Supplementary Information for

Performance of recent density functionals to discriminate between Olefin and Nitrogen Binding to Palladium

Raymond Grüber and Paul Fleurat-Lessard*

Université de Lyon, Institut de Chimie de Lyon, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France

E-mail: paul.fleurat-lessard@ens-lyon.fr

Table of contents

- ΔE and Δd	p2
-for model systems	p2
- for real systems	p4
- to check the influence of the exchange and correlation functionals.	p6
- Electronic energies for model systems as a function of Pd-alkene or Pd-N distance	p7
- Binding energies for model systems as a function of Pd-alkene or Pd-N distance	p8
- $\Delta E = f(\Delta d)$ for the model systems for selected functional families	р9
Influence of dispersion effects	p9
Influence of exact exchange	p9
LYP family	p10
Minesota functionals	p10
- Cartesian coordinates of the model systems and real systems at the B2PLYP/aVTZ level	p11

Reference CCSD(T)/CBS		-9.00	-3.1	206.2	-39.73	209.3	-30.46
		I DA					00.10
SVWN5		-4 34	0.4	202.9	-53 46	202 5	-49 12
		GGA and NG	Δ.	_0_10			
HES		-5.80	-04	205.7	-48 73	206.1	-42 93
HFB		-12 57	-7.8	218.1	-22 43	225.9	-9.86
PBE		-6.96	-0.4	208.2	-38.73	208.6	-31.77
PBE-D2		-4.78	0.2	208.7	-42.11	208.5	-37.33
OPBE		-5.56	2.1	206.2	-31.03	204.1	-25.47
OLYP		-9.06	-0.1	209.6	-27.88	209.7	-18.82
SLYP		-2.30	0.5	201.2	-61.07	200.6	-58.77
BP86		-7.90	-1.1	208.6	-37.70	209.7	-29.80
BP86-D2		-4.87	-0.3	209.2	-42.45	209.5	-37.58
BP86-PFD		-3.44	-6.3	213.8	-43.79	220.2	-40.35
PW91		-7.14	-0.8	208.1	-39.51	208.9	-32.37
BLYP		-10.67	-3.1	211.8	-32.81	214.9	-22.14
BLYP-D2		-7.37	-1.7	212.3	-38.24	214.1	-30.87
B97D		-6.52	-1.7	211.1	-37.80	212.8	-31.28
B97D3		-7.12	-2.1	209.9	-38.41	212.0	-31.29
HCTH\407		-9.35	0.0	209.5	-30.78	209.5	-21.43
SOGGA11		-6.49	0.8	208.7	-28.32	207.8	-21.83
N12		-7.08	-0.1	206.6	-37.49	206.8	-30.41
	Meta	a-GGA and me	ta-NGA				
TPSS		-7.64	-0.6	208.5	-37.82	209.1	-30.18
M06-L		-6.46	1.5	210.5	-36.15	209.0	-29.69
M11L		-9.86	-5.5	205.9	-33.22	211.3	-23.36
t-HCTH		-8.99	-1.5	208.2	-34.32	209.6	-25.32
MN12-L		-9.00	-3.3	203.7	-40.67	207.1	-31.67
	D	ispersion +D3	B(BJ)				
B3LYP-D3		-9.17	-4.5	208.9	-39.02	213.4	-29.84
B3PW91-D3		-6.68	-2.5	206.6	-41.39	209.1	-34.71
BLYP-D3		-7.71	-1.9	212.0	-38.41	213.9	-30.70
BMK-D3		-10.17	-0.9	210.4	-38.68	211.3	-28.52
BP86-D3		-5.14	-0.8	208.3	-42.34	209.1	-37.20
CAM-B3LYP-D3		-11.08	-5.4	206.9	-40.36	212.3	-29.27
LC-@PBE-D3		-8.33	-2.5	205.0	-42.33	207.5	-33.99
PBE1PBE-D3		-7.41	-2.6	205.9	-41.34	208.5	-33.94
B2PLYP-D3		-7.30	-2.1	207.2	-39.62	209.4	-32.32
		Hybrid GGA	1				
O3LYP	11.61	-9.97	-1.6	208.4	-29.77	209.9	-19.80
<i>τ</i> -HCTH-hyb	15	-9.24	-3.1	207.5	-37.57	210.6	-28.33
B3LYP		-11.77	-5.2	209.1	-34.40	214.3	-22.63
Rev-B3LYP		-11.31	-4.8	208.5	-35.90	213.3	-24.58
B3PW91	20	-9.48	-2.9	207.0	-36.53	209.9	-27.04
B3P86		-9.31	-3.0	206.4	-38.88	209.4	-29.57
mPW3PBE		-9.06	-2.7	206.6	-38.04	209.3	-28.98
B97-1	21	-9.85	-4.0	208.2	-35.79	212.2	-25.94
B97-2		-9.83	-3.3	207.4	-34.58	210.7	-24.74
X3LYP	21.8	-11.75	-5.3	208.8	-35.29	214.2	-23.54
898	21.98	-10.36	-4.3	208.0	-35.53	212.3	-25.17
	23	-9.10	-2.8	206.5	-37.88	209.3	-28.77
	05	-4.65	-8.7	211.4	-43.75	220.1	-39.10
PBEU mBW/1LVP	20	-0.03	-2.8	200.1	-38.82	208.9	-30.00
mDW/1DPE	20	-12.19	-0.2	209.0	-34.99	210.2	-22.00
SOCCA11-Y	20	-9.00	-3.0	200.1	-30.04	209.1	-20.90
MPW/1K	42.8	-10.02	-5.9	207.1	-30.59	210.0	-20.11
BH&H	72.0		-5.0	203.0	-48.65	210.0	-21.04
BH&HI YP	50	-13.89	-0.0	202.2	-34 72	216.4	-20.83
Reference CCSD(T)/CBS		-9.00	_3.1	206.2	_39.73	209.3	_30.46
		-3.00	-J.1	200.2	00.10	200.0	-50.40

Table S1: Relative energies (ΔE in kcal/mol), distance difference, Pd-G and Pd-N distances (in pm) for the model molecules.

Model systems							
				Azane	complex	Alkene	complex
Functional	% echange (attenuation)	∆E=E(azane) –E(ethylene) (kcal/mol)	∆d=d(PdN) -d(PdG) (pm)	d(Pd-N) (pm)	Binding E (kcal/mol)	d(Pd-G) (pm)	Binding E (kcal/mol)
Reference CCSD(T)/CBS		-9.00	-3.1	206.2	-39.73	209.3	-30.46
		Hybrid meta-G	GA				
TPSSh	10	-8.37	-1.5	207.6	-37.80	209.2	-29.43
M06	27	-7.24	-4.6	209.3	-37.87	213.9	-30.63
B1B95	28	-8.76	-2.7	206.6	-36.49	209.4	-27.73
MPW1B95	31	-8.72	-3.0	206.2	-37.85	209.2	-29.13
BMK	42	-12.64	-1.7	210.1	-35.00	211.8	-22.36
MPW1B1K	44	-9.52	-4.4	205.2	-38.14	209.6	-28.63
M06-2X	54	-11.38	-6.0	209.8	-35.96	215.7	-24.58
M06-HF	100	-12.32	-9.4	205.9	-38.87	215.3	-26.55
	Rai	nge separated	Hybrid				
LC-BP86		-9.64	-2.6	201.9	-48.50	204.5	-38.86
LC-PBE	0 100 (0 17)	-9.25	-2.1	201.9	-46.63	203.9	-37.38
LC-@PBE	0-100 (0,47)	-10.04	-2.7	205.2	-39.48	207.9	-29.44
LC-BLYP		-12.93	-5.0	204.4	-43.12	209.4	-30.19
CAM-B3LYP	19-65 (0,33)	-12.57	-5.6	207.0	-37.89	212.6	-25.32
LC-TPSS	0-100 (0,47)	-9.78	-2.5	202.5	-45.00	205.0	-35.22
<i>ω</i> B97	0-100 (0,40)	-10.70	-3.5	207.3	-39.91	210.8	-29.21
<i>ω</i> B97 <i>X</i>	15,77-100 (0,30)	-11.18	-4.6	207.3	-39.31	211.9	-28.13
wB97X-D	22,20-100 (0,20)	-9.69	-4.4	207.7	-39.10	212.1	-29.42
M11	42,8-100 (0,25)	-9.62	-2.5	207.7	-35.52	210.2	-25.90
HISSbPBE	0-60-0 (0,84,0,20)	-10.00	-4.2	205.5	-39.23	209.6	-29.22
HSE06	25-0 (0,11)	-9.07	-3.1	206.6	-39.05	209.7	-29.97
N12-SX	25-0 (0,11)	-8.53	-2.0	206.0	-38.28	208.0	-29.75
MN12-SX	25-0 (0,11)	-9.49	-4.0	205.4	-36.14	209.4	-26.66
		Double hybr	id				
B2PLYP		-8.72	-2.3	207.5	-37.32	209.8	-28.60
B2PLYP-D3		-7.30	-2.1	207.2	-39.62	209.4	-32.32
mPW2PLYP		-9.28	-3.1	207.2	-37.91	210.3	-28.63
B2GPPLYP		-8.12	-2.1	206.4	-38.61	208.5	-30.48
B2GPPLYP-D3		-6.31	-1.9	206.1	-41.60	208.0	-35.28
		Ab initio					
HF		0.00	-20.1	210.0	-24.78	230.2	-6.31
MP2/aVTZ		0.10	2.8	202.6	-45.39	199.8	-45.49
MP2/aVQZ		-0.20	3.4	202.4	-45.54	199.0	-45.34
MP2/aV5Z		-0.20	6.7	202.3	-45.46	195.6	-45.27
MP3		-12.59	-7.8	206.0	-37.18	213.8	-24.58
MP2.5		-6.77	-2.0	204.1	-41.25	206.1	-34.48
MP2.68		-9.01	-3.9	204.9	-39.75	208.8	-30.73
SCS-MP2		-4.70	0.6	204.4	-40.71	203.7	-36.00
SCS-MP3		-7.96	-1.8	205.4	-38.67	207.2	-30.71
CCSD/aVTZ		-11.29	-5.1	206.1	-37.84	211.2	-26.55
CCSD(T)/aVTZ		-8.77	-3.1	206.2	-39.73	209.3	-30.96
CCSD(T)/CBS[Q/5]		-9.26	-3.3	205.8	-39.73	209.0	-30.46
Reference CCSD(T)/CBS		-9.00	-3.1	206.2	-39.73	209.3	-30.71

Table S1 (continued): Relative energies (ΔE in kcal/mol), distance difference, Pd-G and Pd-N distances (in pm) for the model molecules.

	2-iodo-N	l-allyl-aniline			
				Amino complex	Alkene complex
		$\Delta E = E(amino)$	∆d=d(PdN)		
	% echange	– E(ethylene)	-d(PdG)	d(Pd-N)	d(Pd-G)
Functional	(attenuation)	(kcal/mol)	(pm) ´	`(pm) ́	`(pm) ́
Reference		1.58	5.2	215.9	210.7
		LDA	1		
SVWN5		11.47	7.7	210.8	203.1
	GGA	and NGA			
HFS		7.36	6.8	213.8	207.0
HFB		-8.08	-4.1	230.7	234.8
PBE		4.28	7.7	217.8	210.0
PBE-D2		5.11	6.5	216.7	210.2
OPBE		6.58	12.4	216.0	203.5
OLYP		-0.20	10.8	221.5	210.7
SLYP		14.82	7.5	208.5	201.0
BP86		2.95	6.7	218.2	211.4
BP86-D2		4.14	4.9	216.6	211.8
PW91		4.10	7.3	217.7	210.5
BLYP		-2.03	4.2	223.1	218.9
BLYP-D2		-0.06	1.9	220.8	218.9
B97D		0.11	2.8	219.6	216.9
B97D3		-0.07	3.7	218.8	215.1
HCTH 407		-0.89	10.7	221.8	211.1
SOGGA11		5.04	9.2	217.5	208.3
N12		5.67	9.7	217.1	207.4
	Meta-GGA	and meta-NG	A		
TPSS		2.63	5.5	216.7	211.2
M06-L		2.53	8.4	220.3	211.9
M11-L		0.67	-3.1	214.8	217.8
τ_ΗCTΗ		1 22	7.8	210.6	211.8
		3.50	7.0	219.0	211.0
	Dispers	sion +D3(BJ)	-0.1	200.0	214.3
BP86-D3	-	3.22	5.8	216.3	210.6
BLYP-D3		-0.86	2.5	220.3	217.7
B3LYP-D3		-1.05	0.2	217.8	217.6
B3PW91-D3		2.53	3.9	214.7	210.8
PBE1PBE-D3		3.35	4.4	214.4	210.1
BMK-D3		-4.50	-2.4	214.7	217.1
CAM-B3LYP-D3		-2.17	-0.2	215.8	216.0
LC-ωPBE-D3		1.66	3.7	212.1	208.4
	Hyb	orid GGA	1		
O3LYP	11.61	-0.37	8.3	219.8	211.5
au-HCTH-hyb	15	0.95	4.3	217.7	213.4
B3LYP		-1.96	1.3	220.0	218.7
B3PW91		2.06	4.8	216.7	211.9
B3P86	- 20	2.55	4.4	215.9	211.5
mPW3PBE	1	2.72	5.0	216.1	211.2
B97-1	04	0.16	3.2	218.3	215.0
B97-2	21	0.62	4.7	217.8	213.1
X3LYP	21.8	-1.78	1.0	219.5	218.6
B98	21.98	-0.38	2.5	218.1	215.6
APF	00	2.79	4.8	215.9	211.1
APFD	23	2.24	-5.5	218.8	224.3
PBE0	25	3.31	4.9	215.4	210.5
mPW1LYP	25	-2.47	-0.5	220.0	220.4
mPW1PBE	25	3.04	4.7	215.5	210.7
SOGGA11-X	40.15	-0.12	1.1	217.6	216.4
MPW1K	42.8	1.91	2.1	214.5	212.4
BH&H	50	4.27	1.0	210.4	209.5
BH&HLYP	50	-3.41	-5.2	218.0	223.3
Reference		1.58	52	215.9	210 7

1.585.2215.9210.7Table S2: Relative energies (ΔE in kcal/mol), distance difference, Pd-G and Pd-N distances (in pm) for2-iodo-N-allyl-aniline.

	2-iodo-N-	allyl-aniline			
				Amino complex	Alkene complex
Functional	% echange (attenuation)	∆E=E(amino) – E(ethylene) (kcal/mol)	∆d=d(PdN) -d(PdG) (pm)	d(Pd-N) (pm)	d(Pd-G) (pm)
Reference		1.58	5.2	215.9	210.7
	Hybrid I	neta-GGA			
TPSSh	10	2.38	4.6	216.0	211.4
M06	27	2.21	3.1	218.3	215.3
B1B95	28	3.18	3.7	215.2	211.5
MPW1B95	31	3.33	3.3	214.8	211.5
BMK	42	-4.96	-2.0	216.3	218.4
MPW1B1K	44	2.86	1.6	213.8	212.1
M06-2X	54	-0.75	-3.5	221.9	225.3
M06-HF	100	-1.43	-8.2	216.4	224.6
	Range sepa	arated Hybrid	1		
LC-BP86		3.88	3.5	208.7	205.2
LC-PBE		4.70	4.5	208.7	204.3
LC-ωPBE	0-100 (0,47)	1 68	42	213 1	208.9
LC-BLYP		-1.88	0.6	212.6	212.0
CAM-B3LYP	19-65 (0.33)	-2.16	0.2	216.7	216.4
LC-TPSS	0-100 (0,47)	3.17	3.6	209.4	205.8
<i>ω</i> B97	0-100 (0,40)	-1.75	2.1	216.5	214.4
<i>ω</i> B97X	15,77-100 (0,30)	-1.65	1.4	216.7	215.3
<i>ω</i> B97X-D	22,20-100 (0,20)	-1.27	2.1	216.2	214.0
M11	42,8-100 (0,25)	-0.07	-0.3	216.5	216.8
HISSbPBE	0-60-0 (0,84,0,20)	2.44	2.8	214.6	211.8
HSE06	25-0 (0,11)	2.86	4.3	216.0	211.7
N12-SX	25-0 (0,11)	4.06	5.9	215.1	209.2
MN12-SX	25-0 (0,11)	-0.87	-1.5	213.2	214.7
	Ab	initio			
HF		-8.09			
MP2		11.69			
MP3		-3.22			
MP2.5		4.24			
MP2.68		1.55			
SCS-MP2		5.47			
SCS-MP3		1.70			
	Doubl	e hybrid			
B2PLYP		1.80	5.2	215.9	210.7
mPW2PLYP		1.37	4.2	215.6	211.5
Reference		1.58	5.2	215.9	210.7

Table S2 (continued): Relative energies (ΔE in kcal/mol), distance difference, Pd-G and Pd-N distances (in pm) for 2-iodo-N-allyl-aniline.

	Ма	odel system	ns				
			Azane o	complex	Alkene complex		
	∆E=E(azane)	$\Delta d=d(PdN)$					
Functional	 –E(ethylene) (kcal/mol) 	-d(PdG) (pm)	d(Pd-N) (pm)	Binding E (kcal/mol)	d(Pd-G) (pm)	Binding E (kcal/mol)	
Reference CCSD(T)/CBS	-9.00	-3.1	206.2	-39.73	209.3	-30.46	
		GGA					
OLYP	-9.06	-0.1	209.6	-27.89	209.7	-18.82	
OPBE	-5.56	2.1	206.2	-31.02	204.1	-25.47	
OPW91	-5.84	1.9	206.5	-30.75	204.6	-24.91	
OP86	-5.86	1.5	206.3	-32.84	204.8	-26.98	
PW91LYP	-10.00	-3.0	211.0	-36.52	214.0	-26.51	
PW91PBE	-6.87	-0.7	207.8	-39.78	208.5	-32.91	
PW91	-7.14	-0.8	208.1	-39.51	208.9	-32.38	
PW91P86	-7.18	-1.2	207.9	-41.52	209.1	-34.34	
PBELYP	-10.10	-2.9	211.5	-35.51	214.4	-25.4	
PBE	-6.96	-0.4	208.2	-38.73	208.6	-31.71	
PBEPW91	-7.21	-0.7	208.5	-38.46	209.2	-31.25	
PBEP86	-7.26	-1.0	208.3	-40.46	209.3	-33.7	
BLYP	-10.67	-3.1	211.8	-32.81	214.9	-22.15	
BPBE	-7.59	-0.7	208.5	-35.96	209.2	-28.37	
BPW91	-7.84	-0.8	208.8	-35.70	209.6	-27.85	
BP86	-7.90	-1.1	208.6	-37.70	209.7	-29.8	

2	?-iodo-N-allyl-a	2-iodo-N-allyl-aniline						
			Amino complex	Alkene complex				
Functional	∆E=E(azane) –E(ethylene) (kcal/mol)	∆d=d(PdN) -d(PdG) (pm)	d(Pd-N) (pm)	d(Pd-G) (pm)				
Reference	1.58	5.2	215.9	210.7				
	GGA	· · · · · · ·						
OLYP	-0.20	10.8	221.5	210.7				
OPBE	4.28	7.7	217.8	210.0				
OPW91	6.01	12.4	216.4	204.1				
OP86	5.94	11.5	216.0	204.4				
PW91LYP	-1.00	4.0	222.0	218.0				
PW91PBE	4.56	7.5	217.3	209.8				
PW91	4.10	7.3	217.7	210.5				
<i>PW91P86</i>	3.99	6.6	217.4	210.8				
PBELYP	-1.29	4.3	222.6	218.4				
PBE	4.28	7.7	217.8	210.0				
PBEPW91	3.82	7.6	218.2	210.6				
PBEP86	3.72	6.8	217.9	211.0				
BLYP	-2.03	4.2	223.1	218.9				
BPBE	3.48	7.7	218.1	210.5				
BPW91	3.03	7.5	218.6	211.1				
BP86	2.95	6.7	218.2	211.4				

Table S3: Influence of the exchange and correlation functionals for the model systems and 2-iodo-N-allyl-aniline. Relative energies (ΔE in kcal/mol), distance difference, Pd-G and Pd-N distances (in pm).

Electronic energy for the Alkene complex (in Hartree)

dPdC	2.00	2.05	2.10	2.15	2.20	2.25	2.30	2.35	2.40
dPdG	1.87	1.93	1.98	2.04	2.09	2.14	2.20	2.25	2.30
B2PLYP/aVTZ	-1351.97068	-1351.97643	-1351.98005	-1351.98200	-1351.98266	-1351.98238	-1351.98137	-1351.97986	-1351.97800
HF/aVTZ	-1349.10509	-1349.11353	-1349.12004	-1349.12491	-1349.12853	-1349.13100	-1349.13256	-1349.13350	-1349.13396
MP2/aVTZ	-1350.46398	-1350.46702	-1350.46809	-1350.46771	-1350.46623	-1350.46408	-1350.46141	-1350.45831	-1350.45495
MP2/aVQZ	-1350.56966	-1350.57260	-1350.57360	-1350.57315	-1350.57162	-1350.56943	-1350.56673	-1350.56360	
MP2/aV5Z	-1350.61186	-1350.61478	-1350.61575	-1350.61529	-1350.61375	-1350.61155	-1350.60886	-1350.60573	
MP2 CBS from MP2(Q/5)	-1346.09856	-1346.10984	-1346.11937	-1346.12731	-1346.13403	-1346.13940	-1346.14364	-1346.14716	
MP3/aVTZ	-1350.45862	-1350.46453	-1350.46856	-1350.47107	-1350.47240	-1350.47280	-1350.47246	-1350.47156	-1350.47025
MP2,5/VTZ	-1350.46130	-1350.46577	-1350.46832	-1350.46939	-1350.46932	-1350.46844	-1350.46693	-1350.46494	-1350.46260
MP2,68/aVTZ	-1350.46034	-1350.46533	-1350.46841	-1350.46999	-1350.47043	-1350.47001	-1350.46892	-1350.46732	-1350.46535
SCS-MP2/aVTZ	-1350.42069	-1350.42458	-1350.42655	-1350.42708	-1350.42652	-1350.42524	-1350.42340	-1350.42111	-1350.41854
SCS-MP3/aVTZ	-1350.41935	-1350.42396	-1350.42667	-1350.42792	-1350.42806	-1350.42742	-1350.42616	-1350.42442	-1350.42236
MP3 SCS (c=0,5)	-1350.41667	-1350.42271	-1350.42690	-1350.42960	-1350.43115	-1350.43178	-1350.43168	-1350.43104	-1350.43002
CCSD/aVTZ			-1350.49123	-1350.49335	-1350.49425	-1350.49422	-1350.49345	-1350.49215	
			1350 56200	1350 56475	1350 56533	1350 56407	1350 56388	1350 56225	

Electronic energy for the Amino complex (in Hartree)

dPdN	1.85	1.90	1.95	2.00	2.05	2.10	2.15	2.20	2.25	2.30
B2PLYP/aVTZ	-1329.98169	-1329.98864	-1329.99322	-1329.99591	-1329.99710	-1329.99711	-1329.99619	-1329.99458	-1329.99243	-1329.98992
HF/aVTZ	-1327.30415	-1327.31172	-1327.31684	-1327.32007	-1327.32179	-1327.32231	-1327.32192	-1327.32081	-1327.31914	-1327.31708
MP2/aVTZ	-1328.51691	-1328.52253	-1328.52587	-1328.52736	-1328.52741	-1328.52633	-1328.52438	-1328.52180	-1328.51875	-1328.51539
MP2/aVQZ		-1328.62292	-1328.62615	-1328.62754	-1328.62750	-1328.62635	-1328.62433	-1328.62170		
MP2/aV5Z		-1328.66334	-1328.66655	-1328.66792	-1328.66787	-1328.66670	-1328.66468	-1328.66205		
MP2 CBS from MP2(Q/5)		-1324.50315	-1324.50883	-1324.51264	-1324.51490	-1324.51596	-1324.51613	-1324.51555		
MP3/aVTZ	-1328.52730	-1328.53383	-1328.53800	-1328.54031	-1328.54113	-1328.54080	-1328.53958	-1328.53767	-1328.53524	-1328.53246
MP2,5/VTZ	-1328.52211	-1328.52818	-1328.53194	-1328.53383	-1328.53427	-1328.53357	-1328.53198	-1328.52974	-1328.52700	-1328.52393
MP2,68/aVTZ	-1328.52398	-1328.53022	-1328.53412	-1328.53616	-1328.53674	-1328.53617	-1328.53472	-1328.53260	-1328.52997	-1328.52700
SCS-MP2/aVTZ	-1328.47796	-1328.48410	-1328.48793	-1328.48989	-1328.49040	-1328.48977	-1328.48824	-1328.48606	-1328.48338	-1328.48037
SCS-MP3/aVTZ	-1328.48056	-1328.48693	-1328.49096	-1328.49313	-1328.49383	-1328.49338	-1328.49204	-1328.49003	-1328.48751	-1328.48463
CCSD/aVTZ			-1328.56	-1328.56	-1328.56	-1328.56	-1328.56	-1328.56		
CCSD(T)/aVTZ			-1328.61646	-1328.61887	-1328.61979	-1328.61952	-1328.61834	-1328.61646		

		Ele	ctronic ene	ergies (in Hartree
	[Pd(PH3)2Cl]+	C2H4	NH3	
HF/aVTZ	-1271.05741			1
HF/aVQZ	-1271.07149			
MP2/aVDZ	-1271.98980			
MP2/aVTZ	-1271.98980	-78.40578	-56.46546	
MP2/aVQZ	-1272.07242	-78.42895	-56.48271	
MP2/aV5Z	-1272.10682	-78.43687	-56.48877	
MP2/CBS from MP2(Q/5)	-1272.14292	-78.44518	-56.49514	
CCSD/aVTZ	-1272.02258	-78.42947	-56.47707	
CCSD(T)/VTZ	-1272.07115	-78.44487	-56.48535	1

Table S4: Electronic energies (in Hartree) for the model systems. For all ab initio methods, single points were performed on B2PLYP/aVTZ geometries. For the **ModA** complex, both Pd-C distances were frozen at the same value. As the complex is symmetric, this does not introduce artificial constraint. The Pd-G distance was then computed and is given in the upper table. For the **ModN** complex, the Pd-N distance was frozen.

Each curve was fitted using a third order polynomial that provided the energy and distance of the minimum. These parameters are reported in Table S1.

Figure SI-1: Binding energies (in kcal/mol) for alkene (as a function of the Pd-G distance) and azane (as a function of the Pd-N distance) complexes at *ab initio* level. The binding energies are computed using energies from Table S4 for $[Pd(PH_3)_2Cl]^+$, C_2H_4 and NH₃.

Figure SI-2: Binding energies for alkene and amino complexes for B2PLY/aVTZ, SCS-MP3/aVTZ, CCSD(T)/aVTZ, CCSD(T)/CBS and MP2.68/aVTZ.

Figure SI-3: Influence of dispersion effect on ΔE and Δd . Symbol code: \blacksquare Reference, \triangleright GGA, \triangleleft meta GGA, \bigcirc RSH, \bowtie hybrid GGA, \blacktriangle hybrid meta GGA, \blacksquare double hybrid, *ab initio.

Figure SI-4: Influence of exact exchange on ΔE and Δd . Symbol code: **Symbol code: Reference**, **GGA**, **Meta GGA**, **Reference**, **Meta GGA**, **Meta GGA**, **Meta GGA**.

Figure SI-5: ΔE as a function of Δd for methods using the LYP correlation functional. Symbol code: Reference, \triangleright GGA, \bullet RSH, \Join hybrid GGA, \blacktriangle hybrid meta GGA, \blacksquare double hybrid.

Figure SI-6: ΔE as a function of Δd for the Minesota functionals. Symbol code: Reference, NGA, meta GGA/NGA, RSH, Nybrid GGA, X hybrid meta GGA, double hybrid, *ab initio.

ModA

En	ergy : -1351	.535629	
Н	2.040631	2.281767	0.974939
Р	0.743391	3.652381	-1.423268
Cl	0.964445	1.404762	-3.627639
Pd	0.915338	1.338362	-1.307386
Η	-0.442727	2.094612	0.917297
С	1.558542	1.330182	0.805080
С	0.183782	1.226576	0.773160
Н	2.179481	0.454574	0.925588
Р	1.094304	-0.965496	-1.547997
Η	0.058669	-1.536378	-2.294892
Η	1.129060	-1.777987	-0.405609
Н	2.236787	-1.372542	-2.244656
Η	-0.369609	4.099593	-2.142664
Η	1.808460	4.264070	-2.092412
Η	0.659724	4.398307	-0.238787
Н	-0.303877	0.267419	0.867946

ModN

En	ergy : -1329.	.595367	
Р	3.112600	1.592623	-1.626454
Cl	0.751361	1.434207	-3.701197
Pd	0.812261	1.484724	-1.397116
Р	-1.495994	1.299539	-1.488703
Η	-2.137503	2.312499	-2.210466
Η	-2.249308	1.270760	-0.304947
Η	-1.950455	0.148880	-2.142836
Η	3.578881	2.669480	-2.388934
Η	3.674078	0.500210	-2.297109
Η	3.927788	1.676368	-0.486858
Ν	0.847760	1.529478	0.676680
Η	0.450463	0.679444	1.064005
Η	0.302533	2.309711	1.029456
Η	1.779936	1.622579	1.063280

2-iodo-N-allyl-amine – Alkene complex

Energy : -1208.687042			
Η	4.568950	0.280047	-0.369613
Н	0.637238	-2.373756	-1.989969
Н	-1.308439	-3.861863	-2.243582
Н	1.571152	2.189234	-2.176660
Η	3.881521	2.311723	-0.431195
С	-0.292505	-2.113962	-1.503238
Р	3.478917	1.053629	0.055473
Ι	2.255153	-1.956894	0.957236
С	-1.391844	-2.967946	-1.640613
Pd	1.344848	0.142797	-0.387887
Η	-0.579421	1.051150	-2.108163
Η	3.811750	1.213665	1.409395
С	1.010091	2.150870	-1.253481
С	-0.368877	-0.971483	-0.714765
С	-0.209580	1.505958	-1.201665

С	-2.573795	-2.670145	-0.974950
Η	1.276326	2.872569	-0.493487
Η	-3.425955	-3.331565	-1.051340
С	-1.588710	-0.627585	-0.104340
С	-2.679007	-1.502507	-0.220715
С	-1.217224	1.776882	-0.123130
Η	-2.088410	2.243480	-0.606523
Ν	-1.659744	0.579879	0.613819
Η	-0.815928	2.495492	0.592221
Η	-3.616406	-1.270251	0.262680
С	-2.865682	0.847419	1.376324
Η	-2.707561	1.746939	1.968585
Η	-3.070006	0.022695	2.055031
Η	-3.747554	1.009032	0.741947

2-iodo-N-allyl-amine – Amino complex Energy : -1208 684211

Ene	ergy : -1208	3.684211	
Η	-1.326604	-3.822225	-2.196763
Η	-3.714219	-3.933271	-1.551921
Η	-0.707480	2.147143	-4.369182
С	-1.779002	-3.003962	-1.653035
Ι	1.914129	-2.953737	-2.700715
С	-3.128275	-3.062910	-1.287756
Η	-1.981967	0.772626	-2.818825
С	-0.528112	2.198138	-3.304948
С	-1.048158	-1.874209	-1.300378
С	-1.220576	1.448861	-2.450272
С	-3.737590	-2.019290	-0.587608
Н	0.235459	2.884993	-2.963584
Н	-4.781917	-2.093087	-0.319164
С	-1.677471	-0.854217	-0.606226
С	-3.011446	-0.880287	-0.229991
С	-1.038755	1.517586	-0.968704
Н	-1.956531	1.876018	-0.489369
Ν	-0.685653	0.204447	-0.355887
Н	-0.238455	2.212542	-0.719269
Н	-3.481371	-0.070903	0.311973
С	-0.406585	0.380957	1.086061
Н	0.441913	1.050726	1.203363
Н	-0.168220	-0.584174	1.521053
Н	-1.273740	0.807005	1.595818
Pd	0.751980	-1.012934	-1.409741
Р	2.751657	0.246035	-1.378422
Н	3.889823	-0.337961	-0.796330
Н	2.810403	1.501664	-0.742551
Н	3.312357	0.610391	-2.614850

2-iodo-N-allyl-amine – Interconversion TS

Energy : -1208.666885			
Η	-0.175308	-2.605923	-1.291258
Η	-2.216621	-3.980282	-1.122618
Η	-0.007802	2.366793	-2.685520
С	-1.055353	-2.199125	-0.814258

Ι	2.223681	-1.185476	0.110208
С	-2.209514	-2.980947	-0.708029
Η	-1.882031	0.894176	-2.169228
С	-0.614472	2.526412	-1.805800
С	-1.051508	-0.910945	-0.287187
С	-1.644301	1.717362	-1.510005
С	-3.342932	-2.492891	-0.060910
Η	-0.407865	3.407085	-1.213134
Η	-4.222080	-3.114951	0.033214
С	-2.201861	-0.421534	0.330147
С	-3.349149	-1.199742	0.462222
С	-2.494516	1.905745	-0.291969
Η	-3.556899	1.772808	-0.529016
Ν	-2.072218	0.952718	0.762810
Η	-2.354067	2.909123	0.108063
Η	-4.229791	-0.817649	0.960190
С	-2.695325	1.257057	2.051577
Η	-2.404614	2.260875	2.355005
Η	-2.341377	0.546911	2.794557
Η	-3.789015	1.213450	2.013293
Pd	0.304232	0.562903	-0.094775
Р	1.879153	2.262351	0.414099
Η	2.627560	2.091805	1.590666
Η	1.510923	3.610737	0.593602
Η	2.942069	2.454712	-0.485670