., sum
of weights) of all nodes in the subtree rooted in i, including i. SplitSubtrees uses a node priority
queue PQ in which the nodes are sorted by non-increasing Wi, and ties are broken according to
non-increasing wi. head(PQ) returns the first node of PQ , while popHead(PQ) also removes it.
PQ [i] denotes the i-th element in the queue.

SplitSubtrees starts with the root of the entire tree and continues splitting the largest
subtree (in terms of the total computation weightW) until this subtree is a leaf node (Whead(PQ) =
whead(PQ)). The execution time of Step 2 of ParSubtrees is that of the largest of the q subtrees
of the splitting, hence Whead(PQ) for the solution found by SplitSubtrees. Splitting subtrees
that are smaller than the largest leaf (Wj < maxi∈T wi) cannot decrease the parallel time, but
only increase the sequential time. More generally, given any splitting s of T into subtrees, the
best execution time for s with ParSubtrees is achieved by choosing the p largest subtrees for
the parallel Step 2. This can be easily derived, as swapping a large tree included in the sequential
part with a smaller tree included in the parallel part cannot increase the total execution time.
Hence, the value CParSubtrees

max (s) computed in Step 10 is the makespan that would be obtained
by ParSubtrees on the splitting computed so far. At the end of algorithm SplitSubtrees

(Step 12), the splitting which yields the smallest makespan is selected.

Algorithm 2: SplitSubtrees (T , p)

1 foreach node i do compute Wi (the total processing time of the tree rooted at i)
2 Initialize priority queue PQ with the tree root
3 seqSet← ∅
4 Cost(0) = Wroot

5 s← 1 /* splitting rank */

6 while Whead(PQ) > whead(PQ) do

7 node← popHead(PQ)
8 seqSet← seqSet ∪ node
9 Insert all children of node into priority queue PQ

10 CParSubtrees
max (s) = Whead(PQ) +

∑

i∈seqSet wi +
∑|PQ|

i=PQ[p+1] Wi

11 s← s+ 1

12 Select splitting S with CParSubtrees
max (S) = mins−1

t=0 C
ParSubtrees
max (t) (break ties in favor of

smaller t)

Lemma 3. SplitSubtrees returns a splitting of T into subtrees that results in the makespan-
optimal processing of T with ParSubtrees.

Proof. The proof is by contradiction. Let S be the splitting into subtrees selected by Split-

Subtrees. Assume now that there is a different splitting Sopt which results in a strictly shorter
processing with ParSubtrees.

Because of the termination condition of the while-loop, SplitSubtrees splits any subtree that
is heavier than the heaviest leaf. Therefore, any such tree will be at one time at the head of the
priority queue. Let r be the root node of a heaviest subtree in Sopt. From what precedes, there
always exists a step t which is the first step in SplitSubtrees where a node, say rt, of weight
Wr, is the head of PQ at the end of the step (rt is not necessarily equal to r, as there can be
more than one subtree of weight Wr). Let St be the solution built by SplitSubtrees at the end
of step t. By definition of r, there cannot be any leaf node in the entire tree that is heavier than
Wr. The cost of the solution St is equal to the execution time of the parallel processing of the
min{q, p} subtrees plus the execution time of the sequential processing of the remaining nodes.
Therefore CParSubtrees

max (t) = Wr + Seq(t), where Seq(t) is the total weight of the sequential set
seqSet(t) plus the total weight of the surplus subtrees (that is, of all the subtrees in PQ except
the p subtrees of largest weights). The cost of Sopt is C

∗
max = Wr + Seq(Sopt), given that r is the

root of a heaviest subtree of Sopt by definition.
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SplitSubtrees splits subtrees by non-increasing weights. Furthermore, by definition of step
t, all subtrees split by SplitSubtrees, up to step t included, were subtrees whose weights were
strictly greater than Wr. Therefore, because r is the weight of the heaviest subtree in Sopt, all the
subtrees split by SplitSubtrees up to step t included must have been split to obtain the solution
Sopt. This has several consequences. Firstly, seqSet(t) is a subset of seqSet(Sopt), because, for
any solution S, seqSet(S) is the set of all nodes that are roots of subtrees split to obtain the
solution S. Secondly, either a subtree of St belongs to Sopt or this subtree has been split to obtain
Sopt. Therefore, the sequential processing of the max{q− p, 0} exceeding subtrees is no smaller in
Sopt than in the solution built at step t. It directly follows from the two above consequences that
Seq(t) ≤ Seq(Sopt). However, Sopt and St have the same execution time for the parallel phase
Wr. It follows that CParSubtrees

max (t) ≤ C∗
max, which is a contradiction to Sopt’s shorter processing

time.

Complexity We first analyze the complexity of SplitSubtrees. Computing the weights Wi

costs O(n). Each insertion into PQ costs O(log n) and calculating CParSubtrees
max (s) in each step

costs O(p). Given that there are O(n) steps, SplitSubtrees’s complexity is O(n(log n + p)).
The complexity of the sequential traversal algorithms used in Steps 2 and 3 of ParSubtrees is
at most O(n2), e.g., [12, 18], or O(n log n) if the optimal postorder is sufficient. Thus the total
complexity of ParSubtrees is O(n2) or O(n(log n + p)), depending on the chosen sequential
algorithm.

Memory

Lemma 4. ParSubtrees is a p-approximation algorithm for peak memory minimization: the
peak memory, M , verifies M ≤ pMseq, where Mseq is the memory required for the complete
sequential execution.

Proof. We first remark that during the parallel part of ParSubtrees, the total memory used,
Mp, is not more than p times Mseq. Indeed, each of the p processors executes a maximal subtree
and the processing of any subtree does not use, obviously, more memory (if done optimally) than
the processing of the whole tree. Thus, Mp ≤ p ·Mseq.

During the sequential part of ParSubtrees, the memory used, MS , is bounded by Mseq +
∑

i∈Q fi, where the second term is for the output files produced by the root nodes of the q ≤ p
subtrees processed in parallel (Q is the set of the root nodes of the q trees processed in parallel).
We now claim that at least two of those subtrees have a common parent. More specifically, let
us denote by X the node that was split last (i.e., it was split in the step S which is selected
at the end of SplitSubtrees). Our claim is that at least two children of X are processed in
the parallel part. Before X was split (in step S − 1), the makespan as computed in Step 10 of
SplitSubtrees is Cmax(S − 1) = WX + Seq(S − 1), where Seq(S − 1) is the work computed in

sequential (
∑

i∈seqSet wi +
∑|PQ|

i=PQ[p+1] Wi). Let D denote the set of children of X which are not

executed in parallel, then the total weight of their subtrees is WD =
∑

i∈D Wi. We now show that
if at most one child of X is processed in the parallel part, X was not the node that was split last:

• If exactly one child C of X is processed in the parallel part, then Cmax(S) = WX′ +Seq(S−
1) + wX +WD, where X ′ is the new head of the queue, and thus verifies WX′ ≥ WC . And
since WX = wX +WC +WD, we can conclude that Cmax(S) ≥ Cmax(S − 1).

• If no child of X is processed in the parallel part, then Cmax(S) = WX′ +Seq(S− 1)−WY +
wX +WD, where X ′ is the new head of the queue and Y is the newly inserted node in the p
largest subtrees in the queue. Since WX′ ≥WY and WX = wX +WD, we obtain once again
Cmax(S) ≥ Cmax(S − 1).

In both cases we have Cmax(S) ≥ Cmax(S − 1), which contradicts the definition of X (the select
phase, Step 12 of SplitSubtrees, would have selected step S−1 rather than step S). Let us now
denote by C1 and C2 two children of X which are processed in the parallel phase. Remember that
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root

1 2 ... p · k − 1 p · k

Figure 6: ParSubtrees is at best a p-approximation for the makespan.

the memory used during the sequential part is bounded byMS ≤Mseq+fC1
+fC2

+
∑

i∈Q\{C1,C2}
fi.

Since a sequential execution must process node X, we obtain fC1
+fC2

≤Mseq. And since ∀i, fi ≤
Mseq, we can bound the memory used during the sequential part by MS ≤ 2Mseq +(p− 2)Mseq ≤
pMseq.

Furthermore, given that up to p processors work in parallel, each on its own subtree, it is easy
to see that this bound is tight if the sequential peak memory can be reached in each subtree.

Makespan ParSubtrees delivers a p-approximation algorithm for makespan minimization,
and this bound is tight. Because at least one processor is working at any time under ParSubtrees,
ParSubtrees delivers, in the worst case, a p-approximation for makespan minimization. To
prove that this bound is tight, we consider a tree of height 1 with p · k leaves (a fork), where all
execution times are equal to 1 (∀i ∈ T , wi = 1), and where k is a large integer (this tree is depicted
in Figure 6). The optimal makespan for such a tree is C∗

max = kp/p + 1 = k + 1 (the leaves are
processed in parallels, in batches of size p, and then the root is processed). With ParSubtrees

p leaves are processed in parallel, and then the remaining nodes are processed sequentially. The
makespan is thus Cmax = (1+ pk− p)+ 1 = p(k− 1)+ 2. When k tends to +∞ the ratio between
the makespans tends to p.

Given the just observed worst case for the makespan, a makespan optimization for ParSub-

trees is to allocate all produced subtrees to the p processors instead of only p subtrees. This
can be done by ordering the subtrees by non-increasing total weight and allocating each subtree
in turn to the processor with the lowest total weight. Each of the parallel processors executes its
subtrees sequentially. This optimized form of the algorithm is named ParSubtreesOptim. Note
that this optimization should improve the makespan, but it will likely worsen the peak memory
usage.

5.2 List scheduling algorithms

ParSubtrees is a high-level algorithm employing sequential memory-optimized algorithms. An
alternative, explored in this section, is to design algorithms that directly work on the tree in
parallel. We first present two such algorithms that are event-based list scheduling algorithms [11].
One of the strong points of list scheduling algorithms is that they are (2 − 1

p )-approximation

algorithms for makespan minimization [8].
Algorithm 3 outlines a generic list scheduling, driven by node finish time events. At each event

at least one node has finished so at least one processor is available for processing nodes. Each
available processor is given the respective head node of the priority queue. The priority of nodes
is given by the total order O, a parameter to Algorithm 3.

5.2.1 Heuristic ParInnerFirst

From the study of the sequential case, one knows that a postorder traversal, while not optimal
for all instances, provides good results [12]. Our intention is to extend the principle of postorder
traversal to the parallel processing. For the first heuristic, called ParInnerFirst, the priority
queue uses the following ordering O: 1) inner nodes, in an arbitrary order; 2) leaf nodes ordered
according to a given postorder traversal. It makes heuristic sense that the chosen postorder is an
optimal sequential postorder, so that memory consumption can be minimized. We do not further
define the order of inner nodes because it has absolutely no impact. Indeed, because we target
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Algorithm 3: List scheduling(T , p, O)

1 Insert leaves in priority queue PQ according to order O
2 eventSet ← {0} /* ascending order */

3 while eventSet 6= ∅ do /* event:node finishes */

4 popHead(eventSet)
5 Done ← set of the new ready nodes
6 Insert nodes from Done in PQ according to order O /* available parents of nodes

completed at event */

7 P ← available processors
8 while P 6= ∅ and PQ 6= ∅ do
9 proc ← popHead(P)

10 node ← popHead(PQ)
11 Assign node to proc
12 eventSet ← eventSet ∪ finishTime(node)

1

1

· · · · · ·

p− 1

· · · · · · k − 1

1

· · · · · ·

p− 1

k

2k − 2

Figure 7: No memory bound for ParInnerFirst.

the processing of tree-shaped task-graphs, the processing of a node makes at most one new inner
node available, and the processing of this new inner node can start right away on the processor
that freed it by completing the processing of its last un-processed child.

Complexity The complexity of ParInnerFirst is that of determining the input order O and
that of the list scheduling. Computing the optimal sequential postorder is O(n log n) [17]. In the
list scheduling algorithm there are O(n) events and n nodes are inserted and retrieved from PQ .
An insertion into PQ costs O(log n), so the list scheduling complexity is O(n log n). Hence, the
total complexity is also O(n log n).

Memory ParInnerFirst is not an approximation algorithm with respect to peak memory
usage. This is derived considering the tree in Figure 7. All output files have size 1 and the
execution files have size 0 (∀i ∈ T : fi = 1,ni = 0). Under an optimal sequential processing, leaves
are processed in a deepest first order. The resulting optimal memory requirement is Mseq = p+1,
reached when processing a join node. With p processors, all leaves have been processed at the
time the first join node (k − 1) can be executed. (The longest chain has length 2k − 2.) At that
time there are (k − 1) · (p − 1) + 1 files in memory. When k tends to +∞ the ratio between the
memory requirements also tends to +∞.
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Figure 8: Tree with long chains.

5.2.2 Heuristic ParDeepestFirst

The previous heuristic, ParInnerFirst, tries to take advantage of the memory performance of
optimal sequential postorders. Going in the opposite direction, another heuristic objective can
be the minimization of the makespan. For trees, an inner node depends on all the nodes in the
subtree it defines. Therefore, it makes heuristic sense to try to process the deepest nodes first to
try to reduce any possible waiting time. For the parallel processing of a tree, the most meaningful
definition of the depth of a node i is the w-weighted length of the path from i to the root of the
tree, including wi (therefore, the depth of node i is equal to its top-level plus wi [4]). A deepest
node in the tree is a deepest node in a critical path of the tree.

ParDeepestFirst is our proposed list-scheduling deepest-first heuristic. ParDeepestFirst

is defined by Algorithm 3 called with the following node ordering O: nodes are ordered according
to their depths and, in case of ties, inner nodes have priority over leaf nodes, and remaining ties
are broken according to an optimal sequential postorder.

Complexity The complexity is the same as for ParInnerFirst, namely O(n log n). See ParIn-
nerFirst’s complexity analysis.

Memory The memory required by ParDeepestFirst is unbounded with respect to the optimal
sequential memoryMseq. Consider the tree in Figure 8 with many long chains, assuming the Pebble
Game model (i.e., ∀i ∈ T : fi = 1,ni = 0,wi = 1). The optimal sequential memory requirement is
3. The memory usage of ParDeepestFirst will be proportional to the number of leaves, because
they are all at the same depth, the deepest one. As we can build a tree like the one of Figure 8 for
any predefined number of chains, the ratio between the memory required by ParDeepestFirst

and the optimal one is unbounded.

5.3 Memory bounded heuristics

From the analysis of the three algorithms presented so far we have seen that only ParSubtrees

gives a guaranteed bound on the required peak memory. The memory behavior of the two other
algorithms, ParInnerFirst and ParDeepestFirst, will be analyzed in the experimental eval-
uation presented in Section 6. In a practical setting it might be very desirable to have a strictly
bounded memory consumption, so as to be certain that the algorithm can be executed with the
available memory. In fact, a guaranteed upper limit might be more important than a good av-
erage behavior as the system needs to be equipped with sufficient memory for the worst case.
ParSubtrees’s guarantee of at most p times the optimal sequential memory seems high, and
thus an obvious goal would be to have a heuristic that minimizes the makespan while keeping
the peak memory usage below a given bound. In order to approach this goal, we first study
how to limit the memory consumption of ParInnerFirst and ParDeepestFirst. Our study
relies on some reduction property on trees and we show how to transform general trees into re-
duction trees in Section 5.3.1. We then develop memory bounded versions of ParInnerFirst

RR n° 8606



Parallel scheduling of task trees with limited memory 20

and ParDeepestFirst (Section 5.3.2). The memory bounds achieved by these new variants
are rather lax. Therefore, we design our last heuristic MemBookingInnerFirst, with stronger
memory properties (Section 5.3.3). In the experimental section (Section 6), we will show that
these three heuristics achieve different trade-offs between makespan and memory usage.

5.3.1 Simplifying tree properties

To design our memory-bounded heuristics, we make two simplifying assumptions. First, the
considered trees do not have any execution files. In other words, we assume that, for any task i,
ni = 0.

Eliminating execution files To still be able to deal with general trees, we can transform any
tree T with execution files into a strictly equivalent tree T ′ where all execution files have a null
size. Let i be any node of T . We add to i a new leaf child i′ whose execution time is null (wi′ = 0),
whose execution file is of null size (ni′ = 0), and whose output file has size ni (fi′ = ni). Then we
set ni to 0. Any schedule S for the original tree T can be easily transformed into a schedule S′ for
the new tree T ′ with the exact same memory and execution-time characteristics: S′ schedules a
node from T at the same time than S, and a node i from T ′ \ T at the same time than the father
of i is scheduled by S (because i has a null execution time).

The second simplifying assumption is that all considered trees are reduction trees:

Definition 2 (reduction tree). A task tree is a reduction tree if the size of the output file of any
inner node i is not more than the sum of its input files:

fi ≤
∑

j∈Children(i)

fj . (1)

This reduction property is very useful, because it implies that executing an inner node does
not increase the amount of memory needed (this will be used for instance in Theorem 5).

For convenience, we sometimes use the following notation to denote the sum of the sizes of the
input files of an inner node i:

inputs(i) =
∑

j∈Children(i)

fj .

We now show how general trees can be transformed into reduction trees.

Turning trees into reduction trees We can transform any tree T that does not satisfy the
reduction property stated by Equation (1) into a tree where each (inner) node satisfies it. Let i
be any inner node of T . We add to i a new leaf child i′ whose execution time is null (wi′ = 0),
whose execution file is of null size (ni′ = 0), and whose output file has size:

fi′ = max







0, fi −





∑

j∈Children(i)

fj











= max{0, fi − inputs(i)}.

The new tree is not equivalent to the original one. Let us consider an inner node i that did not
satisfy the reduction property. Then, fi′ = fi − inputs(i) > 0. The memory used to execute node
i in the tree T is: inputs(i) + ni + fi. In the new tree, the memory needed to execute this node is:
(inputs(i)+ (fi− inputs(i))+ ni + fi > inputs(i)+ ni + fi. Any schedule of the original tree can be
transformed into a schedule of the new tree with an increase of the memory usage bounded by:

p×max
i
{0, fi − inputs(i)}.
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Obviously, a more clever approach is to transform a tree first into a tree without execution files,
and then to transform the new tree into a tree with the reduction property. Under this approach,
the increase of the memory usage is bounded by:

p×max
i
{0, fi − inputs(i)− ni}.

Transforming schedules The algorithms proposed in the following subsections produce sched-
ules for reduction trees without execution files, which might have been created from general trees
which do not possess our simplifying properties. The schedule S′ produced by an algorithm for
a reduction tree without execution files T ′ can be readily transformed into a schedule S for the
original tree T . To create schedule S, we simply remove all (leaf) nodes from the schedule S′

that were introduced in the simplification transform (i′ ∈ T ′ \ T ). Because those nodes have zero
processing time (∀i′ ∈ T ′ \ T : wi′ = 0) there is no impact on the ordering and on the starting
time of the other nodes of T . In terms of memory consumption, the peak memory for schedule
S is never higher than that for schedule S′. A leaf i′ that was added to eliminate an execution
file might use memory earlier in S′ than the execution file ni in S, but it is the same amount and
freed at the same time. In terms of leaf nodes introduced to enforce the reduction property, they
might only increase the memory needed for tree T ′ (as discussed above); hence, removing these
nodes can not increase the peak memory needed for schedule S. In summary, the schedule S for
tree T has the same makespan as S′ and a peak memory that is not greater than that of S′.

5.3.2 Memory-bounded ParInnerFirst and ParDeepestFirst

Both ParInnerFirst and ParDeepestFirst are based on the list scheduling approach presented
in Algorithm 3. To achieve a memory bounded version of these algorithms for reduction trees,
we modify Algorithm 3 to obtain Algorithm 4. The code common to both algorithms is shown in
gray in Algorithm 4 and the new code is printed in black.

We use the same event concept as previously. However, we only start processing a node if i)
it is an inner node; or ii) it is a leaf node and the current memory consumption plus the leaf’s
output file (fc) is less than the amount M of available memory. Once a node is encountered that
fulfills neither of these conditions, the node assignment is stopped (P ← ∅) until the next event.
Therefore, Algorithm 4 may deliberately keep some processors idle when there are available tasks,
and thus does not necessarily produce a list schedule (hence, the name of “pseudo” list schedules).
Subsequently, the only approximation guarantee on the makespan produced by these heuristics is
that they are p-approximations, the worst case for heuristics that always use at least one processor
at any time before the entire processing completes.

The algorithms based on this memory-bounded scheduling approach are called ParInner-

FirstMemLimit and ParDeepestFirstMemLimit.

Theorem 5. The peak memory requirement of ParInnerFirstMemLimit and ParDeepest-

FirstMemLimit for a reduction tree without execution files processed with a memory bound M
and a node order O is at most 2M , if M ≥ Mseq, where Mseq is the peak memory usage of the
corresponding sequential algorithm with the same node order O.

Proof. We first show that the required memory never exceeds 2M and then we show that the
algorithms completely process the considered tree T .

We analyze the memory usage at the time a new candidate node c is considered for execution
(line 11 of Algorithm 4). The amount of currently used memory is then Mused = In in + Out in +
Outlf + InIdle, where:

• In in is the size of the input files of the currently processed inner nodes;
• Out in is the size of the output files of the currently processed inner nodes;
• Outlf is the size of the output files of the currently processed leaves;
• InIdle is the size of the input files stored in memory but not currently used (because they
are input files of inner nodes that are not yet ready).

There are two cases, the candidate node c can be either a leaf node or an inner node:
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Algorithm 4: Pseudo list scheduling with memory limit (T , p, O, M)

1 Insert leaves in priority queue PQ according to order O
2 eventSet ← {0} /* ascending order */

3 Mused ← 0 /* amount of memory used */

4 while eventSet 6= ∅ do /* event:node finishes */

5 popHead(eventSet)
6 Done ← set of the new ready nodes
7 Insert nodes from Done in PQ according to order O /* available parents of nodes

completed at event */

8 P ← available processors
9 Mused ←Mused −

∑

j∈Done inputs(j)

10 while P 6= ∅ and PQ 6= ∅ do
11 c← head(PQ)
12 if |Children(c)| > 0 or Mused + fc ≤M then

13 Mused ←Mused + fc
14 proc← popHead(P)
15 node← popHead(PQ)
16 Assign node to proc
17 eventSet ← eventSet ∪ finishT ime(node)

18 else

19 P ← ∅

1. c is a leaf node. The processing of a leaf node only starts if Mused + fc ≤M . Therefore, the
processing of a leaf node never provokes the violation of the memory bound of M and, thus,
a fortiori, of a memory limit of 2M .

2. c is an inner node. The processing of a candidate inner node always starts right away,
regardless of the amount of available memory. When the processing of c starts, the amount
of required memory becomes Mnew = In in +Out in +Outlf + InIdle + fc. T is by hypothesis
a reduction tree. Therefore, the size of the output file fc does not exceed InIdle, that is,
the size of all possible input files stored in memory right before the start of the processing
of inner node c, but not used at that time, because this includes all the input files of inner
node c. Also, the total size of the output files of the processed inner nodes, Out in, cannot
exceed the total size of the input files of the processed inner nodes, In in. Therefore, Mnew =
In in+Out in+Outlf+InIdle+fc ≤ In in+Out in+Outlf+2InIdle ≤ 2In in+Outlf+2InIdle ≤
2(In in +Outlf + InIdle).
So the new memory requirement Mnew is not greater than twice the memory occupied by
all input files and all output files of leaf nodes. Because the tree is by hypothesis a reduction
tree, executing an inner node never increases the total size of all input files and all output
files of leaves. This can only happen by starting a leaf, but that is not done if it would exceed
the required memory M . Therefore, In in+Outlf+InIdle never exceeds M and Mnew ≤ 2M .

We now prove that when the algorithm ends the entire input tree has been processed. We
reason by contradiction and assume that this is not the case. Ready inner nodes are processed
without checking the amount of available memory. Therefore, when the algorithm terminates
without having completed the processing of the tree, eventSet is empty but some leaves have not
been processed. Then, let l be the first un-processed leaf, according to the order O. At the time
Algorithm 4 terminates, it has processed exactly the same leaves as the sequential algorithm when
it starts processing leaf l. Because eventSet is empty, there are no remaining ready inner nodes
and no node is processed at the time of the algorithm termination. Because of the hypothesis
that T is a reduction tree, the amount of available memory when Algorithm 4 terminates is not
smaller than the amount of available memory under the sequential algorithm right before it starts
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processing leaf l. Because the sequential algorithm can process the whole tree with a peak memory
usage of Mseq ≤ M , the processing of leaf l can be started by Algorithm 4. This contradicts the
assumption of early termination.

We define a variant ParDeepestFirstMemLimitOptim of ParDeepestFirstMemLimit,
and a variant ParInnerFirstMemLimitOptim of ParInnerFirstMemLimit, by being more
aggressive about starting leaves. Instead of checking for the condition Mused + fc ≤ M before
starting a leaf node c (line 12 of Algorithm 4), it is in fact sufficient to check that In in+

1
2Outlf+

InIdle + fc ≤ M (using the notation of the proof of Theorem 5). For Case (1) of the proof, one
just needs to remark that after leaf c is started, Mnew = In in + Out in + Outlf + InIdle + fc.
Then, because the tree is a reduction tree, Out in ≤ In in. Therefore, Mnew ≤ 2In in +Outlf + fc +
InIdle ≤ 2In in + Outlf + fc + 2InIdle, which, in turn, is no greater than 2M because of the new
condition. The modified condition has no impact on the study of Case (2), because the inequality
In in +

1
2Outlf + InIdle ≤M is sufficient to conclude that case.

Memory Theorem 5 establishes that the peak memory required by ParInnerFirstMemLimit

and ParDeepestFirstMemLimit with p processors is at most twice that of their sequential ex-
ecution (p = 1) with the same order. It should be noted that this peak requirement Mseq does not
correspond in general to the memory requirement of an optimal sequential algorithm. In particu-
lar, the sequential execution of ParInnerFirstMemLimit corresponds to a postorder traversal,
which is not optimal for all instances, but generally provides good results [12]. We propose to
use ParInnerFirstMemLimit with a node order O that corresponds to an optimal sequential
postorder, e.g., with [17]. The memory requirement of the sequential ParDeepestFirstMem-

Limit is unbounded compared to the optimal sequential memory requirement, because the same
arguments apply as the ones discussed for ParDeepestFirst in Section 5.2.2.

Makespan We have already stated that the above heuristics are p-approximation algorithms
for makespan minimization. The following lemma refines this result:

Lemma 5. ParInnerFirstMemLimit and ParInnerFirstMemLimitOptim are both p-approximation
algorithms for makespan minimization and this bound is tight.

Proof. We establish this result by studying the tree in Figure 9. This tree can be processed with a
peak memory usage of M . We assume that ParInnerFirstMemLimit is called with this memory
limit. The key observation is that in any schedule, among the three descendants of an ai node, the
nodes ci and bi must be processed before the di node: otherwise, keeping in memory the output
file of size M/p of node di makes it impossible to start processing the leaf node ci because of
its output file of size M . And since under ParInnerFirstMemLimit, leaf nodes are processed
according to a postorder traversal, the processing of the subtrees is sequentialized and the overall
processing takes time p(2 + k). On the other hand, with respect to the makespan, it would be
better to first sequentially process in that order c1, b1, c2, b2, ..., cp, and bp, which would take a
time 2p, and then process in parallel the di’s for an overall makespan of 2p + k. Hence, on this

example, the approximation ratio of ParInnerFirstMemLimit is no smaller than p(2+k)
2p+k which

tends to p when k tends to infinity.

We do not have a similar result for the memory limited deepest first algorithms as already the
sequential traversal with these algorithms (which determines the given memory limit) can require
significantly more memory than a postorder traversal. For the example in Figure 9, the minimum
sequential memory for a deepest first traversal is equal to pM . The additional memory buys a lot
of freedom for ParDeepestFirstMemLimit and makes the comparison harder.

5.3.3 Memory booking heuristic MemBookingInnerFirst

The two heuristics described in the previous section satisfy an achievable memory bound, M , in
a relaxed way: the guarantee is that they never use more than twice the memory limit. Here, we
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Figure 9: Tree used to establish the worst-case performance of most memory bounded heuristics.
Node labels in parentheses are processing times, edge labels are memory weights. All nodes have
null-size processing files.

aim at designing a heuristic that satisfies an achievable memory bound M in the strong sense: the
heuristic never uses more than a memory of M .

To achieve such a goal, we want to ensure that whenever an inner node i becomes ready there is
enough memory to process it. Therefore, we book in advance some memory for its later processing.
Our goal is to book as little memory as possible, and to do so as late as possible. The algorithm
then relies on a sequential postorder schedule, denoted PO : for any node k in the task graph,
PO(k) denotes the step at which node k is executed under PO . Let j be the last child of i to be
processed. If the total size of the input files of j is larger than (or equal to) fi, then only that
last child will book some memory for node i. In this case (part of) the memory that was used to
store the input files of j will be used for fi. If the total size of the input files of j is smaller than
fi, then the second to last child of i will also have to book some memory for fi, and so on. The
following recursive formula states the amount of memory Contrib[j] a child j has to book for its
parent i:

Contrib[j] = min











inputs(j), fi −
∑

j′∈Children(i)
PO(j′)>PO(j)

Contrib[j′]











If j is a leaf, it may also have to book some memory for its parent. However, the behavior for
leaves is quite different than for inner nodes. A leaf node cannot transfer some of the memory used
for its input files (because it does not have any) to its parent for its parent output file. Therefore,
the memory booked by a leaf node may not be available at the time of the booking. However,
this memory will eventually become available (after some inner nodes are processed); booking the
memory prevents the algorithm from starting the next leaf if it would use too much memory: this
ensures that the algorithm completes the processing without violating the memory bound. The
contribution of a leaf j for its parent i is:

Contrib[j] = fi −
∑

j′∈Children(i)
PO(j′)>PO(j)

Contrib[j′]

Note that the value of Contrib for each node can be computed before starting the algorithm, in
a simple tree traversal. Using these formulas, we are able to guarantee that enough memory is
booked for each inner node i:

∑

j∈Children(i)

Contrib[j] = fi.

Using these definitions, we design a new heuristic, MemBookingInnerFirst, which is described
in Algorithm 5. In this algorithm, Booked [i] denotes the amount of memory currently booked for
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Algorithm 5: MemBookingInnerFirst (T , p, PO , M)

Input: tree T , number of processor p, postorder PO , memory limit M (not smaller than
the peak memory of the sequential traversal defined by PO)

1 foreach node i do Booked [i]← 0
2 Mused ← 0
3 while the whole tree is not processed do

4 Wait for an event (task finish time or starting point of the algorithm)
5 foreach finished non-leaf node j with parent i do
6 Mused ←Mused − inputs(j)
7 Booked [i]← Booked [i] + Contrib[j]

8 Done ← set of the new ready nodes
9 Insert nodes from Done in PQ according to order PO

10 WaitForNextTermination ← false
11 while WaitForNextTermination = false and there is an available processor Pu and PQ

is not empty do

12 j ← pop(PQ)
13 if j is an inner node and Mused + fj ≤M then

14 Mused ←Mused + fj
15 Booked [j]← 0
16 Make Pu process j

17 else if j is a leaf and Mused + fj +
∑

k/∈Ancestors(j) Booked [k] ≤M then

18 Mused ←Mused + fj
19 Booked [parent of j]← Booked [parent of j] + Contrib[j]
20 Make Pu process j

21 else

22 push(j,PQ)
23 WaitForNextTermination ← true

the processing of an inner node i. We make use of a new notation: we denote by Ancestors(i) the
set of nodes on the path from i to the root node (excluding i itself), that is, all ancestors of i.

Note that, contrarily to ParInnerFirstMemLimit, MemBookingInnerFirst does not
guarantee that there is always enough memory available to process an inner node i as soon as
it becomes ready. This is why Lemma 6 only guarantees that an inner node i will eventually be
processed if a leaf j with PO(j) > PO(i) is started by MemBookingInnerFirst.

Lemma 6. Consider any inner node i. If some leaf j with PO(j) > PO(i) has been started by
Algorithm 5, then at some point, there will be enough memory to process i.

Proof. By contradiction, assume that an available inner node i can never be processed because
of memory constraints, that is, Algorithm 5 stops without processing i, and some leaf j with
PO(j) > PO(i) has been started (in case of several such leaves, we consider the one with largest
PO(j)). Note that i cannot be a parent of j (otherwise we would have PO(i) > PO(j)). We
consider the amount A = M−Mused−

∑

k/∈Ancestors(j) Booked [k] and its evolution. Before starting
j, we check that A ≥ fj . When starting j, the amount of available memory is decreased by fj
and, thus, we have A ≥ 0. The following events may happen after the beginning of j:

• Some inner node u not in Ancestors(j) is terminated. Let us call v its parent. When u com-
pletes, Mused decreases by inputs(u), while Booked [v] increases by Contrib[u] ≤ inputs(u).
Thus, A does not decrease.

• Some inner node k not in Ancestors(j) is started. In that case, the booked memory fk is
traded for used memory, and the total memory amount A is preserved.

• An inner node u in Ancestors(j) is started. In this case, the amount of available memory may

RR n° 8606



Parallel scheduling of task trees with limited memory 26

temporarily decrease. However, because of the reduction property, the amount of memory
freed when u completes is not smaller than the amount of additional memory temporarily
used for the processing of u.

• A leaf node has completed: this modifies neither the amount of available or booked memory
and, so, A is left unchanged.

Therefore, when the algorithm stops with i available, A ≥ 0. Thus, M −Mused ≥ Booked [i] = fi:
there is enough memory to process i.

Using the previous lemma, we now prove Algorithm MemBookingInnerFirst.

Theorem 6. MemBookingInnerFirst called with a postorder PO and a memory bound M
processes the whole tree with memory M if M is not smaller than the peak memory of the sequential
traversal defined by PO.

Proof. By contradiction, assume that the algorithm stops while some nodes are unprocessed. We
consider two cases:

• There is at least one available unprocessed inner node i (if there are several, we choose the
one with the smallest PO value). Consider the step PO(i) when this node i is processed
in the sequential postorder schedule. At this time, the set S of the leaves processed by the
sequential postorder is exactly the set of the leaves j such that PO(j) < PO(i). Thanks
to Lemma 6, we know that MemBookingInnerFirst has not processed any leaf j with
PO(j) > PO(i). Therefore, the set of the leaves processed by MemBookingInnerFirst

is a subset of S. Node i being available, MemBookingInnerFirst has processed all the
leaves in the subtree ST rooted at i. MemBookingInnerFirst cannot start a leaf k if
a leaf j with PO(j) < PO(k) has not been started. Therefore all leaves that precedes in
the postorder the leaves of ST have also been processed by MemBookingInnerFirst. By
definition of a postorder, there is no leaf that does not belong to ST that is scheduled after
the first of the leaf of ST and before i. Therefore, MemBookingInnerFirst has processed
the exact same set of leaves than the sequential postorder at step PO(i). We now prove that
the same set of inner nodes have been processed by both algorithms:

– Assume that an inner node k has been processed by MemBookingInnerFirst but
not by the sequential postorder at time PO(i). Since k has not yet been processed by
the sequential postorder, PO(k) > PO(i). Since no leaf j with PO(j) > PO(i) has
been processed by MemBookingInnerFirst, since PO(k) > PO(i), and since PO is
a postorder, then k can only be a parent of i, which contradicts the fact that i is not
processed.

– Assume that an inner node k has been processed by the sequential postorder at time
PO(i) but not by MemBookingInnerFirst. Since it has been processed before i
in the sequential postorder, PO(k) < PO(i). This node, or one of its inner node
predecessor, must be available in MemBookingInnerFirst (note that it cannot be a
leaf, since all leaves with PO values smaller than PO(i) are already processed). This
contradicts the fact that i is the available inner node with smallest PO value.

Thus, there is no difference in the state of the sequential postorder when it starts i and
MemBookingInnerFirst when it stops, including in the amount of available memory.
This contradicts the fact that i cannot be started because of memory issues.

• There is no unprocessed available inner node. Thus, some leaf is available and cannot be
processed. Let j be the first of these leaves according to PO . None of the inner nodes for
which some memory has been booked is available and, thus, they are all parents of j (because
PO is a postorder and because the processing of all the leaves that precede j in PO has been
completed). Thus, the memory condition which prevents j to be executed can be rewritten:
M −Mused < fj . However, since no inner node is available, this is the same situation as
right before j is processed in the sequential postorder, which contradicts the fact that j can
be processed in the sequential postorder.
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Lemma 7. MemBookingInnerFirst is a p-approximation algorithm for makespan minimiza-
tion, and this bound is tight.

This result is proved following the exact same arguments than for the bound on the performance
of ParInnerFirstMemLimit, including the tree on Figure 9.

Complexity Algorithm 5 can be implemented with the same complexity as the other heuristics,
namely O(n log(n)) (which comes from the management of the PQ queue). The only operations
added to this algorithm which could increase this complexity is the test executed on line 17 to
make sure that a new leaf can be started, that is, the computation of

∑

k/∈Ancestors(j) Booked [k] for

each leaf might take O(n2) time if not done carefully. However, it is possible to avoid recomputing
the values too many times. We first remark the following property: when leaf j has not been
started,

∑

k/∈Ancestors(j)

Booked [k] =
∑

PO(k)<PO(j)

Booked [k].

Indeed, if leaf j has not been started, the postorder property ensures that any k /∈ Ancestors(j)
with PO(k) ≥ PO(j) has Booked [k] = 0, because none of its children have started their execution.

For an efficient implementation, we keep a record of R =
∑

PO(k)<PO(j) Booked [k] for the leaf
j which was tested on the last execution of line 17. To keep this record, it is enough to

• decrease R by Booked [i] each time an inner node i with PO(i) < PO(j) begins execution,

• increase R by Contrib[i] each time an inner node i with PO(i) < PO(j) finishes,

• and increase R by
∑

PO(j)≤PO(k)<PO(j′) Booked [k] if a new leaf j′ is being considered in the
test of line 17.

In total, the number of updates to R over the course of the whole algorithm is bounded by 2n:
each Contrib value is added at most once to R, and each Booked value is subtracted at most once.
Furthermore, the cost of computing the sums

∑

PO(j)≤PO(k)<PO(j′) Booked [k] is also bounded by n
since each node is considered only once. Hence, these updates do not increase the total complexity
of O(n log(n)) of the whole algorithm.

6 Experimental validation

In this section, we experimentally compare the heuristics proposed in the previous section, and
we compare their performance to lower bounds.

6.1 Setup

All heuristics have been implemented in C. Special care has been devoted to the implementation
to avoid complexity issues. Especially, priority queues have been implemented using binary heap
to allow for O(log n) insertion and minimum extraction. We have also implemented Liu’s algo-
rithm [18] to obtain the minimum sequential memory peak, which is used as a lower bound on
memory for comparing the heuristics.

6.2 Data set

The data set contains assembly trees of a set of sparse matrices obtained from the University
of Florida Sparse Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/).
The chosen matrices satisfy the following assertions: not binary, not corresponding to a graph,
square, having a symmetric pattern, a number of rows between 20,000 and 2,000,000, a number
of nonzeros per row at least equal to 2.5, and a number of nonzeros at most equal to 5,000,000;
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and each chosen matrix has the largest number of nonzeros among the matrices in its group
satisfying the previous assertions. With these criteria we automatically select a set of medium
to large matrices from different application domains with nontrivial number of nonzeros. At the
time of testing there were 76 matrices satisfying these properties. We first order the matrices
using MeTiS [13] (through the MeshPart toolbox [7]) and amd (available in Matlab), and then
build the corresponding elimination trees using the symbfact routine of Matlab. We also perform
a relaxed node amalgamation [16] on these elimination trees to create assembly trees. We have
created a large set of instances by allowing 1, 2, 4, and 16 (if more than 1.6× 105 nodes) relaxed
amalgamations per node.

At the end we compute memory weights and processing times to accurately simulate the matrix
factorization: we compute the memory weight ni of a node as η2+2η(µ−1), where η is the number
of nodes amalgamated, and µ is the number of nonzeros in the column of the Cholesky factor of the
matrix which is associated with the highest node (in the starting elimination tree); the processing
time wi of a node is defined as 2/3η3 + η2(µ − 1) + η(µ − 1)2 (these terms corresponds to one
gaussian elimination, two multiplications of a triangular η × η matrix with a η × (µ− 1) matrix,
and one multiplication of a (µ − 1) × η matrix with a η × (µ − 1) matrix). The memory weights
fi of edges are computed as (µ− 1)2.

The resulting 608 trees contains from 2,000 to 1,000,000 nodes. Their depth ranges from 12
to 70,000 and their maximum degree ranges from 2 to 175,000. Each heuristic is tested on each
tree using p = 2, 4, 8, 16, and 32 processors. Then the memory and makespan of the resulting
schedules are evaluated by simulating a parallel execution.

6.3 Results for heuristics without memory bound

Heuristic Best memory
Within 5% of Normalized

Best makespan
Within 5% of Normalized

best memory memory best makespan makespan
ParSubtrees 81.1 % 85.2 % 2.34 0.2 % 14.2 % 1.40

ParSubtreesOptim 49.9 % 65.6 % 2.46 1.1 % 19.1 % 1.33
ParInnerFirst 19.1 % 26.2 % 3.79 37.2 % 82.4 % 1.07

ParDeepestFirst 3.0 % 9.6 % 4.13 95.7 % 99.9 % 1.04

Table 1: Proportions of scenarii when heuristics reach best (or close to best) performance, and
average deviations from optimal memory and best achieved makespan.

The comparison of the first set of heuristics (without memory bounds) is summarized in Table 1.
It presents the fraction of the cases where each heuristic reaches the best memory (respectively
makespan) among all heuristics, or when its memory (resp. makespan) is within 5% of the best
one. It also shows the average normalized memory and makespan. For each scenario (consisting
in a tree and a number of processors), the memory obtained by each heuristic is normalized by
the optimal (sequential) memory, and the makespan is normalized using a classical lower bound,
since makespan minimization is NP-hard even without memory constraint. The lower bound is
the maximum between the total processing time of the tree divided by the number of processors,
and the maximum weighted critical path.

Table 1 shows that ParSubtrees and ParSubtreesOptim are the best heuristics for memory
minimization. On average they use less than 2.5 times the amount of memory required by the
optimal sequential traversal, when ParInnerFirst and ParDeepestFirst respectively need
3.79 and 4.13 times this amount of memory. ParInnerFirst and ParDeepestFirst perform
best for makespan minimization, having makespans very close on average to the best achieved ones,
which is consistent with their 2-approximation ratio for makespan minimization. Furthermore,
given the critical-path-oriented node ordering, we can expect that ParDeepestFirst makespan
is close to optimal. ParDeepestFirst outperforms ParInnerFirst for makespan minimization,
at the cost of a noticeable increase in memory. ParSubtrees and ParSubtreesOptim may be
better trade-offs, since they use (on average) almost only half the memory of ParDeepestFirst

for at most a 35% increase in makespan.
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Figure 10: Performance (makespan and memory) to the respective lower bounds for the first set
of heuristics. Vertical bars represents confidence intervals when we exclude trees with extreme
performance.
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Figure 11: Performance (makespan and memory) to the respective lower bounds for the first set
of heuristics, on four specific classes of trees which show specific behavior. Vertical bars represents
confidence intervals.

RR n° 8606



Parallel scheduling of task trees with limited memory 30

Figure 10 presents the evolution of the performance of these heuristics with the number of
processors. On this figure, we plot the results for all 608 trees except 76 of them, for which the
results are so different that it does not make sense to compute average values anymore. These
outliers belong to four different classes of applications, and the specific results for these graphs are
shown on Figure 11. Figure 10 shows that ParDeepestFirst and ParInnerFirst have a sim-
ilar performance evolution, just like ParSubtrees and ParSubtreesOptim. The performance
gap between these two groups, both for memory and makespan, increases with the number of
processors. With a large number of processors, ParDeepestFirst and ParInnerFirst are able
to decrease the normalized makespan (at the cost of an increase of memory), while ParSubtrees
has a an almost constant normalized makespan with the number of processor.

Despite the very different values for makespan and memory utilization, and a much higher
variability, the results for the outliers give the same conclusions about the relative performance
of the heuristics. Furthermore, this graph also exhibits the absence of approximation ratios for
ParDeepestFirst and ParInnerFirst for memory minmization. Indeed, even though the trees
used in this set are taken from real-life applications, in contrast with the carefully crafted counter-
examples of Section 5, the memory usage of ParDeepestFirst and ParInnerFirst on those
trees can reach up to 100 times the optimal memory usage.

6.4 Results for memory-bounded heuristics

In addition to the previous heuristics, we also test the memory-bounded heuristics. Since they can
be applied only to reduction trees with null processing sizes, we transform the trees used in the
previous tests into reduction trees as explained in Section 5.3.1. For a given scenario (tree, number
of processors, memory bound), the memory obtain by each heuristic is normalized by the optimal
memory on the original tree (not the reduction one). Thus, the normalized memory represents the
actual memory used by the heuristic compared to the one of a sequential processing. In particular,
this allows a fair comparison between memory-bounded heuristics and the previous unbounded
heuristics.

In order to compare the memory bounded heuristics, we have applied them on the previous
data-set, using various memory bounds. For each tree, we first compute the minimum sequential
memory Mseq obtained by a postorder traversal of the original tree. Then, each heuristic is tested
on the corresponding tree with a memory bound B = xMseq for various ratios x ≥ 1. Sometimes,
the heuristic cannot run because the amount of available memory is too small. This is explained
by the following factors:

• The memory-bounded heuristics use a reduction tree which may well need more memory
than the original tree. In general, however, the transformation from original tree does not
significantly increase the minimum amount of memory needed to process the tree.

• ParInnerFirstMemLimit has a minimum memory guarantee which is twice the sequential
memory of a postorder traversal, thus it cannot run with a memory smaller than 2Mseq .

• ParDeepestFirstMemLimit has a minimum memory guarantee which is twice the se-
quential memory of a deepest first sequential traversal of the tree. A deepest first traversal
uses much more memory than a postorder traversal, and thus ParDeepestFirstMemLimit

needs much more memory than ParInnerFirstMemLimit to process a tree.
Figure 12 presents the results of these simulations. On this figure, points are shown only when
a heuristic succeeds in more than 95% of the cases. The intuition is that with a success rate
larger than 95%, the heuristic is presumably useful for this ratio. This figure shows that when the
memory is very limited (B < 2Mseq), MemBookingInnerFirst is the only heuristic that can be
run, and it achieves reasonable makespans. For a less strict memory bound (2Mseq ≤ B < 5Mseq

or 2Mseq ≤ B < 10Mseq depending on the number of processors), ParInnerFirstMemLimit

is able to process the tree, and achieves better makespans, especially when B is large. Finally,
when memory is abundant, ParDeepestFirstMemLimit is the best among all heuristics. On
this figure, we also tested the two variants ParInnerFirstMemLimitOptim and ParDeepest-

FirstMemLimitOptim presented in Section 5.3.2 that are more aggressive when starting leaves,
but with the same memory guarantee as ParInnerFirstMemLimit and ParDeepestFirst-
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MemLimit. We see that these strategies are able to better reduce the makespan in the case of a
very limited memory (B close to 2Mseq).
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Figure 13: Real use of limited memory for memory-bounded heuristics.

Finally, Figure 13 shows the ability of memory bounded heuristics to make use of the lim-
ited amount of available memory. On this figure, points corresponding to ParDeepestFirst-

MemLimit (respectively ParDeepestFirstMemLimitOptim) are hardly distinguishable from
ParInnerFirstMemLimit (resp. ParInnerFirstMemLimitOptim). We notice that Mem-

BookingInnerFirst is able to fully use the very limited amount of memory when B is close
to Mseq . The good use of memory is directly correlated with good makespan performance: for
a given amount of bounded memory, heuristics giving best makespans are the ones that uses the
largest fraction of available memory. Especially, we can see that ParInnerFirstMemLimitOp-

tim and ParDeepestFirstMemLimitOptim are able to use much more memory than their
non-optimized counterpart, especially when memory is very limited.

7 Conclusion

In this study we have investigated the scheduling of tree-shaped task graphs onto multiple proces-
sors under a given memory limit and with the objective to minimize the makespan. We started
by showing that the parallel version of the pebble game on trees is NP-complete, hence stress-
ing the negative impact of the memory constraints on the complexity of the problem. More
importantly, we have proved that there does not exist any algorithm that is simultaneously a
constant-ratio approximation algorithm for both makespan minimization and peak memory usage
minimization when scheduling tree-shaped task graphs. We have also established bounds on the
achievable approximation ratios for makespan and memory when the number of processors is fixed.
Based on these complexity results, we have then designed a series of practical heuristics; some of
these heuristics are guaranteed to keep the memory under a given memory limit. Finally, we
have assessed the performance of our heuristics using real task graphs arising from sparse matrices
computation. These simulations demonstrated that the different heuristics achieve different trade-
offs between the minimization of peak memory usage and makespan; hence, the set of designed

RR n° 8606



Parallel scheduling of task trees with limited memory 33

heuristics provide an efficient solution for each situation.
This work represents an important step towards a comprehensive theoretical analysis of mem-

ory/makespan minimization for applications organized as trees of tasks, as it provides both com-
plexity results and memory bounded heuristics. Multifrontal sparse matrix factorization is an
important application for this work, and a good incentive to refine the computation model. In a
second step, we should consider trees of parallel tasks rather than of pure sequential tasks, as the
computations corresponding to large tasks (at the top of the tree) are usually distributed across
processors. Of course, one would need a proper computation model to derive relevant complexity
results. To get even closer to reality, one would also need to consider distributed memory rather
than shared memory, or a mix of both. Hence, many important but challenging findings remain
to be done.
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