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Comments on the hierarchically structured
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aENS Lyon, France
bLIP, UMR5668 (CNRS - ENS Lyon - UCBL - Université de Lyon - INRIA), Lyon, France

Abstract

We study the hierarchically structured bin packing problem. In this problem,

the items to be packed into bins are at the leaves of a tree. The objective of the

packing is to minimize the total number of bins into which the descendants of

an internal node are packed, summed over all internal nodes. We investigate an

existing algorithm and make a correction to the analysis of its approximation

ratio. Further results regarding the structure of an optimal solution and a

strengthened inapproximability result are given.

1. Introduction

We study a variant of the classical bin packing problem, called the hierar-

chically structured bin packing (HSBP) problem. In this problem, the items

to be packed into bins are the leaves of a tree. The objective of the packing is

to minimize the total number of bins into which the descendants of an inter-

nal node are packed, summed over all internal nodes. Such a packing problem

has applications in document organization and retrieval [1], and sparse matrix

computations domain [2]. Both of these papers investigate an approximation

algorithm, which is claimed to be a 3/2 approximation on a variant of the prob-

lem. Our main contributions are two folds: (i) to show that this approximation

does not hold unless a particular condition is met by the given tree; (ii) to
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strengthen the result that there is no PTAS (polynomial time approximation

scheme) or APTAS (asymptotic PTAS) for a variant of the problem. We also

investigate the optimality of a class of solutions.

2. Notation and problem definition

Let T be a rooted tree. We use T (v) to denote the (sub)tree rooted at a

node v; T (v) contains v and all of its descendants. The set of the leaf nodes

and the set of the internal nodes of a tree T are denoted by L(T ) and N (T ).

P(L(T )), or P for brevity, is used to denote a partition of L(T ).

The node dispersal number of a node v under a given partition P(L(T )) is

ρ(v,P) = |{A ∈ P : A ∩ L(T (v)) 6= ∅}| .

This number counts the number of bins in which the leaves in T (v) are parti-

tioned. The total node dispersal number of a partition P of L(T ) is defined as

the sum of the dispersal numbers of the internal nodes

ρ(P) =
∑

v∈N (T )

ρ(v,P) . (1)

Let w : L(T ) → N+ be a positive weight function associated with the leaves

of T . This is extended to a set of leaf nodes A ⊆ L(T ) in such a way that

w(A) =
∑

v∈A w(v). Let B be a positive integer such that B ≥ maxv∈L(T )w(v).

Then, the HSBP problem asks for a partition P of the leaves of T such that for

each part A ∈ P we have w(A) ≤ B and the total node dispersal number (1) is

minimum. In the following, we use P⋆ to denote an optimal partition for HSBP.

3. Related work and contributions

There are two studies that are of immediate interest [1, 2], dealing with some

variants of the HSBP problem. Codenotti et al. [1] investigate two variants

in which the leaf nodes have unit and non-unit weights. Amestoy et al. [2]

investigate a variant in which the leaf nodes have unit weights and the internal

nodes have costs. In this latter variant, the total node dispersal number of
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a partition is defined as the weighted sum of the node dispersal numbers, i.e.,

ρ(P) =
∑

v∈N (T ) c(v)·ρ(v,P), where c(v) is the cost of the internal node v. Both

studies present NP-completeness results for the problems under investigation.

The two aforementioned studies independently describe a similar algorithm

called Simple [1] and PoPart [2] for the variant with unit weight leaves. In this

algorithm, the leaf nodes of the given tree T are first sorted according to their

order in a post-order of T (i.e., in a depth-first traversal of T ). The first B leaves

are put into the first bin, the following B leaves are put into the second bin and

so on so forth. Amestoy et al. show that PoPart has an approximation ratio

of 2 for their variant (internal nodes have costs, and leaves have unit-weights).

Codenotti et al. claim that Simple has an approximation ratio of 3/2 for unit

weights and costs, when each internal node has at least two children. However,

we provide examples in Section 4.1 on which Simple obtains an approximation

ratio worse than 3/2 (tends to 2), under the same hypothesis, contradicting to

the claimed result. We then show that Simple has an approximation ratio of

3/2 with a restricted condition on internal nodes.

A curious observation is that in the two existing NP-completeness proofs [1,

2], the optimum value is achieved by a post-order based partition. This implies

that the problem of finding the best post-order, e.g., the best initial ordering for

the algorithm Simple, is NP-complete as well. This then begs another question.

Is there always an optimal, post-order based partition? In Section 4.2, we answer

this in the negative: Simple with the best post-order is not necessarily optimal.

Both of the previous studies [1, 2] give inapproximability results. While

Amestoy et al. [2] show that there is no 1 + o(1/m) approximation for the

variant with internal node costs, where m is the number of nodes, Codenotti et

al. [1] prove that the structured bin packing problem with non-unit weights on

the leaves is not approximable within 3/2 − ε for any ε > 0. We improve this

latter inapproximability result in Section 5 by showing that there is no PTAS,

nor an APTAS for the structured bin packing problem with non-unit weights

on the leaves (while the classical bin packing problem admits an APTAS [3,

Chapter 9]). This answers a question left open by Codenotti et al.
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Figure 1: Optimal partition and the Simple partition. The number of internal nodes (int.
nodes) per bin is shown to facilitate the computation of the total node dispersal number.

4. Unitary weights on leaves

4.1. Refinement of the analysis of Simple

Codenotti et al. claim that the algorithm Simple obtains an approximation

ratio of 3/2 for trees where each internal node has at least two children [1,

p.220]. This is unfortunately not exact. We depict an example from a family of

trees, parameterized by B, in Fig. 1. The optimal partition is shown in Fig. 1a.

There are five buckets that are shown under the tree, and each bucket contains

the leaves just above it. The first and the fourth buckets, linked with a dashed

line, constitute the first bin, and the other buckets each constitute a single bin.

For this example, the total node dispersal number can be computed easily as

follows. For each bin, we count the number of internal nodes that have at least

one descendant in that bin, and then we sum up all these numbers. The number

of such internal nodes per bin is shown in Fig. 1. For example, there are five

internal nodes that have at least one descendant in the first bin (these are all the

white internal nodes except the rightmost one); there are B + 1 internal nodes

that have at least one descendant in the second bin. With this computation,

we see that the partition in Fig. 1a has a cost of ρ(P⋆) = 2B + 11. Simple

fails to put all the leaves of the two deep subtrees (in gray on the figure) in a

single bucket each, and obtains the partition given in Fig. 1b, where each bin

now corresponds to a single bucket containing the leaves above it. The total

dispersal number is 4B +9. As B goes to infinity, the ratio becomes arbitrarily
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close to 2.

However, the approximation ratio of 3/2 can be preserved for a restricted

set of trees. The following lemma helps us to correct the existing approximation

ratio analysis [1], with a more constrained conditions on the tree.

Lemma 1. Let T be a tree such that no internal node has only one internal

node among its children. Let h be its height and µ = |N (T )| be the number of

internal nodes. Then, µ ≥ 2h− 1.

proof — By induction on h. Let r be the root of T . If h = 1, then all the

children of r are leaves, so r is the only internal node and µ = 1 = 2h− 1. Else,

let c be a child of r such that T (c), the corresponding subtree, is of height h−1.

By the inductive hypothesis, the number µ′ of internal nodes of T (c) is greater

than or equal to 2(h−1)−1. In addition, r has another child which is not a leaf

by the condition in the lemma. Therefore, µ ≥ 2+µ′ ≥ 2+2h− 2− 1 ≥ 2h− 1.

✷

With this new condition, each internal node has either at least two children

which are internal or any number of children which are leaves. This lemma lets

us prove the following approximation result for the algorithm Simple.

Theorem 1. Let T be a tree such that no internal node has only one internal

node among its children. Then, ρ(PS) ≤ 3/2 ρ(P⋆), where PS is the partition

given by the algorithm Simple.

proof — We follow the main steps of Codenotti et al. [1, Theorem 5], and

highlight where we need Lemma 1 to prove the result. First, the internal nodes

are split into two sets: N1 is the set of internal nodes whose dispersal number

is 1 in P⋆; and N2 is the set of internal nodes whose dispersal number is at

least 2 in P⋆. Codenotti et al. first observe that ρ(N2,P
⋆) ≥ 2|N2| and that

ρ(N2,PS) ≤ ρ(N2,P
⋆) + |N2|, and thus, ρ(N2,PS)

ρ(N2,P⋆) ≤ 3/2. Next, the nodes in N1

are considered. N1 can be seen as a set of disjoint subtrees: if an internal node

is in N1, then all of its descendants are in N1 too. Two cases for subtrees in
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Figure 2: A tree for which no post-order based partition is optimal with B = 5.

N1 are considered. If the number of internal nodes µ′ of a subtree T ′ is at least

twice its height h′, then ρ(T ′,PS) ≤ µ′+h′ [1, p.220]. Since ρ(T ′,P⋆) = µ′, one

has ρ(T ′,PS)
ρ(T ′,P⋆) ≤ 3/2. Otherwise if µ′ < 2h′, then one has µ′ = 2h′ − 1 thanks to

Lemma 1 (without the condition of the lemma this does not hold). In this case

again, one obtains ρ(T ′,P⋆) = 2h′ − 1 and ρ(T ′,PS) ≤ 3h′ − 1, guaranteeing

3/2 approximation for each node in N1. ✷

4.2. Partitions based on post-order traversals

As noted before, the two existing NP-completeness proofs [1, 2] use an opti-

mal partition that is based on a post-order. A natural question arises from this

observation: does there always exist a post-order based partition with optimal

cost? We prove that this is not the case.

Theorem 2. There exists trees for which no post-order based partition has the

optimal cost for the HSBP problem with unit weighted leaves.

proof — Consider the tree depicted in Figure 2, and B = 5. Any post-order

based partition will put leaves 1 and 2 in the same bin (yielding, for example,

the first bin containing the leaves 1-to-5, and the second bin containing the

leaves 6-to-10). In such a setting, the cost will be 13 (for the given example, the

number of internal nodes that have at least one descendant in the first bin and

the second bin are 6 and 7, respectively). However, it is possible to obtain a

partition with cost 12 if the leaves 1 and 2 are put in different bins (the first bin

contains the leaves 1,3,4,5,6 and the second bin contains the leaves 2,7,8,9,10).

✷
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5. Arbitrary weights on leaves

We now return to the general case of the HSBP problem in which the leaves

have arbitrary positive weights. Codenotti et al. [1] prove that there is no

3/2 − ε approximation for any ε > 0 and ask whether this can be improved

asymptotically. We answer this question in Theorem 3 below by showing that

there is no asymptotic approximation algorithm with a ratio strictly better than

3/2. This shows that even for arbitrarily large instances, the 3/2 ratio cannot

be improved. Since we answer a question asked by Codenotti et al., we work

under their assumption (in which every internal node has at least two children).

The proof of Theorem 3 uses a reduction from the NP-complete Partition

problem [4, p.47]. An instance of Partition is defined as follows: given a set

S of positive integers a1, . . . , an, determine if there exists a partition of S into

two sets S1 and S2 = S \ S1 such that
∑

s∈S1
s =

∑
s∈S2

s.

Theorem 3. Let H be a polynomial time heuristic for the hierarchically struc-

tured bin packing problem and PH be the partition given by H. Consider

two constants α and β such that for every instance of the HSBP problem

ρ(PH) ≤ αρ(P⋆) + β. Then, α ≥ 3/2, unless P = NP .

proof — The proof is based on an inapproximability proof for a scheduling

problem [5]. For the sake of contradiction, suppose that there exists a polyno-

mial time heuristic such that ρ(PH) ≤ αρ(P⋆) + β for any problem instance.

Assume that α = 3/2 − ε, where ε < 1/2, and let q be an integer such that

q > β
2ε .

We show that with these assumptions, one can solve the Partition problem

in polynomial time, which is a contradiction unless P = NP. For an instance

I of Partition, we create the following instance J of HSBP, shown in Fig. 3.

The instance J consists of a chain of q nodes, where each node has two leaves

of weight 1, and the last node has n additional children (which are leaves) with

weights b1, . . . , bn, where bi = (q + 1) × ai for i = 1, . . . , n. Let W =
∑n

i=1 ai

be the sum of the weights of the integers in I, and the size B of the bins be
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equal to (q + 1)×W/2 + q. It is easy to see that a lower bound on the optimal

solution for J is 2q (the leaves b1 to bn cannot be put into a single bin), and

that the weight of any subset of bis is a multiple of q + 1.

If the answer to a given instance I of Partition is YES, then we can split

the leaves with weights b1, . . . , bn in two bins of weight (q + 1)×W/2. We can

then add in each bin q leaves of weight 1 and obtain a solution to instance J

of HSBP with two bins. Then, we have ρ(P⋆) = 2q because each internal node

has a dispersal number of two. If the answer to the instance I of Partition is

NO, then for any two way partition of S into S1 and S2 = S \ S1, one of the

partitions has a weight strictly larger than W/2. The corresponding leaves in

J will therefore weigh more than (q + 1) × (W/2 + 1), which is larger than B.

Therefore, at least three bins are necessary to partition b1, . . . , bn in J . Since

each bin increases the dispersal number of each internal node by one, we have

ρ(P⋆) ≥ 3q.

We now describe how to obtain a YES/NO answer to the instance I of

the Partition problem by applying the heuristic H to the instance J of the

HSBP problem. If ρ(PH) < 3q, then we know that it is possible to partition

b1, . . . bn into two bins. Each bin should then contain a weight of (q+1)×W/2

from these items (no more, because it should be less than B, no less because

the other bin should then have a larger weight than B). In the corresponding

partition of S into two, each part should have a weight of W/2, and hence

the answer to Partition is YES. If ρ(PH) ≥ 3q, then ρ(P⋆) ≥ ρ(PH)−β
α >

3q−2qε
3/2−ε = 2q. Therefore, it is not possible to partition S into two sets of equal

weights. Hence, in this case the answer to Partition is NO. Thus, we are able

to solve the Partition problem in polynomial time, which contradicts its being

NP-complete. Hence, α ≥ 3/2, unless P=NP. ✷

The previous theorem proves that there is no APTAS, and thus no PTAS,

for the hierarchically structured bin packing problem.
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Figure 3: An instance J of HSBP corresponding to an instance I of Partition where bi =
(q + 1)× ai for ai ∈ S of I.

6. Conclusion

We have investigated two variants of the hierarchically structured bin pack-

ing problem in which the leaves have unit or arbitrary weights. We have shown

that a known algorithm guarantees an approximation ratio of 3/2 for the unit

weighted case only when no internal node has only one internal node among its

children. This condition was not specified before and fixes a glitch in an existing

proof [1]. We note that this condition is likely to be satisfied by a large class

of trees (e.g., trees that are not very unbalanced). We have also shown that

there is no PTAS nor APTAS for the variant with arbitrary weighted leaves,

and that the best post-order based partition (which is NP-complete to find)

cannot always guarantee optimality.

The problem studied in the present paper has a generalization [2]. This

generalization involves two trees T1 and T2, whose leaves are mapped by a

bijection a: for any leaf ℓ of T1, a(ℓ) is the corresponding leaf of T2. The problem

is to partition the set of pairs {(ℓ, a(ℓ)) for ℓ a leaf of T1} into bins with at most

B pairs per bin in such a way that the total dispersal number of the induced

partitions on the two trees is minimized. Currently, there is a practical heuristic

for this problem [2], but not much is known about approximability.
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