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We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a

channel with an initial eastward baroclinically unstable jet in the upper layer, paying

particular attention to the role of bottom friction. In the limit of low bottom friction,

classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy

in the horizontal with condensation at the domain scale and barotropization in the

vertical. By contrast, in the limit of large bottom friction, the flow is dominated

by ribbons of high kinetic energy in the upper layer. These ribbons correspond to

meandering jets separating regions of homogenized potential vorticity. We interpret

these results by taking advantage of the peculiar conservation laws satisfied by this

system: the dynamics can be recast in such a way that the initial eastward jet in the

upper layer appears as an initial source of potential vorticity levels in the upper layer.

The initial baroclinic instability leads to a turbulent flow that stirs this potential

vorticity field while conserving the global distribution of potential vorticity levels.

Statistical mechanical theory of the 11/2 layer quasi-geostrophic model predicts the

formation of two regions of homogenized potential vorticity separated by a minimal

interface. We explain that cascade phenomenology leads to the same result. We then

show that the dynamics of the ribbons results from a competition between a tendency

to reach the equilibrium state, and baroclinic instability that induces meanders of

the interface. These meanders intermittently break and induce potential vorticity

mixing, but the interface remains sharp throughout the flow evolution. We show

that for some parameter regimes, the ribbons act as a mixing barrier which prevents

relaxation toward equilibrium, favouring the emergence of multiple zonal (eastward)

jets.

a)Electronic mail: antoine.venaille@ens-lyon.fr
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I. INTRODUCTION

A striking property of observed oceanic mesoscale turbulence (from 10 to 1000 km) is the

ubiquity of jets with a typical width of order the internal Rossby radius of deformation, R.

In quasi-geostrophic theory R = NH/f where N is the buoyancy frequency, H is a vertical

scale and f is the Coriolis parameter, and in the ocean R ∼ 50 km. These jets are robust

coherent structures but with high variability characterized by strong meanders — as in, for

example, the cases of the Gulf-Stream or the Kuroshio. Sometimes these meanders break

into an isolated vortex, in which case the jets are curled into rings that literally fill the oceans.

What sets the strength, the horizontal size and the vertical structure of mesoscale eddies is a

longstanding problem in physical oceanography. Here we address this question in a two-layer

quasi-geostrophic model, with a particular focus on the role of bottom friction. We consider

the equilibration of an initial perturbation in a channel with an imposed constant vertical

shear U in the zonal (eastward) direction. This model might be considered as one of the

elementary building blocks of a hierarchy of more complex models that describe oceanic or

atmospheric turbulence1,2. One motivation for this model is that the main source of energy

for these turbulent flows comes from baroclinic instability that releases part of the huge

potential energy reservoir set at large scale by wind forcing at the surface of the oceans or

solar heating in the atmosphere3.

Bottom friction is the main sink of kinetic energy and without it there will be no nonlinear

equilibration, so it is important to fully understand its role. A crude but effective model of

that bottom friction, based on Ekman-layer dynamics, is simply linear drag with coefficient

r. Given this, the two-layer model has two important nondimensional parameters: the ratio

R/Ly, with Ly the width of the channel, and the ratio rR/U which is a measure of the bottom

friction time scale to an inertial time scale based on the Rossby radius of deformation. The

inertial time scale R/U may alternatively be interpreted as the Eady time scale, namely

the baroclinic instability time scale in the low friction limit. There are other important

parameters if the Coriolis parameter is allowed to vary but these are not our particular

concern here.

In the low bottom friction limit, classical arguments based on cascade phenomenology

predict an inverse cascade of kinetic energy in the horizontal with a concomitant tendency

toward barotropization in the vertical, i.e. the emergence of a depth independent flow4–6. In a
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closed finite-sized domain, the inverse energy cascade in the horizontal leads to condensation

of the eddies at the domain scale. The intermediate regime (rR/U ∼ 1) has been studied

by Thompson and Young 7 , using vortex gas kinetics since the flow is made in that case of

a multitude of isolated vortices or dipoles. The high bottom friction limit has been studied

numerically by Arbic and Flierl 8 , Arbic and Flierl 9 , who also proposed scaling arguments for

the vertical structure of the flow. They observed the spontaneous formation of coherent jets

in the upper layer. Arbic and Flierl 8 noticed that these coherent jets looked like localized,

thin and elongated ribbons of high kinetic energy. The typical width of these jets was

given by the Rossby radius of deformation of the upper layer, and were therefore much

sharper than jets. These ribbons were reported to interact together in a seemingly erratic

way through meandering, pinching, coalescence and splitting of the regions separating them.

Accordingly, the high bottom friction regime will be referred to in the following as “ribbon

turbulence”.

The numerical results of Thompson and Young 7 , Arbic and Flierl 9 were all performed

in a doubly periodic domain and one novelty of our work is to consider a channel geometry.

A particular advantage of the channel geometry is that, with a proper definition of the

potential vorticity, the non-linear dynamics of a perturbation around a prescribed mean-

flow is equivalent to a free decay experiment in which the initial condition is given by the

prescribed mean flow. In particular, the dynamics in the upper layer can be recast in the form

of an advection equation for the potential vorticity field, without sources or sinks, whereas in

a doubly periodic geometry the beta term associated with the prescribed eastward jet must

be subtracted off in order to avoid a potential vorticity discontinuity at the boundary. We

will discuss the physical consequences of these conservation laws in the low bottom friction

limit and in the high bottom friction limit. This will allow us to revisit the barotropization

process in the weak bottom friction limit, and the emergence of ribbons in the high bottom

friction limit. In particular, we will interpret the emergence of ribbons as a tendency to

reach a statistical equilibrium state. Statistical mechanical theory provides predictions for

the self-organization properties of two-dimensional and quasi-geostrophic flows, and was

initially proposed by Miller 10 and Robert and Sommeria 11 . The theory applies to freely

evolving flow (without forcing and dissipation), and explains self-organization of the flow

into the most probable state as the outcome of turbulent stirring, and allows the computation

of this most probable state. In practice, the computation of the statistical equilibria requires
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the knowledge of a few key parameters such as the energy and the global potential vorticity

distribution as an input.

When bottom friction is large, the two-layer quasi-geostrophic dynamics is strongly dis-

sipated, and one might expect that any prediction of the equilibrium theory applied to this

two-layer flow would fail. However, we will argue that key features of the equilibrated states,

including the emergence of ribbons, can be accounted for by considering equilibrium states

of 11/2 layer quasi-geostrophic turbulence, which amounts to assuming that only the upper

layer is “active". It has been shown previously that when the Rossby radius is small, equi-

librium states of a 11/2 layer quasi-geostrophic model contain two regions of homogenized

potential vorticity, with a thin interface between these regions12. We will explain why this

is relevant to describe the emergence of ribbons and provide a complementary point of view

based on cascade arguments. We will go further than the application of equilibrium statis-

tical mechanics in order to account for some of the dynamical aspects of the ribbons. In

particular, we will show that the observed meanders of the ribbons cannot be explained in

the framework of 11/2 layer quasi-geostrophic model, but must be accounted for by the baro-

clinic instability of the ribbons in the framework of a two-layer quasi-geostrophic model. We

will also see that once a ribbon is formed, it may act as a mixing barrier and prevent relax-

ation towards the equilibrium state. For this reason, more than two regions of homogenized

potential vorticity can coexist for some range of parameters. We will relate this observation

to the emergence of multiple zonal jets in this flow model.

The paper is organized as follows. The basic model is presented in section II along with

a discussion of the physical consequences of existing conservation laws for the dynamics. In

section III we review existing results based on cascade arguments and statistical mechanics

approaches and give predictions for the flow structure at large times. These predictions are

tested against numerical simulations in section IV, and we conclude in section V.
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II. BAROCLINIC TURBULENCE IN A TWO-LAYER

QUASI-GEOSTROPHIC FLOW

A. Two layer quasi-geostrophic flows in a channel

We consider a two-layer quasi-geostrophic model on an f -plane in a channel periodic in the

x direction and of size (Lx×Ly) (Fig 1-a). The relative depths of the upper and lower layers

are δ = H1/H and 1− δ = H2/H , respectively, with H the total depth. Consequently, the

internal Rossby radius of deformation of the upper and the lower layer are R1 = δ1/2R and

R2 = (1−δ)1/2R, respectively, with R = (Hg′)1/2/f0, where g′ is the reduced gravity between

the two layers, and f0 the Coriolis parameter. The dynamics is given by the advection in

each layer of the potential vorticity fields q1, q2 by a non-divergent velocity field which can

be expressed in terms of a streamfunction Ψ1,Ψ2 :

∂tq1 + J (Ψ1, q1) = −Ah∇
6Ψ1, (1)

∂tq2 + J (Ψ2, q2) = −Ah∇
6Ψ2 − r∇2Ψ2 , (2)

where Ah is a lateral bi-harmonic viscosity coefficient, r is a bottom drag coefficient, and

J(a, b) = ∂xa∂yb− ∂ya∂xb is the Jacobian operator. The velocity field in each layer is given

by Ui = −∂yΨi, Vi = ∂xΨi, for i = 1, 2. The potential vorticity fields are expressed as the

sum of a relative vorticity term ζi = ∇2Ψi and a stretching term involving the Rossby radius

of deformation R:

q1 = ∇2Ψ1 +
Ψ2 −Ψ1

δR2
, (3)

q2 = ∇2Ψ2 +
Ψ1 −Ψ2

(1− δ)R2
. (4)

These equations must be supplemented with boundary conditions. The flow is periodic

in the x direction, and there is no flow across the wall at the northern and the southern

boundaries. This impermeability constraint amounts to assuming that Ψ1,2 is a constant at

the northern and the southern boundary. Four equations are then needed to determine these

constants. Two equations are given by mass conservation, which imposes the constraints
∫

D

dxdyΨ1 =

∫
dxdyΨ2 = 0 . (5)

Two additional equations are obtained by integrating over one line of constant latitude

(constant y) the zonal projection (along ex) of the momentum equations in each layers. Let
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us consider the particular case where the line of constant latitude is the southern boundary,

and let us call Γi =
∫ Lx

0
dxUi(x, 0) the circulation along this boundary. Then the two

additional equations are

dΓ1

dt
= −Ah

(∫ Lx

0

dx∇4U1

∣∣∣∣
y=0

)
,

dΓ2

dt
= −Ah

(∫ Lx

0

dx∇4U2

∣∣∣∣
y=0

)
− rΓ2, (6)

see Pedlosky 13 for further details on the quasi-gesotrophic dynamics in an open channel.

In the absence of small scale dissipation (i.e. when Ah = 0), the dynamics is fully

determined by Eqs. (1), (2), (6) and (5). When small scale dissipation is taken into account

(i.e. when Ah 6= 0), additional boundary conditions are required due to the higher order

hyperviscous term appearing in Eqs. (1), (2) and (6). We will consider a free slip condition

∇2ψi = 0 along each solid wall, which ensures no flux of tangential momentum through

the walls, supplemented with the condition ∇4ψi = 0, which ensures that the presence

of hyperviscosity does not induce energy production at the solid walls. These boundary

conditions are sufficient to fully determine the dynamics, see e.g. McWilliams, Holland, and

Chow 14 , Holland 15 for more details.

B. Evolution of a perturbation around a prescribed eastward jet

We impose the existence of a constant eastward flow in the upper layer with a lower layer

at rest (Ψ1 = −Uy, Ψ2 = 0). We denote ψ1 and ψ2 the perturbation around this prescribed

flow (ψi = Ψi−Ψi). The potential vorticity fields defined in Eqs. (3) and (4) can be written

in terms of this perturbed streamfunction :

q1 = ∇2ψ1 +
ψ2 − ψ1

δR2
+

U

δR2
y , (7)

q2 = ∇2ψ2 +
ψ1 − ψ2

(1− δ)R2
−

U

(1− δ)R2
y . (8)

We see that the prescribed eastward jet in the upper layer is associated with a meridional

potential vorticity gradient (an "effective beta plane" term in the y direction) having an

opposite sign in the upper and lower layer. The dynamics of the perturbation is then fully

described by the potential vorticity advection:

∂tq1 + J (ψ1 − Uy, q1) = −Ah∇
6ψ1 , (9)

∂tq2 + J (ψ2, q2) = −Ah∇
6ψ2 − r∇2ψ2 . (10)
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When this equation is linearized around the prescribed eastward jet, we recover the Philipps

model for baroclinic instability on a f -plane, see e.g. Vallis 3 . In this configuration, the

prescribed jet is always unstable and the most unstable mode is always associated with

a horizontal scale that scales with the internal Rossby radius of deformation, whatever

the value of bottom friction. Only the time scale for the instability changes with bottom

friction. Our aim is to study the non-linear equilibration of this instability. To trigger the

baroclinic instability, we will consider an initial potential vorticity perturbation such that

the corresponding perturbation velocity field is much smaller than the prescribed jet in

the upper layer (velocity U). The initial condition for the potential vorticity fields q1, q2 is

represented on Fig. 1-a, and this will be the same for all the numerical simulations presented

in this paper.

It is worth noting that Eqs. (7), (8), (9) and (10) just describe the free decay of the total

flow (ψ1−Uy, ψ2) by the two layer quasi-geostrophic dynamics on a f-plane, in the presence

of bottom friction and small scale dissipation. Note that since the perturbation is initially

small, the total flow is initially the prescribed flow. In other words, the non-linear dynamics

of a perturbation around a prescribed eastward jet in the upper layer is equivalent to a free

decay experiment in which the initial condition would be given by the prescribed jet. We

chose to decompose the total flow into a prescribed field (Ψ1 = −Uy, Ψ2 = 0), and an eddy

field (ψ1, ψ2), because it allows to relate our results with previous studies performed in the

context of doubly periodic geometry. Indeed, Eqs. (7), (8), (9) and (10) can be recast on

the form

q′
1
= ∇2ψ′

1
+
ψ′

2
− ψ′

1

δR2
, q′

2
= ∇2ψ′

2
+

ψ′

1
− ψ′

2

(1− δ)R2
, (11)

∂tq
′

1
+ J (ψ′

1
, q′

1
) = −U∂xq

′

1
−

U

δR2
∂xψ

′

1
− Ah∇

6ψ′

1
, (12)

∂tq
′

2
+ J (ψ′

2
, q′

2
) =

U

(1− δ)R2
∂xψ

′

2
−Ah∇

6ψ′

2
− r∇2ψ′

2
. (13)

Writing the dynamics in that way is convenient for simulations in the doubly periodic ge-

ometry since each field in this equation is doubly periodic. Because Eqs. (11), (12), and

(13) contain source and sinks terms on the right hand side, the non-linear dynamics of an

initial perturbation around a prescribed baroclinically unstable flow is often referred to as

forced-damped baroclinic turbulence. However, Eqs. (11), (12) and (13) "hide" the conser-

vative nature of the dynamics. It is clear from Eqs. (7), (8), (9) and (10) that this dynamics
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is actually a free decay dynamics, whatever the domain geometry. The only peculiarity of

the doubly periodic geometry is that non trivial statistically steady state may be reached

in such freely decaying dynamics. We will see that transient states observed in the channel

geometry are actually qualitatively similar to these statistically states of the doubly periodic

geometry.

C. Conserved quantities

The flow model has a remarkable property: in the absence of small scale dissipation,

the potential vorticity in the upper layer q1 is advected without sinks nor sources. As

a consequence, there are an infinite number of conserved quantities, namely the Casimir

functionals Cs[q1] =
∫
D
dxdy s(q1), where s is any sufficiently smooth function, see also

Shepherd 16 . An equivalent statement is that the global distribution of the potential vorticity

levels in the upper layer is conserved through the flow evolution when there is no small

scale dissipation. Since the initial flow is characterized by q1
∣∣
t=0

= Uy/(δR2), the global

distribution of fine grained potential vorticity in the upper layer is a flat distribution of

potential vorticity levels between −ULy/(2δR
2) and ULy/(2δR

2), see Fig. 1-b. Similarly,

the global distribution of the potential vorticity in the lower layer is conserved if both the

small scale dissipation and the bottom friction are zero. In that case, given our initial

potential vorticity profile, the global distribution of potential vorticity levels in the lower

layer is a flat distribution between −ULy/(2δR
2) and ULy/(2(1−δ)R

2), see Fig. 1. If bottom

friction is non zero, the potential vorticity distribution of the lower layer is not conserved,

but one may conjecture that the potential vorticity distribution of the lower layer remains

bounded17. Remarkably, the presence of bottom friction does not affect conservation of the

potential vorticity distribution in the upper layer.

When there is small scale dissipation, the global distribution of potential vorticity levels

is no longer a conserved quantity. However, if the time scale for the relaxation of the initial

condition towards a quasi-stationary state is smaller than the typical dissipation time scale,

then one expects that the conservation laws of the inviscid dynamics still play an important

role.
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FIG. 1. Sketch of the numerical experiment. Left panel: potential vorticity field at the beginning

of the simulation, when the most unstable mode starts to grow, in the case without bottom friction.

Right panel: global distribution of potential vorticity levels at t=0, which is the same whatever the

bottom friction value.

D. Energy budget

The energy of the perturbation is the sum of kinetic energy in each layer and of the

available potential energy:

E = KE1 +KE2 + APE, APE =
1

2

∫

D

dxdy
(ψ1 − ψ2)

2

R2
, (14)

KE1 =
δ

2

∫

D

dxdy (∇ψ1)
2 , KE2 =

1− δ

2

∫

D

dxdy (∇ψ2)
2 . (15)

In the absence of small scale dissipation, the temporal evolution of the energy of the per-

turbation is given by

R

U

d

dt
E =

1

R

∫

D

dxdy ψ1∂xψ2 − (1− δ)
rR

U

∫

D

dxdy (∇ψ2)
2 . (16)

We readily note that the parameter rR/U plays a key role in the energy budget (16), and

that this energy budget for the perturbed flow is the same as one would obtain in the doubly

periodic geometry9. In the channel geometry, it is also useful to introduce the "total energy"

defined as the energy of the flow that includes the perturbation and the prescribed eastward

jet:

Etot = KE1tot +KE2tot + APEtot, APEtot =
1

2

∫

D

dxdy
(ψ1 − Uy − ψ2)

2

R2
, (17)
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KE1tot =
δ

2

∫

D

dxdy (∇ (ψ1 − Uy)) 2, KE2tot =
1− δ

2

∫

D

dxdy (∇ψ2)
2. (18)

The temporal evolution of the total energy is given by

d

dt
Etot = −(1− δ)r

∫

D

dxdy (∇ψ2)
2 . (19)

This equation for the total energy allows for a clear physical interpretation in the channel

case: in the presence of bottom friction, the total energy will decay to zero, provided that

the kinetic energy of the bottom layer remains non-zero along the way. In other words,

the perturbation will evolve toward the state ψ1 = Uy, ψ2 = 0 which annihilates the

prescribed eastward flow U in the upper layer. We see from Eqs. (7) and (8) that such

a state corresponds to fully homogenized potential vorticity fields q1 = q2 = 0. Note that

this potential vorticity homogenization process does not rely on the existence of small scale

dissipation, since the potential vorticity can be homogenized at a coarse grained level. The

important mechanism is the filamentation process following sequences of stretching and

folding of the potential vorticity field through turbulent stirring. If, for some reason, the

kinetic energy of the lower layer vanishes at a given time (
∫
D
dxdy (∇ψ2)

2 = 0), then the

system is trapped in a non-trivial steady state (as far as the energy budget is concerned).

However, we believe that such situations are non-generic. Indeed, a flow with ψ2 = 0 and

r 6= 0 is expected to be baroclinically unstable, so any perturbation would lead to an increase

of the kinetic enenergy in the bottom layer.

We will see in the following that the route towards complete potential vorticity homog-

enization strongly depends on the parameter rR/U . In particular, dimensional analysis

predicts that the time scale for homogenization can be written in the general form

tdiss ∼
1

r
Fdiss

(
rR

U
,
R

Ly

, δ,
Lx

Ly

)
, (20)

where the arguments of the function Fdiss are the four non-dimensional parameters of the

problem, assuming vanishingly small scale dissipation (Ah = 0). We will argue in the next

section that when the domain is large with respect to the Rossby radius of deformation

(Ly ≫ R), when the layer depth aspect ratio is of order one (δ ∼ 1), and when the domain

aspect ratio is of order one ( Lx ∼ Ly) the function Fdiss can be modeled by

Fdiss = 1 +

(
rR

U

)2
Ly

R
. (21)

For that purpose, we will need to discuss the vertical and the horizontal flow structure in

the long time limit, before complete homogenization is achieved.
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III. PREDICTIONS FOR THE FLOW STRUCTURE IN THE LONG TIME

LIMIT

The aim of this section is to provide predictions for the vertical partition of the energy,

and to explore consequences of this vertical structure for the self-organization of the flow

in the horizontal. We first show that barotropization is expected for vanishing bottom fric-

tion. We then explain that surface intensification is expected for large bottom friction. We

then use a combination of arguments based on cascade phenomenology, potential vorticity

homogenization theories and equilibrium statistical mechanics in order to predict the hori-

zontal flow structure in the large bottom friction limit and the small bottom friction limit.

It is assumed in this section that the small scale dissipation is negligible (Ah = 0).

A. Barotropization in the low bottom friction limit

We consider first the case with zero bottom friction (r = 0). It will be useful to consider

the barotropic and baroclinic modes of the two-layer model, defined as

ψt = δψ1 + (1− δ)ψ2, ψc = ψ1 − ψ2 . (22)

The baroclinic streamfunction ψc and the barotropic streamfunction ψt are related to the

potential vorticity through

q1 − q2 = ∇2ψc −
ψc

δ(1− δ)R2
+

U

δ(1− δ)R2
y (23)

δq1 + (1− δ)q2 = ∇2ψt (24)

The energy of the perturbation can be decomposed into a (purely kinetic) barotropic energy

and a baroclinic energy that involves both kinetic energy and potential energy:

E = KEt +KEc + APEc, APEc =
1

2

∫

D

dxdy
ψ2

c

R2
. (25)

KEt =
1

2

∫

D

dxdy (∇ψt)
2 , KEc = δ (1− δ)

1

2

∫

D

dxdy (∇ψc)
2 . (26)

Similarly, the total energy can be decomposed into a barotropic and a baroclinic component:

E = KEtot,t +KEtot,c + APEtot,c, APEtot,c =
1

2

∫

D

dxdy
(ψc − Uy)2

R2
. (27)
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KEtot,t =
1

2

∫

D

dxdy (∇(ψt − δUy))2 , KEtot,c = δ (1− δ)
1

2

∫

D

dxdy (∇ (ψc − Uy))2 .

(28)

The initial potential vorticity fields in the upper and lower layers are respectively q0
1
=

Uy/δR2 and q0
2
= −Uy/(1 − δ)R2, plus a small perturbation. When R ≪ Ly and when

Lx ∼ Ly, the initial total energy is dominated by the potential energy: E0

tot ∼ APE0

tot ∼

U2L4

y/R
2.

The classical picture for two layer geostrophic turbulence predicts that the turbulent

evolution of the flow leads to barotropization4–6, i.e. to a depth independent flow for which

Etot ≈ KEtot,t. In the context of freely evolving inviscid dynamics, the idea that barotropiza-

tion may occur as a tendency to reach a statistical equilibrium state that takes into account

dynamical invariants has been investigated by Refs.18–20. It was found in these studies that

barotropization may be prevented by conservation of potential vorticity levels in some cases.

We provide in Appendix A a phenomenological argument for barotropization in the case

R ≪ Ly, emphasizing the role of the conservation of potential vorticity levels, and of the

total energy. In this limit, the flow dynamics is described at lowest order by the barotropic

dynamics after its initial turbulent rearrangement:

∂tqt + J(ψt, qt) = 0, qt = ∇2ψt. (29)

Let us now discuss the effect of a weak friction rR/U ≪ 1. Let us call tadv = Ly/U the

typical advection time scale for the flow over the whole domain. This can be considered as

the typical time scale for the self-organization of the turbulent dynamics following the initial

instability that occurs on a time scale tinst = R/U . Once the flow is self-organized at the

domain scale, if the flow is dominated by the barotropic mode, we see from Eq. (19) that

the total energy should decay exponentially with an e-folding time tdiss ∼ 1/r. This justifies

the low friction limit for the function Fdiss defined Eq. (21).

B. Surface intensification in the large bottom friction limit

Whatever the bottom friction value, if the system reaches a quasi-stationary state, we

see from the energy budget Eq. (16) for the perturbed flow that the friction term (1 −

δ)(rR/U)
∫
D
dxdy (∇ψ2)

2 must be of the order of the source term (1/R)
∫
D
dxdy ψ1∂xψ2.

Let us now consider the large bottom friction limit, with a layer depth aspect ratio of order
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one (δ ∼ 1), a domain aspect ratio of order one (Lx ∼ Ly), and a radius of deformation

much smaller than the domain scale (R ≪ Ly). Anticipating that typical horizontal scales

of the flow structures will be in that case given by R, we find that typical variations of the

stream function in the lower and the upper layers are related through

ψ1 ∼
rR

U
ψ2. (30)

We conclude that ψ1 ≫ ψ2 when rR/U ≫ 1. At lowest order, only the upper layer is active

and the flow can be described by a 11/2 layer quasi-geostrophic model:

∂tq1 + J (Ψ1, q1) = 0 , (31)

with the notation Ψ1 = ψ1 − Uy and with

q1 = ∇2Ψ1 −
Ψ1

δR2
. (32)

Let us now estimate the typical time scale for the energy evolution. Anticipating the

emergence of ribbons, we assume that the total energy is dominated by the potential energy

Etot ∼ L2

yΨ
2

1
/R2. This energy should decay with time according to Eq. (19). We use the

scaling Eq. (30) to estimate
∫
D
dxdy (∇ψ2)

2
∼ U2ψ2

1
Ly/(r

2R3). Introducing the dissipation

time tdiss such that dEtot/dt ∼ Etot/tdiss, and assuming ψ1 ∼ Ψ1 we get

tdiss ∼
1

r

(
rR

U

)2
Ly

R
, (33)

This leads to a surprising result: in the large bottom friction limit, the typical time scale for

the evolution of the quasi-stationary large scale flow is proportional to the bottom friction

coefficient. In other words, dissipation time increases with the friction. This estimate for the

dissipation time in Eq. (33) justifes our choice for Fdiss in Eq. (21) in the limit rR/U ≫ 1

and δ1/2R ≪ Ly. The main caveat of this argument is the assumption that ψ1 ∼ Ψ1 which

can not be valid at short time (when the instability grows) and in the long time limit (when

the perturbation has almost annihilated the prescribed eastward jet). However, we will show

that this provides a reasonable scaling to interpret the numerical simulations. In addition,

the same argument applied to the energy budget of the perturbed flow Eq. (19), without

assuming ψ1 ∼ Ψ1, would show that tdiss is the typical time scale for the growth of the

potential energy of the perturbed state.
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As far as friction is concerned, the behaviour of the system is analogous to a damped

oscillator described by the dynamical equation mẍ − rẋ+ kx = 0. In the low friction limit

the time scale for energy dissipation is simply 1/r. In the large friction limit, the time scale

for energy dissipation is r/k: dissipation time increases linearly with friction coefficient in

the overdamped limit.

C. Cascade phenomenology for quasi-geostrophic models

The flow in the large friction limit rR/U ≫ 1 and in the low friction limit rR/U ≪ 1 are

both described at lowest order by a one layer flow model:

∂tq + J(ψ, q) = 0, q = ∇2ψ − λ−2

d ψ . (34)

We recover the barotropic dynamics Eq. (29) when λd = +∞ and the 11/2 layer quasi-

geostrophic dynamics Eqs. (31) and (32) when λd = δ1/2R.

We consider Eq. (34) with an arbitrary λd and we introduce the relative vorticity ζ =

∇2ψ. At spatial scales much smaller than λd the potential vorticity q is dominated by the

relative vorticity and the dynamics is given by the 2d Euler equation:

∂tζ + J(ψ, ζ) = 0. (35)

Classical arguments21,22 predict a direct cascade of enstrophy Z =
∫
D
dxdy ζ2/2 and an

inverse cascade of kinetic energy Ekin = −
∫
D
dxdy ψζ/2. In the freely evolving case, one

expects a decrease of the kinetic energy k-centroid kEkin
=
∫
dk kEkin(k)/Ekin until the

energy is condensed at the domain scale, and a concomitant increase of the enstrophy k-

centroid kZ =
∫
dk kZ(k)/Z, where Ekin(k) and Z(k) are the kinetic energy and enstrophy

spectra23.

At spatial scales much larger than λd, the dynamics Eq. (34) is the so-called planetary

geostrophic model24:

∂τψ + J(ζ, ψ) = 0, (36)

with τ = δR2t. The role of ζ and ψ are switched with respect to the Euler dynamics. The

same arguments used in the Euler case predict now a direct cascade of kinetic energy Ekin,

and an inverse cascade of potential energy25,26 Ep =
∫
D
dxdy ψ2/(2λ2d). In the freely evolving
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case, one expects that the potential energy centroid will go to large scale until condensation

at the domain scale. Meanwhile, the kinetic energy centroid should go to small scales.

We see that in both in the small scale limit described by Eq. (35) and in the large scale

limit described Eq. (36), the kinetic energy is expected to pile up at scale λd = δ1/2R.

We also note that the concomitant condensation of potential energy at the domain scale

with a direct cascade of kinetic energy (halted around the scale δ1/2R) is necessarily associ-

ated with the formation of large regions of homogenized streamfunction at a coarse grained

level (or equivalently homogenized potential vorticity). In other words, the streamfunction

gradients are expelled at the boundary between regions of homogenized potential vorticity.

This justifies with a dynamical point of view the emergence of ribbons. Another complemen-

tary point of view is to say that the dynamics tends to homogenize the potential vorticity

field, but that a complete homogenization would not be possible due to energy conservation.

In the limit δ1/2R ≪ Ly, the dynamics will therefore tend to form at least two regions of

homogenized potential vorticity at the domain scale, which allows a sustained large scale

available potential vorticity field, while allowing for potential vorticity homogenization al-

most everywhere.

Let us now come back to the problem of the non-linear equilibration of a baroclinically

unstable eastward jet in the large bottom friction limit. We explained in the previous

subsection that the dynamics is given in that case at lowest order by 11/2 layer quasi-

geostrophic dynamics, and we saw in this subsection that this should lead to the formation

of homogenized regions of potential vorticity. Typical values of the upper layer potential

vorticity in the region where it is homogenized can be estimated as Q1 ∼ UL/δR2, assuming

that the total energy of the flow presenting two regions of homogenized regions of potential

vorticity is of the oder of the initial energy of the baroclinically unstable eastward jet. We

see from (32) that sufficiently far from the interface, between two regions of homogenized

potential vorticity the streamfunction is also a constant with Ψ1 ∼ δR2Q1 ∼ ULy. The

interfaces between different regions of homogenized potential vorticity correspond therefore

to jumps of the streamfunction, which occurs at a typical scale δ1/2R. This corresponds to

strong localized jets with velocity V ∼ Ψ1/(δ
1/2R) ∼ ULy/(δ

1/2R). The length of these jets

is of order of the domain size Ly, much larger than their width, of order δ1/2R, hence the

term “ribbons”. The fact that potential vorticity fronts lead to much sharper jets in 11/2

layer flows than in barotropic one layer flows has been emphasized previously by Arbic and
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Flierl 8 , Bouchet and Sommeria 12 .

To conclude, the flow should self-organize into a large scale structure with velocity vari-

ations at the scale of the domain Ly in the low bottom friction limit rR/U ≪ 1, and form

ribbons of width δ1/2R and length Ly in the large bottom friction limit rR/U ≫ 1. More

detailed predictions for the large scale flow structure can be obtained in the framework of

equilibrium statistical mechanics, as discussed in the following subsection.

D. Statistical mechanics predictions for the large scale flow structure

Turbulent dynamics stretches and folds potential vorticity filaments which thus cascade

towards smaller and smaller scales. This stirring tends to mix the potential vorticity field

at a coarse-grained level, even in the absence of small scale dissipation. If there is no

energy constraint and if there is enough stirring, the potential vorticity field should be fully

homogenized just as in the case of a passive tracer. By contrast, complete homogenization

can not be achieved if there is an energy constraint, which leads to non trivial large scale

flow structures, and statistical mechanics gives a prediction for such large scale flows. The

aim of this subsection is to review existing results on the statistical mechanics theory for

one layer quasi-geostrophic models that will be useful to interpret our numerical results.

1. Miller-Robert-Sommeria (MRS) theory for a barotropic model

The theory was initially developed by Robert and Sommeria 11 , Miller, Weichman, and

Cross 27 , and will be referred to as the MRS theory in the following. We provide here a short

and informal presentation of this approach — see also reviews by Refs.28–31.

The theory provides a variational problem that allows computation of the most probable

outcome of turbulent stirring at a macroscopic (or coarse-grained) level among all the mi-

croscopic configurations of the flow that satisfy the constraints of the dynamics given by the

conservation of the energy and of the global distribution of potential vorticity levels. Large

deviation theory shows that an overwhelming number of microscopic states correspond to

the most probable macroscopic state. The only assumption is ergodicity, i.e. that there

is sufficient mixing in phase space for the system to explore all the possible configurations

given the dynamics constraints.
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In the case of a one layer quasi-geostrophic flow described by Eq. (34), the input of the

theory is given by the energy of the flow E and the initial fine-grained (or microscopic)

potential vorticity distribution γ(σ). The output of the theory is a field p(x, y, σ) that

gives the probability density function to measure a potential vorticity level σ ∈ Σ in the

vicinity of the point (x, y). This field defines a macroscopic state of the system, which allows

us to keep track of the dynamical constraints. The computation of the equilibrium state

amounts find the field p that maximizes a mixing entropy S = −
∫
Σ
dσ
∫
D
dxdy p ln p with

the constraints given by dynamical invariants expressed in term of p. This entropy counts

the number of micro states associates with a given macro state p11,27. The constraints are

given by the conservation of the global distribution γ(σ) = dσ with dσ[p] =
∫
D
dxdy

∫
dσp,

and the energy conservation E = E [p] with E [p] = −
∫
D
dxdy

∫
dσσpψ. Note that the energy

constraint is obtained by assuming that the energy of local vorticity fluctuations is negligible.

The validity of this mean-field treatment can be proven using large deviation theory. The

potential vorticity field of the equilibrium state is q =
∫
Σ
dσ σp, and the streamfunction is

obtained by inverting q = ∇2ψ − λ−2

d ψ. We stress that the theory applies for flows without

small scale dissipation. In the presence of small scale dissipation, the predictions of the

theory are expected to be valid only if the typical time scale for self organization of the flow

is much smaller than the typical time associated with small scale dissipation. We also note

that in that case, once the flow is self-organized, small scale dissipation smears out local

fluctuations of the potential vorticity field so that the microscopic potential vorticity field q

actually tends to the macroscopic field q.

The equilibrium state is always characterized by a monotonic functional relation q =

g(ψ)11,27. This function g depends only on the dynamical invariants. At this stage two

approaches could be followed. A first approach is to consider E and g(σ) as given, to

compute the function g, and the flow structure associated with the corresponding equilibrium

state. A second approach is to assume a given q − ψ relation, and to compute the MRS

statistical equilibria associated with this relation. This second approach has made possible

several analytical results in the last decade, and we will rely on these results to interpret

our simulations.

Although computation of the equilibrium state is a difficult task in general, several an-

alytical results can be obtained in limiting cases30 for a detailed discussion. For instance,

whatever the initial distribution of potential vorticity levels, it can be shown that low energy
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states are always characterized at lowest order by a linear q−ψ relationship, whose coefficient

only depend on the total energy, the total enstrophy and the circulation30. Here low energy

means that the energy of the flow is much smaller than the maximum admissible energy for

a given potential vorticity distribution. In our case the initial total energy is of the order

of U2L3

yLx/R
2. It is not difficult to construct a state, with the same global distribution of

potential vorticity levels, that is characterized by an energy that scales as U2L3

yLx/R
4, which

is therefore much larger than the initial energy provided that δ1/2R ≪ Ly.This justifies the

low energy limit for the weak friction case.

Such a low energy limit allows us to compute analytically phase diagrams for the flow

structure and to describe how this flow structure changes when the energy or the enstrophy

of the flow are varied. For instance statistical equilibria associated with a linear q − ψ

relation have been classified for various flow models in an arbitrary closed domain32,33 and

on a channel34. In particular, it was shown in these studies that when the flow domain is

sufficiently stretched in the x direction, then the equilibrium state is a dipolar flow.

2. Application to the 11/2 layer quasi-geostrophic model

In the large friction limit rR/U ≫ 1, our justification for the relevance of the “low energy

limit" of the previous subsection is no more valid. Indeed, this justification relied on the

estimates for the energy provided in Appendix A, assuming that the flow is fully barotropic.

Yet we have shown previously that in the large friction limit, the flow is not barotropic, but

is described at lowest order by the 11/2 quasi-geostrophic dynamics Eq. (34) with λd = δ1/2R.

When δ1/2R ≪ Ly, i.e. when the Rossby radius of the upper layer is much smaller than the

domain scale, it has been shown by Bouchet and Sommeria 12 that a class of equilibrium

states different than the low energy states of the previous section can be computed ana-

lytically. Assuming that the q − ψ relation is tanh-like, they showed that the equilibrium

state is composed of two subdomains with homogenized potential vorticity separated by jets

of width δ1/2R at their interface, see also Weichman 35 , Venaille and Bouchet 36 . Statistical

mechanics also predicts in that case that the interface between the two regions of homog-

enized potential vorticity should be minimal, just as bubbles in usual thermodynamics. A

key assumption for these results is that the q − ψ relation of the equilibriums state has a

tanh-like shape. In the case of an initial distribution γ(σ) with only two levels of potential
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vorticity, it can be shown than the q − ψ relation is given exactly by a tanh function12.

Bouchet and Sommeria 12 conjectured that there exist a much larger class of initial energy E

and of fine-grained potential vorticity distributions γ(σ) that leads to a tanh-like shape for

the q−ψ relation at equilibrium. Our phenomenological arguments above and our numerical

results below suggest that the dynamics is indeed attracted toward a quasi-stationary state

characterized by such a tanh-like relation in a case where the initial distribution of potential

vorticity levels is far from a double delta function, see Fig. 1.

IV. NUMERICAL RESULTS

A. Numerical settings

Quasi-geostrophic simulations are performed using the same numerical model as in

Nadeau and Straub 37 . No normal flow and slip conditions are imposed at lateral walls. We

use a third order Adams-Bashforth scheme for time derivatives, center differencing in space,

an Arakawa scheme for the Jacobian38, and a multigrid method for the elliptic inversions.

Momentum conservation is achieved following a procedure similar to that of McWilliams,

Holland, and Chow 14 , using the zonal momentum equation integrated over a latitude circle

in the channel.

To trigger the baroclinic instability, we considered an initial potential vorticity pertur-

bation such that the corresponding velocity field were characterized by random phases and

a gaussian spectrum of width ∆k = 2 and peaked at k = 6; the perturbations where such

that Ψinit
1
k ≪ U . As we will see in the high bottom friction limit, the dynamics required

thousands of eddy turn-overtimes, hence the moderate horizontal resolution. This initial

condition is the same for all the numerical simulations presented in the paper, and the

corresponding potential vorticity fields q1, q2 are represented on Fig. 1.

There are five adimensionalized parameters in this problem: the adimensisonalized bot-

tom friction coefficient rR/U , the aspect ratio Lx/Ly, the adimensionalized internal Rossby

radius of deformation R/Ly, the ratio δ of the upper layer depth with the total depth, and

the Reynolds number based on the small scale dissipation coefficient Ah. The small scale

dissipation coefficient is adjusted to the lowest necessary value to ensure convergence of the

simulation for a given resolution. Arbic and Flierl 8 did show that the results of such sim-
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Parameter Value

Imposed velocity U = 1m s−1

Channel width Ly = 900km

Fractional depth of the upper layer δ = 0.2

Rosby radius R/Ly = 0.1

Channel aspect ratio Lx/Ly = 5/3

Bottom friction coefficient rU/R from 0 to 40

Horizontal resolution ∆x = ∆y = 1.7km

Bi-harmonic dissipation coefficient Ah = 1.108s−1m4

TABLE I. Model parameters for the reference simulations. Other simulations have been performed

by varying R/Ly and Lx/Ly.

ulations does not depend strongly (at least qualitatively) on the form chosen for the small

scale dissipation term. We also checked that our results were not dependent on the cho-

sen resolution. Consistent with the exponential stratification observed in most parts of the

oceans, we consider that the upper layer is thin compared to the lower layer, with δ = 0.2,

and this parameter will be constant for all the simulations. This choice is also reasonable

to test the scaling predictions obtained for δ ∼ 1. There remains three parameters. The

main control parameter is rR/U which is varied from 0 to 40, in order to test our scaling

predictions obtained for rR/U ≪ 1 and rR/U ≫ 1. We considered a ratio R/Ly = 0.1 for

the reference case (which corresponds to δ1/2R/Ly = 0.004) but also looked at the effect of

decreasing this parameter. In any case this parameter can be considered to be much smaller

than one. We finally considered the aspect ratio Lx/Ly = 5/3 for the reference case, which

corresponds to a 897 by 513 grid in physical space. We explored the effect of varying the

domain aspect ratio, but always in the regime Ly ∼ Lx. These parameters are summarized

in Table I.
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FIG. 2. a) Temporal evolution of the total kinetic energy KEtot and of the total potential energy

APEtot in the case rR/U = 0. Time is normalized by tadv = Ly/U . The energy values on y-axis

are normalized by the initial total kinetic energy. The field in inset represents a snapshot of the

velocity modulus during the kinetic energy decay. b) idem rR/U = 0.004 c) idem for rR/U = 0.5

d) idem for rR/U = 40. Note that the flow structures in each regime are similar to Fig. 7 of Arbic

and Flierl 9 .
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B. The role of bottom friction

1. Energy decay and potential vorticity homogenization

We first discuss reference simulations for which the aspect ratio is Lx/Ly = 5/3 and the

Rossby radius is R/Ly = 0.1. We present in Fig. 2 the temporal evolution of the total

kinetic energy KEtot = KE1tot +KE2tot and of the total available potential energy APEtot

defined in Eq. (18), for various values of the bottom friction coefficient rR/U . We see that

in any case, the total available potential energy APEtot decreases and eventually vanishes.

We distinguish three regimes for the temporal evolution of the kinetic energy KEtot

1. the initial growth of KEtot

2. the saturation regime where KEtot reaches its maximal value

3. the decay of KEtot due to bottom friction (except when rR/U = 0).

As explained before, the decay of the total energy to zero indicates the potential vorticity

field is fully homogenized, so that the perturbation has cancelled the effect of the prescribed

eastward jet. Remarkably, the different routes towards complete homogenization and the

time scales associated with it are completely different depending on the value of rR/U , which

appears clearly on the temporal evolution of the global distribution of potential vorticity

levels in the upper layer, see Fig. 3. The observed flow structures during this energy decay

also strongly depend on the coefficients rR/U as shown on the insets of Fig. 2. In the weak

friction case, the flow is a large scale dipolar vortex condensed at the domain scale. In the

large bottom friction limit the flow is a ribbon of kinetic energy of width given by δ1/2R, and

in the intermediate bottom friction limit the flow is made of isolated vortices whose size is of

the order of the Rossby radius of deformation R. We note that all these flow configurations

are qualitatively similar to those reported in the doubly periodic geometry by Arbic and

Flierl 9 .

2. Estimate for the dissipation time

We compare on Fig. 4-a the temporal evolution of the total kinetic energy KEtot for

various values of rR/U . Clearly, the time scales for this temporal evolution strongly depend
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FIG. 3. Routes towards potential vorticity homogenization depending on bottom friction. Each

panel represents the temporal evolution of the global distribution of potential vorticity levels in the

upper layer. Time is adimensionalized by tadv = U/Ly .
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on the value of rR/U . Let us first discuss the initial energy growth. It is a classical result

that in the weak friction regime rR/U ≪ 1 the typical time for baroclinic instability scales

as R/U , hence the initial collapse of all the curves that belong to this regime on Fig. 4-a. For

the same reason, the saturation of the instability due to self-organization following turbulent

stirring always occurs at a time scale of the order of the advection time tadv = Ly/U in this

low friction regime. By contrast, in the high friction limit rR/U ≫ 1, a direct computation

of the linear baroclinic instability would show that this instability increases linearly with

the bottom friction coefficient r. In addition, our estimate for the non-linear growth of the

energy of the perturbation (see the end of subsection IIIB) leads to a time tdiss that also

scales linearly with the bottom friction coefficient r. These predictions agree qualitatively

with the fact that kinetic energy peaks occur at larger time with increasing bottom friction

coefficient r on Fig. 4-a.

We focus now on the kinetic energy decay. For a given value of the parameter rR/U , we

estimate on Fig. 4-b the decay time tdiss as the time interval between the kinetic energy

maximum KEmax and KEmax/4. We see that the predictions for this dissipation time given

by Eqs. (20) and (21) yields a good qualitative understanding of the numerical simulations in

the low bottom friction regime (tdiss ∼ 1/r) and the large bottom friction regime (tdiss ∼ r).

In order to test in more details these predictions for the energy dissipation time scale, we

plot on Fig. 4-c the temporal evolution of the kinetic energy starting from tmax, the time

when the maximum total kinetic energy has been reached, by renormalizing time with the

dissipation time tdiss given by Eqs. (20) and (21), for each of the rR/U values. Remarkably,

and despite the four decades range for rU/R, all the curves for the energy decay collapse

reasonably well. This collapse confirms not only that the scaling obtained in the limiting

cases are correct, but that the prefactors are also qualitatively correct.

3. Vertical flow structure

We show on Fig. 4-d the ratio δKE2tot/(1− δ)KE1tot of the total kinetic energy in each

layer normalized by the depth of these layers, as a function of the parameter rR/U . We

expect from subsection IIIA that this energy ratio tends to one when rR/U ≪ 1, i.e. that

the flow has become barotropic. We expect from the scaling Eq. (30) that this energy ratio

should scale as ∼ (rR/U)−2 for large rR/U . We see a very good agreement between these
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FIG. 4. a) Temporal evolution of the total kinetic energy KE = KE1+KE2. The kinetic energy is

normalized by its initial value, and the time scale is normalized by the advection time tadv = Ly/U .

The logarithm scale is used in order to see all the runs on the same plot. b) Estimation of the

dissipation time in the numerical experiment (see text for details). c) Temporal decay of the kinetic

energy KEtot. The time series are the same as on panel a, but KEtot is normalized for each run

by its maximum value, the time coordinate is normalized by the dissipation time defined in Eqs.

(20) and (21), and the time origin has been translated for each run so that t = 0 corresponds to

the time where the kinetic energy is maximal. d) Ratio of the kinetic energy in the upper and the

lower layer for different values of the parameter rR/U (this ratio is computed for quasi-stationary

states in the long time limit).
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predictions and our our numerical results on Fig. 4-d. We stress that both scalings are based

on the fact that the flow is self-organized into a quasi-stationary state. This contrasts with

the scaling δKE2tot/(1−δ)KE1tot ∼ (rR/U)−4/3 proposed by Arbic and Flierl 9 by revisiting

a cascade argument by Held and Larichev 39 . We believe that their scaling is relevant to

describe the vertical structure of the flow for rR/U ≫ 1 provided that the potential energy

length scale remains smaller than the domain size. Since the potential energy length scale

increases with rR/U , this scaling should break at some point. In any case, both our scaling

and the scaling of Arbic and Flierl 9 predict that the dynamics is well described by a 11/2

quasi-geostrophic model in the limit of large frictions rR/U ≫ 1, and by a barotropic flow

model in the low friction limit rR/U ≪ 1. The next two subsections are devoted to the

description of the flow structure in both regimes.

C. Weak friction limit

We see in Fig. 2-a that the flow reaches a stationary state when rR/U = 0. We checked

that in this state, 80% of the kinetic energy was in the barotropic mode, which is in agreement

with the fact that barotropization is expected with corrections of order δ or R/Ly when

rR/U ≪ 1 and δ ≪ 1, see the discussion in subsection IIIA. We also note that the initial

potential energy reservoir of the baroclinically unstable eastward jet (APE0

tot ≫ KE0

tot)

has been transferred almost totally into kinetic energy, due to the conservation of the total

energy Etot = APEtot + KEtot. We see in Fig. 5-a,b that the corresponding large scale

streamfunction and potential vorticity fields are self-organized into a dipolar structure at

the domain scale. This dipole is characterized by a monotonic relation between potential

vorticity and streamfunction. This functional relation has roughly a sinh shape. This sinh

shape is different than the linear q − ψ relation that one would expect in a low energy

limit for an initial prescribed potential vorticity distribution. We explained in subsection

IIID1 that the total energy in the numerical experiment is much smaller than the maximal

admissible energy with the same initial global distribution of potential vorticity levels. The

reason why a linear q − ψ relation is not observed here is that the core of the remaining

vortices have not been stirred during the turbulent evolution of the flow. This shows a lack

of ergodicity for the dynamics, which has been discussed for instance by Schecter et al. 40.

However, we note that the observed dipolar structure is the flow that would be predicted by
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FIG. 5. a) Representative late time snapshot of the potential vorticity field in the upper layer

for rR/U = 0. b) corresponding streamfunction field in the upper layer c) scatterplot of the q − ψ

relation associated with a and b. d,e,f) same plots in the case with large bottom friction rR/U ≪ 1.

the MRS theory applied to the barotropic model in a channel sufficiently stretched in the

x-direction, as explained in subsection IIID1.

In the presence of a weak bottom friction (rR/U ≪ 1) the large scale state becomes

quasi-stationary and the total kinetic energy decreases with a time scale of the order of 1/r
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until the total energy vanishes. By quasi-stationary we mean that there still exists a well

defined q−ψ relation, but with superimposed small fluctuations that increase when bottom

friction increases. The total energy decay goes with the homogenization of the potential

vorticity fields. This route towards potential vorticity homogenization is illustrated in Fig.

3-a. We see on this figure the rapid emergence of one broad central peak for the global

potential vorticity distribution, which indicates that the background potential vorticity field

is well mixed over a time tadv ∼ Ly/U , and the width of the peak decreases more slowly,

over a time scale of the order of 1/r. We also remark that two isolated peaks with large

potential vorticity values persist until tdiss ∼ 1/r. These peaks correspond to the unmixed

core of the dipolar structure. The increase of their strength is an artifact due to the use of

a biharmonic dissipation operator. This would not occur with viscous dissipation.

We note that this route towards complete potential vorticity homogenization and dissi-

pation of the energy of the initial baroclinically unstable eastward jet is very much like the

classical scenario for two-layer baroclinic turbulence: the instability leads to an inverse en-

ergy cascade in the horizontal, with barotropization in the vertical, and then bottom friction

dissipates the energy of the large scale flow5,6.

When the bottom friction is further increased, the inverse energy cascade is arrested

before the flow self-organizes at the domain scale, and the number of vortices increases.

When rR/U is of order one, the bottom friction time scale ∼ 1/r is of the order of the

linear baroclinic instability time scale R/U . One expects therefore that flow structures can

not grow larger than the scale of injection, which is the scale of the most unstable mode

for linear instability and secondary instabilities, of order R. This explains the formation

of coherent structures of size R on Fig. 2-c. These eddies rapidly mix the background

potential vorticity field, on the advection time scale tadv = Ly/U , as seen on Fig. 3-b. This

is a strongly out-of-equilibrium regime, that can not be described by MRS equilibria. In the

doubly periodic geometry, this regime of vortex kinetics can be statistically steady, and has

been studied in detail by Thompson and Young 7 . In the case of the channel the number of

isolated vortices decreases with time until the potential vorticity field is fully homogenized.
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FIG. 6. a) Hovmöller diagram of a potential vorticity line q(y,t) for a given longitude x in the

large bottom friction run rR/U = 40. b) Temporal evolution of the global distribution of potential

vorticity levels in the same run. Time is adimensionalized by tadv = U/Ly in both cases.

D. Large friction limit

1. Emergence of the ribbons

A typical snapshot of the potential vorticity field when a quasi-stationary state is reached

is presented in Fig. 5-d for the case rR/U = 40. Clearly, at sufficiently large time, the flow

has reached a state characterized by two regions of homogenized potential vorticity separated

by a sharp interface. By sharp we mean that the interface between the homogenized regions

is much smaller than the Rossby radius of deformation of the upper layer δ1/2R. This sharp

interface in the potential vorticity field induces typical variations of streamfunction at scale

δ1/2R in the transverse direction, see Fig. 5-e. The scatterplot of the potential vorticity field

and streamfunction field is plotted on Fig. 5-f, and shows a tanh-like shape for the q1 − ψ1
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FIG. 7. a) Initial temporal evolution of the barotropic kinetic energy k-centroid

kKEt
=

∫
dk kK̃Et(k)/

∫
dk K̃Et(k) and of the potential energy centroid kAPE =

∫
dk kÃPE(k)/

∫
dk ÃPE(k) in the case rR/U = 0. b) Initial temporal evolution of the ki-

netic energy k-centroid of the upper layer and of the available potential energy k-centroid in the

case rR/U = 40. Time is adimensionalized in both cases by tadv = Ly/U .

relation. The red line is the averaged potential vorticity along one streamline. The presence

of fluctuations around this red line indicates that contrary to the case rR/U = 0, the large

scale flow is not exactly a stationary state: the interface meanders intermittently break, and

the blobs of potential vorticity exchanged during these breaking events are then stretched

and folded in each region of homogenized potential vorticity, hence the presence of potential

vorticity fluctuations.

It is notable that the dynamics drives the system towards a state characterized by a

‘tanh’ relation between vorticity and streamfunction, given that the initial potential vorticity

field in the upper layer is a gradient in the meridional direction presenting no region of

homogenized potential vorticity. In that respect, our results support for the claim of Bouchet

and Sommeria 12 that phase separation of the potential vorticity field into two homogenized

regions is a generic feature of 11/2 layer quasi-geostrophic equilibria, that does not depend

on the particular initial condition when δ1/2R/Ly ≪ 1.

The spontaneous emergence of ribbons also supports the argument of subsection IIIC

based on cascade phenomenology and on potential vorticity homogenization theory. Indeed,
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we see in Fig. 7 a comparison between the temporal evolution of the kinetic and poten-

tial energy centroid both in the case rR/U = 0 (barotropic dynamics at lowest order) and

rR/U = 40 (11/2 layer quasi-geostrophic dynamics at lowest order). In the case with vanish-

ing bottom friction, the kinetic energy centroid goes to the domain scale and remains there,

as expected from inverse energy cascade arguments. In the case with high bottom friction,

the centroid of potential energy initially goes to large scale, and so does the centroid of

kinetic energy (slaved to the inverse cascade of potential energy). But once this centroid

has reached the domain scale, the kinetic energy centroid goes back to smaller scale until a

plateau is reached, while the potential energy centroid remains at large scale. This clearly

indicates that streamlines are “pinched", or expelled at the boundary between regions of

homogenized potential vorticity. It was shown by Dritschel and Scott 41 that such a jet

sharpening mechanism through turbulent stirring is enhanced by the presence of coherent

vortices in the vicinity of the jets. We actually observed the presence of such vortices for

values of bottom friction rR/U large but of order one, but these vortices disappeared at

large time for rR/U > 10.

The emergence of the ribbons as a potential homogenization process is conveniently de-

scribed by a Hovmöller diagram of Fig. 6-a showing the temporal evolution meridional

slices of the potential vorticity profile q1(y, t), and by the temporal evolution of the global

distribution of potential vorticity levels shown in Fig. 6-b. Clearly, the dynamics initially

form multiple regions of homogenized potential vorticity with ribbons at their interfaces, and

these regions eventually merge together until two regions of homogenized potential vorticity

are formed.

2. Ribbon dynamics

We explained in subsection IIID2 that statistical mechanics theory of the 11/2 layer model

with small R/Ly predicts not only the ultimate formation of two regions of homogenized

potential vorticity, but also the organization of these regions into a configuration that mini-

mizes the length of their interface. Clearly, the interface perimeter of the potential vorticity

field in Fig. 5-d is not minimal. Moreover, a movie would reveal that this interface is per-

manently meandering, and sometimes even breaks locally. Indeed, the jets at the interface

between the regions of homogenized potential vorticity field are characterized by a strong
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vertical shear, and are therefore expected to be baroclinically unstable. This instability is

actually a mixed barotropic-baroclinic instability, since the jets have a horizontal structure.

To check that the meanders were due to the existence of a vertical shear, we ran a numerical

simulation of the 11/2 quasi-geostrophic dynamics taking the potential vorticity field of Fig.

5-d as an initial condition. This amounts to imposing ψ2 = 0, and therefore precludes any

baroclinic instability. In those freely evolving simulations the interface did stop meandering

and the flow did reach a stationary state. We also observed that the interface was eventu-

ally smoothed out in the freely evolving 11/2 layer quasi-geostrophic simulations, while the

interface remains sharp throughout the flow evolution when baroclinic instability is allowed,

as seen on the Hovmöller diagram Fig. 6-a. We conclude that in the limit of large bottom

friction, there is a competition between baroclinic instability that tends to increase the in-

terface perimeter between regions of homogenized potential vorticity, and the dynamics of

the inviscid 11/2 layer quasi-geostrophic system that tends to minimize this interface.

Baroclinic instability of the ribbons is the mechanism that allows reduction little

by little of the potential vorticity jumps across the ribbons, at a time scale given by

tdiss ∼ rRLy/(δ
1/2U2). This time scale is of the order of the slow variations of the potential

vorticity interface at large time in the Hovmöller diagram Fig. 6-a. We see on Fig. 6 that

once two regions of homogenized potential vorticity are formed, the value of the potential

vorticity jump Q1jump between the homogenized regions decreases exponentially, with an

e-folding depth of the order of the decay time for the kinetic energy tdiss. The corresponding

flow structure (i.e. meandering jets with a ribbon shape) remains the same, but the strength

of the jet also decreases in time, since Ujet ∼ δ1/2RQ1jump.

3. A competition between interface minimization and baroclinic instability

We show on Fig. 5-d a case where two simply connected regions of homogenized potential

vorticity are formed. When bottom friction is decreased from rR/U = 40 to rR/U = 2.5, we

see on the histograms of potential vorticity levels in Fig. 3 that the global potential vorticity

distribution still evolves to a state characterized by a double delta function. However, a

snapshot of the potential vorticity field in Fig. 8-b reveals that when rR/U is decreased,

the two peaks in the potential vorticity distribution are associated with several unconnected
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FIG. 8. Typical snapshots of the potential vorticity field a) in the reference case b) when bottom

friction coefficient rR/U is decreased c) when the Rossby radius R/Ly is decreased. The typical

size of the potential vorticity blobs decreases from a to c and the interface perimeter increases from

a to c.

blobs of regions with homogenized potential vorticity. The typical size of potential vorticity

blobs decreases with lower bottom friction, while the total interface perimeter increases

with lower bottom friction. Similarly, we observed that decreasing the ratio R/Ly for a

given value of the bottom friction coefficient leads to an increase of the interface perimeters

between regions of homogenized potential vorticity, and to the detachment of isolated blobs

of homogenized potential vorticity, see Fig. 8-c.

We interpret these observations by noting first that destabilization of the ribbons occurs

at a time scale of the energy decay controlled by the baroclinic instability, and given by

tdiss ∼ (rRLy/U
2) according to the large friction limit of Eqs. (20) and (21). By contrast,

the tendency of the 11/2 quasi-geostrophic dynamics to form simply connected regions of

homogenized potential vorticity with minimal interface occurs at a time scale trelax inde-

pendent from bottom friction parameter rR/U . To estimate trelax, we assume first that the

flow is composed of two "phases" characterized by different values of potential vorticity,

but that there are several blobs associated with each phase (like bubbles in liquid water).

The potential vorticity jump between these two phases can be estimated to be initially

Q1 ∼ ULy/δR
2, which corresponds to stream function variations ψ1 ∼ ULy. Let us in-

troduce Lflow, the typical length scale of a blob of homogenized potential vorticity. Then,

assuming Lflow ≫ δ1/2R and Lflow ≪ Ly , and using the fact that the dynamics of the large

scale flow is given at lowest order by the planetary quasi-geostrophic model Eq. (36), we

obtain ∂tψ1/(δR
2) ∼ J(∇2ψ1, ψ1) , which gives ψ1/(trelaxδR

2) ∼ ψ2

1
/L4

flow. Using δ ∼ 1 and
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ψ1 ∼ ULy, we obtain trelax ∼ L4

flow/(R
2LyU). A quasi-stationary state is reached when the

relaxation time scale is of the order of the baroclinic instability time scale given in Eq. (33),

which yields

Lflow ∼ Ly

(
rR

U

)1/4(
R

Ly

)1/2

. (37)

The validity of scaling requires a scale separation that was not clear in our simulations (the

potential vorticity blobs are not much smaller than the domain scale on Fig. 8). However,

this naive scaling allows to interpret qualitatively our numerical results. The main point

is that decreasing the bottom friction or the Rossby radius of deformation corresponds to

a decrease of the typical size of Lflow isolated blobs of potential vorticity, which means

an increase of the number of isolated blobs (since the goal area of a given phase is fixed),

and therefore an increase of the total interface perimeter. We also note that the exponent

1/4 means that variations of Lflow are very weak when bottom friction is changed over

one or two decades such as in our simulations. Finally, we note that the length scale

Lflow for the homogenized potential vorticity blobs can be interpreted as the scale of the

available potential energy field, and that our scaling Eq. (37) is in very good agreement with

the variations of the potential energy centroid when bottom friction is varied in numerical

simulation by Arbic and Flierl 9 (figure 9-a of their paper).

4. Multiple jets

We show in Fig. 6-b that there is a transient regime with multiple peaks in the global

potential vorticity distribution. These transient states correspond initially to multiple re-

gions of homogenized potential vorticity. We found that in the ribbon regime, the number

of long lasting multiple regions of homogenized potential vorticity increased: i/ when the

domain aspect ratio Lx/Ly was decreased, ii/ when bottom friction rR/U was increased and

iii/ when the parameter R/Ly was decreased. In addition, when the parameter R/Ly was

sufficiently small, the regions of homogenized potential vorticity are initially organized into

zonal bands with eastward jets at their interface, which is reminiscent of potential vorticity

staircases42. We show in Fig. 9-a,b an example of such long lasting multiple zonal bands of

potential vorticity. In addition, Fig 9-c,d,e show how the number of regions of homogenized

potential vorticity increases with smaller domain aspect ratio Lx/Ly. It is not clear whether

the dynamics would eventually form only two regions of homogenized potential vorticity, or
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FIG. 9. Multiple jets as a transient regime towards complete homogenization. a) Hovmöller

diagrams of a meridional slice of the potential vorticity field in the upper layer, time is renormalized

by tadv = Ly/U . b) Typical snapshot of the potential vorticity field in the upper layer. c), d) and

e) Evolution of the global distribution of potential vorticity levels in the upper layer for different

values of the domain aspect ratio, Lx/Ly =1.75, 0.47 and 0.24 respectively. All those runs are

performed in the large bottom friction limit rR/u = 40.

if more than two regions of homogenized potential vorticity could last for ever. One may

interpret qualitatively the emergence of these potential vorticity staircases by noticing that

once a jet is formed between two regions of homogenized potential vorticity, it acts as a

strong mixing barrier between the two adjacent regions, which may prevent further mixing

with other regions of homogenized potential vorticity. We note that in our case there is no

beta effect. The zonal organization of the potential vorticity field only reflects the structure

of the prescribed eastward jet, which induces an effective beta effect in the upper layer.
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The existence of long lived multiple eastward jets provides a route towards potential vor-

ticity homogenization that sustains a total eastward transport of the order of the transport

of the prescribed eastward jet. This contrasts with the low or intermediate bottom friction

case where the rapid decrease of the total potential energy (over a time tadv = Ly/U) is

accompanied with a rapid decrease of the total zonal transport. In that respect we find

that increasing bottom friction leads to an increasing zonal transport in the regime where

multiple jets are allowed. Increasing transport associated with increasing bottom friction

was reported in the context of idealized simulations of the Antarctic Circumpolar Circula-

tion43, but this effect was due to the presence of bottom topography which is absent in our

simulations.

We finally note that multiple jets separating regions of homogenized several regions of

homogenized potential vorticity are not a priori excluded from statistical mechanics predic-

tions. Indeed, it is conjectured in Bouchet and Sommeria 12 that the case with two regions of

homogenized potential should occur for most initial PV distribution and initial energies, but

that other cases may be possible. For instance, high energy states associated with a global

distribution of potential vorticity presenting n peaks will leads to a state with n regions of

homogenized potential vorticity separated by sharp jets at their interface.

V. CONCLUSION

We have presented numerical simulations for the non-linear equilibration of a two-layer

quasi-geostrophic flow in a channel in the presence of a prescribed baroclinically unstable

flow U in the upper layer with particular attention to the role of bottom friction. For any

non zero value of the bottom friction coefficient, r, the dynamics attempts to homogenize the

potential vorticity field, including any large scale gradient due to the prescribed eastward flow

in the upper layer, as might be expected from classical theories of geostrophic turbulence44.

However, the route toward complete homogenization depends strongly on the bottom friction

coefficient.

When the bottom friction is weak (r ≪ U/R), the perturbation self-organizes at the

domain scale into a quasi-barotropic large scale structure (see movie 1 in supplementary

materials), which is then weakly dissipated on a time scale inversely proportional to the

bottom friction coefficient, tdiss ∼ 1/r. We interpret this large-scale quasi-stationary flow as
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a statistical equilibrium state of the Miller-Robert-Sommeria (MRS) theory.

When the bottom friction has a medium value — meaning that its time scale is of the

order of the inviscid baroclinic instability time scale (r ∼ U/R) — bottom friction precludes

an inverse kinetic energy cascade close to the injection length scale (which is of the order of

the Rossby radius deformation R) and the dynamics is well described by a gas of isolated

vortices of size R mixing the background potential vorticity field at the advection time scale

tdiss ∼ Ly/U (see movie 2 in supplementary materials).

When the bottom friction coefficient is high (r ≫ U/R), the ratio between the lower

layer kinetic energy and the upper layer kinetic energy scales as (rR/U)2 and the dynamics

is well described at lowest order by a 11/2 layer quasi-geostrophic model. We observed the

spontaneous emergence of meandering ribbons corresponding to strong jets of width given by

the Rossby radius of deformation of the upper layer, and separating regions of homogenized

potential vorticity (see movie 3 in supplementary materials). We used statistical mechanics

arguments as well as cascade phenomenology to interpret these results. We described a

competition between the inviscid 11/2 quasi-geostrophic dynamics that tend to form only

two regions of homogenized potential vorticity with a minimal interface between them, and

baroclinic instability of the ribbons that tend to increase the interface perimeter. This

last route towards potential vorticity homogenization is rather spectacular: the potential

vorticity jump between the two regions of homogenized potential vorticity decreases slowly

with time, due to the intermittent breaking of the ribbons at their interface. This process

occurs at a time scale given by baroclinic instability that scales linearly with the bottom

friction coefficient tdiss ∼ rRLy/U
2. Remarkably, the interface between the homogenized

regions of potential vorticity remains sharp (i.e. much smaller than the Rossby radius

of deformation) throughout this evolution towards a single, fully homogenized potential

vorticity field.

Using cascade phenomenology, and generalizing the arguments by Held and Larichev 39 ,

Arbic and Flierl 9 proposed scalings for the horizontal scale and the vertical structure of the

dynamics in the large friction regime. Here we obtained rather different scalings, but with

similar qualitative meaning, by assuming that the flow structures resulted from the com-

petition between baroclinic instability and a tendency to reach a Miller-Robert-Sommeria

equilibrium state in both the weak and the large bottom friction limit. We believe that the

cascade arguments are more suited to intermediate bottom friction, for which there is a scale
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separation between the large scale flow and the perturbed flow.

A key novelty of our work is to relate the condensation of kinetic energy into ribbons

with existing statistical predictions for the 11/2 layer quasi-geostrophic model, and to provide

a complementary argument based on cascade phenomenology. The fact that arguments

derived from cascade phenomenology lead to the same prediction as equilibrium statistical

mechanics is very striking in this example. More generally, since one approach describes

kinetics of energy transfers, and the other describes the final invariant measure in the same

flow model, they should both give a consistent picture.

In addition, we show for the first time numerical evidence that when the Rossby radius of

deformation is much smaller than the domain scale, the dynamics attract the system towards

a quasi-stationary state characterized by a tanh-like relation between potential vorticity and

stream function, even if the initial potential vorticity distribution is not already made of

several regions with homogenized potential vorticity. We note that in our case the presence

of two layers was essential to observe large regions of homogenized potential vorticity, even

if the dynamics is described at lowest order by a 11/2 layer quasi-geostrophic flow. Indeed,

the presence of the bottom layer allows for baroclinic instability of the ribbons, which favors

stirring of the upper layer potential vorticity field in the whole flow domain. By contrast,

once a ribbon emerges in a freely evolving 11/2 quasi-geostrophic flow, it acts as a mixing

barrier that prevents further exchanges between adjacent regions of homogenized potential

vorticity.

Our work was set in a channel geometry in which case the global distribution of a suit-

ably defined potential vorticity field is conserved in the absence of small scale dissipation.

This allows us to use statistical mechanics arguments and reinterpret the results obtained

in previous work in doubly periodic geometry. Thus, in the large bottom friction limit,

the dissipation time tdiss ∼ rRLy/U
2 can be interpreted as an intrinsic time scale for the

variability of the available potential energy in a statistically steady state. It is also inter-

esting to compare our results with those of Esler 45 , Willcocks and Esler 46 who considered

the free evolution of a surface intensified zonal jet localized at the center of a channel. In

their case, the instability is localized around the jet, and potential vorticity stirring occurs

only within this central region. Statistical mechanics predictions fail in this case to predict

the large scale flow structure since the dynamics does only explore a restricted part of the

phase space. By contrast, in our simulations, the initial instability and its subsequent tur-
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bulent evolution takes place in the whole domain, which induces potential vorticity stirring

everywhere, excepted when multiple jets occur.

To conclude, this study shows that large bottom friction induces the condensation of the

kinetic energy into quasi-stationary ribbons and the concomitant condensation of potential

energy at large scale. Perhaps paradoxically increasing the bottom friction considerably

slows down the loss of energy from the potential energy reservoir associated with the large

scale flow.

The regime for ribbon turbulence requires bottom friction coefficients which are too high

for a direct application to oceanic flows. However, other physical mechanisms than bottom

drag may be able to remove energy from the lower layer, which would mimic the effect of

high bottom friction. For instance LaCasce and Brink 47 showed in the framework of freely

decaying two-layer quasi-geostrophic turbulence over a slope that topographic Rossby waves

generated in some locations remove the energy to other locations, where it eventually is

dissipated by bottom drag. This effect may me interpreted as an enhanced bottom friction

in the region where the topographic wave is generated.

Further work will be needed to extend these results to continuously stratified fluids be-

cause in that case other effects can significantly change the properties of the vertical struc-

ture of the eddies, see Smith and Vallis 48 , Roullet et al. 49 for the forced dissipated case,

and Smith and Vallis 50 for the freely evolving case. In particular, Smith and Vallis 50 , Fu

and Flierl 51 did show that in the presence of surface intensified stratification, and without

bottom friction, there is a fast time scale associated with energy transfers toward the first

baroclinic mode. This energy eventually condenses into the barotropic mode, but with a

much larger time scale. The beta effect may also have several consequences: it is known to

favor barotropization18, and to favor the arrangement of regions of homogenized potential

vorticity into zonal bands.

We focused in this paper on the non-linear equilibration of a perturbation around a

prescribed eastward jet. We explained that in a channel geometry, the dynamics is equivalent

to a free decay experiment in which the initial condition is the prescribed jet. It would be

useful to generalize these results to a more realistic setting with forcing by considering

for instance a surface wind stress. The large scale baroclinic velocity U appearing in the

non-dimensional parameter rR/U will have to be related to the forcing case by case.
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APPENDIX A: BAROTROPIZATION IN THE WEAK BOTTOM

FRICTION LIMIT

The aim of this appendix is to give a phenomenological argument for barotropization

when R≪ Ly , with Lx ∼ Ly and δ ∼ 1. The argument is based on the fact that turbulence

leads to a rearrangement of the initial potential field in each layer, with a constant total

energy Etot.

The global distribution of potential vorticity levels in both layers are conserved when

there is neither small scale dissipation nor bottom friction.

Let us call Q1 the typical variations of the potential vorticity field in the upper layer after

turbulent rearrangement of the initial field q0
1
= Uy/(δR2). We see Eq. (24) that typical

variations of the barotropic streamfunction are given by ψt ∼ δL2

yQ1, where we anticipate

that the typical length scale of flow structures in this regime is given by the domain size

Ly. We also see from Eq. (23) that typical variations of the baroclinic streamfunction are

(ψc − Uy) ∼ R2Q1 over a length R when R ≪ Ly. With these estimates, and anticipating

that ψt ≫ Uy, we find the following scalings for the different components of the energy of

the perturbed flow introduced Eq. (27):

KEtot,t ∼ Q2

1
L4

y , KEtot,c ∼ Q2

1
R3Ly , APEtot,c ∼ Q2

1
R2L2

y . (38)

Clearly, the total energy Etot = KEtot,t + KEtot,c + APEtot,c is dominated its barotropic

component KEtot,t when R≪ Ly. Since the barotropic dynamics leads to an inverse kinetic

energy cascade, our hypothesis that Ly is a typical scale of the flow is self-consistent. Using

the estimate of the initial energy E0

tot ∼ APE0

tot ∼ U2L4

y/R
2, and using the fact that this

energy is fully transferred into the barotropic mode after turbulent rearrangement, we get

KEtot,t ∼ U2L4

y/R
2. Using Eq. (38), this estimate yields Q1 ∼ U/R. Consequently, the

order of magnitude for the barotropic velocity is Ut ∼ ULy/R, which is consistent with the

hypothesis that ψt ≫ Uy. We conclude that the total flow is dominated by the barotropic

component of the flow R ≪ Ly after turbulent rearrangement of the potential vorticity field,
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and that this barotropic flow is characterized by velocities much larger than the velocity of

the initial eastward jet.
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