
When double rounding is odd

Sylvie Boldo, Guillaume Melquiond

To cite this version:

Sylvie Boldo, Guillaume Melquiond. When double rounding is odd. 17th IMACS World
Congress, Jul 2005, Paris, France. pp.11, 2004. <inria-00070603v2>

HAL Id: inria-00070603

https://hal.inria.fr/inria-00070603v2

Submitted on 5 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00070603v2

When double rounding is odd

Sylvie Boldo and Guillaume Melquiond

Laboratoire de l’Informatique du Parallélisme

UMR 5668 CNRS, ENS Lyon, INRIA, UCBL

46 allée d’Italie, 69 364 Lyon Cedex 07, France

E-mail: {Sylvie.Boldo, Guillaume.Melquiond}@ens-lyon.fr

Abstract - Many general purpose processors
(including Intel’s) may not always produce the
correctly rounded result of a floating-point opera-
tion due to double rounding. Instead of rounding
the value to the working precision, the value is first
rounded in an intermediate extended precision
and then rounded in the working precision; this
often means a loss of accuracy. We suggest the use
of rounding to odd as the first rounding in order
to regain this accuracy: we prove that the double
rounding then gives the correct rounding to the
nearest value. To increase the trust on this result,
as this rounding is unusual and this property is
surprising, we formally proved this property using
the Coq automatic proof checker.

Keywords—Floating-point, double rounding, formal
proof, Coq.

I. INTRODUCTION

Floating-point users expect their results to be correctly
rounded: this means that the result of a floating-point
operation is the same as if it was first computed with
an infinite precision and then rounded to the preci-
sion of the destination format. This is required by the
IEEE-754 standard [STE 81], [STE 87] for atomic op-
erations. This standard is followed by modern general-
purpose processors.

But this standard does not require the FPU to directly
handle each floating-point format (single, double, dou-
ble extended): some systems deliver results only to
extended destinations. On such a system, the user
shall be able to specify that a result be rounded in-
stead to a smaller precision, though it may be stored
in the extended format. It happens in practice with
some processors as the Intel x86, which computes with
80 bits before rounding to the IEEE double precision
(53 bits), or the PowerPC, which provides IEEE sin-
gle precision by double rounding from IEEE double
precision.

Hence, double rounding may occur if the user did not
explicitly specify beforehand the destination format.
Double rounding consists in a first rounding in an ex-
tended precision and then a second rounding in the
working precision. As described in Section II, this

rounding may be erroneous: the final result is some-
times different from the correctly rounded result.

It would not be a problem if the compilers were in-
deed setting correctly the precisions of each floating-
point operation for processors that only work in an
extended format. To increase efficiency, they do not
usually force the rounding to the wanted format since
it is a costly operation. Indeed, the processor pipeline
has to be flushed in order to set the new precision.
If the precision had to be modified before each opera-
tion, it would defeat the whole purpose of the pipeline.
Computationally intensive programs would then get
excessively slow.

As the precision is not explicitly set correspondingly
to the destination format, there is a first rounding to
the extended precision corresponding to the floating-
point operation itself and a second rounding when the
storage in memory is done.

Therefore, double rounding is usually considered as
a dangerous feature leading to unexpected inaccu-
racy. Nevertheless, double rounding is not necessarily
a threat: we give a double rounding algorithm that
ensures the correctness of the result, meaning that the
result is the same as if only one direct rounding hap-
pened. The idea is to prevent the first rounding to
approach the tie-breaking value between the two pos-
sible floating-point results.

This algorithm only deals with two consecutive round-
ings. But we have also tried to extend this property
for situations where an arithmetic operation is exe-
cuted between the two roundings. It has led us to the
other algorithm we present. This new algorithm al-
lows us to correctly compute the rounding of a sum of
floating-point numbers under mild assumptions.

II. DOUBLE ROUNDING

A. Floating-point definitions

Our formal proofs are based on the floating-point for-
malization of M. Daumas, L. Rideau and L. Théry and
on the corresponding library by L. Théry and one of
the authors [DAU 01], [BOL 04a] in Coq [BER 04].
Floating-point numbers are represented by pairs (n, e)

that stand for n × 2e. We use both an integral signed
mantissa n and an integral signed exponent e for sake
of simplicity.

A floating-point format is denoted by B and is a pair
composed by the lowest exponent −E available and
the precision p. We do not set an upper bound on
the exponent as overflows do not matter here (see be-
low). We define a representable pair (n, e) such that
|n| < 2p and e ≥ −E. We denote by F the subset
of real numbers represented by these pairs for a given
format B. Now only the representable floating-point
numbers will be referred to; they will simply be de-
noted as floating-point numbers.

All the IEEE-754 rounding modes are also defined in
the Coq library, especially the default rounding: the
rounding to nearest even, denoted by ◦. We have f =
◦(x) if f is the floating-point number closest to x; when
x is half way between two consecutive floating-point
numbers, the one with an even mantissa is chosen.

A rounding mode is defined in the Coq library as a
relation between a real number and a floating-point
number, and not a function from real values to floats.
Indeed, there may be several floats corresponding to
the same real value. For a relation, a weaker property
than being a rounding mode is being a faithful round-
ing. A floating-point number f is a faithful rounding of
a real x if it is either the rounded up or rounded down
of x, as shown on Figure 1. When x is a floating-point
number, it is its own and only faithful rounding. Oth-
erwise there always are two faithful roundings when
no overflow occurs.

faithful roudings

correct rounding (closest)

x

Fig. 1. Faithful roundings.

B. Double rounding accuracy

As explained before, a floating-point computation may
first be done in an extended precision, and later
rounded to the working precision. The extended pre-
cision is denoted by Be = (p + k, Ee) and the working
precision is denoted by Bw = (p, Ew). If the same
rounding mode is used for both computations (usually
to nearest even), it can lead to a less precise result
than the result after a single rounding.

For example, see Figure 2. When the real value x is in

the neighborhood of the midpoint of two consecutive
floating-point numbers g and h, it may first be rounded
in one direction toward this middle t in extended pre-
cision, and then rounded in the same direction toward
f in working precision. Although the result f is close
to x, it is not the closest floating-point number to x, h

is. When both roundings are to nearest, we formally
proved that the distance between the given result f

and the real value x may be as much as

|f − x| ≤

(

1

2
+ 2−k−1

)

ulp(f).

When there is only one rounding, the corresponding
inequality is |f − x| ≤ 1

2ulp(f). This is the expected
result for a IEEE-754 compatible implementation.

Be step

Bw step

x
t

first rounding

second rounding

g h

f

Fig. 2. Bad case for double rounding.

C. Double rounding and faithfulness

Another interesting property of double rounding as de-
fined previously is that it is a faithful rounding. We
even have a more generic result.

x

f f

Fig. 3. Double roundings are faithful.

Let us consider that the relations are not required to
be rounding modes but only faithful roundings. We
formally certified that the rounded result f of a double
faithful rounding is faithful to the real initial value x,
as shown in Figure 3. The requirements are k ≥ 0 and
k ≤ Ee − Ew (any normal float in the working format
is normal in the extended format).

This is a very powerful result as faithfulness is the best
result we can expect as soon as we at least consider two

roundings to nearest. And this result can be applied
to any two successive IEEE-754 rounding modes (to
zero, toward +∞. . .).

This means that any sequence of successive roundings
in decreasing precisions gives a faithful rounding of the
initial value.

III. ALGORITHM

As seen in previous sections, two roundings to nearest
induce a bigger round-off error than one single round-
ing to nearest and may then lead to unexpected in-
correct results. We now present how to choose the
roundings for the double rounding to give a correct
rounding to nearest.

A. Odd rounding

This rounding does not belong to the IEEE-754’s or
even 754R 1 ’s rounding modes. Algorithm 1 will jus-
tify the definition of this unusual rounding mode. It
should not be mixed up with the rounding to the near-
est odd (similar to the default rounding: rounding to
the nearest even).

We denote by △ the rounding toward +∞ and by ▽
the rounding toward −∞. The rounding to odd is
defined by:

�odd(x) = x if x ∈ F,

= △(x) if the mantissa of △(x) is odd,

= ▽(x) otherwise.

Note that the result of the odd rounding of x may be
even only in the case where x is a representable even
float.

The first proofs we formally checked guarantee that
this operator is a rounding mode as defined in our
formalization [DAU 01]. We then added a few other
useful properties. This means that we proved that odd
rounding is a rounding mode, this includes the proofs
of:

• Each real can be rounded to odd.

• Any odd rounding is a faithful rounding.

• Odd rounding is monotone.

We also certified that:

• Odd rounding is unique (meaning that it can be ex-
pressed as a function).

• Odd rounding is symmetric, meaning that if f =
�odd(x), then −f = �odd(−x).

1 See http://www.validlab.com/754R/.

B. Correct double rounding algorithm

Algorithm 1 first computes the rounding to odd of the
real value x in the extended format (with p + k bits).
It then computes the rounding to the nearest even of
the previous value in the working format (with p bits).
We here consider a real value x but an implementation
does not need to really handle x: it can represent the
abstract exact result of an operation between floating-
point numbers.

Algorithm 1 Correct double rounding algorithm.

t = �
p+k
odd (x)

f = ◦p(t)

Assuming p ≥ 2 and k ≥ 2, and Ee ≥ 2 + Ew, then

f = ◦p(x).

Although there is a double rounding, we here guaran-
tee that the computed result is correct. The explana-
tion is in Figure 4 and is as follow.

When x is exactly equal to the middle of two consec-
utive floating-point numbers g and h (case 1), then t

is exactly x and f is the correct rounding of x. Other-
wise, when x is slightly different from this mid-point
(case 2), then t is different from this mid-point: it
is the odd value just greater or just smaller than the
mid-point depending on the value of x. The reason
is that, as k ≥ 2, the mid-point is even in the p + k

precision, so t cannot be rounded into it if it is not
exactly equal to it. This obtained t value will then be
correctly rounded to f , which is the closest p-bit float
from x. The other cases (case 3) are far away from the
mid-point and are easy to handle.

h
g

1 23

Fig. 4. Different cases of Algorithm 1.

Note that the hypothesis Ee ≥ 2 + Ew is not a strong
requirement: due to the definition of E, it does not
mean that the exponent range (as defined in the IEEE-
754 standard) must be greater by 2. As k ≥ 2, a suffi-
cient condition is: any normal floating-point numbers
with respect to Bw should be normal with respect to
Be.

C. Proof

The pen and paper proof is a bit technical but does
seem easy (see Figure 4). But it does not consider the
special cases: especially the ones where v was a power
of two, and subsequently where v was the smallest nor-
mal float. And we must look into all these special cases
in order to be sure that the algorithm can always be
applied, even when Underflow occurs. We formally
proved this result using the Coq proof assistant in or-
der to be sure not to forget any case or hypothesis
and not to make mistakes in the numerous compu-
tations. The formal proof follows the path described
below. There are many splittings into subcases that
made the final proof rather long: 7 theorems and about
one thousand lines of Coq, but we are now sure that
every case (normal/subnormal, power of the radix or
not) are correctly handled.

The general case, described by the preceding figure,
was done in various subcases. The first split was the
positive/negative one, due to the fact that odd round-
ing and even nearest rounding are both symmetrical.
Then let v = ◦p(x), we have to prove that f = v:

• when v is not a power of two,

– when x = t (case 1), then f = ◦p(t) = ◦p(x) = v,

– otherwise, we know that |x − v| ≤ 1
2ulp(v). As

odd rounding is monotone and k ≥ 2, it means that
|t − v| ≤ 1

2ulp(v). But we cannot have |t − v| =
1
2ulp(v) as it would imply that t is even in p + k

precision, which is impossible. So |t − v| < 1
2ulp(v)

and v = ◦p(t) = f .

• when v is a power of two,

– when x = t (case 1), then f = ◦p(t) = ◦p(x) = v,

– otherwise, we know that v − 1
4ulp(v) ≤ x ≤ v +

1
2ulp(v). As odd rounding is monotone and k ≥ 2,
it means that v− 1

4ulp(v) ≤ t ≤ v+ 1
2ulp(v). But we

can have neither v− 1
4ulp(v) = t, nor t = v+ 1

2ulp(v)
as it would imply that t is even in p + k precision,
which is impossible. So v− 1

4ulp(v) < t < v+ 1
2ulp(v)

and v = ◦p(t) = f .

• the case where v is the smallest normal floating-point
number is handled separately, as v− 1

4ulp(v) should be
replaced by v− 1

2ulp(v) in the previous proof subcase.

Even if the used formalization of floating-point num-
bers does not consider Overflows, this does not restrict
the scope of the proof. Indeed, in the proof +∞ can
be treated as any other float (even as an even one) and
without any problem. We only require that the Over-
flow threshold for the extended format is not smaller
than the working format’s.

IV. APPLICATIONS

A. Rounding to odd is easy

Algorithm 1 has an interest as rounding to odd is quite
easy to implement it in hardware. Rounding to odd
the real result x of a floating-point computation can
be done in two steps. First round it to zero into the
floating-point number Z(x) with respect to the IEEE-
754 standard. And then perform a logical or between
the inexact flag ι (or the sticky bit) of the first step and
the last bit of the mantissa. We later found that Gold-
berg [GOL 91] used this algorithm for binary-decimal
conversions.

If the mantissa of Z(x) is already odd, this floating-
point number is the rounding to odd of x too; the
logical or does not change it. If the floating-point com-
putation is exact, Z(x) is equal to x and ι is not set;
consequently �odd(x) = Z(x) is correct. Otherwise
the computation is inexact and the mantissa of Z(x)
is even, but the final mantissa must be odd, hence the
logical or with ι. In this last case, this odd float is the
correct one, since the first rounding was toward zero.

Computing ι is not a problem per se, since the IEEE-
754 standard requires this flag to be implemented, and
hardware already uses sticky bits for the other round-
ing modes. Furthermore, the value of ι can directly
be reused to flag the odd rounding of x as exact or
inexact.

Another way to compute the rounding to odd is the
following. We first round x toward zero with p + k −
1 bits. We then concatenate the inexact bit of the
previous operation at the end of the mantissa in order
to get a p + k-bit float. The justification is similar to
the previous one.

B. Multi-precision operators

A possible application of our result is the implementa-
tion of multi-precision operators. We assume we want
to get the correctly rounded value of an operator at
various precisions (namely p1 < p2 < p3 for example).
It is then enough to get the result with odd rounding
on p3 + 2 bits (and a larger or equal exponent range)
and some rounding to nearest operators from the pre-
cision p3 + 2 to smaller precisions p1, p2 and p3 as
shown in Figure 5. The correctness of Algorithm 1
ensures that the final result in precision pi will be the
correct even nearest rounding of the exact value.

Let us take the DSP processor TMS320C3x as an ex-
ample [Tex04]. This processor provides floating-point
operators. These operators are not IEEE-754 compli-
ant, but the floating-point format is not that different

Rounding
to nearest

32 bits

Rounding
to nearest

53 bits

Rounding
to nearest

64 bits

Rounding
to nearest

24 bits

Rounding
to nearest

16 bits

Rounded to odd

66 bits

Complex FP operator

Result
16 bits

Result Result
32 bits 64 bits

Result

53 bits

Result
24 bits

Fig. 5. Multi-precision operator.

from single precision: an exponent stored on 8 bits and
a mantissa on 24 bits. Our result is still valid when
two’s complement is used as the set of represented val-
ues is quite the same [BOL 04b].

Source operands of the floating-point multiplication
are in this format. The multiplier first produces a 50-
bit mantissa, and then dispose of the extra bits so that
the mantissa fits on 32 bits. Indeed, the results of the
operators are stored in an extended precision format:
32-bit mantissa and 8-bit exponent. The user can then
explicitly round this result to single precision, before
using it in subsequent operations.

Now, instead of simply discarding the extra bits when
producing the extended precision result, the multiplier
could round the mantissa to odd. The result would be
as precise, the hardware cost would be negligible, and
the explicit rounding to simple precision could then
be made to guarantee that the final result is correctly
rounded.

C. Constants

Rounding to odd can also be used to ensure that a
single set of constants can be used for various floating-
point formats. For example, to get a constant C cor-
rectly rounded in 24, 53 and 64 bits, it is enough to
store it (oddly rounded) with 66 bits. Another exam-
ple is when a constant may be needed either in single or
in double precision by a software. Then, if the proces-
sor allows double-extended precision, it is sufficient to
store the constant rounded to odd in double-extended
precision and let the processor correctly round it to the
required precision. The constant will then be available
and correct for both formats.

V. ODD ADDITION

As another property of the rounding to odd, let us see
how it can be used to get the correctly rounded result
of the sum of floating-point numbers. we have n floats
f1, . . . fn, sorted by value and we would like to obtain

s = ◦

(

n
∑

i=1

fi

)

.

This problem is not new: adding several floating-point
numbers with good accuracy is an important problem
of scientific computing [HIG 96]. Recently, Demmel
and Hida proposed a simple algorithm that yields al-
most correct summation results [DEM 03]. We present
an algorithm that gives the correctly rounded result
by using rounding to odd and under mild assump-
tions. More precisely, we will add the numbers from
the smallest to the biggest one (in magnitude) and we
use the following algorithm:

Algorithm 2 Correct addition algorithm when
∀i, |fi| ≥ 2|gi−1|.

Sort the fi by magnitude
g1 = f1

For i from 2 to n,
gi = �

p+k
odd (gi−1 + fi)

s = ◦p(gn)

Thanks to the correctness of Algorithm 1, we just have
to prove gn = �

p+k
odd (

∑n

i=1 fi).

This property is trivially true for n = 1 since f1 is a
floating-point number of precision p. In order to use
the induction principle, we just have to guarantee that

�
p+k
odd (gi−1 + fi) = �

p+k
odd

i
∑

j=1

fj

 .

Here, let us denote � = �
p+k
odd . Let us consider x ∈ R

and a floating-point f . It is enough to prove that

�(x + f) = �(�(x) + f).

Let us assume that |f | ≥ 2|x| and let us note t =
�(x) + f .

First, if x = �(x), then the result is trivial. We can
now assume that x 6= �(x), therefore �(x) is odd.

• If �(t) is even, then t = �(t). This case is impossi-
ble: as |f | ≥ 2|x|, we have that |f | ≥ 2|�(x)|. There-
fore, t = �(x) + f is representable implies that �(x)

is even as f has p bits and is twice bigger than �(x).
But �(x) cannot be even by the previous assumption.

• Let us assume that �(t) is odd. This means that
�(t) cannot be a power of the radix. Then with the
current hypotheses on �(t), if we prove the inequality
|x+f−�(t)| < ulp(�(t)), it implies the wanted result:
that �(x + f) = �(�(x) + f).

And |x+f−�(t)| ≤ |x+f−t|+|t−�(t)| = |x−�(x)|+
|t − �(t)|. We know that |x − �(x)| < ulp(�(x)).
Let us look at |t − �(t)|. We of course know that
|t−�(t)| < ulp(�(t)), but we also know that t−�(t)
can exactly be represented by an unbounded float with
the exponent e = min(e�(x), ef , e�(t)).

Therefore |t−�(t)| ≤ ulp(�(t))−2e and |x+f−�(t)| <

ulp(�(t)) + ulp(�(x)) − 2e. Due to the definition of
e, we have only left to prove that e�(x) ≤ ef and that
e�(x) ≤ e�(t). We have assumed that |f | ≥ 2|x|, so we
have that |f | ≥ 2|�(x)| and so e�(x) ≤ ef . Moreover
|t| = |�(x) + f | ≥ |f | − |�(x)| ≥ |�(x)|, so e�(x) ≤
e�(t) that ends the proof.

Under the assumption that ∀i, |fi| ≥ 2|gi−1|, we have
a linear algorithm to exactly add any set of floating-
point numbers. This hypothesis is not easy to check:
it can be replaced by ∀i, |fi| ≥ 3|fi−1|.

The proofs of this section are not yet formally proved.
The authors do believe in their correctness and in their
soon formal translation. Note that, as for Algorithm 1,
there will be an hypothesis linking the exponent ranges
of the working and extended precision. This is needed
to guarantee that |f | ≥ 2|x| implies |f | ≥ 2|�p+k

odd (x)|,
for f in working precision.

VI. CONCLUSION

The first algorithm described here is very simple and
can be used in many real-life applications. Neverthe-
less, due to the bad reputation of double rounding, it
is difficult to believe that double rounding may lead to
a correct result. It is therefore essential to guarantee
its validity. We formally proved its correctness with
Coq, even in the unusual cases: power of two, sub-
normal floats, normal/subnormal frontier. All these
cases made the formal proof longer and more difficult
than one may expect at first sight. It is nevertheless
very useful to have formally certified this proof, as the
inequality handling was sometimes tricky and as the
special cases were numerous and difficult.

The second algorithm is also very simple: it sim-
ply adds floating-point number in an extended preci-
sion with rounding to odd. We give some hypotheses
enough to ensure that the final number once rounded
to the working precision is the correctly rounded value
of the sum of these numbers. Although such a method

works well with the addition, it cannot be extended to
the fused multiply-and-add operation: fma(a, x, y) =
◦(a ·x+y). As a consequence, it cannot be directly ap-
plied to obtain a correctly rounded result of Horner’s
polynomial evaluation.

The two algorithms are even more general than what
we presented here. They are not limited to a final
result rounded to nearest even, they can also be ap-
plied to any other realistic rounding (meaning that the
result of a computation is uniquely defined by the ex-
act value of the real result and does not depend on
the machine state). In particular, they handle all the
IEEE-754 standard roundings and the new rounding
to the nearest away from zero defined by the revision
of this standard.

REFERENCES

[BER 04] Bertot Y., Casteran P., Interactive Theorem
Proving and Program Development. Coq’Art : the Calculus
of Inductive Constructions, Texts in Theoretical Computer
Science, Springer Verlag, 2004.

[BOL 04a] Boldo S., Preuves formelles en arithmétiques
à virgule flottante, PhD thesis, Ecole Normale Supérieure
de Lyon, November 2004.

[BOL 04b] Boldo S., Daumas M., Properties of two’s
complement floating point notations, International Jour-
nal on Software Tools for Technology Transfer, vol. 5, n2-3,
p. 237-246, 2004.

[DAU 01] Daumas M., Rideau L., Théry L., A generic
library of floating-point numbers and its application to ex-
act computing, 14th International Conference on Theo-
rem Proving in Higher Order Logics, Edinburgh, Scotland,
p. 169-184, 2001.

[DEM 03] Demmel J. W., Hida Y., Fast and accurate
floating point summation with applications to computa-
tional geometry, Proceedings of the 10th GAMM-IMACS
International Symposium on Scientific Computing, Com-
puter Arithmetic, and Validated Numerics (SCAN 2002),
January 2003.

[GOL 91] Goldberg D., What every computer scientist
should know about floating point arithmetic, ACM Com-
puting Surveys, vol. 23, n1, p. 5-47, 1991.

[HIG 96] Higham N. J., Accuracy and stability of numer-
ical algorithms, SIAM, 1996.

[STE 81] Stevenson D. et al., A proposed standard for
binary floating point arithmetic, IEEE Computer, vol. 14,
n3, p. 51-62, 1981.

[STE 87] Stevenson D. et al., An American national
standard: IEEE standard for binary floating point arith-
metic, ACM SIGPLAN Notices, vol. 22, n2, p. 9-25, 1987.

[Tex04] Texas Instruments, TMS320C3x — User’s guide,
2004.

