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Abstract 
 

This thesis is concerned with the growth and dissolution of gypsum and 

analogous crystalline materials, with the aim of understanding the kinetic and 

mechanistic processes at the mineral-solution interface. The research 

conducted was a collaborative project sponsored by Saint-Gobain Gypsum. 

 

First, an image processing (IP) software package was developed to meet highly 

specialised IP needs and expedite the extraction of vital surface information 

from images produced in the growth and dissolution studies carried out in this 

thesis. 

 

A simple but powerful morphological analysis of characteristic etch pit features 

formed on the basal plane of gypsum was proposed, to aid the determination of 

intrinsic dissolution kinetics. Limiting the study to short times produced 

microscopic active features, which exhibited high and quantitative mass 

transport rates.  At early times, the reaction was surface controlled, with the 

edge planes dominating the process, revealing anisotropic step propagation 

kinetics. With time, an increased contribution from mass transport was 

observed, suggesting that at later times, the basal plane dominated reaction 

kinetics. Common ion effects indicated a greater impact of Ca2+ than SO42- in 

reducing dissolution rates while inert ions enhanced dissolution in a direction-

specific way. With this approach, microscopic phenomena were related to 

macroscopic measurements thus reconciling experimental length scales. 

 

Dissolution of the basal (010) and edge (001) surfaces of gypsum and 

polycrystalline anhydrite, were probed at the bulk scale by coupling the channel 

flow cell (CFC) technique which displays high mass transport rates, with off-line 

spectrometric measurements of dissolved Ca2+. Quantitative modelling of the 

diffusion-reaction within the CFC yielded a linear rate law for the dissolution 

process. Rates from the basal plane and anhydrite were found to be consistent 

with other bulk measurements, while the highly reactive edge plane exhibited 
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high rates indicating a transport-limited process. Sodium trimetaphosphate, a 

common humid-creep inhibitor was found to significantly retard basal plane 

dissolution rates. Further CFC studies were carried out on industrially-relevant, 

chemically modified CaSO4 based materials, using a simple flux approach. It was 

found that models proposing a dissolution-precipitation pathway as the mode 

of action of humid-creep inhibitors were less plausible than those proposing a 

surface binding pathway. 

 

Finally, the influence of solution stoichiometry,  2 2

4Ca SO
r a a  on the growth 

kinetics of microscopic gypsum crystals was determined at a constant 

supersaturation. Crystal growth was found to be entirely controlled by surface 

kinetics over the range of r, with the edge planes dominating the process. The 

highest lateral rates were found at r = 1, diminishing sharply at r ≠ 1, and 

indicating strong plane-specific dependence on Ca2+ and SO42- availability. 

Additionally, dramatic changes in the morphology of grown crystals were 

observed. Propagation of steps on the basal face revealed a complex 

polynuclear layer-by-layer growth process for this surface. Macroscopic growth 

rates compared well to previous bulk measurements indicating that the 

approach used provided a comprehensive multi-scale view of gypsum growth 

processes. 
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Chapter 1                                                    
Introduction 

 

The primary aim of this thesis is to investigate crystal growth and 

dissolution processes with particular emphasis on gypsum (CaSO4.2H2O). This 

chapter outlines the fundamental processes involved in crystal growth and 

dissolution and describes the associated thermodynamic and kinetic 

considerations. In addition, a critical review of gypsum growth and dissolution 

studies is provided and the need for a multi-scale approach which reconciles 

perceived discrepancies between local and bulk studies is highlighted. Finally 

the basic principles of some of the techniques used in this thesis are described. 

 

1.1. Gypsum Crystallography 

Gypsum (CaSO4.2H2O) is a crystal form of hydrated calcium sulphate and 

can be found in large quantities in underlying deposits. 1 The crystal structure 

of gypsum was first deduced by Atoji and Rundle 2 and later refined by Cole and 

Lancucki 3 using X-ray diffraction data. Gypsum exhibits a monoclinic prismatic 

structure (space group C2/c)  as shown in Figure 1.1 (a), and may be described 

as repeating layers of Ca2+ and SO42- units perpendicular to the b axis.4 The 

lattice parameters are; a = 5.679 Å, b = 15.202 Å, c = 6.522 Å while α = γ = 90o, 

and β = 118.43o. A layer of Ca2+ is sandwiched between two SO42- layers such 

that each SO42- is tetrahedrally bound to four Ca2+ atoms 4 as observed in Figure 

1.1(b). The arrangement is such that each plane of Ca2+ is between two SO42- 

groups with H2O molecules held between the Ca2+ and SO42- units, linking the 
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SO42- planes through weak H-bonding. This arrangement allows for the perfect 

cleavage of (010) faces (Figure 1.1(c)) on gypsum crystals with a typical 

monolayer height of ~0.8 nm comprising of a single CaSO4 bilayer.3  

 

 

Figure 1.1: (a) Gypsum monoclinic prismatic morphology, (b) unit cell with the main 

crystallographic directions indicated and the interspaced H2O layer shown, and (c) the 

atomic structure of the (010) surface. 

 

The Periodic Bond Chains (PBCs) (see section 4.3 for further 

information) on gypsum crystal along the [100] and [001] directions are of 

significance particularly in gypsum growth and dissolution studies. Figure 1.2 

illustrates the atomic arrangement in (a) [010] and (b) [001] monolayer steps 
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as well as (c) along the [100] direction. Atomic stacking follows a staggered 

arrangement of similar ions, i.e. from one Ca atom to a contiguous Ca atom, in 

[100] while in [001], they lie directly on top of each other.4 This atomic 

arrangement suggests that different faces may exhibit different reactivity when 

probing gypsum crystal growth / dissolution behaviour.  

 

 

Figure 1.2: Atomic stacking along the (a) [100] and (b) [001] directions. 
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1.2. Applications of Gypsum  

In addition to sedimentation, gypsum is also formed as a by product of 

nuclear power production.5-7 Due to the physico-chemical properties exhibited 

by the mineral, gypsum is extensively used in the building and construction 

industry. The universal applications of gypsum based products have attracted 

huge demand as highlighted by global mining output of ~146 million metric 

tonnes in 2010. 8  

 In addition, gypsum plays a role in the formation of mineral scaling and 

impacts the field of geochemistry. In this section, the role of gypsum in these 

fields will be discussed. The focus of the discussion will be the growth and 

dissolution of gypsum, which is the central theme connecting all these fields and 

applications and the topic of this thesis. 

1.2.1 Calcination 

One of the most popular applications of gypsum is in the manufacture of 

plaster products. Prior to the production of these materials, gypsum undergoes 

a calcination process which involves exposing it to elevated temperatures for 

prolonged periods. 9 Naturally, this process causes the expulsion of H2O from 

the crystalline matrix resulting in the decomposition of the crystal lattice 

structure and the formation of the meta-stable hemihydrate derivative 

(CaSO4.0.5H2O).10,11 Further dehydration leads to the formation of anhydrite 

(CaSO4).12,13 Phase transformation caused by the calcination process cause 

drastic changes to the mineral structure and consequently, to physico-chemical 

properties such as water resistance, flexural strength as well as durability. 14 
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1.2.2 Building and Construction 

Gypsum and its derivatives (anhydrite and hemi-hydrate) are typically 

used as additives in cement production in order to achieve optimum setting 

conditions which take advantage of quick hardening and high strength 

properties of gypsum. 15,16 However, in cement production, these derivatives 

are limited to internal use, as they are vulnerable to high levels of atmospheric 

humidity due to their hygroscopic nature. 17  

Gypsum is also widely used to manufacture plaster-board walls, where the 

susceptibility to high humidity environments is most striking. 14,18. During 

water uptake, humid creep occurs (Figure 1.3) where the plaster board 

increases in volume and expands thereby weakening the durability and 

strength of the plaster board. 14,18 Some studies suggest that humid creep is a 

consequence of a dissolution-precipitation mechanism involving a phase 

transformation from a gypsum derivative (hemi-hydrate or anhydrite) to 

gypsum crystal. 19 In order to understand the processes involved, and reduce 

the observed deleterious effects, various studies have investigated the role of 

additives on gypsum dissolution/crystallisation as well the reactivity of 

different gypsum faces under high humidity environments.20-22 
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Figure 1.3: Humid creep of gypsum based plasterboard due to water uptake from 

atmosphere 

 

1.2.3 Scaling and Weathering 

Due to the ubiquity of gypsum building blocks (Ca2+ and SO42- ions), the 

mineral is a dominant scalant and extensive studies have been carried out to 

investigate the factors which promote gypsum scaling and to find ways to 

suppress them.23-28 Scaling occurs when water containing a substantial amount 

of dissolved ions forms precipitates on a surface due to a change in saturation 

(possibly due to evaporation of water close to these surfaces) 28  

Mineral scaling presents a pertinent problem in various areas. For 

instance, scaling in heat-exchange plants impedes the efficiency of thermal 

conduction 23,31 and in a similar way the performance of some household 

appliances (such as washing machines, dish washers, and electric kettles) due 

to scaling on heating elements. 23,29 In addition, it is a major challenge in 

industrial processes such as oil-extraction where precipitation on the inner 

surface of an oil pipeline can significantly impede the flux of fluids due to 

shrinkage of pipe capacity (Figure 1.4). 7,30,31 
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Figure 1.4: Calcium sulphate scaling in oil pipe resulting in significant shrinkage of pipe 

capacity.32  

 

Weathering occurs when crystal growth occurs in confined spaces such as 

pores and cracks in building materials and the resulting pressure due to small 

changes in volume can diminish structural integrity.33 As a mineral used 

extensively in construction, the growth of gypsum crystallites in cements and 

other gypsum-based products can pose serious problems.34 In order to counter 

this, some studies have attempted to understand the mechanisms of weathering 

in order to reduce the susceptibility of gypsum based materials.28,35-37  

1.2.4 Geochemistry 

Large quantities of gypsum (and anhydrite) are found in both marine and 

continental deposits.38 Compared to other sedimentary minerals such as 

carbonates, gypsum dissolution rates are relatively fast39-41 and, as a 

consequence, extensive dissolution of these deposits can lead to the formation 

of karst features.21 Karst formation (Figure 1.5) occurs due to dissolution of 

minerals from such underlying deposits and the subsequent removal of 

dissolved effluent by water (via underground streams and rain water).42 Over 
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time, cavernous karsts may form causing the subsidence and collapse of 

overlying rock strata. This is particularly important in engineering ventures 

such as the construction of dams and reservoirs, where it is likely that the large 

volume of water held may tap into these mineral deposits and the subsequent 

dissolution may lead to significant devastation caused by flooding.1,43-45  

 

Figure 1.5: Gypsum karst formation where (a) flowing river water dissolves gypsum deposits 

and (b) subsidence caused by dissolution of underwater gypsum beds.46
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1.3. Crystal Growth/Dissolution Reactions 

The process of crystal growth and dissolution may be illustrated by the 

simple equation: 

( ) ( ) ( )A B A B 
f

r

kw z
x yaq aq sk

x y    (1.1) 

where Aw+ and Bz- are reagent building blocks for the crystal AxBy and kf 

and kr represent the rate constants of the forward (nucleation and growth) and 

backward (dissolution) reactions, respectively. The saturation state, S is 

denoted by: 

 
( ) BAw z

sp

a a
S

K





   (1.2)

 

where a is the activity of a reagent ion (A or B) and Ksp is the crystal 

solubility product. At equilibrium, the product of the activities is equal to the 

solubility product and S = 1. At this point, the forward and backward reactions 

have the same rate and thus, there is no net change in the system.  

The formation of a new phase (either through crystal growth or 

dissolution), is represented by a deviation of the saturation state ( 1S  ) or 

equivalently, a change in the chemical potential difference (  ) between the 

solution and the solid phase. When S < 1 the system is undersaturated leading 

to dissolution and conversely, when S > 1, the system is supersaturated thereby 

promoting crystal growth. The extent of the deviation from equilibrium 

saturation is proportional to the thermodynamic driving force for the process. 

In thermodynamic terms, this driving force may be expressed as: 

BA( )
TlnB

sp

a a
k

K


 
 
  


    (1.3) 
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where kB is the Boltzmann constant and T is the temperature. Taking the 

case of crystal growth as an illustrative case, a high level of supersaturation (S 

>> 1) corresponds to a large  and thereby a high driving force for 

nucleation/growth.47 Equilibrium in this case is re-established via the formation 

of a solid crystalline phase, which continues until the dissolved ion 

concentration equals the solubility product and resulting in a reduction of the 

total free energy of the system.47 The inverse argument applies in the case of 

crystal dissolution. 

1.4. Crystal Growth Theory 

1.4.1 Nucleation 

Crystal nucleation is the process by which ions in the reagent phase 

arrange and aggregate to form a cluster of the product with a size that is 

thermodynamically stable. 48 Nucleation occurs primarily in two ways: 

homogeneously or heterogeneously. In the case of homogeneous nucleation, 

nuclei form in the bulk solution only, without the influence of a pre-existing 

solid phase 47,49 and usually occurs after an induction time which is governed by 

thermodynamics (system temperature, pressure etc) however, reaction kinetics 

play a significant role.29 Alternatively, heterogeneous nucleation typically 

occurs on a pre-existing surface and is described below. 

Homogeneous nucleation is well described by the Classical Nucleation 

Theory (CNT) as pioneered by the early works of Frenkel,50 Turnbull and Fisher 

51 as well as major contributions from Becker and Doring 52 and Volmer and 

Weber 53 and considers the energetics involved for the formation of a nucleus. 

The theory describes the forming nucleus as the result of collisions and 

aggregation of atoms into an ordered phase with a spherical shape (this shape 
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exhibits the lowest surface tension). The total free energy change ( G ) of the 

nucleus formation is the sum of its volume and surface free energies 29,47,54 as 

described by: 

3 24
4

3
v sG r g r g 

 
        

 
   (1.4) 

where r is the radius of the nucleus gv is the free energy per unit volume 

and gs is the free energy per unit area. A new stable solid phase has a much 

lower free energy than the prevailing supersaturated solution and therefore, 

G  is negative. The volume free energy ( vg ) decreases with nucleus size, 

while the surface free energy ( sg ) increases with nucleus size (Figure 1.6(a)).  

As a consequence, the overall G increases with nucleus radius until it reaches 

a maximum ( *G  ) at a certain nucleus radius, typically termed the critical 

radius, r* and beyond this point, growth is favoured. Nuclei with radii smaller 

than r* tend to dissolve back to ions.54 Due to the activation barrier ( *G ), and 

the strong dependence on prevailing temperatures, (Figure 1.6(b)) 

homogeneous nucleation is likely to occur only at high supersaturation 

conditions (S >> 1) and consequently, is not typically observed in geological 

scales, where the saturation levels are closer to equilibrium (S = 1). 29 Nuclei 

with radii smaller than r* tend to dissolve back to ions.  
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Figure 1.6: (a) Gibbs free energy diagram for crystal nucleation and (b) temperature 

dependence of the critical radius. 

 

The nucleation rate, J follows an Arrhenius-type relation as described by: 

*

n

B

G
k T

J Ae

 
 
 
 




    (1.5) 

where A is a kinetic parameter related to the number of available 

nucleation sites on the nucleus.29 A significant limitation of the CNT is that it 

assumes that the forming nucleus exhibits similar properties (such as interfacial 
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energy) to the bulk crystal. 47 However, the complex interplay between the 

kinetics and thermodynamics suggest the possibility of meta-stable clusters 

preceding the formation of the thermodynamically stable final crystalline phase. 

55 These meta-stable phases give rise to polymorphism, where a kinetically 

favoured phase forms prior to reorganisation into a more thermodynamically 

stable polymorph (Figure 1.7).56-58 

 

Figure 1.7: Interplay between kinetics and thermodynamics of crystal growth.58  

 

Recent studies on crystal nucleation and growth have advanced our 

knowledge in this area considerably with some studies reporting the existence 

of complex nanosized precursors in organic biomineralisation.59,60 More 

recently, Gebauer et al. observed these precursors in undersaturated solutions 
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close to equilibrium conditions, and formulated a possible alternative route to 

nucleation and subsequent crystal growth.61 

Heterogeneous nucleation occurs when a new crystalline phase forms on 

an existing solid surface. Typically this occurs when the saturated media 

contains some solid impurities, or the crystalliser vessel has fissures, cracks or 

scratches which facilitate nucleation. The interfacial energy between a nucleus 

and a pre-existing solid surface is typically lower than that between a nucleus 

surface and the bulk media when homogeneously nucleation occurs. 62-64 The 

lower energy is due to the formation of stronger bonds between the ions which 

form the building blocks of the new crystalline phase and the solid surface 

compared to between these between the solvent and ions (solvation bonds). 

Stronger bonds lead to a smaller contribution of enthalpy to bond formation, 

thereby reducing the interfacial energy and thus the activation barrier to 

nucleation.63  

The growth of these nuclei may be considered to grow in 2D or 3D 

depending on the nature of the surface and the initial shape of the nuclei. In the 

2D case, only lateral growth occurs with the nuclei height remaining constant 

(vide infra).  

1.4.2 Crystal Growth  

Following the formation of stable nuclei, further attachment of new 

species leads to the formation of distinct ordered macroscopic surfaces through 

crystal growth. Growth kinetics may be considered to be governed by a 

sequence of steps: (i) mass transport of growth unit via diffusion through the 

bulk media, (ii) desolvation and adsorption onto the surface, (iii) diffusion of 

the growth unit across the surface and (iv) incorporation of growth unit onto an 
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energetically favourable site such as a kink or edge. (Figure 1.8). Processes i-ii 

are typically considered to be mass transport processes while iii-iv are surface 

processes. For dissolution models, the reverse sequence, i.e. iv-i applies. The 

rate of reaction is ultimately determined by the slowest of these steps.65,66 

 

Figure 1.8: Fundamental steps involved in growth/dissolution at the crystal surface 

 

Classical crystal growth models, as pioneered by the work of Volmer and 

Weber,53 follows the adsorption of ions onto a planar surface via 2D nucleation 

which spreads to cover the entire surface thereby facilitating further growth 

(Figure 1.9). Polynuclear growth may also occur (Figure 1.10), which can cause 

the formation of defect sites which act as active sites. The Kossel, Stranski and 

Volmer (KSV) model suggests that incorporation of growth units into the crystal 

lattice occurs at these energetically favourable sites (kinks, steps, ledges). 67-69 

According to the model, the incorporation of a growth unit at defect sites such 

as kinks involves binding at three points therefore presenting the most 

energetically favourable position. This is followed by a incorporation into steps 

then ledges, and finally the flat terrace where the adsorbing unit losses only one 

degree of freedom. Continuous growth eventually leads to a layer-by-layer 
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growth process and different rates of growth on different faces will determine 

the crystal macro-morphology. 29  

 

Figure 1.9: Mononuclear growth as a source for birth-and-spread growth. 

 

 

Figure 1.10: Polynuclear crystal growth. 

 

Following the KSV model, Burton, Carbrera and Frank (BCF) asserted that 

the defect site from which kink sites emerge are screw dislocations which 

provide a more favourable site for nucleation than the planar surface. 70,71 A 

screw dislocation occurs during growth when rapid crystal growth or the 

incorporation of an impurity causes a mismatch on a contiguous layer (Figure 

1.11). 72 They tend to propagate through the bulk crystal and creates a three 

dimensional spiral at the surface, which acts as an infinite source of steps 

(Figure 1.12). A dislocation is characterised by the Burger’s vector which 

describes magnitude and direction of the atomic distortion around the 

dislocation. 72 The theoretical basis for describing crystal growth from a 

dislocation point as provided by the BCF model, 73 has since been validated by 

numerous microscopic studies.74-79  
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Figure 1.11: Screw type dislocation in a simple cubic lattice. 

 

 

Figure 1.12: Typical sequence due to growth from a dislocation and AFM spiral growth 

image (bottom right).80  

 

1.4.3 Crystal growth Mechanisms 

Various crystal growth mechanisms relating the growth rate, R of an 

individual face, on the supersaturation conditions, for the different models 

described above. The BFC growth mechanism is assumed to be under transport-

limited conditions.29 At low supersaturation, below a critical value, the distance 

between contiguous steps is expected to be large and for this case, the rate of 

growth, R, follows a parabolic dependence on supersaturation, i.e.  R ∝ S2.29 In 

this case, R is considered to be independent of the diffusion boundary layer 
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thickness (δ) since the steps are isolated enough that their diffusion fields do 

not overlap and resulting in a significant amount  of back-reaction (desorption 

of growth units back to bulk media) before eventual incorporation into the bulk 

crystal. On the other hand, at supersaturations higher than the critical value, a 

linear rate law, R ∝ S is obtained, where the rate is inversely proportional to δ. 

In this situation, the surface exhibits a high density of steps (and hence kinks) 

which facilitate fast adsorption and incorporation of growth units onto the 

surface.81 

The birth-and-spread mechanism typically occurs at medium S where, 

nucleation (birth) occurs and growth (spread) proceeds at finite velocities,54 

resulting in a growth rate which depends on both the nucleation rate as well as 

the step velocity. This results in an exponential dependence of the growth rate 

on supersaturation: R ∝ S5/6 exp(S).82  At high S, (above critical value), the 

activation barrier to 2D growth is minimised, which reduces the requirement to 

attach to (typically more energetically favourable) kink sites and thus growth 

units may attach directly onto the terrace without further surface diffusion 

processes. 29 As a result, the surface roughens (so called kinetic roughening) in 

proportion to the increase in S and under these conditions, R depends linearly 

on S.   

1.4.4 The Crystal Habit 

The description of a crystal in terms of its physical shape and appearance 

is termed the crystal habit. In growth and dissolution processes, the 

relationship between internal crystal structure and habit is fundamental to 

understanding the mechanisms through which crystals form. Bravais83 was one 

of the first to associate the crystal habit with internal geometry and elucidate 
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the importance of certain crystal planes. Hartman and Perdok developed the 

periodic bond chain (PBC) theory which associates crystal geometry with bond 

energies.84,85 In effect, one can segregate crystal faces in order of morphological 

importance as far as growth and dissolution processes are concerned (Figure 

1.13). The PBC theory postulates that the F faces are flat at the molecular level 

and would grow either by 2D nucleation or via spiral growth from a dislocation. 

These faces have few kink sites which results in slow growth rates and 

consequently, they have significant influence on macroscopic crystal 

morphology. The S faces contain ledges with varying kink densities (depending 

on supersaturation, temperature e.t.c.), while K faces have numerous kink sites 

and therefore exhibit very fast growth kinetics.29 Typically, the speed with 

which K faces grow means that steps on these faces are not observed under 

experimental time scales. 

 

Figure 1.13: Simple cubic crystal showing different types of faces according to the periodic 

bond chain (PBC) theory.29  
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While the theories discussed above provide useful insights into crystal 

growth mechanisms, in real systems, the phenomenon involves the 

participation features on the entire crystal surface (kinks, ledges, terraces). 

 

1.5. Review of Gypsum Crystal Growth Studies 

For a mineral which has been used for hundreds of years and applied to a 

vast array of fields, most early studies on gypsum were mainly concerned with 

the quantitative analysis of the physical properties of gypsum products.86-88 

Studies dedicated to understanding the mechanisms of gypsum crystal growth 

were not conducted extensively until the late 1950s. 

1.5.1 Bulk Crystal Growth Studies 

The great majority of gypsum growth studies have been on the bulk scale 

which looks at macroscopic events and the factors which influence growth 

kinetics at this level. Several works have investigated nucleation kinetics and 

the influence of additives on the ‘induction period’ i.e. the period of time it takes 

to form a critical nucleus before crystal growth can occur. These include the 

early works by Shierholtz,89 and later, by Nancollas and Liu 90,91 and others.92-94 

These studies found that additives significantly prolonged the induction time by 

retarding nucleation kinetics. On gypsum growth, works on suspensions or 

seeds was pioneered by Nancollas90,91,95-97 who determined that growth kinetics 

followed 2nd order kinetics with respect to supersaturation. Later works have 

corroborated these findings.98-102 Conversely, other studies have deduced rate 

laws which follow 1st order, 89 3rd order 103 and even 4th order kinetics104. 

Recently, Witkamp et al.105 deduced that the growth rate law varies from 2nd 
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order at low supersaturation in water, to 3rd-5th as ionic strength and 

supersaturation increase, potentially reconciling the discrepancies observed 

between previous bulk studies. Due to the vastly different experimental set ups 

and generally poorly defined mass transport conditions there is debate in 

whether the rate determining factor is diffusion control,89,98 or surface control. 

90,95,101,106-108 In addition, there is debate on the mechanism of growth, with 

some researchers suggesting a polynuclear 2D ‘birth and spread’ 

mechanism95,97,101,104,108 while others, reporting that growth follows the spiral 

dislocation model. 90,109  Studies by Van Rosmalen et al., 56 and Christoffersen et 

al., 52 suggested a combination of both 2D ‘birth and spread’ and spiral growth 

models, depending on the saturation state and nature of defects on the crystal 

surface.  

Due to the dominance of gypsum as a scalant, numerous studies have been 

focused on the effect of various scale inhibitors on gypsum growth. Inhibitors 

studied include; simple ions such as NH4+, NO3-110,111 and Cl- salts92,93,111,112 and 

numerous complex organic compounds such as polyacrylics,113,114 

phosphonates,91,101,114-117 carboxylates94,101 and copolymers.94,114 In addition to 

retarding nucleation kinetics (vide supra), the general consensus is that these 

inhibitors operate by adsorbing on to growth sites (typically kinks and edges) 

thereby blocking the incorporation of growth units on the crystal surface. 94 For 

most of these studies, the incorporation of additives on the crystal surfaces, 

results predictably in a change in the morphology of grown crystals (Figure 

1.14). 
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Figure 1.14: Scanning electron microscopy (SEM) images of (a) gypsum crystals grown in 

pure supersaturated solution and (b-c) grown in the presence of polyacrylate solutions.118  

 

While macroscopic studies and the rates deduced therein are vital to our 

understanding of mineralisation mechanisms, they yield little information on 

the local processes at the crystal surface. As these eventually give rise to the 

macroscopically observed events, fundamental understanding of these 

processes is imperative. Therefore, in order to gain insights into gypsum growth 

kinetics, probing these local processes may provide a bridge between the vastly 

different perspectives of the macroscopic and the micro to nanoscale. To this 

end, various studies have been carried out and are discussed below. 
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1.5.2 Local Crystal Growth Studies 

Compared to bulk studies, studies probing gypsum growth at a 

microscopic level has only gained momentum recently. This is primarily due to 

recent technological advances made through the invention of high resolution 

microscopy techniques such as atomic force microscopy (AFM) and white light 

interferometry (WLI) thereby revolutionising the way researchers probe 

surfaces. 

Early work with a local perspective was carried out by Goto and Ridge 109 

who investigated crystal growth from gypsum cleaved along the (010) plane via 

simple computer simulations. They reported a growth mechanism via the spiral 

growth model. Furthermore, growth was dominated by the displacement of the 

[001] and [100] steps. Recently, several in situ AFM studies by Bosbach et 

al.,111,116,119,120 were carried out to investigate the growth on the (010) gypsum 

surface at close to equilibrium conditions (S ~ 1). They reported a layer-by-

layer growth mechanism with no evidence of spiral dislocations. In addition, 

they suggested a diffusion controlled growth process based on observing 

slower growth at sites of high step density compared to sites exhibiting isolated 

steps. Surface nuclei morphology was constrained to the [100] and [001] 

directions laterally and exhibited highly anisotropic displacement, following the 

trend: v[100]<<v[001], where v is the step displacement velocity in a particular 

direction. Step height was a few monolayers high (~ 1 nm) possibly as a 

consequence of the cleavage process. More recently, Van Driessche et al. 

corroborated a 2D layer-by-layer growth mechanism by studying the growth 

kinetics on cleaved (010) gypsum surfaces by combining in situ AFM with laser 
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confocal differential interference contrast microscopy (LCM-DIM).121 This led 

them to suggest a mixed control as the dominant kinetic regime for this process.  

While AFM has advanced the study of crystal growth at the local level, it 

has certain limitations, such as the range of scan speeds which can be 

successfully executed before one begins to lose imaging resolution. 122 This 

limitation is most relevant when visualising growth/dissolution phenomena 

under far from equilibrium conditions where step displacement velocities may 

be faster than the maximum cantilever raster speed attainable by the AFM set 

up. To this end, most AFM studies compensate for this by limiting experimental 

conditions to a range of supersaturations close to equilibrium conditions. In this 

way, the low driving force would yield step displacement velocities that can be 

accessed via AFM. Alternatively, some studies apply other techniques such as 

LCM-DCM121 which allow for higher supersaturation conditions to be explored 

while others choose to work under ex situ conditions where the reaction may be 

monitored via time-dependent ‘snapshots’.  

 

1.6. Crystal Dissolution Theory 

Whereas crystal growth has been studied extensively and corresponding 

growth theories developed in great detail, crystal dissolution has received much 

less attention despite its importance in a wide array of fields. 123,124 The 

thermodynamic driving force for dissolution is undersaturation (S < 1), 

characterised by the principles outlined in Figure 1.8. Similar to crystal growth, 

dissolution starts preferentially at sites on the crystal surface which exhibit 

excess energy such as dislocations, kinks, edges and ledges over the planar 
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terrace (Figure 1.15). However, at extremely high undersaturation (and 

therefore a high driving force for dissolution), homogeneous nucleation at the 

perfect planar terrace is likely to occur as well in addition to the 

aforementioned defect sites.47 The importance of considering the surface 

morphology is highlighted when one considers the factors that influence overall 

dissolution kinetics. 

 

Figure 1.15: Typical features on a crystal surface. 

 

Although each of these sites contributes to the dissolution of the crystal, 

the relative amount contributed differs greatly from one site to another as 

summarised in Figure 1.16.125 Furthermore, these relative rates are dependent 

on the magnitude of the driving force.  
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Figure 1.16: Parallel surface processes contributing to crystal dissolution. 

 

Inspired by the development of the seminal BCF theory (vide supra), 

which describes dislocation-driven crystal growth (spiral growth), Cabrera and 

Levine 126,127 applied similar principles to crystal dissolution. In a similar way to 

crystal nucleation theory, at a critical driving force ( critG ) typically under 

medium to high undersaturation conditions, the strain field of a dislocation 

opens up creating a hole with an increasing radius and forms a stable etch pit 

above a critical radius (rcrit). 126,127 The formation is followed by a spiral 

dissolution mechanism, which provides an unlimited source of steps through 

which dissolution step waves can propagate (Figure 1.17). 128 Conversely, at 

close to equilibrium conditions, the size of the critical radius required to open 

the defect site is large and the thus etch pit nucleation is unfavourable.47 Under 

these conditions, dissolution is largely characterised by dissolution at steps and 

edges rather than by etch pit formation. 47 
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Figure 1.17: Dissolution etch pit as a source of stepwaves 128 

 

Recently, there has been an attempt to further develop crystal dissolution 

theories which reflect the dependence of dissolution rates on different 

undersaturation states 123,124,128,129 as well as independently express rate laws 

which are not necessarily analogous to those deduced for crystal growth studies 

as has been done in the past. 124,130 Furthermore, with the application of 

sophisticated complementary computer models which simulate crystal 

dissolution at the molecular level, the validity of proposed theories can be 

weighed against empirical observations. 128,131  

 

1.7. Review of Gypsum Crystal Dissolution Studies 

1.7.1 Bulk Crystal Dissolution Studies 

Analogous to crystal growth studies, bulk dissolution studies have been 

focused on the macroscopic events rather than the processes occurring at the 

crystal surface. For most studies, the reaction was monitored by estimating the 
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change in concentration of chemical species (such as dissolved Ca2+) via a 

number of ways; including electrochemical methods, mass spectrometry and 

titrimetry132. Deduction of dissolution rates and governing rate laws was 

typically carried out based on the time evolution of these concentration changes 

and the nature of prevailing mass transport conditions. 40 Some studies have 

applied well defined mass transport conditions by exploiting the rotating disk 

(RD) set up 41,133-135 or the channel flow cell (CFC) technique 39 while others 

have used suspensions136,137 in batch or column set ups.138-142 Due to this large 

variation in experimental methods and analytical techniques, there is a debate 

in the literature about the governing rate laws and rate determining processes. 

To this end, some studies claim that gypsum dissolution is a transport 

controlled process; 133,136,137,140,143,144 while others some assert a mixed control 

regime. 41,134,135 As expected, these studies yield equally divergent rate laws 

depending on experimental conditions (distance from equilibrium) with some 

suggesting 1st order kinetics39,41,136,145-148 while others suggest 2nd order 

kinetics144 and even zero order kinetics.133  

An early study by Barton and Wilde133 used the RD setup up with 

pelletised synthetic gypsum samples. While the experimental set up allows for 

well defined mass transport conditions, the use of polycrystalline samples 

introduced complications with regards to surface area changes and porosity 

during dissolution and in addition, the possibility of turbulence as an influential 

factor. Liu and Nancollas,136 tracked gypsum dissolution from a stirred 

suspension and monitored concentration changes via a Ca2+ selective electrode. 

However, the mass transport conditions were poorly defined and the study 

assumed that for the case of an individual suspended crystal, dissolution 
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occurred in such a way that there was no change in the crystal’s geometry, i.e. 

dissolution rate was the same in all directions. Since then various studies have 

corroborated the findings from these two studies in terms of deduced rate laws 

and/or the rate determining processes.  

The implications of such divergent methods and experimental set ups was 

recently analysed by Colombani,40 who collated and reviewed various earlier 

studies (including one of his own) and asserted that the essential difference 

between these was their mass transport condition (vide infra). 

1.7.2 Local Crystal Dissolution Studies 

Recently, attention has been focused on local surface behaviour in a 

similar way to crystal growth experiments, where high resolution local 

techniques such as AFM, 149,150 scanning electrochemical microscopy (SECM) 151-

155 and vertical scanning interferometry (VSI) 128,131,156,157 have been exploited 

(vide infra). In these studies, the dissolution process is tracked via the evolution 

of the crystal surface at a microscopic/molecular level; deducing kinetics from 

analysing the surface retreat both normal to the surface and in the lateral 

directions.  

Early local studies on gypsum dissolution relied on optical microscopy, 

probably because at the time, it was one of the best in situ methods used to 

obtain high resolution imaging of the process. These works were pioneered by 

Kasai et al.158 and followed more recently by Raju 159-161 who observed the 

formation of rhombohedral etch pits. Raju asserted that these etch pits emerged 

from both screw and edge dislocation sites as evidenced from correspondence 

of etch pits produced from matched half experiments (etching on both the (010) 
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and (010) surfaces). However, from these studies, there was no quantitative 

deduction of kinetics or the characterisation of dissolution features from a 

crystallographic perspective, thereby limiting the insights gained. 

Since then, the development of the AFM and application of interferometry 

has transformed our understanding of crystal surfaces and their behaviour 

during dissolution. Recent in situ AFM studies by Bosbach and Rammensee 

119,120 and Hall and Cullen 162 on the basal (010) plane of gypsum suggested that 

formed etch pits were constrained in the [101], [001] and [100] directions 

laterally and in the [010] direction normal to the cleavage plane. These etch pits 

were very shallow with a height of only a few monolayers (~0.8 nm), suggesting 

that they nucleated at point or line defects. In addition, etch pit evolution was 

found to be instantaneous (nucleation of new etch pits later in the process is 

rare) and exhibited similar behaviour to that observed in crystal growth 

studies, in that step displacement velocities was highly anisotropic, with the 

trend: v[100] << v[001] ≈ v[101].  

A later AFM study by Fan and Teng 4 corroborated these earlier AFM 

studies and postulated that the observed anisotropy was due to the drastically 

different atomic stacking along the [001] and [100] directions (Figure 1.2). 

However, they suggested that etch pit morphology was constrained only in the 

[100] and [001] directions, with the earlier mentioned [101] direction being the 

result of imaging the mirror surface, i.e. the (0 1 0) plane. In addition, they 

observed progressive nucleation, i.e. nucleation of etch pits occurring 

throughout the etching experiment which is compatible with nucleation at point 

defects sites.  



 Introduction 

31 
 

Colombani applied holographic interferometry to gypsum dissolution,40,132 

and deduced the intrinsic dissolution rate of gypsum crystal under surface 

controlled conditions to be 5±2× 10-9 mol cm-2 s-1.40 As mentioned earlier, he 

reviewed various earlier works and reconciled the discrepancies in the mass 

transport conditions, by estimating the diffusion layer thickness for each study, 

and comparing these values to the saturation state. From these comparisons 

Colombani deduced an average gypsum dissolution rate of 7× 10-9 mol cm-2 s-

1.40 

 

1.8. Analysis and Characterisation Techniques 

This section describes the experimental techniques used throughout this 

thesis and the significance of investigating gypsum growth/dissolution studies 

from both local and bulk approaches. 

1.8.1 Multi-Scale Approach 

The mineral-water interface is at the heart of any exchange between the 

crystal and the solution and it is important to take note of the prevailing 

conditions in the bulk solution as well as the nature of the bulk crystal lattice 

which governs surface processes. 47As mentioned above, one of the most 

important challenges in crystal growth and dissolution studies is quantitatively 

relating macroscopically observed events to the local processes on the crystal 

surface from which they originate. Monitoring changes in the bulk solution may 

not reflect developments on the surface and as such, large discrepancies arise in 

otherwise internally consistent data.47 To this end, growth/dissolution studies 

on specific systems can be carried out at different length and time scales. For 
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instance, dissolution occurring in a powder suspension may be thought of as 

representing a bulk study. A closer look at a single micro-crystal in this 

suspension reveals a dynamic surface morphology with numerous parallel 

events such as displacement of steps from various sources (kinks and steps) 

which collectively result in the overall dissolution of the crystal (Figure 1.16). 

Further magnification leads us to a molecular/atomistic view of processes 

involving individual species (ion-pairs, simple ions) with bond breaking and 

formation. It is therefore important to probe these crystal growth and 

dissolution studies from a multi-scale approach with the aim of reconciling 

perceived differences. The relationship between analytical techniques and the 

time and length scale they fall under is illustrated in Figure 1.18.163  

 

Figure 1.18: Relationship between different analytical techniques and the time (y-axis)  and 

length (x-axis) scale under which crystal growth/dissolution is accessible.163 
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1.8.2 Bulk Techniques – The Channel Flow Cell (CFC) 

To understand mineral/liquid reaction kinetics, experimental techniques 

need to be able to quantitatively separate mass transport and surface kinetic 

effects155,164 and ideally allow the study of well-defined surfaces. 

The channel flow cell (CFC) method (Figure 1.19) has proven particularly 

powerful for studying growth/dissolution processes.165-176 This technique 

typically involves locating the crystal substrate of interest flush in the base wall 

of a rectangular duct through which solution flows under laminar conditions. 

Well-defined flow allows accurate modelling of mass transport within the flow 

cell chamber. Furthermore, because mass transport rates are controllable over 

a wide range, their influence on reaction rates can be elucidated quantitatively. 

165-176 The CFC method permits rate laws governing a reaction to be proposed 

and tested by comparing experimental data to the predictions from mass 

transport-chemical reactivity models. 165-177 Hitherto, dissolution reactions in 

the CFC method have typically been monitored by the use of local 

electrochemical measurements 165-177 to provide in-situ detection of the 

dissolution process. However, some types of electrodes e.g. Ca2+ ion selective 

electrodes are rather fragile and difficult to deploy in such cells.178  

Due to current innovations in CFC design and fabrication (vide infra), the 

dimensions of a CFC unit can be accurately defined thus facilitating a well 

defined parabolic hydrodynamic regime (laminar flow). As a result, the CFC 

lends itself to theoretical modelling. Important issues to account for in 

hydrodynamic systems include determining whether solution flow follows a 

laminar profile above the exposed substrate region, and the mass transfer 

coefficient, kt under varying flow rate conditions. For the CFC, these factors are 
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dependent on the cell dimensions.  Laminar flow in CFCs is typically described 

with a Reynolds number , Re < 2000 179 and; 




Ul
Re

  (1.5)
 

where U is the characteristic fluid velocity (cm s-1), l is a characteristic 

length (cm) and v is the kinematic viscosity (typically 10-2 cm2 s-1 for aqueous 

solution at standard conditions). The mass transfer coefficient can be 

approximated by applying the Levich equation180: 

kt = 0.925 D2/3 h-2/3 d-1/3 x-1/3 Vf1/3    (1.6) 

where D is the diffusion coefficient (cm2 s-1), h is the channel height (cm), 

d is the channel width (cm), x is the channel length and Vf   is the volume flow 

rate (cm3 s-1).   

 

Figure 1.19: Typical channel flow cell schematic 
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1.8.3 Local Techniques 

Atomic Force Microscopy (AFM) 

The AFM technique was first developed by Binnig et al.,181 based on 

scanning tunnelling microscopy (STM),182 and belongs to a family of techniques 

under the banner of scanned probe microscopy (SPM). The technique operates 

by employing a sharp force sensing cantilever tip which rasters across the 

substrate surface and is deflected to correspond with the surface. Cantilever 

deflections are detected by a laser beam which reflects these changes to a 

photodiode, and this information is electronically translated into topographical 

information. AFM is typically applied in three main imaging modes: contact, 

tapping (intermittent) and non-contact. Using all imaging modes, AFM has been 

used extensively in crystal growth and dissolution studies. 

More recently a new imaging mode known as Peak Force Quantitative 

Nanomechanical Tapping (Peak force QNM)TM has been developed by the 

commercial SPM suppliers, Veeco. 183 This technique improves on tapping mode 

AFM by first performing a fast force curve at every point of contact between the 

AFM tip and the substrate (Figure 1.20). The peak force obtained from the curve 

is then used as the feedback signal such that the force applied by the tip to the 

surface is controlled. In addition, by using auto-optimisation protocol 

(ScanAsyst) of scan parameters (such as scan rate, setpoint and gains) 

topographical images at very high resolution can be obtained.  
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Figure 1.20: Typical force curve illustrating deflection of the cantilever as a function of 

distance from the substrate. 

 

White Light Interferometry (WLI) 

WLI is a non-invasive optical profiling technique based on optical 

microscopy which utilises white light (broad band). Typically, a white light 

beam passing through the objective lens towards the sample. This beam is split 

into two whereby one beam reflects off a reference sample while the other 

reflects off of the test sample. The two beams recombine to form interference 

fringes from which surface topography can be mapped. Surface height 

information is obtained by controlled vertical scanning through the focal point 

as a camera (typically CCD) captures interference data.184,185 For each point on 

the surface, the local surface height as well as lateral displacement information 

is extracted from the corresponding peak of the interference signal. WLI has a 

wide range in the direction normal to the substrate (z-axis) with an upper limit 

of up to ~100 µm, while the lower limit is comparable to AFM, at few 

nanometres.186 However, WLI allows for a much larger scan area than AFM, 
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with a lateral range of up to ~1 mm2. A typical interferometer is illustrated in 

Figure 1.21(a). 

 

Figure 1.21: (a) Schematic of typical WLI.163 and (b) interference fringes on an etched 

gypsum surface 
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1.9. Thesis Aims 

As a ubiquitous mineral with wide ranging industrial applications, the 

growth and dissolution processes of gypsum have attracted a significant 

amount of attention. However, as described in the introduction, dissolution 

processes are less well understood than growth processes and much remains to 

be done in this area.  

To this end, the main aim of this thesis is to bridge the gap between the 

various experimental length-scales in crystal growth/dissolution studies. To 

achieve this, both local scale (Chapter 4) and bulk scale (Chapters 5 and 6) 

dissolution studies were carried out, and attempts were made to reconcile the 

apparent differences between these two approaches. The insights gained from 

these studies were then applied to local crystal growth of isolated gypsum 

micro-crystals (Chapter 7), and the approach validated by comparing to bulk 

studies in the literature. 

At the most basic level, the reliable elucidation of intrinsic kinetics 

requires determination of the relative contributions of mass transport 

(diffusion to/from bulk media) and surface reactions (processes resulting in the 

generation/adsorption of species at the crystal/solution interface). The studies 

herein aim to address this important issue by limiting investigations to 

conditions of high (and quantifiable) mass transport rates in order to ‘outrun’ 

the typically fast surface processes thereby allowing for the study of intrinsic 

rates. At the local scale (Chapters 4 and 7), studies were limited to the analysis 

of isolated microscopic active features which are known to exhibit fast mass 

transport rates.  For bulk scale studies (Chapters 5 and 6), the CFC technique 

was applied where varying flow rates ensured high mass transfer rates.  
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Another important aspect of this work was to compare experimental 

insights with theoretical considerations. For all experimental investigations, 

computer simulations were developed with the aim of accurately predicting 

spatially resolved local fluxes, and interfacial concentrations, by solving the 

diffusion-reaction problem at the surface/solution interface. In the case of CFC 

studies, this was done by formulating convective-diffusive equations which 

describe mass transport in the CFC, coupled to a boundary condition for 

dissolution of the crystal surface. In this way, reaction rate laws may be tested 

and validated against experimental data. 

While bulk studies provide significant insights into reaction kinetics, these 

observations are typically the result of average surface reactivity, which ‘masks’ 

the contribution of individual crystal faces. An important feature of local studies 

is that it is possible to distinguish between the reactivity of different crystal 

faces, and, as the reaction (dissolution/growth) progresses, emerging trends 

leading to bulk scale observations can be identified. Furthermore, such an 

investigation can be expanded to explore the effects of impurities/additives, 

particularly those known to be industrially significant in influencing reaction 

kinetics. This approach is applied in Chapter 5 where the CFC technique is 

coupled with a local study with the aim of determining the influence of 

impurities at specific crystal faces, based on observations made at the 

macroscopic level.  In Chapter 7, it is shown that face-specific kinetics, and 

consequently the crystal habit, are strongly affected by growth media 

stoichiometry.  

In addition to this main theme, the work herein explores the importance 

of image processing packages, typically used to analyse topographical images 
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produced via visualisation techniques such as AFM and WLI. Chapter 3 

describes the development of a custom-designed image processing package 

with the aim of, expediting image analysis and extracting vital quantitative data. 

The relative merits of this approach compared to using a commercial package 

are explored, with the aim of highlighting the need for more sophisticated 

image processing methods, to meet the increasingly specialised needs in 

crystal-surface science. 

Finally, the themes explored in this thesis are summarised in Chapter 8 

with a brief discussion of potential future directions for crystal growth and 

dissolution studies.  
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Chapter 2                                                  
Experimental Procedures 

 

This chapter describes the experimental procedures, reagents used and 

analytical techniques employed in the studies carried out within this thesis. 

 

2.1. Chemicals 

All solutions used were prepared using Milli-Q reagent Water (Millipore) 

with a typical resistivity of 18.2 MΩ at 25 (±1) ºC. All ionic strength and 

chemical speciation data were calculated using the numerical code MINEQL+ 

(Environmental Research Software Version 4.5).1 Using this method, the 

solubility of gypsum, Csat (total concentration of dissolved calcium at 

equilibrium) was found to be ~16.2 mM in pure H2O which compares well to 

the value reported experimentally (~15.2 mM).2 The Davies equation was used 

to calculate the activity coefficients for each solution.3 The solubility products 

(Ksp) of gypsum and anhydrite were 2.45 × 10-5 and 4.93 × 10-5, respectively.2  

 

Chemical Purity/Grade Supplier 

Calcium nitrate tetrahydrate 

(Ca(NO3)2.4H2O) 

99% Sigma 

Sodium sulphate (Na2SO4) ≥ 99.0% Fisher Scientific 

Sodium nitrate (NaNO3) ≥ 99.0% Aldrich 
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Potassium nitrate (KNO3) ≥ 99.0% Sigma-Aldrich 

Calcium chloride dihydrate 

(CaCl2.2H2O) 

≥ 99.0% Sigma-Aldrich 

Dimethyl dichlorosilane (DMDCS) ≥ 99 % ACROS Organics 

Isopropanol (IPA) Reagent grade Fisher Chemicals 

DL-Tartaric acid 99% Sigma-Aldrich 

Tri-sodium trimetaphosphate 

(STMP) 

Reagent grade Sigma-Aldrich 

3,4,5,-trihydroxybenzoic acid 

monohydrate (gallic acid) 

≥ 98.0% Sigma-Aldrich 

Boric acid  (H3BO3) ≥ 99.5% Fisher scientific 

Ca2+ ICP Standard (1 g dm-3) ≥ 99.0% Fluka 

P3+ ICP Standard (1 g dm-3) ≥ 99.0% Fluka 

Aluminium dihydrogen phosphate 

monohydrate (AlH2PO4.H2O) 

Reagent grade Sigma-Aldrich 

Orthophosphoric acid (H3PO4) Reagent grade Fisher scientific 

α-plaster Reagent grade Saint-Gobain 

Formula 
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2.2. Etching of Crystal Surfaces 

Large natural gypsum (St Gobain Gyproc) samples were broken into 

manageable pieces (area ~ 2 cm2) and then cleaved along the (010) plane with 

a sharp razor blade, to produce clean fresh surfaces largely devoid of 

macrosteps. In some cases, the two surfaces produced were both studied and 

considered to be mirrors. The samples were cleaned with a strong burst of 

ultrapure N2 gas (BOC) to remove any adhered micro fragments. Next, they 

were mounted onto a holder with the (010) plane flush to the solution. In order 

to minimise contamination, samples were handled with tweezers at all times 

and only fresh cleavages were used. 

Etching of individual crystals was carried out in approximately 100 ml of 

quiescent solution in a glass beaker. Experiments were performed at 24±1°C. 

The mounted crystal sample was submerged into the solution of interest to 

achieve complete surface wetting. After a set time, the sample was withdrawn 

and immediately dried with a strong burst of N2 gas (BOC). For the dissolution 

experiments in salt solutions, etched samples were quickly rinsed in water 

before drying with N2 gas. This was done to minimise the precipitation of salts 

on the crystal surface, upon drying with N2 gas. Dissolution experiments were 

carried out for times in the range between 30±3 and 110±5 s. Occasionally, 

extensive etching was carried out (vide infra) but these etched surfaces were 

not used to extract kinetic data.  

It was important to determine the significance, if at all, of kinematic 

stepwaves,4 on the timescale of the measurements herein, because this could 

alter the apparent depths and dimensions of pits measured. To this end, a 

section of a prepared sample was masked off and protected with tape (Pressure 
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Sensitive Tape Scotch TM Klebeband) which was carefully removed after 

dissolution.  

To locate the region of interest, the surfaces were visualized via DIC, from 

which it was found that dissolution features stopped abruptly at the boundary 

between the masked-off region and the exposed crystal surface. The surfaces 

were visualized via WLI (NT 2000 Surface Profiler, WYKO systems) at a number 

of places across this boundary so as to measure any global recession of the basal 

plane. Figure 2.1(a), shows a VSI micrograph of the gypsum (010) basal surface 

after etching for 180 s (longer than the studies in the chapter) in pure H2O.  The 

irregular elevated region between the masked and reactive areas is residue left 

after removal of the masking tape. Due to the low rates of global dissolution 

under the conditions applied, the residue allowed for a clear demarcation 

between the active and inactive regions over the surface. Figure 2.1(b) is a plot 

of the cross section shown in Figure 2.1(a), and highlights a negligible change in 

global height between the two regions. The average difference in height across 

between the two regions was found to be < 15 nm after etching for 180 s. Since 

the maximum etching time for dissolution experiments was ~ 100 s, we could 

therefore conclude that for the time scale chosen, dissolution was essentially 

limited to pits. 
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Figure 2.1: (a) WLI micrograph of gypsum (010) surface after etching for 180 sec and (b) 

plot of cross-section across the surface between masked and reactive regions. 

 

2.2.1 Etch Pit Visualisation and Analysis 

After etching, samples were sputtered with gold (Sputter Coater Quorum 

Technologies) producing a uniform coating ~12 nm thick across the surface, 

which was negligible compared to the dimensions of the etch features. The 

resulting surfaces were visualized routinely via DIC optical microscopy (Leica 

DM 4000, Leica Microsystems) and AFM (AFM-tapping mode TM, using RFESP 

tips on a Veeco Multimode V with Nanoscope V Controller). Topographical 

images produced via these techniques were analysed via a Matlab program 

designed in-house (Chapter 3). 



Experimental Procedures 

51 
 

 

2.3. Channel Flow Cell (CFC) Studies 

2.3.1 Preparation of Natural Samples 

Natural gypsum single crystal samples (St Gobain Gyproc) were prepared 

by breaking large selenite crystals into manageable pieces (~ 5 cm2) and 

cleaving along the (010) plane with a sharp razor blade. Careful cleavage on this 

plane produced clean, fresh surfaces largely devoid of macro steps. 

Polycrystalline anhydrite (UKGE Limited) and (001) edge plane gypsum 

samples (exposed surface ~ 8 cm2) were embedded in epoxy resin moulds 

(Delta Resins Ltd). These samples (anhydrite and edge plane gypsum) were first 

polished with silicon carbide 4000 grit paper (Buehler) and further on a pad 

with 6 µm diamond spray (Kemet Int Ltd) followed by thorough rinsing in 

ultrapure H2O. For each experiment, a fresh surface was fashioned by polishing 

the surface of the embedded crystal. Surfaces were etched before studies (vide 

infra) to ensure a contaminant-free surface. 

2.3.2 Polycrystalline Materials Modified with Humid-Creep Additives 

DL-tartaric acid (Sigma-Aldrich), trisodium trimetaphosphate (STMP) 

(Sigma-Aldrich), 3,4,5-trihydroxybenzoic acid monohydrate (gallic acid, Sigma-

Aldrich) and boric acid (Fisher Scientific) were dissolved in Milli-Q reagent 

grade water (Millipore) with a typical resistivity of ca.18.2 MΩ cm at 25oC, to 

yield solutions of 1 mM. This concentration was chosen to compare the 

effectiveness of humid creep inhibitors in quantities similar to those reported in 

industrial applications.5-8 Gypsum samples were cast by mixing α-plaster (94% 

calcium sulfate hemihydrate by thermo-gravimetric analysis (TGA) with these 

humid creep solutions, such that water: plaster = 0.7:1 by weight. A control 
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sample of similar ratio as the humid creep samples was also made where the 

plaster was mixed with pure water. Gypsum samples were produced by pouring 

the mixture into silicone moulds (12 mm diameter and 24 mm height), which 

were left for 1.5 hours to hydrate (conversion of CaSO4·0.5H2O into 

CaSO4·2H2O). The cylindrical samples were then dried in an oven at 40oC for 12 

hrs, after which samples were impregnated under vacuum with low viscosity 

grade epoxy resin (Epofix) and allowed to cure. The compositions, by weight, of 

samples prepared in this way are summarized in Table 2.1. 

 

Table 2.1: Composition of humid creep additive samples in 1mM solution  

 

 
2.3.3 Composite Phosphate Materials 

Composite samples made with gypsum, aluminum dihydrogen phosphate 

and phosphoric acid in varying molar ratios were prepared by impregnating dry 

porous gypsum under vacuum; table 2.2. The samples were then dried at 40oC 

for 12 hr after which they were crushed and pressed (10 MPa, 1 min) before 

heating up to 500oC at 5oC min-1 and holding there for 2hrs. All samples 

processed in this way were polished with silicon carbide 4000 grit paper 

(Buehler) as well as on a pad with 6 μm diamond spray (Kemet Int Ltd), after 

Sample Humid creep additive/ % λ 

Gypsum control 0 1.5 ± 0.1 

STMP 0.021 1.4 ± 0.3 

Tartaric acid 0.011 1.4 ± 0.2 

Boric acid 0.011 1.8 ± 0.2 

Gallic acid 0.013 1.3 ± 0.1 
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which they were rinsed (1-2 s) in ultrapure H2O. For each dissolution 

experiment, a fresh surface was fashioned by polishing the surface as described 

below. 

 

Table 2.2: Nominal compositions of composite samples. 

Mole fraction 
Al: P λ 

Ca S P Al 

0.40 0.40 0.21 0.00 0 1.8 ± 0.2 

0.40 0.40 0.19 0.02 0.1 1.9 ± 0.2 

0.40 0.40 0.17 0.03 0.2 1.6 ± 0.3 

0.40 0.40 0.15 0.05 0.33 1.8 ± 0.5 

 
2.3.4 Surface Roughness Normalisation for CFC Studies 

An important consideration in dissolution studies is the initial surface 

morphology or roughness and how this changes during the course of the 

reaction. Several studies have attempted to establish a consensus on an 

appropriate way to normalize dissolution rates for studies where the surface 

area changes.9-11 In order to account for possible changes in surface roughness 

between different substrates and over the course of dissolution reactions, 

surface area measurements were carried out via WLI (WYKO NT-2000 Surface 

Profiler, WYKO Systems), typically using a  10 × or  20 × objective (vide infra). 

Natural Crystals 

For samples used for the study in Chapter 5, surface roughness was 

address by initially etching samples with the expectation (validated, vide infra) 

that they would maintain a constant specific surface area during the course of 

dissolution. Thus, prior to CFC experiments, each sample was etched in a large 

volume (> 500 cm3) of ultrapure H2O at 22 ±1 °C in a beaker stirred with a 

magnetic flea. After ~30 min, the sample was withdrawn and immediately dried 
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with a strong burst of N2 gas (BOC). By etching the surface before CFC studies, 

we produced surfaces with a roughness factor, λ defined as the ratio between 

the specific surface area of the crystal due to dissolution and a smooth 

geometric area of similar lateral dimensions without fluctuations in the z-

direction. This issue is further discussed in Chapter 5. In most cases, λ was 

found to be close to unity, but occasionally several times larger, depending on 

the sample (vide infra). An early study by Bruckenstein 12 found that mass 

transport to a rotating disk electrode (RDE) for a large dynamic range of 

rotation speeds was unaffected by values up to 7.5. Since the RDE and the CFC 

have similar mass transport rates,13,14 it was reasonable to assume that the 

sample preparation procedure used would not significantly perturb mass 

transport in the CFC. To determine λ for the different etched substrates, surface 

area measurements were made using WLI and the images produced, and 

analyzed via SPIP. 

Polycrystalline Surfaces 

For the polycrystalline samples embedded in a resin matrix (Chapter 6), 

the surface roughness measurements were carried out on the substrates both 

prior to, and immediately after, CFC experiments. The topographical images 

were analysed via WYKO (Figure 2.2). From these measurements, λ could be 

determined and used to normalize dissolution data obtained from ICP analysis, 

by the exposed surface area of the dissolving substrate, thereby providing 

reliable dissolution rates.15,16 
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Figure 2.2: WLI height images displaying the surface topography of polycrystalline gypsum 

samples before (a) and after (b) polishing. A plot of the height of surface data points is also 

shown (c) where the rougher surface exhibits a wider spread (black) compared to the 

smoother polished one (red). 

 

Polycrystalline samples were further visualised via scanning electron 

microscopy by Robin Fisher (Warwick University Dept. Chemistry) using SEM 

(EVO 50 XVP Zeiss Supra 55-VP) at 20 keV. Prior to SEM analysis, each sample 

was coated with a thin layer of carbon and a copper strip was attached to 

provide a conductive path to ground. Quantitative analysis of surface 

composition was carried out using energy dispersive X-ray analysis (EDXA) 

(Inca X-sight, Oxford Instruments) to determine the relative amount of resin 

and gypsum crystal on the surface using the backscattered electron detector, 

and then binarizing with ImageJ, a commercial IP package. This process was 

carried out to first, determine the nature of surface heterogeneity in order to 
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validate the approach used, and second, to estimate the relative proportion of 

active (crystalline) regions on the surface.  

2.3.5 Design of The CFC Unit 

This group has recently introduced a new CFC design and fabrication 

procedure using micro-stereo lithography (MSL) to produce radically 

miniaturised one-part CFC units.17 Briefly, the CFC unit is drawn using 3D 

graphical design software, SolidWorks (Dassault Systémes, France) after which 

the design is used as input for a Micro-Stereo Lithography (MSL) system 

(Envisiontec PerFactory Mini Multi-Lens, Germany). The in-built MSL software 

then digitally slices the input design into 25 µm horizontal slices for use as 

lithography masks to cure a single layer of photosensitive resin.18 The first 

‘slice’ is fabricated by lowering the build platform into a reservoir containing 

the resin, where a digital projector focuses the 3D design onto the plane 

sandwiched between the build  platform and the resin stock. After curing this 

layer, the platform raises by the thickness of one layer (25 µm) to facilitate the 

fabrication of the next contiguous lateral ‘slice’. 17 Subsequent layers are 

fabricated by repeating this process.  

Most CFC designs comprise of two-part or three-part assemblies typically 

held together with nuts and bolts, to produce channels, typically 40 mm in 

length, 6-10 mm across and 0.2-1 mm high.19 Such cells place some restrictions 

on sample size and the way in which crystal materials are presented for study. 

CFC units as described above eliminate awkward assembly (nuts, bolts or 

adhesive sealants) and greatly reduce the cell volume, without compromising 

mass transport. Indeed, a much wider range of mass transport rates can be 
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implemented. The MSL-CFC is assembled by simply placing a CFC unit on the 

substrate of interest and securing with light pressure or even a thread!  

The CFC units used in Chapters 5 and 6, incorporated an in-built mixer in 

the outlet which ensured solution exiting the CFC was homogeneous.  Figure 2.3 

shows (a) the CFC unit schematically in cross-section with the mixer in the 

outlet with (b) a photo of the finished CFC unit and (c) perspective drawings of 

the CFC unit. The geometric area of the crystal exposed to solution was 

determined by the internal channel dimensions: the width, w, was 4 mm and 

length, l, was 10 mm. The channel height (2h) was determined via WLI to be 

210 ±10 µm.  

 

 

Figure 2.3: Illustration of (a) the two dimensional cross-section of the flow cell (not to scale), 

highlighting the crystal substrate which forms the base of the channel and the mixer in the 

outlet, (b) a photograph of a finished CFC unit where the scale bar is 10 mm and (c) 

schematic of the CFC design from several viewpoints, where the cell dimensions are in mm. 
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The channel was assembled by simply applying light pressure on the 

channel unit, placed on the crystal substrate of interest. Inlet and outlet pipes 

(PVC, 0.318 cm inner diameter and 0.635 cm outer diameter, St Gobain Plastics) 

were connected directly to the cell by push-fitting to a syringe pump using 

Omni-fit adapters (Bio-Chem Fluidics). The complete experimental set up is 

shown in Figure 2.4. 

Figure 2. 4: Experimental set up used for CFC dissolution experiments. 

 

2.3.6 CFC Dissolution Procedure 

A syringe pump (KD Scientific) was equipped with a 50 ml syringe (BD 

Plastipak, luer-Lok) with a 22 mm inner diameter. This was used to drive 

solution into the assembled cell. Dissolution experiments took place at flow 

rates (Vf) in the range 0.008 – 0.167 cm3 s-1, corresponding to Re ~ 8 – 16 which 

is significantly below the critical value of 2000 20 thus denoting well-defined 
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laminar flow profile within the CFC channel. This corresponds to a maximum 

contact time of ~1 s for solution within the part of the channel above the crystal 

at the lowest flow rate. Furthermore, the mass transfer coefficients, kt ,for the 

lowest and highest flow rates were deduced to be 0.004 cm s-1and 0.01 cm s-

1,respectively.  Thus, it was possible to change flow rate and make 

measurements very easily over a wide range. All CFC measurements were made 

at standard conditions.  Aliquots (5 cm3) of the effluent were collected at 

intervals for the range of flow rates used. Trace element analysis of dissolved 

Ca2+ was carried out on the aliquots via ICP-MS (7500 Agilent) and ICP-OES 

(Perkin-Elmer Optima 5300 DV) for natural (Chapter 5) and polycrystalline 

(Chapter 6) samples, respectively.  The former has a lower limit of detection of 

1ppm compared to 100 ppm for the latter. This allowed for the extraction of 

flow-rate dependent output concentrations, from which dissolution fluxes were 

determined. For spectrometric analysis, standards for Ca and P were prepared 

from 1g dm-3 stock solutions.  

 

2.4. Micro-Crystal Growth Studies 

2.4.1  Crystal Seeding Process 

Glass cover-slips (47 mm diameter, 0.17 mm thick) were silanised using 

dimethyl dichlorosilane (DMDCS, ACROS Organics) for 20 min, followed by 

washing thoroughly in isopropanol (IPA, Fisher) for 10 min after which they 

were dried under a stream of compressed nitrogen (BOC). In this way, the 

cover-slips were rendered hydrophobic (Figure 2.6). Typically, silanising 

procedures aim to fashion a homogeneously hydrophobic surfaces. However, in 

our case, the process was designed to render a majority of the surface –OH 
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groups inactive by bonding to DMDCS, while leaving a few unmodified -OH 

groups available as sites for crystal nucleation and growth.  

 

Figure 2.5: Silanisation of a glass substrate 

 

A small aliquot (10 ml) of stock solution was syringed into a petri-dish and 

the silanised glass cover-slip was placed flush against this solution and 

visualised via DIC optical microscopy (Leica DM 4000, Leica Microsystems). 

After ~15 min the resulting surfaces grown gypsum seed crystals were quickly 

rinsed (1-3 s) in ultra pure H2O and immediately dried with a strong burst of 

nitrogen gas.  This ensured that no residue from the growth solution was left on 

the surface and that only the seed crystals which strongly adhered to the 

surface remained for use in growth experiments. A typical surface with gypsum 

seed crystals is shown in figure 2.6. The glass substrate was then attached to a 

petri-dish rim (Willco) to fashion an in-situ AFM cell, with the seed crystals on 

the basal surface. These cells were then kept in a dry environment for ~3 weeks 

prior to use in crystal growth experiments.  
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Figure 2.6: DIC image of a silanised glass surface after a seeding process (~ 30 min) showing 

numerous crystals randomly distributed across the surface. The magnification of a small 

section (b) reveals well defined gypsum crystals exhibiting a monoclinic structure. Note that 

the formed crystals are of similar size (within ~ 10 %), indicating an instantaneous 

nucleation process.  

 

2.4.2 Crystal Growth Experiments 

Following the seeding process, the grown gypsum crystals were 

characterised via Micro-Raman spectrometry to verify their identity. All growth 

experiments were conducted at room temperature (23 ± 1 ºC) under conditions 

open to the atmosphere. MINEQL+ simulations conducted for a closed system 

revealed a negligible change in speciation between a closed and an open system. 

Individual crystals for imaging purposes were selected based on their size, 

(maximum initial dimension 10 ± 3 µm), morphology (monoclinic structure 
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devoid of macroscopic steps and defects) and isolation, (distance between 

adjacent crystals ≥ × 10 the characteristic length of a crystal under 

observation). The imposed restrictions satisfied the conditions necessary for a 

microscopically active surface to be diffusionally isolated while maintaining 

high mass transfer rates which work to minimise the influence of the AFM tip 

on diffusion to the crystal surface.  

A small aliquot (4 ml) of growth solution (Table 7.1) as prepared, (vide 

supra) was transferred to the in-situ AFM cell, using a 10 ml syringe (Becton 

Dickinson S.A. Plastipak, Spain) after filtering (0.20 µm pore, Sartorius Ministart 

High-Flow, UK) to prevent the introduction of dust and other impurities from 

the growth solution into the AFM cell. After a period of equilibration, (~10 min), 

the growth of gypsum crystals was visualised via in-situ AFM, under Peak Force 

Quantitative Nanomechanical Tapping mode (Peak Force QNMTM, Bruker AXS, 

Bioscope Catalyst, UK). This imaging mode performs a fast force curve at every 

point of contact and by using auto-optimisation protocol of scan parameters, 

(Scan AsystTM, Bruker AXS) topographical images at very high resolution can be 

obtained. All measurements were carried out using silicon nitride AFM tips 

(SNL-type, Bruker AFM Probes) with a nominal spring constant of k = 0.35 Nm-1, 

and tip sharpness of 2 – 3 nm. 

 The AFM system was equipped with an inverted Differential Interference 

Contrast (DIC) optical microscope (Leica Microsystems DMI 4000) which was 

used to locate crystals for imaging and allow positioning of the AFM tip on the 

crystal surface. Typically, the growth of a crystal was tracked for a period 

between 60 - 90 min and for each value of r, at least three crystals were imaged 
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for each solution (subject to conditions described above) in at least two 

replicate experiments.  

In addition, nanoscopic step motion measurements were conducted, on 

steps nucleating from 2D islands on the (010) basal plane. Using DIC 

microscopy, the AFM tip was positioned on the crystal surface such that the 

scan direction was perpendicular to step movement, and one could track both 

nanoscale step propagation (AFM) and overall lateral growth of the crystal 

(DIC). All topographical images produced were analysed via WYKO Vision 

Software (Veeco Instruments, Inc, Vision 4.10). 

 

2.5. Finite Element Method  

In addition to experimental methods, computer simulations were 

designed to support the insights gained from empirical studies. To this end, 

experiments were extensively modelled using the finite element method (FEM) 

(Comsol Multiphysics).   

FEM is a numerical technique used to approximate numerical solutions to 

partial differential equations (PDE) and ordinary differential equations (ODEs). 

Other similarly powerful methods exist, such as the finite difference, boundary 

element and finite volume element techniques,21 that can accommodate very 

complex geometries.  FEM allows various physical phenomena such as chemical 

kinetics and complex mass transport processes to be addressed.  

Typically, the approach used (and applied herein) is to simplify the 

problem to a steady-state situation where the differential equation is 

eliminated. The primary challenge is to define the physical geometry of the 
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problem via a system of nodes (mesh elements) which together form the 

simulation domain (called a mesh), with specific properties (boundary 

conditions) which describe how the structure (or specific parts) behaves under 

certain situations. Typically, the more elements used to define the domain, the 

more accurate the solution is and  in areas of interest (vide infra) a higher 

density of nodes is applied compared to other regions, in order to accommodate 

the anticipated ‘stress’. 22  For 2D problems triangular nodes are used while for 

more complex 3D situations, tetrahedral nodes are employed.  

FEM numerically solves the PDEs at each node in the domain. The solution 

at each node can be combined to generate a representation (2D or 3D for more 

intricate geometries) of the solution. One significant advantage of using FEM is 

the capacity to compute solutions of complex geometries. A simple example is 

shown in Figure 2.7 below.  

A dissolving isolated etch pit with a triangular profile is simulated (Figure 

2.7(a)). The domain walls 1-3 represent a bulk environment (in this case pure 

water) where the concentration, C = 0, while boundaries 4 and 6 represent an 

inert surface in the vicinity of the evolving etch pit. Boundary 5 represents the 

etch pit, from which a fixed flux emanates, and is described by K(C-1). A mesh is 

generated (Figure 2.7 (b)) as described above, with a higher density in the 

active region (boundary 5). For the conditions applied, FEM is used to solve the 

PDE problem that describes the reaction-diffusion and a concentration profile 

(Figure 2.7 (c)) is generated. It is clear that in the region of the etch pit, the 

concentration is predictably higher due to generation of dissolution products 

into the interfacial region. Furthermore, the hemispherical diffusion profile 
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shown to extend some distance into the bulk solution and is characterised by a 

decrease in concentration the further away from the etch pit you go.  

 

Figure 2.7: A single etch pit undergoing a dissolution process is modelled by (a) describing 

the physical domain in the vicinity of the pit, where the numbers represent boundaries each 

governed by specific conditions, (b) a mesh made up of triangular nodes is generated over 

the entire domain with higher densities close to the active etch pit and (c) the FEM solution 

of the reaction-diffusion problem illustrated as a concentration profile.   
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Chapter 3                                                            
Image Processing with Matlab 

 

Abstract 

This chapter describes the development of various user-defined computer 

routines written in the commercial Matlab technical computing interface. 

Individually, they were designed to perform specific tasks on images and, 

collectively, these routines form a highly specialised image processing (IP) 

package designed to extract quantitative information from 3D images obtained 

from various studies, including the analysis of crystal dissolution data obtained 

in Chapter 4. Common challenges associated with commercial IP software are 

discussed briefly with a view to highlight the benefits of a user-designed 

approach. 
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3.1. Introduction 

Image processing (IP), involves manipulating an image in order to 

facilitate the extraction of important information. In science and technology, IP 

has wide ranging applications in areas such as law enforcement (fingerprint 

analysis), medicine (MRI, CAT scans) and surface science (microscopy).1 

In surface science, the development of scanning probe microscopy and 

other surface profiling techniques such as interferometry has induced a great 

interest in developing image processing and analysis software which 

complement these techniques, in order to extract both qualitative and 

quantitative information from the surfaces under analysis. 2,3 IP in the context 

of these techniques involves manipulating the topographical (3D) images 

produced in order to facilitate the extraction of important surface information.  

Commercial IP software is traditionally supplied by the manufacturers of 

microscopy systems where they offer a number of options to the user when 

processing images. However, they are typically designed to cater for broad IP 

issues and often, lack the flexibility required for more specialised image 

analysis. In addition, most software only allow processing of a narrow range of 

image formats and for researchers who use a wide variety of imaging 

techniques each with a unique set of image analysis issues to resolve, this 

presents an inconvenient limitation. However, these software packages 

normally allow image data to be stored either as simple matrices (text files) or 

in widely used formats such as TIFF, JPEG and PNG among others, therefore 

facilitating more specialised image analysis. The subject of image storage format 

is of particular importance in image analysis due to the role it plays in the 

preservation of spatial calibration information which facilitates the conversion 
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of image data (pixels) to real dimensions (µm).2 For images produced in one IP 

package and subsequently analysed in another, the parameters used in image 

acquisition significantly influence the validity of results. 

Some free-standing commercial IP software such as scanning probe image 

processor (SPIP, Image metrology) 4 have attempted to bridge the gap between 

increasingly diverse image analysis requirements and the limited options 

currently available. In addition, various free software packages such as ImageJ 5 

and Image SXM 6 have been developed with a view to encourage user 

contribution to software development, thus making image analysis options 

more versatile.  

A further pertinent issue in IP is batch processing, which is the process by 

which a sequence of tasks or operations are performed on large sets of images, 

without manual/user intervention. This is particularly crucial for some studies, 

such as, real-time visualisation of dynamic processes on a surface (such as 

growth and dissolution). Typically, large sets of images are produced from time-

lapse sequences, and therefore, an efficient and convenient method of 

processing them in order to extract time-dependent information, is required.7 

Unfortunately most IP software either lack this option or, when available, offer 

options that are limited to a very narrow range of operations.  

In this chapter, an IP package written and executed in Matlab (Mathworks, 

Inc., Cambridge, U. K.) computing language was designed for the purposes of 

analysing images acquired in crystal dissolution studies. The sequence of image 

analysis operations applied is summarised in Figure 3-1.The use of Matlab 

allows the integration of a vast array of commands called functions, through 

which various tasks can be performed. These include data acquisition and 
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analysis, modeling and simulations as well as the development of graphical user 

interfaces (GUIs) which provide a user-friendly environment for image analysis. 

This software is typically equipped with an IP Toolbox which contains a large 

set of in-built functions designed to perform specific image processing tasks. 

These tasks include image restoration and enhancement (contrast, de-blurring, 

and noise removal) as well as image segmentation (isolation of shapes), in 

addition, to the in-built functions available in the Matlab environment, which 

allow the user to write new commands using the computing language. In 

addition, the Matlab environment is uniquely designed to cater for batch 

processing operations, thereby providing an expedient tool for addressing 

unique image analysis problems. 
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Figure 3.1: Sequence of operations performed on 3D images. 
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3.2. Method 

Images processed via the Matlab IP package were acquired from crystal 

dissolution studies from experiments carried out on etched surfaces, such as 

those described in chapter 3 below and other works. 8,9  

3.2.1 Visualised Surfaces  

Local scale dissolution of a crystalline surface was carried out to produce 

characteristic etch pits. The application of different experimental conditions 

(such as a large range of saturation states and/or the use of additives) yielded 

etch features with characteristic morphologies and sizes. Figure 3.2 shows WLI 

height images of (a) a cylindrical etch pit on the surface of enamel and (b) 

characteristic etch pits produced after etching the (010) surface of single crystal 

gypsum.  

In order to monitor the dissolution reaction, the resulting surfaces (after 

dissolution experiments) were visualised, via WLI and AFM. Topographical (3D) 

images produced via these techniques were saved as simple matrices, with 

image acquisition parameters and spatial calibration information stored in the 

header of each image file. These files were then quantitatively analysed with the 

in-house Matlab IP package, for the determination of dissolution kinetics. 
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Figure 3.2: Typical WLI images reproduced using the in-house designed image processing 

package. (a) Etch pit on enamel surface and (b) etch pits on gypsum (010) surface. Note the 

tilt on the surface as denoted by the drastic colour change from the right-hand-side to the 

left-hand-side of the images as well as the missing pixels highlighted by the dark irregular 

areas close to the etch pit edges. 

 

3.2.2 Image Restoration via Batch Processing 

In each of the studies described (vide supra), a very large number of 

images was produced, typically ≥ 100 images per study and at times much 

higher depending on the experimental variables applied. With such large data 

sets, the task of manually processing each individual image would take an 
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inordinate amount of time and thus a more efficient batch processing approach 

was desirable.  

Batch processing allows for a sequence of operations to be performed on 

an image file (or a set of images) without the need for manual intervention. A 

batch processing function was performed on a file directory containing all raw 

images pertaining to a particular study. For each image file, the 3D image was 

imported into Matlab where the unique image acquisition parameters were 

extracted and applied to the loaded image matrix. In this way, further image 

analysis could be carried out on real image data. Batch processing was 

employed to expedite numerous other operations (vide infra). 

Once imported the images underwent a series of restoration routines 

designed to correct various imaging artifacts such as image tilt and missing 

pixels.  

Missing Pixels 

In some cases, imported image matrices contained pixels with missing 

values. This is a typical problem observed with some topographic images 

produced via interferometry as a consequence of low reflectivity at points on 

the surface exhibiting high aspect ratio features. For instance, the etch pits 

produced in the studies analysed here exhibited steep tapering profiles (etch pit 

walls) with a flat base in the direction normal to the surface. To correct this, 

user-written functions were designed to scan the entire image matrix for the 

coordinates of pixels with missing values. Once found, a plane was fitted to the 

pixels surrounding these coordinates and the missing value was replaced with 

the corresponding value from the fitted plane, in effect, assigning a local average 

value to the empty pixel position. This is shown clearly in Figure 3.4(a) where 
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the height image of an etched gypsum (010) surface is shown with a cross-

section through a series of etch pits on the surface. The plot shown in Figure 3.3 

(b) shows an overlap between the raw cross-section highlighting missing values 

(red line) and the restored cross-section (green line). Figure 3.4 shows a 3D 

surface plot of an etch pit on enamel surface (a) highlighting areas with missing 

pixel values and (b) the restored image. In this case it is clear that the extraction 

of quantitative information from the etch pit data prior to image restoration 

would significantly affect the results obtained. 

 

Figure 3.3: (a) WLI micrograph of etch pits with (b) original cross-section (red) with missing 

pit data overlayed with a cross-section from a restored image where missing pixel values 

were replaced with a local average (green). 
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Figure 3.4: (a) 3D image of etch pit on enamel surface showing missing pixels and (b) etch 

pit after image restoration 

 

Tilt and Curvature 

Typical of microscopy images, background tilt and curvature were 

common occurrences. These and other sources of imaging artifacts have been 

documented extensively particularly in the case of AFM.10-13 For the case of the 

enamel etch pit images, characterised by a large central etch pit, the tilted image 

was restored by first isolating a 10 × 10 pixel box at the corner of each image 

matrix. This was carried out to ensure that the area selected was at the furthest 

possible distance from the etch pit boundaries. Collectively, these corner pixels 

represented a reasonable approximation of the tilted plane. In order to restore 
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the tilted image to a geometrically flat plane, a least-squares plane was 

subtracted from the tilted image fashioned from these corner pixels. In this way, 

the extraction of z-scale data (heights) could be carried out from a baseline 

where the highest point on the image was at z = 0. As a simple operation, this 

task was employed in a batch process. A typical example of plane correction is 

shown in Figure 3.5 where a cross-section through a tilted etch pit (black line) 

is overlayed with the plane-corrected cross-section (red line).  

 

Figure 3.5: Overlay of original (black) and tilt corrected (red) cross-section. 

 

For images with numerous regions of interest, such as the etch pits 

produced after etching a gypsum crystal surface (Figure 3.2(b)) the method 

applied above would be inappropriate since some etch features traverse the 

border of the image and a global plane correction would therefore be 

erroneous. In this case, a local level plane fit was carried out for each etch pit on 

the image. First, etch pit outlines were determined via a series of operations. 

Using an in-built Matlab function (edge), the boundaries of an etch pit were 
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deduced. This customisable function works by finding areas on an image where 

the gradient between adjacent pixels changes dramatically (such as at the edge 

of an etch pit) and outputs an image showing only the areas where these 

gradient changes exist and in our case, it returned the etch pit outlines. In this 

way, pixels inside the etch pit could be isolated. In addition, this outline could 

expanded (whenever necessary) using a dilation operation in order to 

encompass some of the plateau surrounding the etch pit. The pixels 

corresponding to the etch pit were subtracted and a plane fitted to the 

remaining pixels (only the plateau surrounding the etch pit). This approach 

ensured that etch pit properties were not compromised or modified by tilt 

correction in a significant way. 

 

3.3. Graphical User Interfaces (GUIs) 

After general image restoration operations, the task of extracting 

quantitative information from etched surfaces was performed by developing 

graphical user interfaces (GUIs) which provide the user with real-time views of 

any changes applied to the image by executing user-written functions. Two GUIs 

were developed and are described below.  

3.3.1 Images of Etched Gypsum Surfaces  

The first GUI was designed to determine the time-dependent dimensions 

of etch pits on gypsum (010) surfaces. Figure 3.6 shows a ‘screen dump’ of the 

GUI, where in (a), images are imported after the image restoration batch 

processes described (vide supra). By applying contour thresholds similar to the 

edge finder operations (vide supra), features at a specific height were isolated 
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(Figure 3.6 (b)) after which small surface fragments were subtracted (Figure 

3.6 (c)). The etch pit outlines were then slightly dilated to encompass the entire 

etch pit (Figure 3.6 (d)) and the resulting image superimposed on the original 

imported image to compare etch pit edge approximation (Figure 3.6 (a)). In 

addition, complete user control was afforded by the use of built-in sliders (e) for 

all tasks. Specific details of each operation are described below. 

 

Figure 3.6: Graphical User Interface (GUI) designed to isolate the etch pits from the image 

background and determine etch pit measurements. 

 

Etch Pit Isolation 

First, etch pit isolation was carried out by applying a depth threshold to 

the imported image by scanning through the z-scale (pixel values) and finding 
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the edges of objects at each contour level. The objective was to find the edge of 

the pit close to the surface (~ z = 0) and isolate it from the image background. In 

the surface image analysed in Figure 3.6, it was observed that this GUI feature 

was robust enough to isolate etch pits which were very close together as shown 

by the arrow in part (b). The output from this operation was a simple binary 

image file (all pixels are either 1 or 0) which easily highlighted areas on the 

surface found at the same height. As shown in part Figure 3.6(b) in addition to 

the large etch pits, small particles were found on the surface, although they 

were not clearly discernible from the imported colour image Figure 3.6(a).  

Removal of Small Surface Features 

Since this GUI was designed to analyse all isolated surface features and 

after the pit isolation operation (vide supra), the numerous small particles may 

complicate data analysis and thus had to be eliminated. This command was 

designed to remove these small particles from the main image by thresholding 

the output from part (b) on the basis of particle size. The function once again 

finds all surface features with the use of the user-controlled slider, and 

disregards features below a certain size (number of pixels). For instance, if a 

typical etch pit on the surface was made up of 100 connected pixels, particles 

below this value (100) may then be selected and removed by creating an 

additional binary image without the small particles (Figure 3.6 (c)).  

Pit Outlines and Etch Pit Statistics 

At this point, only the areas of interest (etch pits) remained on the image. 

The last operation eliminated any surface feature which was connected to the 

image border to ensure that etch pit statistics were extracted from whole etch 
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pits only. Additionally, from the resulting binary image, the outlines of surface 

features were isolated and overlayed onto the original input image, so as to 

allow a direct comparison between the user-defined pit size approximations 

and the original image (Figure, 3.6(a)). Additionally, a dilation operation was 

performed by applying a user defined morphological structural element (using 

the slider at the bottom of the series, Figure 3.6 (e)) to each pixel in the binary 

pit outline image. This has the effect of gradually enlarging the boundaries of 

each pixel. All results were shown to the user to ensure the chosen pit area 

enclosed the entire pit. This chosen pit area erred to the side of caution, and 

frequently a fringe containing some of the plateau surrounding the pit was 

chosen, however, this did not cause any inaccuracies, (vide infra). 

Once this has been achieved, the function selected the etch pit pixels from 

the rest of the image matrix and measured a set of features for each etch pit on 

the image. This operation was carried out by applying an in-built Matlab 

function (regionprops) which measures specific properties for object on an 

image (features with connected pixels). These measurements include, etch pit 

area, centre of mass (centroid), length, width, perimeter and orientation, among 

others. These values were used as the input to a function which calculated the 

etch pit volume and surface area using the area of each pit pixel and its 

corresponding value (which denotes the height at that point). The quantitative 

information gathered facilitated the deduction of time-dependent etch pit 

volumes and surface areas culminating in a deduction of dissolution rates.  
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3.3.2 Images of Etched Enamel Surfaces 

The second GUI was designed to process electrochemically etched enamel 

surfaces with the aim of extracting height dependent pit measurements. In a 

similar way to the GUI for etched gypsum surfaces, the imported images had 

previously undergone image restoration operations.  

For large features, in high resolution images, analysis naturally takes 

longer than it does for smaller low aspect ratio features due to the large amount 

of information that has to be processed. Therefore, the purpose of this GUI was, 

first, to simplify the process of image analysis by reducing the amount of data 

processed without compromising the quality of information deduced and 

second, perform various operations on these simplified data to determine etch 

pit dimensions at different heights. Figure 3.7 shows a screen dump of the GUI. 

Cross-sections taken at user defined intervals (every 10 rows/columns) 

spanning the entire image were considered to be representative of the dominant 

surface profile of the etch pit and were plotted in Figure 3.7 (b). From these data, the 

image centroid (centre of mass) was determined by using the Matlab function, 

regionprops. Briefly, the function calculates the coordinates of centre of mass based 

on the shape and size of surface features. In the case of the images analysed here, the 

large (central) cylindrical shape indicates that the coordinates of the image centroid 

are likely to be at the centre of the pit close to the deepest point. Once the centroid 

coordinates had been deduced, a cross-section through these coordinates was plotted 

as shown on Figure 3.7(c). It was assumed that the line through the centroid (in most 

cases), was representative of the overall pit geometry and changes observed to this 

profile (due to varying experimental conditions) could therefore be used to monitor 

the dissolution reaction.  
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Figure 3.7: GUI image designed to extract height dependent etch pit dimensions where (a) is 

the input 3D image, (b) cross-sections across the surface and (c) cross-section through the 

image centroid. 

 

In order to reveal the underlying pit profile, which was at times masked by 

random variations due to imaging artifacts and noise, a simple moving average 

smoothing function was applied to each column of the input image and the 

result was shown via changes in plots on Figure 3.7 (b) and (c). In this method, 

a series of averages are calculated for an array, computed by averaging a user-

defined block of elements (span). For example, the cross-section through the 

centroid, M where: 

1 2 3, , ............... nM m m m m     (3.1) 
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and mn is the value of the nth element, averaged with a span of 3 elements 

yields; 

1 2 3 2 3 4 2 1, ,.... )
3 3 3

n n nm m m m m m m m m
MM        

  
    (3.2)

 where MM is the smooth array and mm is an element in this array. Figure 

3.7(d) shows a slider used to define the span and therefore control the extent of 

smoothing applied to the image cross-sections. The higher span, the larger the 

block of elements used to determine the moving average, resulting in a 

smoother line. Changes in the etch pit profile due to smoothing were monitored 

by real-time overlaying the original (blue) and smoothed (red) cross-sections as 

shown in Figure 3.7(c). When large span values are used, smoothing in this way 

can give rise to a significant modification of the image, consequently leading to 

flawed measurements and to avoid this, low span values (< 10) were used 

throughout for all images analysed.  

The smooth etch pit image was stored for the deduction of etch pit 

measurements. Figure 3.8 shows 3D surface plots of (a) the original input etch 

pit surface image after batch processes but prior to GUI operations and (b) the 

etch pit surface profile after smoothing. Note that the general pit geometry does 

not change in a significant way so as to compromise the validity of etch pit 

dimensions deduced from the smoothed image. 
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Figure 3.8: 3D surface plots of (a) a pre-processed etched enamel surface with a large 

central pit and (b) the result of user-defined smoothing to eliminate ‘noise’ while 

maintaining image integrity 

 

Etch pit characterisation was carried out by taking x-y cross-sections of 

the etch pit over a range of depths (z) and measuring features (diameters, areas, 

etc) at these user-defined contour levels. Further analysis of these contiguous 

contours aided the discrimination between lateral and longitudinal etch pit 

expansion rates. Figure 3.9 illustrates typical contours viewed from (a) 

direction normal to etch pit depth and (b) contour plots through the image 
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topography. Note that the contours observed were reasonably regular in shape, 

highlighting uniform lateral dissolution of the enamel surface at a particular 

height. When related to the prevailing experimental conditions, the information 

extracted from the image analysis approach used here, facilitated the deduction 

of dissolution kinetics.  

 

Figure 3.9: Etch pit measurements at different pit depths. 
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3.4. Discussion 

The image processing package designed in-house was proven to offer 

significant advantages over commercial IP software (from manufacturers of 

microscopy equipment) as well as stand-alone packages. Figure 3.10 shows a 

typical plot of pit length as a function of etching time, calculated from 

dissolution etch features produced on a gypsum crystal surface, where the 

results from commercial SPIP software are compared to those from the user-

written Matlab IP package.  

 

Figure 3.10: Typical plot of etch pit length as a function of time, comparison between the 

Matlab IP package designed in-house (blue bars) and commercial IP software SPIP (red 

bars). 

 

It was found that for simple tasks, the in-house designed package worked 

as well as commercial software. However, for more challenging operations such 

as those involving the extraction of etch pit dimensions at varying depths, no 

direct comparisons could be made since commercial software typically do not 
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provide such specialised image analysis options and furthermore, some do not 

allow users to customise the IP source code to facilitate these operations. 

A significant advantage of the Matlab IP package over others is the 

customisable batch processing capability which facilitates the extraction of 

statistically robust information and saves valuable time. Figure 3.10 illustrates 

the limitations of most commercial IP software compared to the options 

available when using a custom built IP package. It is evident that by using the 

latter method, the information extracted can be readily assessed for statistical 

robustness. 

 

Figure 3.11: Comparisons between options and output from image analysis using (a) user-

designed Matlab IP package and (b) typical commercial software 
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3.5. Conclusions 

An image processing package has been developed using the Matlab 

computing language and used to analyse topographical images produced from 

crystal dissolution studies. The Matlab environment has been shown to be 

incredibly versatile, offering numerous in-built functions which perform 

various operations on images. Furthermore, the interface allows users to 

readily customise in-built functions as well as design new specialised 

commands. The limitations of commercial software with regards to meeting the 

diverse needs of specialised image analysis options have also been highlighted.  

The benefits of automating simple tasks has been described, in particular, 

regarding the improved efficiency with which large data sets can be processed 

with little or no manual intervention, thereby freeing the researcher to test a 

wide range of variables. 

Two graphical user interfaces were developed for separate crystal 

dissolution studies. In the first case, etch pits produced on gypsum (010) crystal 

surface were characterised in order to extract time-dependent etch pit 

dimensions and aid in the determination of dissolution rates. In the second GUI, 

the images analysed showed large central etch pits formed on the surface of 

enamel. These images were analysed with the aim of separating lateral and 

longitudinal dissolution rate information.  

In both cases, the user designed IP package proved to be a versatile and 

expedient approach to image processing. For simple tasks such as calculating 

some etch pit dimensions (lengths, widths etc), image analysis results from the 

Matlab IP package compared well with stand-alone commercial software. 
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However, the options available in the latter for more specialised operations 

were limited, thereby highlighting the benefits of a user-designed approach. 
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Chapter 4                                                            
Bridging the Length Scales in 

Dissolution Kinetics: Macroscopic 
Fluxes, Mass Transport Effects & 

Direction-Specific Rates from 
Gypsum Etch Pit Analysis 

 

Abstract 

Dissolution processes at single crystals often involve the formation and 

expansion of localised characteristic etch pits. Using natural gypsum single 

crystal as an example, a simple but powerful morphological analysis of 

characteristic etch pit features is proposed. First, the high and quantitative mass 

transport associated with micro-scale interfaces (well known in the field of 

electrochemistry at ultramicroelectrodes) allows the relative importance of 

diffusion compared to surface kinetics to be assessed. For the case of gypsum, 

surface processes dominate the kinetics at early stages in the dissolution 

process (small etch pits) on the cleaved (010) surface. However, the 

contribution from mass transport increases with time, with spatial 

heterogeneities in both surface kinetics and mass transport effects identified. 

Directional dissolution velocities of the main basal face and lateral steps were in 

the order; v(010) < v[001] << v[100]. Inert supporting electrolyte enhances 

dissolution velocities in all directions (salting in), but to different degrees. 

Studies of common ion effects reveal that Ca2+ has a much greater impact in 

reducing dissolution rates compared to SO42-, most likely due to preferential 

adsorption of Ca2+ on the negatively charged gypsum surface. With the 

approach reported here, these new microscopic observations can be further 

interpreted to obtain macroscopic dissolution rates, which are found to be 

wholly consistent with previous bulk measurements. The studies thus bridge 

the gap between microscopic phenomena and macroscopic measurements and 

allow the most important features in the dissolution process to be deduced.  
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4.1. Introduction 

This chapter introduces a simple, but powerful, approach for elucidating 

the rate of crystal dissolution, a process driven by interfacial undersaturation.1,2 

In comparison to crystal growth, for which a wide body of experimental and 

theoretical data is available,3-7 it is recognised that the kinetics and mechanisms 

of crystal dissolution are less well understood and new features continue to 

emerge.8-16  

Traditional methods for the study of crystal dissolution have tended to be 

macroscopic, such as batch and column experiments on particulates,17,18 as well 

as techniques that deliver well-defined mass transport to (well-defined) 

surfaces, such as the rotating disk method,19-24 and channel flow cells.21,25-31 

More recently, microscopic techniques such as AFM,17,32-35 scanning 

electrochemical microscopy (SECM)36-40 and WLI4,7,41 have been used to probe 

dissolution processes at the local level. While undoubtedly having a significant 

impact in terms of phenomenological observation, in-situ AFM has the 

disadvantage of limiting dissolution studies to either very slow processes or 

close to equilibrium conditions (for fast processes) so that the reaction is 

compatible with the AFM timescale, thereby restricting the range of intrinsic 

kinetics accessible.33 Furthermore, transport in AFM (convective) fluid cells is 

rather complicated,42,43 which may make the separation of transport and 

surface kinetic effects difficult. It has typically proved difficult to link nanoscale 

kinetics from AFM to macroscopic flux measurements,12 and this is an issue 

which needs to be addressed generally. 

Dissolution is often manifested on a crystal surface through the formation 

of etch pits at defect sites, giving rise to a heterogeneously active surface.17,44,45 
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The morphologies of such etch features have been analysed to reveal 

information about the mode of action of crystal habit modifiers and 

dissolution/growth inhibitors,2,46,47 and work has shown that for slow surface-

controlled processes etch pits reveal information on dissolution kinetics, 7,48,49 

including complex processes where pits coalesce.20 

 In this chapter, a simple quantitative analysis of dissolution kinetics is 

introduced by tracking the evolution of individual characteristic etch pits at 

defined times during the course of a dissolution reaction and coupling these 

observations to a diffusion model. This approach allows the significance of mass 

transport to be elucidated, along with the evaluation of interfacial 

concentrations and the deduction of direction-dependent kinetics. The 

inspiration for the analysis of microscopic features in this way comes from the 

field of ultramicroelectrodes50,51 and ultramicroelectrodes arrays52 which have 

shown that fast kinetics  and the relative importance of diffusion can be 

measured simply and effectively by shrinking the length scale of the reactive 

interface.  

 Figure 4.1 illustrates the conceptual approach used, where the evolution 

of a characteristic etch pit on a surface, undergoing the initial stages of 

dissolution, is tracked over time. With the time-dependent etch pit dimensions 

as an input, a simulation is developed which predicts local fluxes, diffusion 

processes and interfacial concentrations accurately. The approach yields 

molecular-level dissolution kinetics that may be linked readily to macroscopic 

fluxes, providing self-consistent hierarchical kinetics that closes the gap 

between the nanoscale and macroscale.  
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Figure 4.1: Schematic for etch pit analysis, in which a flat crystal surface is etched and 

dissolution is monitored by tracking the expansion of a characteristic etch pit and using 

complementary computer simulations to deduce dissolution kinetics, surface concentrations 

and mass transport effects. 

 

Gypsum single crystal was chosen, as an example of an abundant 

sedimentary mineral53 with extensive applications.54-57 In its optically 

transparent form (selenite), gypsum exhibits a perfect cleavage with near 

atomic scale flatness along the (010) plane, which makes it particularly 

attractive for initial investigations with the proposed method. Various studies 

have explored gypsum dissolution at the macroscale58-61 and nanoscale,62-65 in 

some cases under close to equilibrium conditions.62 Most nanoscale studies 

have reported the formation of shallow pits (pit depth ~ 8Å) which typically 
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emerge from point or line defects. Despite this body of work, there is debate on 

the rate determining step at an early stage in the dissolution process, with some 

studies highlighting the importance of mass transport54,55 while others indicate 

surface kinetic control.56 Furthermore, neither elementary direction (or plane)-

specific dissolution rates nor common ion effects have been reported. 

Consequently, it has not been possible to relate step velocity measurements 

(typically lateral displacement), e.g. from AFM, to bulk dissolution rates 

(volumetric removal of material from crystal surface). As will be shown, 

(Chapter 5) the intrinsic dissolution kinetics of the basal (010) surface are 

accessible, but the edge planes dissolve at a diffusion-controlled rate, even with 

the high mass transport rates accessible from a CFC.60 The approach herein 

addresses these missing features and is shown to provide an holistic view of 

dissolution kinetics. 

 

4.2. Numerical Theory and Simulations 

Finite element simulations were developed to probe the internal pit 

surface as a function of time, and predict spatially-resolved dissolution fluxes 

from which local interfacial concentrations were determined. This allowed the 

deduction of the kinetic regime (mass transport control, surface kinetic control, 

or mixed kinetics) and the elucidation of the contributions of dissolution rates 

in specific directions and their relative importance in macroscopic 

measurements.  

Numerical simulations were executed on a Dell Intel core™ 2 Quad 2.49 

GHz computer equipped with 8 GB of RAM and running Windows XP 

Professional X64 bit 2003 edition. Modeling was performed using the 
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commercial finite element modeling package Comsol Multiphysics 3.4 (Comsol 

AB, Sweden), using the Matlab interface. Simulations were carried out with >27 

000 tetrahedral mesh elements and mesh resolution was defined to be finest in 

the vicinity of the etch pit. Simulations with finer meshes were carried out (not 

reported) to confirm that the mesh was sufficiently fine to ensure that the 

predicted solutions were accurate.  

4.2.1 Model for Direction-Specific Dissolution Kinetics 

A finite element domain shown schematically in Figure 4.2 (a, b) was used 

to approximate the pit, based on the monoclinic geometry of the gypsum unit 

cell and the dimensions of a typical pit at a specific time (Figure 4.3). Due to the 

steep tapering of the pit walls, of the experimental etch pits (Figure 4.2 (c)), the 

lateral pit dimensions used for simulations were approximated to a cuboid 

using lateral pit dimensions taken at 50% pit depth, while pit depth was taken 

from average depth of the pit (010) face.  This was a very reasonable 

approximation for the purpose herein, which was to determine the relative 

importance of mass transport. The distance between etch pits on the surface 

was sufficiently large to avoid overlap of concentration boundary fields 

generated due to the accumulation of dissolution products. This assumption is 

reasonable for the time scale chosen for analysis, coupled with the fact that it 

was found that the reaction was far from diffusion-controlled. The model could 

easily be developed to allow for diffusional interaction of material from 

neighbouring pits if it was needed in the future. 
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Figure 4.2: (a) Simulation domain used for finite element simulations of plane (direction)- 

specific dissolution fluxes where the numbers represent the boundaries used in simulations 

(not to scale). (b) The simulated etch pit whose walls have been opened up for clarity, and 

(c) a typical etch pit with (d) the cross section along the pit length ([001] direction). The 

dashed line represents the approximation used for the pit geometry. 

 

The mass transport of ions from the crystal surface to bulk solution was 

described by the stationary diffusion equation (eq 4.1) solved under fixed 

boundary conditions:  
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2 0i iD C     (4.1) 

where Di is the diffusion coefficient of species i, where i is Ca2+ or SO42-, 

and Ci is the concentration of species i.  The use of equation 4.1 assumes that the 

expansion of the pit geometry is slow compared to the characteristic diffusion 

times, tdiff ~ lp2/D, where lp is the characteristic pit dimension. For all of the 

cases herein, this condition was satisfied. Dissolution of ions from the crystal 

surface was considered to be a stoichiometric process so that electroneutrality 

was maintained. Consequently, the diffusion equation was solved only for the 

Ca2+ ion, with 2+Ca
D  = 0.79 × 10-5 cm2 s-1,66 which was reasonable because SO42- 

has a similar diffusion coefficient to Ca2+.  

The walls of the cubic domain (Figure 4.2) numbered 1-5, define bulk 

solution conditions governed by equation 4.2: 

,i i bC C    (4.2) 

where Ci,b is the bulk concentration of species i. and the numbers used 

represent boundary numbers described in the text to define boundary 

conditions. Boundary 6 represents the inert basal plane and therefore satisfies a 

no normal flux as described by: 

( ) 0i in D C     (4.3) 

where n  is the inward pointing unit normal to the surface. Boundaries 7-9 

represent the etch pit walls in the [010], [001] and [100] directions, 

respectively (Figure 4.2 (b)) and their corresponding experimentally 

determined fluxes normal to specific planes, J(hkl), (mol m-2 s-1) were used as 

inputs for predicting concentration profiles, mass transport effects and the 

interfacial concentration (of Ca2+) ions at each plane, as governed by: 
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( )i i hkln D C J      (4.4) 

 

4.3. Results and Discussion 

4.3.1 Morphological Etch Pit Analysis 

Figure 4.3 shows typical AFM images of etch pits produced after etching 

the (010) plane of gypsum in 0.2 M NaNO3 for (a) 30 s, (b) 55 s, (c) 80 s and (d) 

105 s. The images show etch pit evolution over time with no significant change 

in morphology. In this and all cases, the etch pit shape resembles a 

parallelogram elongated along the [001] direction, with well-defined edges of 

the etch pit embracing the main [100] and [001] crystallographic directions 

(Figure 1.1). This trend in pit growth was typical, and the major time-dependent 

pit dimensions were used to produce direction-dependent dissolution rates 

(vide infra) and as inputs in simulations.  
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Figure 4.3: Typical AFM micrographs of etch pits produced after etching the (010) gypsum 

surface in 0.2 M NaNO3 solution for (a) 30 s, (b) 55 s, (c) 80 s , (d) 105 s and (e) the 

corresponding cross sectional profiles along the [001] direction for 25 s (black), 50 s (red), 

75 s (blue) and 100 s (cyan). Note the evident anisotropy of step kinetics which results in 

etch pit elongation along the [001] direction. Pit depth corresponds to expansion in the 

[010] direction. 

 

The initially isolated pits tended to coalesce typically at times > 15 min in 

pure H2O and > 10 min at IS = 0.2 M (in inert salt solution), which was well 

beyond the maximum duration used experimentally (≤ 110±5 s) for 

quantitative etch pit analysis. By focusing on short times, the development of 

non-interacting etch pits can be considered and, moreover, on this length scale 
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mass transport is strongly diffusional with negligible contribution from 

(natural) convective effects (vide infra). 

Etch pit depth, due to dissolution in the [010] direction, perpendicular to 

the (010) plane, was typically in the range 50 - 530 nm (in pure H2O), increasing 

as the etch time increased. The dimension of a characteristic repeat layer in this 

direction, comprising one CaSO4 layer (Figure 1.1 (a)) is ~ 0.4 nm,67  which 

suggests that even for the shortest dissolution period (30±3 s), the pits analysed 

were at least 120 monolayers deep. Occasionally, some very shallow etch pits 

were observed, but their occurrence was not common under the experimental 

conditions. By contrast, previous in-situ AFM studies62-65 have reported only the 

formation of such shallow pits with depths of just a few monolayers. However, 

these latter measurements were made close to equilibrium and shallow etch 

features of this sort most likely emerge from surface/point defects. The 

consensus is that these shallow pits do not contribute to gypsum dissolution 

rates in a significant way.62-65 

The relatively deep pits observed by in this work, indicates that they 

nucleate at dislocation sites emerging at the surface.44,68,69 This is evident from 

Figure 4.4 which depicts DIC micrographs of matched cleavages. The etch pits 

nucleate at the same location on each surface and exhibit similar dimensions. 

The correspondence of the etch pits is good evidence that they emerge from 

defects which run through the crystal (essentially perpendicular to the (010) 

plane), such as dislocations.44 For any specific etching duration and solution, 

etch pits of this type were formed across the entire surface and were found to 

exhibit similar dimensions to each other (within ≤ 10%). This indicated that pit 

formation for the (010) gypsum surface occurred via an essentially 
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instantaneous process and that any particular pit is characteristic of the 

dissolution process. Such characteristic etch features occur generally in the 

dissolution of many crystalline materials7,12,44,69 making the approach 

advocated here widely applicable.  

 

Figure 4.4: DIC micrographs of the (010) surface of gypsum showing matched halves after a 

7 min etch in pure H2O. Note the correspondence of etch pits on the same mirror positions 

and that the area selected had a macroscopic scratch (bottom section) chosen deliberately 

to allow correlation of the mirror surfaces. 

 

4.3.2 Step Displacement Kinetics 

Figure 4.5 shows summary plots of etch pit displacement for the (010) 

face (a), [001] steps (b) and [100] steps (c) as a function of time, based on direct 

measurement of pits via AFM, for all etching solutions used. Lateral 

measurements of pit expansion of the [001] and [100] steps were taken from 

close to the top of the etch pit while pit depths (dissolution of the (010) face) 

were calculated from cross sections taken across the pit width and length, from 

the basal floor of the pit to the crystal basal surface. For each etching time, at 

least three surfaces were etched and, from these, at least three characteristic 

etch pits were analysed, n=9. The displacements plotted in Figure 4.5 are 

average values and the error bars represent two standard deviations. A 



Bridging the Length Scales in Dissolution Kinetics 

104 
 

reasonably linear relationship of step displacement versus time was found for 

all directions for these relatively short time durations. Step velocity values, 

v[uvw], calculated from each of the slopes in Figure 4.5 are summarised in Table 

4.1. It is evident that there is a significant trend: v(010) < v[001] << v[100].  

 

Figure 4.5: Etch pit displacement as a function of etching time for the (010) gypsum surface 

(n=9) in solutions of 0.2 M NaNO3 (black), 0.075 M Na2SO4 (red), Ca(NO3)2.4H2O (blue) and 

pure H2O) (green) for the (a) (010) face, (b) [001] and (c) [100] steps and the solid lines are 

linear fits to the experimental data. 

 

For etching in pure H2O, the dissolution velocities were: 330 ± 30 nm s-1, 

17 ± 3 nm s-1 and 3.0 ± 0.4 nm s-1 for the [100], [001] steps and the (010) face, 

respectively. This order can be rationalised to some extent by reference to 

bonding in the crystal, particularly within the CaSO4 bilayer (Figure 1.1 (a)), as 

outlined by Teng and Fan,62 using periodic bond chain arguments.70,71  There is 
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a staggered conformation of neighbouring like-ions (e.g. from one Ca2+ ion to 

another) along the [001] direction, while along the [100] direction, like-ions are 

eclipsed. With respect to bonding to neighbouring SO42- groups, a more densely 

packed arrangement is formed in the [100] direction compared to the [001] 

direction. Step movement is likely to be faster along the less densely packed 

direction, and consequently, etch pits are elongated along the [001] direction, 

vide supra (Figure 4.3 (a)). In the [010] direction, a H2O layer is sandwiched 

between the CaSO4 layers through H-bonding 67 (Figure 1.1 (b)) thereby 

disrupting the continuity of the periodic bond chain in this direction, and 

consequently, facilitating the lower displacement velocities along [010] relative 

to the [100] and [001] directions for all etching solutions.  

 

Table 4.1: Measured displacement velocities obtained from dissolution studies.  

Etching 

Solution 

Displacement velocities (nm s-1) 

[100] step [001] step (010) face 

H2O 330 ± 30 17 ± 3 3.0 ± 0.4 

NaNO3 1030 ± 60 31± 4 4.1 ± 0.6 

Na2SO4 550 ± 30 20 ± 3 3.7 ± 0.5 

Ca(NO3)2.4H2O 160 ± 10 8.5± 1.2 0.9 ± 0.2 
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Compared to dissolution in pure H2O, etching in 0.2 M NaNO3 was found to 

enhance step velocities (salting-in)34,72,73 by factors of ~3, ~2 and ~1.4 for the 

[100], [001] steps and (010) face, respectively. The enhanced dissolution rates 

are expected since gypsum solubility increases by a factor of 2 from 16.2 mM in 

pure H2O to 32.3 mM (MINEQL+) with 0.2 M NaNO3. However, it is evident that 

the salt effect is strongly direction-dependent, impacting dissolution in the 

[100] direction in particular.  

Conversely, dissolution in solutions containing common ions (Na2SO4 and 

Ca(NO3)2.4H2O solutions) yielded strikingly different step velocity trends 

despite having similar IS values. Naturally, compared to etching at the same IS 

with an inert supporting electrolyte (NaNO3), step velocities in all directions are 

predictably lower for both Na2SO4 and Ca(NO3)2.4H2O (common ion effect). 

However, from Figure 4.6 and Table 4.1, it is evident that step velocities in the 

presence of SO42- ions are significantly higher than values obtained in the Ca2+-

rich solution for all directions. This observation is particularly striking for 

dissolution of the (010) face of the pit (Figure 4.5 (a)) where dissolution 

velocities are more than 4 times faster when etching occurs in the presence of 

SO42- ion compared to Ca2+. These effects can be rationalised generally, because 

gypsum crystal exhibits a negative ζ- potential in pure H2O under standard 

conditions and over a wide pH range, due to the preferential adsorption of 

anions relative to cations on the crystal surface.74,75 Thus, in a Ca 2+-rich 

solution, the back reaction, characterised by the adsorption of Ca2+ (and SO42-) 

on the crystal surface, appears to be enhanced compared to the situation in the 

SO42--rich solution.  
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When comparisons can be made to previous studies, the step 

displacement velocities deduced in this work are much higher than those 

deduced by in-situ AFM. For example,  at a relative saturation, S = C/Csat = 0.65, 

where C is the bulk solution concentration, Bosbach and Rammensee63,64 

measured velocities of steps running parallel to the [100] and [001] directions 

of ≤ 30.0 nm s-1 and ≤ 2.5 nm s-1, respectively. These values were later 

corroborated by others using AFM65 but, more recently, for the range of S = 0.34 

to 0.96, Fan and Teng 62 deduced much slower step velocities for steps parallel 

to [100], of ~ 2 - 7 nm s-1 while steps parallel to [001]  moved at ~0.2 - 1.2 nm s-

1. Of course, one reason for the difference between the measurements reported 

in this work and these previous studies, is that AFM has to be conducted at 

medium to low driving force to deliberately slow the step movement (vide 

supra). It is non-trivial to extrapolate between these previous results and our 

measurements conducted at high driving force, but if one considers common 

rates laws such as first or higher order dependences of dissolution on 

(interfacial) undersaturation, then the rates measured here are significantly 

higher than one might expect. This can be rationalised because, as shown below, 

dissolution in the [001] direction (that is the movement of steps parallel to 

[100]) show that mass transport slows down at longer times. Thus, surfaces 

studied by AFM in stagnant solutions, which involve necessarily lengthy periods 

and extensively etched surfaces, are very likely subject to severe diffusional 

limitations, which would serve to slow the step movement. Such effects would 

provide a plausible explanation for differences between different AFM studies: 

diffusion-limited dissolution will not only be sensitive to mass transport 

conditions in the AFM cell but also the topography (density of steps) on the 
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crystal surface. In contrast, the studies herein provide true intrinsic step 

velocities and allow those velocities to be related faithfully to interfacial 

saturation levels that can be predicted by solution of a well-posed mass 

transport problem.. 

 

4.4. Direction-Specific Dissolution Kinetics 

Dissolution fluxes normal to specific crystal faces, J(hkl), (mol cm-2 s-1) were 

calculated as the product of experimentally deduced step motion velocities, and 

the molar density (13400 mol m-3) of the crystal.76 These values are 

summarised in Table 4.2 and predictably mirror the trend seen in the 

displacement velocity measurements (vide supra) such that; J(010) < J(001) << J(100). 

These direction-specific dissolution fluxes were used in conjunction with the 

etch pit dimensions as inputs for the finite element model. This model predicted 

the corresponding (Ca2+ and SO42-) concentration profiles around the pits, and 

in particular, the interfacial concentration of dissolved Ca2+ and SO42- at reactive 

pit faces. From these profiles, the relative importance of mass transport and 

surface kinetics could be elucidated, from which the kinetic (rate-determining) 

regime could be determined.  
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Table 4.2: Summary of plane specific fluxes under different etchants. 

Etching 

Solution 

Flux (mol cm-2 s-1) normal to plane 

(100) (001) (010) 

H2O 5.1 (±0.5) × 10-7 2.5 (±0.4) × 10-8 4.0 (±0.5) × 10-9 

NaNO3 1.6 (±0.1) × 10-6 4.7 (±0.5) × 10-8 5.5 (±0.8) × 10-9 

Na2SO4 8.4 (±0.4) × 10-7 3.1 (±0.4) × 10-8 5.0 (±0.7) × 10-9 

Ca(NO3)2.4H2O 2.4 (±0.2) × 10-8 1.3 (±0.2) × 10-8 1.2 (±0.3) × 10-9 

 

 Figure 4.6 illustrates a section of the overall simulated pit, approximated 

reasonably well as a cuboid. The pit profile is shown at times of (a) 50 s and (b) 

100 s in pure H2O. For each specific time, it is evident that the surface 

concentration profile is heterogeneous over the pit surface, with the highest 

concentration arising from the fast moving (100) face. At the mid- time in the 

process (50 s, Figure 4.6 (a)), it was found that the total average interfacial 

concentration was 0.17 mM, 0.18 mM and 0.88 mM for the basal (010), (001) 

and (100) faces, respectively. The highest interfacial concentration (on the 

(100) face) equates to ~ 5.4% Csat which indicates, that on this scale, dissolution 

is essentially controlled by surface kinetics. This is a consequence of high mass 

transport from a microscopically active surface as seen, for example, with 

amperometric ultramicroelectrodes in electrochemistry.52  
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Figure 4.6: Typical simulated interfacial Ca2+ and SO4
2- concentration profile over the pit 

from a section of the overall pit (not to scale) close to the (100) face, after (a) 50 and (b) 

100 s etches in pure H2O, and for comparison (c) an experimental etch pit formed after 100 

s etch in pure H2O, acute angle (~62o). The magnification (a-b) highlights the change in 

surface concentration on the fast moving (100) face. 

 

At later times in the dissolution process (100 s, Figure 4.6 (b)),  the 

surface concentration values increase (as the pit dimensions increase) to such 

an extent that diffusion becomes more important, particularly for dissolution of 

the (100) face. Figure 4.7 illustrates the change in diffusion fields due to the 

evolution of etch pits as a function of time. It is clear that at early times, the 

diffusion field above the etch pit is isolated from neighbouring pits. However, 

with time, these fields start to interact and eventually (longer times) establish a 
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planar field where there is significant diffusional overlap between neighbouring 

etch pits. 

 

Figure 4.7: Illustration describing the onset of dissolution at defect sites, where initially, the 

formed etch pits are isolated from their neighbours and show evidence of unimpeded high 

mass flux.  With time, these pits grow to an extent that diffusional cross-talk is exhibited, 

with the consequence of establishing  a planar diffusion profile at the inter-facial region. 

 

4.5. Linking Microscopic and Macroscopic Dissolution Kinetics 

The average intrinsic rate (in pure H2O) of dissolution from the entire etch 

pit was predicted from simulations to be J = 1.34 ×10-8 mol cm-2 s-1 and J = 1.27 
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×10-8 mol cm-2 s-1 for dissolution after 50 s and 100 s, respectively. When the 

relative surface area of individual faces, A(hkl) is considered, these rates suggest 

that gypsum dissolution at early times (≤ 100 s) is dominated by the edge (100) 

and (001) planes relative to the basal (010) surface.  These average rates 

decrease with time as a consequence of pit expansion such that A(100) /A(010) 

(and similarly A(001) /A(010)), decrease significantly as a function of etching 

duration and, consequently, the contribution from these high flux faces 

diminishes over time. Eventually, at longer times (where the surface is fully 

reactive) dissolution will be dominated by the basal plane. Indeed, the flux from 

the basal plane was predicted to be J(010) = 4.0 (±0.5) ×10-9  mol cm-2 s-1 which 

compares reasonably to values suggested by Colombani61 who reviewed 

various previous bulk studies and deduced J = 5 (±2) ×10-9 mol cm-2 s-1 77 by 

extrapolation of many different techniques. However, it is important to point 

out, in light of our work that the overall flux deduced from macroscopic 

measurements will necessarily be very sensitive to the nature of the surface 

exposed. The studies reported here, with the deduction of plane (direction)-

specific dissolution kinetics, provides a framework for the construction of 

accurate dissolution models for complex (polycrystalline) materials and single 

crystal surfaces with an abundance of different features. Most importantly, 

these intrinsic rates can be used to predict when mass transport will become 

important for different planes and faces. 

4.6. Conclusions 

A simple but powerful method has been described, with which the time-

dependent analysis of characteristic etch pits formed by dissolution of crystal 
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surfaces, allows microscopic and macroscopic fluxes to be linked in a self-

consistent manner. The methodology allows a determination of the relative 

importance of surface processes compared to mass transport in controlling 

dissolution kinetics at different crystal facets (steps, planes).  

A particularly striking aspect of the analysis is that direction-specific 

reaction rates are deduced directly. For the case of gypsum, at early times in the 

process, dissolution in all measured directions was predominantly surface-

controlled, but the fast moving steps parallel to the [100] direction yielded 

higher interfacial local concentrations, indicating relatively more contribution 

from mass transport. The etch pit morphology was dominated by the large flat 

(010) pit base for which the dissolution flux was J(010) = 4.0 (±0.5) × 10-9 mol cm-

2 s-1. This value compares well with previous macroscopic flux measurements of 

this face. Past attempts to measure intrinsic fluxes from other faces (edge 

planes) have been unsuccessful due to their fast rates. Herein, these fluxes have 

been measure for the first time, yielding J(001) = 2.5 (±0.4) × 10-8 mol cm-2 s-1 and 

J(100) = 5.1 (±0.5) × 10-7 mol cm-2 s-1.  The associated step velocities are much 

faster than can be measured by in-situ AFM studies which have clearly been 

shown to be highly susceptible to impacted by mass transport effects, making 

kinetic/mechanistic interpretations of such data difficult. 

Studies of salt effects have yielded two important new observations for 

gypsum. In the presence of an inert salt (NaNO3) faster dissolution velocities 

have been found for all crystal directions compared to dissolution in pure 

water, but the magnitude of the effect is direction-specific. Second, a brief 

exploration of common ion effects (Ca2+ vs. SO42- in bulk solution) has revealed 
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a significant retardation effect of Ca2+ ion compared to SO42- and this has been 

rationalised based on the known (negative) ζ-potential of gypsum.  
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Chapter 5                                         
Intrinsic Kinetics of Gypsum and 

Calcium Sulphate Anhydrite 
Dissolution: Surface Selective 
Studies Under Hydrodynamic 

Control and the Effect of Additives 
 

Abstract 

In this chapter, the intrinsic dissolution activity of the basal (010) and 

edge (001) surfaces of gypsum; and polycrystalline calcium sulphate anhydrite 

(CaSO4) crystals has been investigated, under far from equilibrium conditions, 

via the channel flow cell (CFC) method with off-line inductively coupled plasma-

mass spectrometry (ICP-MS) for the measurement of dissolved Ca2+ from the 

crystal surface. This approach allows measurements to be made over a wide 

range of flow rates, so that the importance of mass transport vs. surface kinetics 

can be elucidated. Complementary quantitative modelling of the dissolution 

process was carried out to complement experimental studies. linear rate law 

applied and intrinsic dissolution fluxes were deduced. The following dissolution 

fluxes, Jo = kdiss × ceq were measured, where kdiss is the dissolution rate constant 

and ceq the calcium sulphate concentration in saturated solution: 5.7 (±1.4) × 10-

9 mol cm-2 s-1 for basal plane gypsum and 4.1 (±0.7) × 10-9 mol cm-2 s-1 for 

calcium sulphate anhydrite. Edge (001) plane gypsum, under the experimental 

conditions applied, dissolved at a mass transport-controlled rate. The effects of 

l- and d-tartaric acid, and STMP as important potential additives of the 

dissolution process of basal plane gypsum were investigated. It was found that 

the tartaric acids had little effect but that STMP significantly retarded gypsum 

dissolution with Jo = 1.6 (±0.6) × 10-9 mol cm-2 s-1 (5 mM STMP solution). The 

mode of action of STMP was further elucidated via etch pit morphology studies.  
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5.1. Introduction 

Among the rock forming minerals, gypsum (CaSO4.2H2O) and related 

calcium sulphate materials such as the hemi-hydrate (CaSO4.0.5H2O) and 

anhydrite (CaSO4), are abundant in nature, with extensive deposits underlying 

an estimated 25% of the global surface.1 CaSO4 minerals play an important role 

in the evolution of karst systems,2 and in numerous geochemical phenomena;3,4 

they are also utilised extensively in metallurgical processes,5 and in 

construction and manufacturing.6,7 Furthermore, the formation of these 

minerals causes significant scaling problems, particularly in petroleum 

technology.8,9 Studies of dissolution/growth kinetics and mechanisms are 

pertinent to all these areas in order to develop knowledge and understanding of 

natural systems, and to optimize the use of CaSO4 minerals in technological 

applications.10-13 

The dissolution of gypsum has been studied by many techniques, ranging 

from macroscopic kinetic measurements on particulate systems,14-17 to high 

resolution microscopic studies using AFM.18-20 A recent review by Colombani21 

sought to correlate various macroscopic kinetic measurements of gypsum 

dissolution in order to extract a unified surface dissolution rate, by estimating 

the likely mass transport rates associated with different techniques. An intrinsic 

surface dissolution rate constant into free solution (maximum undersaturation 

at the crystal/solution interface) was deduced to be Jo = 5±2 × 10-9 mol cm-2 s-1, 

as the intercept of a reciprocal rate – reciprocal mass transport plot. Some 

confidence in this assignment comes from the fact that the techniques surveyed 

included the RD method which delivers well-defined mass transport. However, 

in many cases, the techniques used previously have been characterised by 
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poorly defined and/or low mass transport conditions making it difficult to 

assign surface kinetics from individual studies. Furthermore, many previous 

investigations have employed polycrystalline material, so that different crystal 

faces, edges and corners are exposed to solution, which are likely to have 

different dissolution characteristics. To further improve our understanding of 

dissolution kinetics, surface-selective studies under well-defined mass 

transport conditions are imperative. Such studies are the focus of this chapter.  

Calcium sulphate anhydrite dissolution has also been investigated, but not 

as extensively as gypsum. Because the solubility of gypsum is less than that of 

anhydrite,22 reliable anhydrite dissolution data may only be obtained under far 

from equilibrium conditions where the concentration of dissolved products 

near the crystal surface, is below the saturation level with respect to gypsum.23 

Higher surface concentration may lead to precipitation of gypsum on the 

surface of the dissolving anhydrite crystal, thereby forming a protective layer 

which inhibits further dissolution3,23 An early RD study on polycrystalline 

anhydrite found a rather high intrinsic dissolution flux of Jo = 2 ±1 ×10-8 mol cm-

2 s-1.15 However, subsequent free drift batch investigations on particulates23 

deduced much lower rates, Jo = 5 ±1 ×10-9 mol cm-2 s-1 which have been 

corroborated by other studies.1  

A further important aspect of crystal dissolution is the role of additives. 

This is of particular relevance for CaSO4 minerals used in construction, where 

additives are used to passivate dissolution, so as to retard physico-chemical 

deterioration by processes such as humid creep, caused by environmental 

factors such as rain water and atmospheric pollutants.24,25 However, in contrast 

to calcium carbonate minerals, for example, where the role of additives has 
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been explored extensively,26-34 relatively few gypsum dissolution studies have 

considered the influence of additives. Such studies would be valuable to 

elucidate the effect of additives on the durability and versatility of CaSO4-based 

materials,35,36 and so a further aspect of this chapter is to examine the mode of 

action of key additives on gypsum dissolution.  

As highlighted herein, to understand mineral/liquid reaction kinetics, 

experimental techniques need to be able to quantitatively separate mass 

transport and surface kinetic effects 37,38 and ideally allow the study of well-

defined surfaces.  

Herein, we couple the CFC technique with off-line ICP-MS for the 

measurement of dissolved Ca2+ from the crystal surface, collected from the CFC 

effluent, over a wide range of flow rates. This is effective because of the 

miniaturised flow cell unit and short wash-out time of the cell (vide infra). For 

the purposes of quantitative modelling, we formulate convective-diffusive 

equations for mass transport in the CFC, coupled to a boundary condition for 

the crystal surface, which describes the dissolution process. In this way, we are 

able to predict the outlet Ca2+ concentration for analysis of experimental data. 

Using this approach we provide intrinsic rates for the dissolution of the basal 

cleavage (010) and edge (001) plane surfaces of gypsum, in order to elucidate 

any differences in magnitude for the first time. Furthermore, we elucidate the 

effect of key additives on dissolution from basal plane gypsum, in order to 

identify any kinetic influences and morphological effects. Finally, we investigate 

the dissolution of natural polycrystalline anhydrite, to resolve the discrepancy 

in kinetics highlighted above, and to further demonstrate the capability of the 

methodology.  
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5.2. Experimental 

Most experiments were run in ultrapure water, but some measurements 

were made in 5 mM solutions of the additives of interest (Figure 5.1); these 

were STMP, d-tartaric acid and l-tartaric acid (all from Sigma). In addition, a 

solution of 0.03 M KNO3 (Sigma) was used as an ionic strength match in some 

experiments for comparison to the 5 mM STMP solution. Table 5.1 summarizes 

all additive solutions used, with the input concentrations, and resulting pH and 

ionic strength values. 

 

Table 5.1: Additives used for CFC dissolution studies on basal plane gypsum crystal 

Additive 
Concentration 

(mM) pH 
Ionic strength 

(mM) 

l-tartaric acid 5 2.71 19 

d-tartaric acid 5 2.70 19 

STMP 5 5.88 30 

KNO3 30 5.63 30 
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5.3. Mass Transport and Kinetic Modelling 

Numerical simulations were performed on a Dell Intel core™ 2 Quad 2.49 

GHz computer equipped with 8GB of RAM and running Windows XP 

Professional X64 bit 2003 edition. Modelling was performed using the 

commercial finite element modelling package Comsol Multiphysics 3.5a 

(Comsol AB, Sweden), using the Matlab interface (Release 2009b) (MathWorks 

Inc., Cambridge, UK). Simulations were carried out with >51,000 triangular 

mesh elements. Mesh resolution was defined to be finest around the bottom 

plane of the channel, i.e. in the vicinity of the surface of the crystal substrate 

where the concentration gradient was steepest. Simulations with finer meshes 

were carried out (not reported) to confirm the mesh was sufficiently fine to 

ensure the predicted solutions were accurate (better than 0.01% variance).  

5.3.1 Theory  

The channel was simulated as a 2D cross-section along the channel length 

(l) as illustrated in Figure 5.1(a). Because w » h, edge effects in the w direction 

were neglected, to render a 3D model unnecessary.  



Intrinsic Kinetics of Gypsum and Calcium Sulphate Anhydrite Dissolution 

124 
 

 

Figure 5.1: 2D representation of (a) the channel geometry used for finite element modelling 

simulations where the numbers represent the boundaries (edges) used in simulations (not to 

scale) and are described by equations 5.3 – 5.5, and (b) the velocity profile of solution within 

the flow cell for the case of Vf = 0.167 cm3 s-1. The cell dimensions in (b) are in mm and were 

used throughout. 

 

5.3.2 Hydrodynamics 

The incompressible Navier-Stokes equations for momentum balance (eq 

1) and continuity (eq 2) were solved under steady-state conditions for the 

cross-sectional domain shown in Figure 5.1(a).  

2p     V V V    (5.1) 

0 V    (5.2) 

where ρ is the density of the solution (1.00 g cm-3 was used, as for water), 

V is the velocity vector (with components u and v in the x and y directions, 

respectively), p is the pressure, η is the dynamic viscosity assumed to be 1.00 
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mPa s,   is the vector differential operator and 2  is the vector laplacian 

operator.  

The hydrodynamic behaviour within the channel cell, as described by the 

incompressible Navier-Stokes equations, was solved for the following boundary 

conditions, where the boundaries are defined in Figure 5-3(a): 

boundaries 1, 2 and 4 – 7: 0, 0u v     (5.3) 

boundary 3: 

0,
f

ch

v
u v

wx
  

   (5.4) 

boundary 8: 
2 0n   V    (5.5) 

where xch is the channel height at the inlet (length of boundary 3, 0.5 mm), 

n is the vector normal to a particular boundary. The condition on boundary 3 

(eq 4) is plug flow into the cell. 

5.3.3 Convective-Diffusive Mass Transport 

Once the velocity components u and v within the CFC had been 

determined, the local velocity vectors were used in the solution of the 

convective-diffusion equations, to predict the concentration distribution in the 

cell, and especially in the region of the outlet. The convective-diffusion equation 

was solved under steady-state conditions: 

2 0i i iD c c   V  (5.6) 

 where Di is the diffusion coefficient of the species of interest, i, and ci is 

the concentration of species i. Since the two dissolving species have similar 

diffusion coefficients (0.792 × 10-5 cm2 s-1 for Ca2+ at infinite dilution), the mean 

diffusion coefficient was used for the purposes of simulations, thereby 

facilitating the solution for one species only. This is appropriate given that the 
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studies were for stoichiometric dissolution into a medium comprising little or 

no additional electrolyte. The following boundary conditions applied to the flow 

cell:  

boundaries 1, 4 – 7:  0 n N    (5.7) 

boundary 2:  ( )diss eq ik c c  n N   (5.8) 

boundary 3:  0ic      (5.9) 

boundary 8:  ( ) 0i iD c   n   (5.10) 

where n is the vector normal to a particular boundary, N is the outward 

vector flux of species, kdiss is a heterogeneous rate constant and ceq is the 

equilibrium concentration for the solid/saturated solution (free Ca2+), when 

bulk ionic strength effects due to any added dissolved salts are taken into 

account. Herein, we used ceq = 11 mM (gypsum) and 16 mM (calcium sulphate 

anhydrite) as calculated by MINEQL+; the gypsum value is close to that deduced 

from experiments.15 For gypsum experiments with 0.03 M added electrolyte ceq 

= 14 mM was used. Mass transport across boundary 8 is due to convection only. 

Because the dissolution fluxes for most of the systems of interest were 

relatively low, we did not model any spatial variations in ionic strength as these 

effects would be relatively minor. For simplicity, we chose a first order rate law 

(eq 8): this has been used previously for gypsum and related materials3,14,28 and, 

further, was reasonable because the reaction was generally very far from 

equilibrium under the conditions of the experiments.  
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5.4. Results and Discussion 

5.4.1 Insights from Simulations 

The finite element simulations provide information on the processes 

occurring in the cell. In particular, the approach described yields: (i) the 

hydrodynamic behaviour within the CFC chamber, from which velocity profiles, 

in regions of interest, can be extracted; (ii) concentration profiles of dissolved 

species within the cell which informs on the kinetic/mass transport regime; and 

(iii) the flow rate-dependent outlet concentration which is the variable used to 

analyze experimental data. We use the simulations to highlight briefly some of 

the main features of the techniques for the case of gypsum (ceq = 11 mM). Figure 

5.1(b) shows a typical example of the velocity profile of solution in the flow cell 

(2h = 0.21 mm) at Vf = 0.1649 cm3 s-1. A steady laminar Poiseulle profile is 

established and maintained along the channel length, after a short lead-in 

length.  

Figure 5.2 shows: (a) a typical concentration profile in the CFC for Vf = 

0.0083 cm3 s-1 and kdiss = 1 × 10-3 cm s-1 and (b) plots of the concentration of the 

dissolved species at the crystal/solution interface along the length of the 

channel for Vf = 0.0083 cm3 s-1 and 0.1649 cm3 s-1, which correspond to the 

lower and higher Vf limits of those used herein. The kdiss value is typical of that 

found in the experimental studies (vide infra). A consequence of the high mass 

transport rates that can be generated in the channel is that the concentration 

boundary layer above the dissolving substrate is relatively thin, allowing fast 

surface kinetics to be investigated. This is evident from Figure 5.2(b) which 

shows that the interfacial concentration is considerably lower than the 

equilibrium value at the extreme limits of typical flow rates, indicating 



Intrinsic Kinetics of Gypsum and Calcium Sulphate Anhydrite Dissolution 

128 
 

substantial surface kinetic control of the reaction for these parameters. The 

non-uniform concentration profiles along the channel length are a consequence 

of the non-uniform accessibility of the channel system39,40 between 0.5 and 9.5 

mm, coupled with stagnation zones which develop at the chamber edges. This 

leads to higher interfacial concentration values between 0 – 0.5 mm (upstream 

portion of the crystal) and 9.5 – 10 mm (downstream portion). However, these 

stagnation zones make a very minor contribution to the total surface flux from 

the entire exposed crystal.  

 

Figure 5.2: Illustration of (a) the CFC cross-section depicting the concentration for Vf = 

0.0083 cm3 s-1 and kdiss= 1 × 10-3 cm s-1 where dimensions are in mm, and (b) the 

corresponding interfacial concentration along the length of the channel for Vf = 0.0083 cm3 

s-1 (black) and Vf = 0.1649 cm3 s-1 (red), with an applied rate constant kdiss= 1 × 10-3 cm s-1 in 

each case. For comparison, the saturated solution concentration is shown (blue). 
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Figure 5.3 shows 3D plots of the outlet concentration (a) and average 

surface flux (b) as a function of the kinetic constant, kdiss, and flow rate, Vf. For 

any particular flow rate, an increase in kdiss results in an increase in the surface 

flux and outlet concentration, as a consequence of increasing generation of 

dissolution products from the crystal surface up to a maximum (kdiss-

independent value) where the reaction becomes transport-controlled. In 

addition, it can be seen that for any rate constant, the highest outlet 

concentration is predicted at low flow rates, essentially because the duration of 

interaction between the crystal surface and solution in the cell is then longer, 

thereby allowing dissolution products to accumulate more readily in the 

solution. In the regime kdiss > 0.1 cm s-1, for the range of Vf shown, the reaction 

becomes transport-limited. Below this value, surface kinetic determination is 

possible. 

 

 

Figure 5.3: (a) Simulated outlet concentrations and (b) mean surface flux, Js, as a function of 

kdiss and Vf. The channel cell was characterised by the parameters shown in Figure 5.1(b). 

  



Intrinsic Kinetics of Gypsum and Calcium Sulphate Anhydrite Dissolution 

130 
 

5.4.2 Dissolution Kinetics 

Surface Analysis  

WLI measurements were made to determine the surface topography of 

the crystal surfaces before and after CFC studies, with the aim of determining 

the specific surface area of the crystal surface exposed to the solution. This was 

primarily to confirm that the surface area was constant over the duration of a 

CFC experiment and to determine the roughness factor (λ) with which flux 

values predicted by simulations could be normalised to allow comparison 

between different materials and to obtain intrinsic dissolution rates. 

Figure 5.4 depicts typical DIC micrographs of the basal plane gypsum 

surface after etching in ultrapure H20, for: (a) 90 s, (b) 10 min, (c) 30 min; and 

(d) a WLI micrograph after a 30 min etch. The micrographs clearly show an 

alteration in surface topography, from early times in the dissolution process 

(Figure 5.4(a)), where small etch features are isolated on the (010) cleavage 

surface. With time, these features grow and achieve complete coalescence by ~ 

30 min (Figure 5.4(c)) and the surface topology and λ essentially remains 

similar for times thereafter. λ was found to be in the range of 1.1-1.2, 1.9- 3.3 

and 1.6-4.4 for (010) gypsum, edge plane gypsum and anhydrite, respectively. 

The highest λ value (roughest sample used for experiments) yielded an rms 

roughness value of 4.5 µm constituting  2.3 % of the channel height (2h) which 

was considered unlikely to disrupt the cell hydrodynamics describes above, as 

evidenced by the fact that electrodes deployed in channels are only slightly 

smoother than this and conform well to predictions for a smooth surface.39,40 In 

addition, λ values for each sample were within ±10% when examined before 

and after CFC studies. 
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Figure 5.4: Typical DIC micrographs (scale bars 100 µm) of the (010) cleaved gypsum surface 

after etching in pure H2O for (a) 90 s, (b) 10 min, (c) 30 min, and (d) the corresponding WLI 

micrograph after a 30 min etch, where the scale bar is 30 µm. 

 

CFC Dissolution Measurements  

As mentioned above, the dissolution reaction was monitored via flow rate-

dependent off-line ICP-MS analysis on CFC effluent for Ca2+ at each flow rate. At 

least four replicate runs were made for each flow rate. These data were then 

analysed, using the model described, to obtain values for the heterogeneous 

rate constant (kdiss) for the dissolution of each substrate.  

Figure 5.5 shows typical experimental data, of outlet Ca2+ concentration as 

a function of flow rate for the three different crystal substrates. The error bars 

in this plot and that in Figure 5.6 reflect 2 standard deviations calculated from 

four replicate runs from ICP-MS data at each flow rate shown. The solid lines 

represent the best fit of kdiss for each substrate, as predicted from simulations. 

The etched surface of basal plane gypsum exhibited the lowest value of kdiss = 

6.0 (±1.5) × 10-4 cm s-1 while that of anhydrite was slightly higher at kdiss = 7.8 
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(±1.3) × 10-4 cm s-1. The excellent agreement between experiments and 

predictions from simulations observed here, particularly in the high flow rate 

range, justifies the choice of a first-order rate law for basal plane gypsum and 

anhydrite dissolution in pure H2O. At lower flow rate, the model tends to over-

estimate the outlet concentrations. Under these conditions, the interfacial 

concentrations move closer to equilibrium and the small deviation between 

theory and experiment may indicate a change in the reaction order. Notably, 

edge plane gypsum yielded a rate constant of kdiss > 0.1 cm s-1 indicating a mass-

transport controlled dissolution process under the experimental conditions. 

 

Figure 5.5: Cell outlet concentration as a function of flow rate for the dissolution of etched 

basal plane gypsum (red), edge plane gypsum (black) and anhydrite (blue) The solid line 

correspond to the best fits to the model with rate constant, kdiss (cm s-1) of 6.0 (±1.5) × 10-4 

cm s-1, > 0.1 cm s-1 and 7.8 (±1.3) × 10-4 cm s-1, for basal plane gypsum, edge plane gypsum 

(ceq = 11 mM for gypsum) and anhydrite (ceq = 16 mM) respectively. The simulation used 

other parameters stated in the text. 

 

With these rate constants, the associated intrinsic dissolution fluxes Jo 

(mol cm-2 s-1) = kdiss × ceq taking into account λ in the calculation of the area, 

were deduced to be 5.7 (±1.4) × 10-9 mol cm-2 s-1 and 4.0 (±0.7) × 10-9 mol cm-2 
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s-1 for basal plane gypsum (010) and anhydrite, respectively. The kinetics found 

for gypsum compare favourably with the values deduced by Colombani21 of Jo = 

5 (±2) × 10-9 mol cm-2 s-1. The intrinsic dissolution flux for anhydrite crystal 

compares well with recent values from Jeschke and Dreybrodt23 who obtained 

Jo = 5 (±1) × 10-9 mol cm-2 s-1. However, these values are much smaller than the 

value of Jo = 2 ±1 ×10-8 mol cm-2 s-1 deduced from anhydrite polycrystalline 

pellets.71 It is important to point out that we have analysed natural 

polycrystalline anhydrite samples which have been deposited over geological 

time scales such that the crystalline deposits are compacted to an extent that 

porosity is negligible. In contrast, anhydrite pellets such as those used in some 

previous studies71 are typically formed by dehydrating gypsum pellets, a 

process which exposes the sample to thermal shock, possibly further weakening 

sample structure. This typically results in samples with high specific surface 

areas which would naturally produce higher dissolution fluxes defined in terms 

of the geometric area of the sample.  

It is further important to note that, with the CFC method, we eliminate the 

possibility of surface concentrations (from generation of dissolution products) 

approaching the gypsum saturation point, by probing anhydrite dissolution 

under far from equilibrium conditions via the high rates of mass transport that 

can be generated. 

Effect of Additives  

The influence of key additives on gypsum dissolution were considered 

next. Figure 5.6 shows plots of outlet concentration as a function of flow rate for 

etched basal plane gypsum in the presence of STMP, l-tartaric acid and d-

tartaric acid, with H2O also shown. These additives were chosen because of 
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their extensive use as inhibitors of humid creep, in the production of CaSO4 

based materials.35,36 In each case, there is good agreement between the 

experimental data and the first-order model proposed (which takes into 

account the ionic strengths of the different solutions in calculating ceq, Table 

5.1). Rate constants for dissolution in the presence of d-tartaric and l-tartaric 

acids were found to be similar (within experimental error) and close to that for 

pure H2O, with kdiss = 7.3 (±2.0) × 10-4 cm s-1, which shows that d- and l-tartaric 

acid have relatively little effect on gypsum dissolution under the experimental 

conditions. However, in the presence of STMP, the rate constant was much 

lower, kdiss = 1.3 (±0.5) × 10-4 cm s-1, indicating a significant retardation of the 

dissolution process.  

 

Figure 5.6: Outlet concentration as a function of flow rate for dissolution of the etched basal 

plane of gypsum in 5 mM solutions of l-tartaric acid (blue points), d-tartaric acid (green 

points), and STMP (black) and in pure H2O (red). The solid lines correspond to the best fit 

rate constant, kdiss (cm s-1) predicted by simulations with values of 6.0 (±1.5) × 10-4 cm s-1 

and 1.3 (±0.5) × 10-4 cm s-1 for pure H2O and STMP, respectively, while l-tartaric and d-

tartaric acids exhibit a similar rate constant of 7.3(±2.0) × 10-4 cm s-1 (blue solid line). 
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To elucidate and explain the mode of action of STMP on the process of 

gypsum dissolution, we carried out etch pits studies for dissolution in quiescent 

solution for a period of 20 min. By careful cleaving along the (010) gypsum 

plane, mirror surfaces were produced. One half, was etched in STMP while the 

other was etched in ultrapure H2O. There is almost complete dissociation of 

STMP, yielding a solution ionic strength ca. 0.03 M. In order to investigate ionic 

strength effects, etching was also carried out in 0.03 M KNO3.  

Figure 5.7 shows DIC micrographs of the resulting etch pits, where (a) is 

the surface after etching in H2O, (b) the mirror surface when etched in STMP, (c) 

superimposition of (a) and (b), and (d) a gypsum surface after etching in KNO3. 

When the two microstructures in (a) and (b) are superimposed (c), it is clear 

that there is exact correspondence between the positions of etch pits, and 

therefore, both pit types emerge from the same defect sites which presumably 

run through the crystal. Notably, however, there is a drastic difference in the pit 

sizes, with STMP retarding dissolution compared to water. This effect is even 

more striking when one considers that the higher ionic strength of the STMP 

solution would be expected to promote dissolution if it simple acted as an inert 

salt, as evidenced by the KNO3 data (Figure 5.7(d)).  
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Figure 5.7: DIC micrographs of the (010) surface of gypsum (matched halves) after a 20 min 

etch in (a) H2O and (b) 5 mM STMP. The two surfaces (a and b) are superimposed in (c) to 

show correspondence of etch pits on the surfaces. A cleaved gypsum surface etched for 20 

min in 0.03 M KNO3 is shown in (d) for comparison. The scale bars are 300 μm. WLI 

micrographs of pit morphology after etching for 20 min in (e) H2O and (f) 5 mM STMP are 

also shown. The main crystallographic directions with respect to the etch pits formed on the 

(010) surface are indicated and the [010] direction normal to the surface. 
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Figure 5.7 also shows isolated pits that result from etching in water (e) 

and STMP (f). In the case of H2O, the pits are irregular hexagons with two 

parallel edges aligned along the [001] and [100] directions and one poorly 

defined edge (Figure 5.7(e)); see Figure 1.1 for the gypsum unit cell. The pits 

were found to exhibit typical dimensions of 350 ±30 µm, 62 ±14 µm and 1.9 

±0.5 µm in [001], [100] and [010] directions, respectively, after etching for 20 

min. In contrast, etching in the presence of STMP produced pits with the shape 

of a parallelogram, laterally embracing the [001] and [100] directions only 

(Figure 5.7(f)). The etch pits were also relatively small compared to those 

produced when etching in pure water, with typical dimensions of 90 ±10 µm, 36 

±6 µm and 1.4 ±0.5 µm in [001], [100] and [010] directions, respectively. The 

elongated etch pit morphologies indicate preferential dissolution in the [001] 

direction relative to the [100] etching in pure H2O. Indeed much faster 

dissolution along the [001] direction relative to the [100] direction may be 

responsible for the development of the irregular pit edge (Figure 5.7(e)). In the 

presence of STMP, dissolution in [001] and [100] directions were retarded to 

different extents so that the rates became closer in magnitude resulting in the 

parallelogram pit shape observed. Since STMP dissociates to P3O93-, 41,42 under 

the experimental conditions, it is likely that STMP will have a binding affinity 

with surface calcium ion sites, inhibiting dissolution. The anion has a chair 

configuration with the phosphate groups facing outwards from the ring, giving 

it the capacity to adsorb onto several positively charged sites on the crystal 

surface and form surface complexes.43,44  

For both etchants (H2O and STMP), dissolution in the [010] direction (etch 

pit depth) was much slower than in the other directions analysed. However, the 
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values obtained with and without STMP were similar, indicating little effect of 

STMP on dissolution in this direction. Dissolution in the [010] direction involves 

periodic removal of the water layer interspaced between CaSO4 bilayers in the 

gypsum crystal. The fact that STMP has little influence suggests that detachment 

of the water layer may be rate-limiting in this direction.  

5.5.  Conclusions 

The dissolution kinetics of gypsum and anhydrite have been obtained and 

analysed via the CFC method, coupled with off-line ICP-MS for the measurement 

of dissolved Ca2+ from the crystal surface. It has been possible to distinguish 

between the dissolution kinetics for the basal (010) and edge plane (001) 

surfaces of gypsum: radically different dissolution characteristics have been 

observed. The basal surface exhibited an intrinsic flux, Jo = 5.7 (±1.4) × 10-9 mol 

cm-2 s-1 into pure water (kdiss = 6.0 (±1.5) × 10-4 cm s-1), whereas the edge plane 

exhibited high rate constant values, kdiss > 0.1 cm s-1 indicating a transport-

controlled process under the experimental conditions applied. Anhydrite 

crystals, exhibited fluxes of Jo = 4.0 (±0.7) × 10-9 mol cm-2 s-1 into pure water 

(kdiss = 7.8 (±1.3) × 10-4 cm s-1).  

The effect of additives on dissolution of the basal gypsum surface 

considered molecules which have been used industrially as inhibitors of humid 

creep in CaSO4-based building materials. It was observed that tartaric acid (d- 

and l-) had little influence on dissolution kinetics with rates similar to those 

observed when dissolution was carried out in pure water. In the presence of 

STMP, dissolution rates were much lower, Jo = 1.6 (±0.6) × 10-9 mol cm-2 s-1 (kdiss 

= 1.3 (±0.5) × 10-4 cm s-1), despite the high ionic strength associated with the 
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additive which would be expected to promote dissolution (salting-in). Etching 

studies revealed that STMP significantly inhibits gypsum dissolution across the 

basal surface, but has a lower inhibitory effect in the [010] direction (normal to 

the basal surface). The mode of action is likely to involve surface complexation 

of SMTP anions on the crystal surface. The lack of any significant effect in the 

[010] tentatively suggests that the loss of the water layer may be the rate 

limiting process in this direction for which STMP would have little influence. 

The studies herein illustrate how the CFC method is particularly powerful 

in elucidating surface kinetics and the role of mass transport in the interfacial 

processes. The methodology is flexible and allows the study of particular crystal 

faces and the introduction of inhibitors. When coupled with simple etching 

methods, one can obtain a good level of information on kinetics, mechanisms 

and the mode of action of inhibitors on dissolution. 
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Chapter 6                                             
Dissolution Kinetics of 

Polycrystalline Calcium Sulfate-
Based Materials: Influence of 

Chemical Modification 
 

Abstract 

Using a CFC system the dissolution kinetics of polycrystalline gypsum-

based materials have been examined with the aim of understanding their 

interaction with water, a property that limits the applications of the material in 

many situations. ICP analysis of elemental concentrations in solution as a 

function of time yields surface fluxes by using a finite element modelling 

approach to simulate the hydrodynamic behaviour within the CFC. After 

correction for surface roughness, a value for the intrinsic dissolution flux into 

water of pure polycrystalline gypsum, CaSO4.2H2O, of 1.1 (±0.4)  10-8 mol cm-2 

s-1 has been obtained, The addition of known humid-creep inhibitors to the 

gypsum samples, including boric acid, tartaric acid and 3,4,5-trihydroxybenzoic 

acid (gallic acid), was found to have little measurable effect on the dissolution 

kinetics of gypsum: all yielded dissolution fluxes of 1.4 (±0.6)  10-8 mol cm-2 s-1. 

However, STMP was found to have a small detectable inhibitory effect relative 

to pure gypsum yielding a flux of 7.4 (±2.0)  10-9 mol cm-2 s-1. The data strongly 

suggest that models for humid-creep inhibition that involve dissolution-

crystallization of gypsum crystallites are less likely than those that involve a 

hindered ingress of water into the gypsum matrix. For comparison, composite 

materials that comprised of calcium sulfate anhydrite (CaSO4) crystallites 

bound by a polyphosphate matrix were also studied. For some of these samples, 

Ca2+ surface fluxes were observed to be ~ 1 order of magnitude lower than 

values for polycrystalline gypsum control substrates, suggesting a useful way to 

impart water resistance to gypsum-based materials.  
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6.1. Introduction 

Gypsum, CaSO42H2O, has been used since antiquity to line the interiors of 

buildings owing to its many attractive properties such as ease of application, 

good thermal insulation, fire resistance and its favourable processing 

conditions, requiring only moderate temperatures.1 There is renewed interest 

in utilizing gypsum for exterior and load bearing applications given its 

availability as an industrial by-product and the much lower processing 

temperatures compared to traditional silicate cements.2 The property that 

restricts the wider use of gypsum is its poor water resistance. Gypsum materials 

are produced by the hydration of calcium sulfate hemi-hydrate to yield an 

interlocking mass of polycrystalline, needle-shaped gypsum particles.3 A small 

amount of water, present as atmospheric humidity, is enough to cause a 

dramatic reduction in mechanical properties such as Young’s modulus,4 flexural 

strength,5 compressive strength6 and hardness.5 Gypsum can also deflect or 

creep under an applied stress in the presence of water over long periods of 

time, a process that has been suggested to be responsible for the instability of 

old gypsum mines.7 A similar phenomenon is also seen in industrial products 

where preformed shapes of polycrystalline gypsum, such as ceiling tiles, can 

deflect in high humidity environments, in a process known as ‘humid creep’ or 

‘sag’, causing aesthetic as well as mechanical defect.8  

A consensus on the exact mechanisms responsible for the humid creep of 

gypsum with moisture contact has not been reached. Badens et al. suggest that 

the bonds between crystals are weakened by the ingress of water at grain 

boundaries,4 whereas Chappuis proposed a model involving local dissolution 

and recrystallization of gypsum in the surface water layers at the contact points 
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between interlocking crystals.9 Chemical additives, including tartaric acid,10 

boric acid,11 STMP12 and gallic acid,13 have been reported in the patent 

literature as means of inhibiting the macroscopic effect of humid creep. The 

mechanism of their mode of action is unclear, although in separate studies the 

presence of carboxylic acids, including tartaric acid, has been found to have an 

effect on the rate of crystal growth of gypsum.4,14 From that work, it was 

proposed that carboxylate anions are able to bind to the surface of gypsum 

crystals, thus potentially modifying crystal habit as well as crystallization rate.4, 

14 It is interesting to note that previous studies on other calcium minerals have 

shown that tartaric acid can also inhibit dissolution.15 

In this chapter we study the dissolution of various modified gypsum 

materials to provide experimental values for the kinetics of dissolution. The 

effective dissolution rate is reliant on the interplay between surface reactivity of 

the substrate under investigation and mass transport conditions.16,17 Reliable 

dissolution rates can be elucidated when the experimental techniques 

employed distinguish quantitatively between surface kinetic effects and mass 

transport. 

Herein, the CFC technique (as described in Chapter 5) is combined with 

ICP-OES for the determination of concentrations of dissolved Ca2+ (and PO43- in 

some of the modified materials) originating from the substrate materials 

collected in the CFC effluent. Mass transport in the CFC is modelled by 

formulating convective-diffusion equations and defining a boundary condition 

for the dissolving substrate so as to predict the concentration of dissolved Ca2+ 

(and PO43-) at a specific flow rate. By using this approach, a comparison can be 

made between experimental data and predictions from theory; ultimately 
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offering mechanistic insights into the dissolution reaction and the ability to test 

the validity of rate equations. We have compared the effect of proprietary 

humid creep additives on gypsum, with an alternative approach to moisture 

inhibition which uses composite phosphate-bound gypsum crystallites. 

Aluminium phosphate has previously been used to bind SiC and AlN,18 and glass 

fiber19 to make high temperature stable composites. Consequently, this 

represents an interesting prospect for improving the durability of gypsum-

based materials. Our aim was to provide direct experimental data that might 

allow the various models proposed for the interaction between gypsum-based 

materials and water to be distinguished. 

 

6.2. Theory and Kinetic Modelling 

 The theory and kinetic modeling was described in Chapter 5 however, 

note that the condition on boundary 2 (the exposed crystal surface, equation 

5.8) introduces a simple dissolution flux (rate constant, k); 

k n N    (6.1) 

This contrasts with the work on single crystal gypsum described in 

Chapter 5, where we considered a rate law that was first-order in interfacial 

undersaturation.20  

The approach herein is reasonable because first, we study the dissolution 

reaction far from equilibrium (approaching zero saturation levels across the 

entire crystal surface) at the crystal/solution interface in the case of gypsum 

and second, we do not know the solubility of these modified substrates 

explicitly, so a straightforward flux approach is optimal. We were able to 
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confirm the veracity of this simple model by virtue of the fact that 

measurements are made over a wide range of mass transport rates in the CFC 

method, and by the fact that intrinsic fluxes deduced are consistent with earlier 

work (where comparisons can be made)16,17 and our own recent CFC studies. 20 

 

6.3. Results and Discussion 

It is important to note that the length scale of the heterogeneity in the 

surface presented to solution is relatively small and comparable to the size of 

the concentration boundary layer over much of the surface, for all of the flow 

rates (Figure 6.1(b)), so that the surface can be treated as uniformly active for 

the purposes of the dissolution model. The heterogeneity was quantitatively 

assessed to validate this assertion (vide infra). 

6.3.1 Insights from Simulations 

Mass transport in the CFC utilized has been described in detail in Chapter 

5. Briefly: after a short lead-in length, a steady laminar Poiseulle velocity is 

established and maintained along the channel.20 Figure 6.1(b), shows a typical 

concentration profile of dissolved Ca2+ at a flow rate of 0.008 cm3 s-1, and k = 7 × 

10-9 mol cm-2 s-1. The concentration distribution near the reactive substrate 

becomes more diffuse with increasing distance downstream. Over much of the 

substrate, the concentration boundary thickness is less than or of the order of 

the surface heterogeneity of the samples, confirming the validity of the model 

utilized which treats the surface as uniformly active with subsequent correction 

for the exposed active substrate surface area (vide infra). 
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Figure 6.2 is a 3D plot of the outlet concentration as a function of applied 

rate constant k (mol cm-2 s-1) and volume flow rate, Vf (cm3 s-1) predicted from 

simulations. It is evident that an increase in k results in an increase of outlet 

concentrations for any flow rate. This is a consequence of the increase in the 

rate of generation of dissolution products from the crystal surface. 

Furthermore, the highest outlet concentrations are seen for the lowest Vf (0.008 

cm3 s-1) values, because of the longer interaction between the crystal surface 

and etching solution, resulting in an accumulation of dissolved species.  

 

Figure 6.2: Simulated outlet concentrations as a function of applied rate constant, k, and 

flow rate as predicted from finite element simulations, which are based on the parameters 

in Figure 6.1(a)). 

 

6.3.2 Surface Area Analysis 

WLI measurements were carried out in order to determine the surface 

roughness factor, λ of all substrates. This technique is powerful, with a lateral 

resolution of 0.5-1.2 µm (at 10 × magnification) and a vertical resolution of ~5 

nm. Significant changes to surface roughness could influence the hydrodynamic 
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character along the CFC channel, as well as affect the value of the reactive 

surface area exposed to solution during dissolution. To this end, λ was 

determined both prior to and after CFC experiments, to establish the extent of 

any surface roughening due to dissolution. Prior to dissolution, it was found 

that, λ ranged from 1.1 - 1.8 and 1.2 - 1.8 for the humid creep and composite 

surfaces, respectively. After dissolution measurements, λ remained largely 

within the pre-etching range at values of 1.2 – 2.1 and 1.5 – 2.8 for the humid 

creep and phosphate binder surfaces, respectively. For the purposes of 

normalizing dissolution data, the mean λ value obtained from the two 

measurements (before and after dissolution) was used and these values are 

summarised in Table 6.2. 

 

Table 6.2: WLI surfaces area ratio (λ) prior to and after CFC measurements 

Substrate Surface area ratio  

 Before CFC 

measurements 

After CFC 

measurements 

% change 

due to 

dissolution 

Gypsum reference 1.22 ± 0.2 1.78± 0.1 46.9 

STMP 1.22 ± 0.3 1.56± 0.3 29.3 

Tartaric acid 1.11 ± 0.1 1.49± 0.4 35.1 

Boric acid 1.55 ± 0.2 2.05± 0.1 32.1 

Gallic acid 1.17 ± 0.1 1.43± 0.3 22.8 
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The impact of surface recession on CFC hydrodynamics was determined 

by estimating the relative change in the channel height due to dissolution. The 

roughest surface (highest λ = 2.8) yielded an rms roughness value of 4.6 µm, 

which equates to ~ 2 % of the channel height (210 µm).  

While the intrinsic surface dissolution fluxes (Js, mol cm-2 s-1) can be 

obtained by normalizing the theoretical rate constants (k, mol cm-2 s-1) values 

obtained from computer simulations by dividing by λ, this treatment of data 

was adequate for the composite sample set. Due to the presence of the inert 

resin matrix in the case of samples impregnated with humid creep additives, the 

flux measured was further normalized to account for the fraction of the surface 

which was active, i.e. Js = k / (λ × φ), where φ is the fraction of exposed surface 

area (crystalline gypsum) across the sample.  

6.3.3 Surface Heterogeneity 

SEM analysis of the samples (Figure 6.3) yielded binary images which 

were analysed to determine the relative amount of resin and gypsum crystal on 

the surface. Heavier elements (higher atomic number) back scatter electrons 

more strongly than lighter (lower atomic number).21 Consequently, the 

resulting image exhibits bright regions in regions composed of heavier 

elements, and darker zones where lighter elements may be found, thus allowing 

different elements to be distinguished based on the contrast of the image.  By 

increasing the contrast in these images using ImageJ, and IP software package, a 

quantitative analysis of the surface composition could be carried out. 
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Figure 6.3: Typical SEM images from the backscattered electron detector (a) with the 

corresponding binarised image (b) of the gypsum control sample (1) and those impregnated 

with humid creep the additives: STMP (2), tartaric acid (3), boric acid (4) and gallic acid 

(5).the scale bar represents 50 µm. 

 

The relative amount of exposed crystal relative to resin as obtained from 

SEM studies is summarised in Figure 6.4. It is evident from this figure that on 

average, crystal: resin ratio was ~1:1 apart from samples treated with tartaric 

resin where the ratio was 1: 1.5. 
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Figure 6.4: reactive surface area result from SEM image analysis, showing gypsum crystal 

(white) and resin (black). Error bars are based on 1 standard deviation. 

  

The SEM images were further analysed via the user-defined Matlab IP 

package (Chapter 3) to investigate the nature of surface heterogeneity, i.e. the 

distance between active sites on the resin impregnated gypsum samples, and 

allow comparisons to the diffusional layer thickness under particular flow rates. 

In this way, it was possible to verify the significance of surface heterogeneity on 

the elucidation of dissolution kinetics. Figure 6.5 shows plots of the distance 

between contiguous active sites (exposed crystal) across the substrate surface 

for all chemically modified gypsum samples. From this figure, it is evident that 

for most of the surface, active regions were within ~5 µm from each other, with 

very few (≤ 5%) exceeding this value. In addition, there was no significant 

variation between samples, suggesting that all samples exhibited similar 

heterogeneity.  
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Figure 6.5: Distance between active regions as a function of frequency on (a) gypsum 

control,  and samples modified with; (b) STMP, (C) gallic acid, (d) tartaric acid and (e) boric 

acid 

 

6.3.4 Diffusion Layer Thickness 

The concentration profile into the CFC channel height varied both as a 

function of distance along the channel (more diffuse further downstream) and 

applied flow rate (Vf). Figure 6.6 illustrates the change in Ca2+ concentration 

within the channel height under (a) Vf = 0.008 cm3 s-1 and (b) Vf = 0.167 cm3 s-1. 

From these plots, the average diffusion boundary thickness was estimated to 

range between 25 and 90 µm for the highest and lowest flow rates used for CFC 

experiments, respectively.  
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Figure 6.6: (a) Concentration profile within CFC highlighting cross sections taken across the 

channel height to measure the concentration profile of Ca2+ ions at a fixed flux of 7 × 10-9 

mol cm-2 s-1 and (b) Vf = 0.008 cm3 s-1 and (c) Vf = 0.167 cm3 s-1. 

  



Dissolution Kinetics of Polycrystalline Calcium Sulphate Based Materials 

154 
 

6.3.5 Dissolution Kinetics of Gypsum Modified with Humid-Creep 
Inhibitors 

The effluent from CFC experiments was analysed via ICP-OES to obtain 

flow rate-specific concentrations of Ca2+. For each sample, at least four replicate 

runs were made. Figure 6.7(a) shows typical plots of average outlet 

concentrations as a function of flow rate; and the solid line corresponds to the 

best fit of applied k (mol cm-2 s-1) obtained from the complementary simulations 

described above. The error bars are the result of two standard deviations 

calculated from at least four data sets. Once the theoretical rate constant, k, had 

been determined, average surface fluxes, Js (mol cm-2 s-1) were deduced by 

normalizing predicted data with respect to the exposed surface area and λ, vide 

supra.  

The values of Js for all chemically-modified samples are summarised in 

Figure 6.7(b), in which polycrystalline gypsum was observed to exhibit Js = 1.1 

(±0.4)  10-8 mol cm-2 s-1. Colombani recently reviewed various gypsum 

dissolution studies with the goal of reconciling discrepancies between them in 

the rates derived, along with newly measured values using holographic 

interferometry, and showed that when properly normalised for surface area 

effects (λ) , all studies gave a consistent value of Js = 7  10-9 mol cm-2 s-1 

compared to Js = 5 (±2)  10-9 mol cm-2 s-1obtained from new measurements.16  

The values obtained in the current work are in reasonable agreement with 

those previously reported, giving confidence in the surface area normalization 

and allowing meaningful comparisons to be made with the modified samples. 

That the values are slightly higher can be attributed to the polycrystalline 
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nature of the substrates used, as well as the exposure of highly reactive planes 

on dissolving crystallites.  

 

Figure 6.7: Plots of (a) Ca2+ outlet concentration as a function of flow rate for the dissolution 

of polycrystalline gypsum impregnated with humid creep inhibitors. The solid lines 

correspond to best fits to the model with rate constants in k (mol cm-2 s-1) in the range of 8.6 

(±3.6) × 10-9 mol cm-2 s-1 for all humid creep samples, and the samples were, gypsum control 

(black), STMP (green), tartaric acid (red), boric acid (blue), 3,4,5-trihydroxybenzoic acid 

(gallic acid) (pink) and STMP (green). These values were normalised with respect to surface 

area (λ), to yield (b) the average surface fluxes Js of 1.3 (±0.4) × 10-8  mol cm-2 s-1 for the 

gypsum control, and 1.8 (±0.3) × 10-8  mol cm-2 s-1, 1.0 (±0.1) × 10-8  mol cm-2 s-1 and 2.0 

(±0.6) × 10-8  mol cm-2 s-1 and 7.4 (±0.4) × 10-9  mol cm-2 s-1for the humid creep samples 

impregnated with tartaric acid, boric acid, 3,4,5-trihydroxybenzoic acid (gallic acid) and 

STMP, respectively. 

 



Dissolution Kinetics of Polycrystalline Calcium Sulphate Based Materials 

156 
 

For gypsum materials modified with humid creep modifiers,, Js was found 

to be relatively similar, in the range 1.4 (±0.6)  10-8 mol cm-2 s-1 with STMP 

exhibiting a small retarding effect on gypsum dissolution compared to the other 

inhibitors, yielding Js = 7.4 (±2.0)  10-9 mol cm-2 s-1. The influence of STMP on 

gypsum dissolution kinetics corroborates our recent work, where STMP in 

solution was found to retard the dissolution kinetics of the (010) basal plane of 

gypsum, particularly in the [010], [001] and[100] directions.20 The inhibitory 

effect measured here is somewhat less because there is no inhibitor in the 

solution; rather there is a finite (small amount) in the material which will be 

released during dissolution. The lack of a discernible retardation of dissolution 

due to the presence of humid creep additives (except from the small effect of 

STMP noted), casts some doubt on the dissolution-precipitation theory 

proposed by Chappuis to explain the mode of action of humid creep inhibition 

in industrial gypsum products.9 Another proposal is that the additives alter 

crystal habit and therefore the faces in contact with each another;22 however, 

no additive produced a significant crystal habit modifying effect from SEM 

results The net effect of crystal habit modification may be to increase the total 

adhesion between crystals according to Finot et al. who determined that the 

adhesion between crystal faces was dependent on the combination in contact.23 

Indeed, Kato et al. found that other polar liquids such as ethanol also reduced 

the mechanical properties, to an extent in correlation with the liquid polarity.24 

Reynauld et al. used internal friction measurements to later postulate a visco-

elastoplastic rheological model to describe the plastic flow of gypsum, where 

the absorbed liquid layer shields the electrostatic interactions between crystals 

and they slide past one-another under stress.25  
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Badens et al. proposed that tartaric acid adsorbs on the (120) and (111) 

faces of gypsum, based on the most stable conformations of the molecule and 

the inter-atomic distances of calcium ions in the gypsum lattice.14 Through 

molecular modeling, it has been predicted that the surface energy of most faces 

of gypsum (apart from the most stable (010) plane) 25 decreases when calcium 

tartrate is formed.26 It follows from our results, and this discussion, that the 

mode of action of humid creep inhibition may be to reduce the amount of water 

present in the inter-crystal region, thereby preventing loss of mechanical 

strength. Indeed Badens et al. also proposed that the humid creep inhibitors 

reduce the thickness of the absorbed water film on the crystallite surface,4 

which could be by the displacement of water molecules, as proposed by van der 

Voort and Hartman for gypsum crystallizing in the presence of organic 

impurities.27 Based on our dissolution studies, this appears to be the most 

plausible explanation for the mode of action of humid-creep inhibitor additives.  

6.3.6 Composite Materials 

Figure 6.8 shows typical plots of the average outlet concentration values for 

calcium and phosphate as a function of flow rate for the gypsum-composite 

materials, where the Al: P ratio was (a) 0, (b) 0.1, (c) 0.2 and (d) 0.33, and the solid 

lines correspond to the best fit k (mol cm
-2

 s
-1

) as predicted from simulations, with 

the values shown in Table 6.3. For all samples, it was found that outlet 

concentrations of calcium were higher than those of phosphate, due to the sample 

composition (Ca: P ratio) as seen in Figure 6.8. However, the outlet concentration 

values in sample Al: P = 0.33 showed an apparently larger difference between 

calcium and phosphate. 
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Figure 6.8: Plots of outlet concentrations of calcium (blue) and phosphorous (red) as a 

function of flow rate for the phosphate binder samples where the Al: P ratio was (a) 0, (b) 

0.1, (c) 0.2 and (d) 0.33. The solid lines correspond to the best fit to the model with fixed flux 

k (mol cm-2 s-1). Values for k are shown in Table 4. 

 

Surface-area normalised fluxes, Js for the dissolution of calcium and 

phosphate ions from the composite materials are shown in Figure 6.9(a), along 

with the corresponding value obtained for the polycrystalline gypsum control 

sample, for comparison. These data highlight the difference between the release 

rates of PO43- and Ca2+ from the phosphate bound materials upon dissolution, 

and clearly show how the dissolution of these composites vary significantly 

depending on the Al: P ratio used, as well as the morphology of the samples.   
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Table 6.3: Theoretical flux predictions from simulations for composite binder materials 

 

At Al: P =0, surface fluxes were found to be Js = 2.9 (±1.1)  10-9 mol cm-2 s-

1and Js = 1.5 (±0.7)  10-9 mol cm-2 s-1for Ca2+ and PO43-, respectively, which 

were ~1 order of magnitude lower than polycrystalline gypsum control (Js = 1.1 

(±0.4)  10-8 mol cm-2 s-1.  In this case, the anhydrite crystallites in the 

composite matrix can be envisaged as being protected by a phosphate coating. 

As Al: P content increased to 0.1 and 0.2, Ca2+ dissolution rates approached 

values similar to the gypsum control  (Figure 6.9 (a)) with Js = 7.1 (±1.1)  10-9 

mol cm-2 s-1and Js = 9.1 (±0.6)  10-9 mol cm-2 s-1 for the Al: P = 0.1 and 0.2 

substrates, respectively.  These higher rates may have resulted due to the 

crystalline Al(PO3)3 as determined via FTIR, (not shown) creating heterogeneity 

within the coating and, therefore less protective of the calcium sulfate from 

contact with impinging water in the channel. The Al: P = 0.33, which has the 

stoichiometric quantity of elements for Al(H2PO4)3, is substantially amorphous 

and chemically stable 28 and seemed to provide the most protection of the 

coating for the anhydrite crystallites. 

Sample Theoretical Flux, k (mol cm-2 s-1) 

Al: P Ca: P Ca2+ PO43- 

0 1.9 5.4 (±2.0) ×10-9 2.8 (±1.5) ×10-9 

0.1 2.1 1.3 (±0.2) ×10-8 6.5 (±0.9) ×10-9 

0.2 2.4 1.5 (±0.7) ×10-8 8.0 (±1.5) ×10-9 

0.33 2.67 2.5 (±0.7) ×10-9 6.9 (±1.5) ×10-10 
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Figure 6.9: Plots of (a) dissolution fluxes, (b) dissolution fluxes normalised with respect to 

relative BET surface area and (c) dissolution fluxes normalised with respect to relative 

sample porosity.  The rates of Ca2+ (black) and PO4
3- (red) as a function of Al content for all 

binder composites are shown. The calcium fluxes from polycrystalline gypsum control (blue) 

are also shown. The relative porosity and BET surface areas are defined with respect to the 

values for the gypsum control. 

 

This conclusion is further supported by the lower surface fluxes obtained 

at this Al: P ratio compared to corresponding values at lower Al content and, 

furthermore, by the pronounced discrepancy in Ca2+ and PO43- surface fluxes 
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with Js = 1.4 (±0.4)  10-9 mol cm-2 s-1and Js = 3.9 (±0.8)  10-10 mol cm-2 s-1 for 

Ca2+ and PO43- ions, respectively. The release rates for calcium and phosphate 

were a factor of 2-3 slower than in the case where Al: P = 0 and, moreover, ~ 1 

order of magnitude lower than the gypsum reference sample.  

 

6.4. Conclusions 

We have shown how a novel channel flow cell technique can be applied to 

study the dissolution behaviour of industrially relevant materials. We find that 

the simple flux rate law applied herein describes adequately the dissolution 

kinetics of unmodified polycrystalline gypsum and yields intrinsic dissolution 

flux values that compare well to values obtained in literature. Modification of 

polycrystalline gypsum with a variety of established humid-creep inhibitors has 

a minimal influence on dissolution kinetics under the experimental conditions 

applied, suggesting that a simple dissolution-precipitation model of moisture 

interaction with gypsum does not explain the mode of action of humid creep 

inhibitors. Models involving the surface binding of additives that reduce water 

adsorption in the inter-crystal region are more reasonable.  
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Chapter 7                                                           
Quantitative 3-D Visualisation of 

Gypsum Micro-Crystal Growth 
Kinetics Using AFM 

 

Abstract 

Crystal growth processes typically involve a complex interplay between 

the macroscopically observed events and processes occurring at the crystal 

surface. In this chapter, the growth of isolated gypsum micro-crystals is 

monitored via in-situ AFM under quiescent conditions. The process is 

investigated under a wide range of non-stoichiometric conditions, while 

maintaining a constant supersaturation, in order to elucidate the influence of 

constituent ions (Ca2+ and SO42-) on plane-specific growth behaviour. The 

separation of mass transport effects and surface kinetics is achieved by focusing 

on a microscopically active surface which exhibits high mass transfer rates. 

Additionally complementary computer models which predict the interfacial 

concentrations are designed and developed, thus deducing the dominant kinetic 

regime. It is found that growth kinetics are controlled by surface reactivity, with 

the ‘edge’ planes, (100) and (001), dominating the process at early times. 

Deviation from equimolar concentrations (of reagent ions, Ca2+ and SO42-) is 

found to depress plane-specific growth rates in the lateral directions ([100] and 

[001]), while the basal (010) surface growth showed a small decrease with 

increasing SO42- concentration. Furthermore, it is found to dramatically affect 

the morphology of grown crystals with large plate-like geometries forming in 

SO42--rich solutions, while in Ca2+-rich conditions, a needle-like morphology is 

observed. Analysis of the basal surface topography during growth reveals the 

formation of 2D layers which exhibit complex propagation kinetics, with steps 

velocities following the order: v[100] >> v[001].  
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7.1. Introduction 

The elucidation of crystal growth mechanisms requires an intimate 

knowledge of thermodynamic factors such as supersaturation, temperature etc., 

and, the relationship between the macroscopically observed rates and the local 

microscopic events on the crystal surfaces which manifest them.1,2 In addition, 

reliable determination of the kinetic regime demands a demarcation between 

the prevailing mass transport conditions which facilitate the diffusion of species 

to the crystal surface, and, the surface processes which allow the incorporation 

of these species into the crystal lattice.  

Early attempts to study crystal growth and address these issues were bulk 

studies such as batch crystallizers using seeded suspensions.3 While significant 

insights have been gained from these studies, determination of the dominant 

kinetic regime for the growth process was found to be complicated due to 

inherent difficulties in the separation of mass transport and surface processes 

when using such techniques. With the focus being on macroscopic observations, 

the reactivity of individual crystal faces has only recently been tackled and 

subsequently, there is much to be done to understand the relative contribution 

of specific crystal faces to overall ‘average’ growth behaviour.  

Powerful local techniques such as AFM4 and various electrochemical 

methods5-9 have proved useful in probing crystal growth processes at the 

microscopic level. However, as seen for crystal dissolution studies,10 a high 

thermodynamic driving force induces rates which are inaccessible via AFM, 

therefore limiting the range which can be probed. In addition, recent studies on 

the mass transport condition in AFM fluid cells suggest that not only are the 

hydrodynamics in these cells complicated,11,12 the AFM probe can pose a 
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significant influence on diffusion to the crystal surface. 13,14 The issue has been 

addressed in some studies, by probing the growth of isolated micro-crystals (≤ 

20 µm characteristic dimension) under quiescent conditions.15,16 It has been 

shown that mass transport to an isolated microscopic active surface is typically 

very high and well defined, as seen for example with ultramicroelectrodes in 

electrochemistry.17 In this chapter, we track the growth of an isolated micro-

crystal over time, and develop a complementary diffusion model which predicts 

the prevailing kinetic regime. 

Traditional approaches to crystal growth (bulk and local) have tended to 

focus on growth where the ratio of the activity of reagent ions, (r) matches the 

ion ratio in the crystal lattice. For instance, for an AxBy crystal, in most cases, 

stoichiometry in the growth solution: ( ) 1y xA B
r a a   . While this approach is 

useful, it neglects the environments likely to exist in geochemical systems, such 

as sea brines,18,19 and brackish waters,20 where non-stoichiometric conditions (r 

≠ 1) often prevail, and therefore highlights an area that needs further 

exploration. A comprehensive treatment of crystal growth kinetics should not 

only accommodate the dependence of growth behaviour on thermodynamic 

considerations (saturation, temperature, etc), but also probe the influence of 

varying growth solution stoichiometry (r). It has been suggested that the 

integration kinetics of cations vary considerably to those of anions, due to their 

different dehydration rates with cations exhibiting much lower rates relative to 

anions.21-25 Some studies26-28 have found that varying solution composition in 

this way has dramatic effects on crystal nucleation and growth kinetics and in 

addition, the morphology of grown crystals. In addition, other works suggest 

that the adsorption of background electrolyte ions and H2O molecules may act 
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as a barrier to the surface integration of reagent ions.29 Herein, the relative 

influence of varying reagent ion activity on plane-specific crystal growth rates is 

investigated over a wide range of r not only  to probe the influence on overall 

growth kinetics, but also to elucidate plane specific effects.  

Gypsum (CaSO4.2H2O) is one of the most abundant sulphate minerals30-32 

with significant geological20,33,34 and industrial importance.35-39 Despite its 

importance in these fields, the mineral is less well studied than others, 21,27,28,40-

42 particularly under non-stoichiometric growth conditions and even less so at 

the local level, thus lending itself as a suitable candidate for investigating crystal 

growth phenomena. The vast majority of bulk 43-47 and local2,48-52 gypsum 

crystal growth studies have focused on growth in stoichiometric solutions (r = 

1). Most previous studies conducted on gypsum crystal growth at r ≠ 1 

conditions have been bulk studies,18,53-57 such as early work by Zhang and 

Nancollas 54 at (0.17 < r < 5.0) who found that crystal growth rates increased 

with decreasing r. Recent bulk studies such as works by Abdel-Aal et al.57 

explored the influence of varying r, on crystal morphology, where they found 

that SO42- rich solutions produced large plate-like crystals compared to the 

needle-like habit observed at r = 1. To date, gypsum crystal growth via local 

techniques such as AFM under non-stoichiometric conditions are scarce.  

Early studies36,50-54 on suspensions (bulk) suggested that gypsum growth 

followed 2nd order kinetics at close to equilibrium conditions and low ionic 

strength solutions. This body of work thus corroborated the Burton, Cabrera 

and Frank (BCF)58 crystal growth model, characterised by advancement of 

spiral hillocks on the dominant F-faces of a crystal, as well as the ‘layer-by-layer’ 

growth theory,59-61 which, similarly follows a 2nd order dependence. With the 
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development of AFM, it has been possible to discriminate between competing 

theories by probing the surface topography during crystal growth. Recent AFM 

studies48-51,62 on gypsum growth (typically conducted on the cleaved basal 

(010) surface of natural samples at close to equilibrium conditions) have 

reported the existence of 2D layers with few spirals observed, thus supporting 

the ‘layer-by-layer’ growth theory. Most of these AFM studies have been 

concerned with tracking the movement of crystallographically constrained 

steps across the surface as a measure of growth kinetics with few links to 

macroscopic observations. 

In this chapter, we visualise the surface topography of the basal (010) 

surface of a grown gypsum micro-crystal and probe step motion on this face. In 

this way, we can directly relate the growth mechanism of this surface to the 

microscopic growth of the overall crystal.  

 

7.2. Experimental 

Crystal seeding solutions were prepared by mixing 0.04 M CaCl.2H2O and 

0.04 M Na2SO4. Stock solutions of 0.56 M CaCl.2H2O and 0.56 M Na2SO4 were 

made and through sequential dilutions, solutions with r = 7.12, 4.00, 1.01, 0.25 

and 0.133 were prepared. Each stock solution and subsequent growth solution 

was prepared immediately prior to experiments. S was maintained at ~ 1.9 and 

solution pH was 5.6 ± 0.3. Table 1 shows a summary of all growth solutions 

used. Based on calculations using MINEQL+, the concentration of the ion pair, 

CaSO4 was kept constant for all growth solutions at ~ 0.01 M. The experimental 

set up and growth procedure are described in detail in Chapter 3. 
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Table 7.1: Summary of all solutions used for growth experiments. 

 

Free ion activity / 

mM 

Ion pair 

concentration / 

mM 

Ionic 

Strength/ 

M S 

r Ca2+ SO42- CaSO4   

0.13 2.5 18.8 10.4 0.27 1.92 

0.25 3.4 13.7 10.3 0.20 1.90 

1.01 6.9 6.8 10.4 0.15 1.92 

4.00 13.6 3.4 10.3 0.19 1.89 

7.12 17.8 2.5 10.5 0.25 1.81 

 

7.3. Characterisation of Seed Crystals 

In order to confirm the identity of grown crystals, individual crystals 

grown were analysed via Raman spectrometry (Reinshaw inVia Raman 

Microscope) equipped with a 633 nm Ar+ laser. The laser power was set to 

100% (50 mW) with an exposure time of 20 s and for each sample, 16 

accumulations were recorded. Figure 7.1, shows typical Raman spectra for two 

samples (superimposed)   with peaks highlighted. The spectra were typical of 

gypsum crystal with characteristic peaks denoting SO4 bending (shifts at 494 

cm-1, 620 cm-1 and 671 cm-1) and SO4 stretching (1008 cm-1 and 1136 cm-1). 63 
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Figure 7.1: Typical Raman spectra acquired from analysing seed gypsum crystals. 

 

Figure 7.2 shows an AFM image of a typical gypsum micro-crystal 

highlighting the dominant crystal faces. In this and all cases, crystal morphology 

was typical of gypsum crystal structure, characterised by a monoclinic 

geometry.64 After the seeding process, a typical crystal was 10 (±3) µm long 

(elongation in the [001] direction) with a height of ~ 0.5 µm (growth in the 

[010] direction). In addition, they were largely devoid of macrosteps and large 

defects. Most formed crystals exhibited similar dimensions (within 10 %) 

suggesting that nucleation on the glass substrates was an instantaneous process 

with few new crystals forming over time. Occasionally, some of the crystals 

formed were twinned or in small clusters but their occurrence was not 

common. Furthermore, their presence was not considered to impede diffusion 

to the well-defined isolated crystals selected for growth experiments due to the 
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minimum distance restriction imposed (≥ 10 × characteristic crystal 

dimension).  

 

 

Figure 7.2: Typical AFM images of a grown gypsum crystal, (a) top view highlighting the 

dominant crystallographic directions and (b) showing crystal morphology. 

 

7.4. Numerical Theory and Simulations 

All computer simulations were executed on a Dell Intel(R) core™ 2 Quad 

2.13 GHz computer equipped with 16 GB of RAM and running Windows 7 

Professional X64 bit 2010 edition. Modeling was performed using the 

commercial finite element modelling package Comsol Multiphysics 4.2 (Comsol 

AB, Sweden). Simulations were carried out with >106 tetrahedral mesh 

elements and mesh resolution was defined to be finest in the vicinity of the 

crystal surface. Simulations with finer meshes were carried out (not reported) 

to confirm that the mesh was sufficiently fine to ensure that the predicted 

solutions were accurate.  

 

 



Quantitative 3-D visualisation of gypsum micro-crystal growth kinetics using AFM 

171 
 

Theory 

The following system was considered: the growth of an isolated gypsum 

crystal in quiescent supersaturated solution via the incorporation of species 

(Ca2+, SO42- and/or CaSO4) to the dominant planes of the crystal. The distance 

between adjacent crystals was assumed to be large enough that the crystal 

under observation was diffusionally isolated from adjacent crystals. Plane-

dependent crystal growth velocities, v(hkl) (nm s-1) and the corresponding fluxes 

from crystal faces, J(hkl) (mol m-2 s-1) were obtained directly from time-

dependent crystal growth measurements and were used as inputs for a 

stationary boundary simulation which was developed to represent the growing 

crystal. The simulated crystal geometry was approximated to the monoclinic 

structure of gypsum crystal which mimicked the morphology of crystals grown 

experimentally (vide infra). 

The simulation domain is shown in Figure 7.3 where the numbers used 

represent boundary numbers described in the text to define boundary 

conditions. In bulk solution, the mass transport of ions was solved under fixed 

boundary conditions as described by: 

2 0i iD C    (7.1) 

where Di is the diffusion coefficient of species i, where i is Ca2+ or SO42-, 

and Ci is the concentration of species i.  Diffusion coefficients used for the 

purposes of simulations were 0.792 × 10-5 cm2 s-1 and 1.065 × 10-5 cm2 s-1 for 

Ca2+ and SO42-, respectively.65 Boundaries 1-3 represent the crystal planes in the 

(010), (001) and (100) directions, respectively (Figure 7.3) and their 

corresponding experimentally determined plane-specific fluxes, J(hkl), (mol m-2 s-
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1) were used as input for predicting the interfacial concentration of Ca2+ ions at 

each plane, as governed by: 

( )i i hkln D C J      (7.2) 

where n  is the inward pointing unit normal to the surface. Boundary 4 

represents the inert glass substrate and satisfies a no normal flux as governed 

by: 

( ) 0  i in D C    (7.3) 

Boundaries 5-9 define bulk solution conditions as described by equation 4: 

,i i bC C     (7.4) 

where Ci,b is the bulk concentration of species i.  

 

Figure 7.3: Simulation domain used for finite element simulations of plane-specific crystal 

growth fluxes. The numbers represent boundaries used in simulations (not to scale) and 

described in the text. 
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Table 7.2 summarises all interfacial concentrations at specific crystal 

faces, for the range of r used. It is evident that the surface concentration values 

remained essentially the same as the bulk concentration (<< 1% difference), for 

all crystal faces, thus suggesting significant surface kinetic control for the range 

of r. It was therefore possible to probe the relative influence of specific reagent 

ions on the ‘intrinsic’ growth mechanisms at specific crystal faces.  

 

Table 7.2: Plane-specific surface concentrations for all r values. 

 
 Interfacial Concentration/ mM 

r 

Activity of 

limiting ion/ 

mM 

(100) face (001) face (010) face 

0.133 2.5 2.48 2.48 2.48 

0.25 3.4 3.38 3.38 3.38 

1.01 6.9 6.89 6.89 6.89 

4.00 3.4 3.39 3.39 3.39 

7.12 2.5 2.49 2.5 2.48 

 

7.5. Results and Discussions 

7.5.1 Plane Specific Growth Rates 

Figure 7.4 shows typical AFM height images (top view) of a seed crystal 

(a) in r = 1 solution, and after growth for (a) 530 s (b) 1215 s (c) 2430 and (d) 

3645 s. It is evident that the imaged crystal expanded (both laterally and 
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longitudinally) with time and therefore facilitated tracking of both overall 

(average) and plane-specific growth rates. Under these conditions, the crystal 

was observed to elongate in the [001] direction (displacement of the (100) face) 

indicating anisotropy on growth kinetics. During imaging, the crystals were 

found to remain in position (no significant drift due to AFM tip rastering). 

 

Figure 7.4: Typical AFM height images (top view) of a seed crystal in r = 1 solution after 

growth for (a) 530 s, (b) 1215 s, (c) 2430 s and (d) 3645 s. The scale bar represents 2 µm. 
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Figure 7.4 shows a summary plot of crystal expansion in the dominant 

planes; (100), (001) and (010) as a function of time for an r = 1 solution, based 

on direct measurements from AFM. The growth velocities, v(hkl) (nm s-1) were 

found to follow the trend; v(010) < v(001) < v(100). For these and all other cases 

(0.13 < r < 7.12), the plots were found to be reasonably linear as expected for a 

surface controlled process. 

 

Figure 7.5: Crystal expansion of the principle planes; (100) (black), (001) (red) and the basal 

(010) surface (blue), as a function of time when grown in a stoichiometric (r) growth 

solution. 

 

For each AFM image, the average length of a crystal in a particular 

direction was determined from at least five cross sections across the entire 

length of the crystal. Crystal height data was determined from these cross 

sections also and the error bars represent two standard deviations. For each r 

value, at least three crystals were visualized and analyzed in this way. A 

summary of the plane-specific velocities is shown in Table 7.3.  
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Table 7.3: Summary of all plane-specific displacement velocities.  

 
Plane-specific displacement/ nm s-1 

r (100) face (001) face (010) face 

0.133 0.27 ± 0.12 0.39 ± 0.10 0.06 ± 0.02 

0.25 0.40 ± 0.10 0.40 ± 0.06 0.08 ± 0.03 

1.01 0.76 ± 0.09 0.51 ±0.08 0.03 ± 0.01 

4.00 0.60 ± 0.11 0.32 ± 0.08 0.04 ± 0.01 

7.12 0.22 ± 0.07 0.07 ± 0.02 0.010 ± 0.005 

 

From the crystal expansion measurements, plane-specific fluxes, J(hkl) (mol 

m-2 s-1) were calculated as the product of plane-specific velocities (v(hkl)) and the 

molar density of gypsum crystal (13400 mol m-3). Figure 7.5 shows a plot of 

average plane-specific growth fluxes, as a function of varying solution 

stoichiometry (r).  

 

Figure 7.6: Summary plot of plane-specific growth fluxes to the (100) (black), (001) (red) 

faces and the basal (010) face (blue), as a function of solution stoichiometry (r). 
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Maximum lateral (J(100) and J(001)) rates were observed at stoichiometric 

growth conditions (r = 1), highlighting a strong dependence on equimolar 

amounts of Ca2+ and SO42- ions for lateral crystal growth. As r deviated from 1, 

growth rates on these faces decreased non-symmetrically with J(100) diminishing 

more sharply in r < 1 conditions than at r > 1. At r = 0.25, Flux to the (100) face 

decreases to values lower than those observed for the (slower moving) (001) 

face, indicating that low Ca2+ ions significantly limited growth in this direction. 

Conversely, under similar conditions (r ≤ 0.25), flux to the (001) face appeared 

to plateau indicating that further reduction of bulk Ca2+ concentration had a 

negligible effect on the growth rates of this face. 

In the range of r > 1, the decrease in J(100) was more gradual relative to 

rates observed at r < 1. However, at r = 7.5 (maximum r value), J(100) (growth of 

the (100) face) was seen to diminish to values similar to those observed at r = 

0.133 (minimum r value), suggesting that crystal growth on this face, is 

sensitive to SO42- ion concentration in a similar way to Ca2+ concentration, 

particularly at extreme r values. At these extreme values, r = 0.133 and r = 7.12, 

J(100) is seen to decrease by a factor of ~ 5 compared to rates at stoichiometric 

conditions (r = 1).  

Over the entire range of r, growth of the (010) crystal surface was found to 

be slow relative to other measured directions. The basal surface of gypsum is 

known to be stable relative to the (100) and (001) faces.66 In addition, there 

was a decrease in J(010) with increasing r. The growth behaviour on this face may 

be rationalised based on, first, dehydrations kinetics and second, bonding in the 

crystal in the [010] direction. The rate of ion integration into the crystal surface 
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is known to be controlled by dehydration of ions and as mentioned, anion 

dehydration kinetics are much faster relative to cations (vide supra). Therefore, 

as r increases, integration is limited by Ca2+ dehydration kinetics despite ever 

increasing amounts of Ca2+ in solution. Additionally, the effect of fast anion 

dehydration rates is limited by low SO42- activity (r > 1) and therefore overall 

growth rates are low.  In terms of bonding character in this surface, a H2O layer 

is interspaced between CaSO4 bilayers, suggesting a discontinuity of the 

periodic bond chain in this direction. 67  Previous studies2,50 have alluded to the 

CaSO4 bilayer as the repeat growth (and dissolution) unit, indicating that the 

exposed molecules at the crystal surface are likely to be H2O. It is likely that 

adsorbed H2O can act as a diffusive barrier to ion integration at the crystal 

surface and, possibly retard their dehydration kinetics as well.29 Since the ion 

pair concentration was maintained at a constant value (~0.1), the influence of 

this species on crystal growth kinetics could not be fully investigated.  

Direct comparisons between this work and others is difficult owing to the 

fact that, first, most previous studies were carried out under stoichiometric 

conditions (r =1) and second, most studies were based on growth on a cleaved 

basal (010) surface rather than (in our case) an isolated micro-crystal.2,48-51 For 

cleaved surfaces, the separation of mass transport and surface processes is 

complex in part, due to the size of the reactive area. While an isolated micro-

crystal exhibits very fast mass transport and is essentially diffusionally isolated 

(vide supra), a cleaved surface placed in a supersaturated solution may be 

assumed to be fully reactive, whereby all surface features (kinks, ledges, 

dislocations etc) contribute to observed growth rates. Due to both the density of 

active features and their proximity to each other, the diffusion profile to each 
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active feature will interact with others nearby and result in slower overall 

diffusion to the crystal surface. This behaviour is reminiscent of the planar 

diffusion profile seen for example, in the case of large electrodes in 

electrochemistry.17 Consequently, kinetically controlled (intrinsic) crystal 

growth rates are difficult to elucidate. 

7.5.2 Effect of 2 2
4

( ) 
Ca SO

r a a on Crystal Morphology 

The observed trends in plane-specific velocities, v (hkl) (Table 7.3) or 

equivalent fluxes, over a range of r (Figure 7.6) were predictably manifest in the 

morphology of the growing crystals. Figure 7.7 shows AFM height images of 

crystals grown with r values of (a-b) 0.133, (c-d) 1 and (e-f) 7.12 where (a), (c) 

and (e) are crystals after the initial scan and (b), (d) and (f) after growth for 

~3600 s. When grown in the SO42- rich solution (Figure 7.7 (a-b)), the ratio of 

lateral rates of growth were found to be v(100) / v(001)  ≈ 0.7 (Table 7.3), 

producing a plate–like crystal morphology with comparable dimensions in the 

[100] and [001] directions. As r increased to stoichiometric levels (r = 1), v(100) / 

v(001) ≈ 1.3 thus producing crystals slightly elongated in the [001] direction 

(Figure 7.7 (d)). In Ca2+ rich solution (r = 7.12), the velocity ratio, v(100) / v (001) ≈ 

3 and the crystal morphology exhibits a significant elongation in the [001] 

direction (relatively faster displacement of the (100) face). These findings for 

individual micro-crystals are in agreement with previous morphological 

assessment of bulk gypsum crystals 54,57 confirming the validity of our 

approach, in which we are also able to quantitatively measure plane-specific 

growth rates, as highlighted herein.  
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Figure 7.7: AFM height images of crystals grown with r values of (a-b) 0.133, (c-d) 1 and (e-

f) 7.12 where (a), (c) and (e) are crystals initially and (b), (d) and (f) are after growth for ca. 

1 hour.  The scale bar represents 2 µm. 

 

7.5.3 Step Motion on the Basal (010) Surface 

In addition to tracking the 3-D growth of micro-crystals, step motion on 

the dominant (010) basal plane was investigated to provide further information 

on the mechanism of crystal growth on this face. This was considered useful 

because, as mentioned earlier, previous AFM studies have focused on 

macroscopic crystals and it is useful to identify any similarities and differences 

between synthetically grown micro-crystals and cleaved macro-surfaces of 

natural crystals.  
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Figure 7.8 shows images of a typical crystal imaged in air on the combined 

AFM-optical microscope system, with (a) showing an optical image with small 

areas highlighted in red where AFM imaging was carried out, revealing (b) a 

growth hillock with a clear nucleation point where steps originate and 

propagate in a birth-and-spread mechanism. Steps parallel to the [100] 

direction are shown in (c), which is an area of the surface some distance from 

the nucleation point, exhibiting a large step spacing relative to the closely 

packed steps parallel to [001] direction, while in (d) steps parallel to the [001] 

direction close to the crystal edge are shown. A cross-section on Figure 7.8 (c), 

perpendicular to [100]-oriented steps - is plotted in Figure 7.8 (e) and reveals 

heights of, and spacing between, [100]-oriented steps. These steps are evidently 

consistent with the CaSO4 (bi)layer height in the unit cell of gypsum crystal 

which has a thickness of ~0.76 nm.67 Close to the crystal edge (Figure 7.8 (d)), 

the cross-section of slow moving steps [001]-oriented steps is plotted in Figure 

7.8 (f) to reveal multilayered steps with heights of ≤ 20 nm. Together, these data 

reveal significant anisotropy between the rate of movement of slow [001]-

oriented steps and much faster [100]-oriented steps. 
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Figure 7.8: (a) DIC image depicting a typical crystal in air with small areas on the basal (010) 

surface magnified via AFM to reveal (b) a growth hillock with a nucleation point in the 

centre, which acts as a source of steps. Image (c) is an area away from the source where 

fast moving steps parallel to the [100] direction have a large step spacing, with much more 

closely packed steps parallel to the [001] direction. Image (d) is close to the crystal edge 

where only steps parallel to the [001] direction are evident. Cross-sections in (c) and (d) are 

shown in (e) and (f), respectively, and serve to highlight a difference in step heights in the 

different regions of the crystal surface. 
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Figure 7.9 shows in-situ AFM height data of a small area on the basal 

surface as a function of time after (a) 300 s, (b) 770 s, (c) 1300 s and (d) 1830 s 

in r = 1 solution. The defect highlighted by the black arrow on the surface is 

gradually filled by the motion of [001]-oriented steps, and this serves as a fixed 

marker to obtain step velocities. The cross-section in Figure 7.9 (a) is plotted in 

Figure 7.9 (e), which highlights the step heights and inter-step distances. Under 

the growth conditions applied, steps parallel to the [100] direction were not 

observed on any region of the surface during in-situ measurements. This is 

consistent with the ex-situ data above which highlighted that [100]-oriented 

steps (Figure 7.8 (c)) were widely spaced and therefore fast moving. Figure 7.9 

(f) plots the distance of three steps from the defect site as a function of time, 

from the analysis of images such as Figure 7.9 (a-d). It can be seen that (for all 

three steps) the step approach towards the defect is reasonably linear. A step 

velocity of 0.09 (±0.01) nm s-1 was deduced and the average step height was 

found to be 2.4 (± 0.5) nm, corresponding to ~ 3 CaSO4 bilayers. 

Growth in the [010] direction (perpendicular to the (010) surface) based 

on the 2-D data in Figure 7.9 yields a rate of ~0.003 nm s-1 compared to the 

growth rate of ~0.027 nm s-1 measured by 3-D visualization. The difference in 

values, and the fact that 3-D imaging yields a higher growth rate, is not 

surprising because the growth process evidently involves layer-by-layer growth 

from numerous nucleation (polynuclear) sites across the surface and 2-D 

imaging captures only a small part of this. Evidently, care must be exercised in 

predicting bulk growth kinetics from step movement measurements in a tiny 

region of a crystal surface. In contrast, 3-D visualization provides accurate 

measurement of plane-specific growth kinetics. On the other hand, our findings 
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qualitatively corroborate previous microscopic work48,49,52 which proposed a 

layer-by-layer growth process for the (010) gypsum surface. Additional scans of 

the (010) surface did not find any evidence for spiral hillocks which have been 

suggested in previous studies68 as the mechanism by which gypsum crystal 

growth occurs.  

 

Figure 7.9: In-situ AFM height images showing steps parallel to the [001] direction on the 

(010) surface as a function of time, at (a) 300 s, (b) 770 s, (c) 1300 s and (d) 1830 s. A defect 

on the surface is also shown (black arrow) which is gradually filled in by moving steps. The 

cross-section in (a) is shown in (e), highlighting the step height and inter-step distance as 

well as the profile of the defect region. Image (f) plots the distance of three steps from the 

defect, as a function of time. 
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7.5.4 Relationship Between Microscopic Fluxes, Macroscopic Growth 
Rates and Previous Kinetic Studies 

The 3-D visualization data allow net crystal growth rates, J (mol m2 s-1), to 

be deduced readily, defined as: 

( )

( )


 

dV t
J

dt A t
   (5) 

where t is time (s), V(t) is the time-dependent crystal volume (m3), ρ is the 

molar density of gypsum crystal (13400 mol m-3) and A(t) is the time-dependent 

total crystal surface area (m2) exposed to solution. Growth rates averaged over 

the time course of measurements were found to be 1.7 (± 0.9) ×10-6 mol m-2 s-1, 

2.5 (± 1.2) ×10-6 mol m-2 s-1 and 1.5 (± 0.7) ×10-6 mol m-2 s-1 for r = 0.133, 1 and 

7.12, respectively. In part, the trend of these values mirrors that found for 

plane-specific growth rates, where the highest rates were deduced at r = 1. 

However, the average rates determined are sensitive to the surface areas of 

each exposed crystal face and the corresponding reactivity of the individual 

faces. For instance, at r = 1, the anisotropy in plane-specific growth rates 

resulted in a needle-like crystal morphology, which increased the basal plane 

area (due to relatively fast lateral growth in the [001] direction) while the fast 

moving (100) plane area remained comparatively small (as a consequence of 

slow basal plane growth). The slowest growing face, the basal (010) plane, has 

significant influence on the overall (volumetric) rate of crystal growth. 

The rates of growth of single isolated micro-crystals analyzed in this work 

can  be compared to kinetic measurements in a seeded suspension. Previous 

studies of this type have monitored growth kinetics by tracking changes in the 

bulk solution via techniques such as conductivity measurements,47,69 
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titration,70-72 potentiometry46,73 and spectrometry.18 A study by Zhang and 

Nancollas54 at comparable supersaturation (1.54 ≥ S ≤ 1.84) using suspensions 

at relatively high ionic strength (in 0.5 M KCl), determined average growth rates 

to be: 3.22 ×10-6 mol m-2 s-1, 1.8 ×10-6 mol m-2 s-1 and 8.4 ×10-7 mol m-2 s-1 for r = 

0.1, 2 and 10, respectively. Thus, it is evident that the values in this study and 

previous bulk measurements correlate reasonably well, especially given the 

considerable differences between the in-situ AFM studies carried out in this 

work and bulk measurements on suspensions. This gives us reasonable 

confidence in the validity of our approach, noting that the previous work was 

carried out at higher ionic strength. 

 

7.6. Conclusions 

In this chapter, we have described the growth behaviour of isolated 

gypsum micro-crystals via in situ 3-D AFM imaging, and determined the process 

to be controlled by surface-kinetics with no influence of bulk to surface 

diffusion. The growth kinetics for the edge-like faces, i.e. (100) and (001) faces, 

were found to be highly sensitive to the ratio of Ca2+ to SO42- ions in the growth 

solution, resulting in dramatic effects on the morphology of crystals as growth 

progressed. In SO42--rich solutions, crystals adopted plate-like shapes, while in 

Ca2+-rich solutions, they formed an elongated-plate morphology. This finding 

highlights an asymmetric dependence of plane-specific growth on the solution 

stoichiometry.  

Ex-situ analysis of the basal (010) surface topography revealed a layer-by-

layer growth process, in which steps oriented parallel to the [100] direction 
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propagated much faster than those parallel to the [001] direction.  The 

considerable anisotropy of step velocities was evident during in-situ growth 

measurements on the (010) surface, in which only steps oriented parallel to the 

[001] direction could be detected and monitored.  Comparison of growth rates 

deduced from 3-D visualization and 2-D tracking of steps highlighted potential 

issues with the latter approach as a means of obtain quantitative growth 

kinetics, as this approach typically covers only a small portion of a crystal face, 

which may not be representative of the entire surface. In contrast, the 3-D 

approach outlined allows the growth kinetics of the main exposed faces of the 

gypsum crystal to be determined unambiguously and quantitatively. 

The approach described herein should be generally applicable to crystal 

growth (and dissolution); its merits being the possibility of measuring overall 

crystal growth rates, the ability to decouple mass transport and surface kinetic 

effects, and the possibility of obtaining plane-specific growth (dissolution) 

kinetics from  the time-dependent analysis of the morphology of individual 

micro-crystals. 
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Chapter 8                                                  
Conclusions 

 

The overall aim of this thesis was to gain kinetic and mechanistic insights into 

processes at the mineral/solution interface, with particular emphasis on the growth 

and dissolution of gypsum (CaSO4.2H2O) crystal. As a ubiquitous mineral with wide 

ranging applications, studies carried out on gypsum are particularly relevant to the 

field of geochemistry and industrial areas such as building and construction. An 

overarching multi-scale approach has been taken for the studies herein, to facilitate a 

quantitative link between macroscopically observed events and the local surface 

processes from which they arise. With this approach, perceived discrepancies in the 

literature between measurements at different experimental length scales have been 

addressed. In addition, powerful quantitative models have been developed to 

describe the underlying diffusion/reaction problems, in order to complement 

experimental results and provide mechanistic insights. 

For some of the studies carried out, visualisation techniques such as AFM, 

WLI and SEM, were used and, subsequently, large sets of images were produced. 

Typically, these images were topographical and contained vital information about 

the unique features formed on the surfaces under investigation. It was therefore 

necessary to develop a versatile and efficient way to process these images and 

extract important data. To this end, a highly adaptable image processing (IP) package 

was developed (Chapter 3). The main aim was to process 3D images produced 

during crystal dissolution studies, analyse surface dissolution features and collate 

essential structural information. In this way, the dissolution process could be 

monitored and direction-specific dissolution rates could be determined. The IP 
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package incorporated various batch processes which expedited numerous IP 

operations. These included operations to replace of missing pixels and correct image 

tilt, among others. A significant benefit to automating such tasks was that very large 

image sets could be processed quickly and thus allowing for a wide range of 

experimental variables to be probed. In addition, sophisticated graphical user 

interfaces (GUIs) were designed to extract specialised information in a user-defined 

environment. It was found that, the IP package performed comparably to stand-alone 

commercial software for the execution of common tasks. However, due to the 

limited options available in commercial packages, specialised tasks could not be 

performed, thus highlighting the vast benefits of a user-designed IP package.  

An area in which IP methods would truly come into their own would be when 

they can be incorporated successfully into dynamic processes, such that quantitative 

kinetic information on crystal growth/dissolution can be deduced in real-time whilst  

eliminating the current limitations that exist with time-intensive and (surface) 

invasive techniques. In addition, more versatile IP packages are needed to satisfy the 

increasingly diverse needs of researchers, particularly since technological advances 

(such as Peak Force AFM and phase-shift interferometry (PSI)) are expanding the 

range of surfaces and processes that can be probed.  

Dissolution processes typically involve the formation of characteristic etch 

features on crystal surfaces. In Chapter 4, a simple time-dependent analysis of etch 

pits formed on the cleaved basal (010) surface of gypsum was carried out, with the 

aim of deducing dissolution kinetics at a local scale. The study was limited to short 

time scales (≤ 100 s) where only micro-sized etch pits form. Micro-sized active 

surfaces are known to exhibit very high and quantitative mass transport rates and by 

limiting the dissolution process to short durations, the contribution of mass transport 
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relative to surface processes can be determined. It was found that dissolution is 

controlled by surface kinetics at early times, with the ‘edge’ (100) and (001) planes 

dominating the process. Direction-specific dissolution velocities followed the trend: 

v(010) < v[001] << v[100], revealing significant anisotropy of step kinetics. The fast 

moving steps parallel to the [100] direction were found to yield higher interfacial 

concentrations, suggesting a comparatively higher contribution from mass transport 

for dissolution in this direction relative to both the [001] and the basal [010] 

directions. Analysis of direction-dependent fluxes over time revealed that the basal 

plane dominates the dissolution process at later times when the surface is fully 

reactive. The corresponding basal plane fluxes (J(010) = 4.0 (±0.5) × 10
-9

 mol cm
-2

 s-

1) are found to be consistent with previous bulk measurements, thus bridging the gap 

between macroscopically observed rates and microscopic phenomena. Studies of the 

influence of background electrolytes revealed a direction-specific enhancement 

(salting-in) of dissolution in the presence of inert salt, while common-ion effects 

(Ca
2+

 vs. SO4
2-

) significantly retarded dissolution, particularly when etching in Ca
2+

 

compared to SO4
2-

. 

With striking retarding effects seen in the case of Ca
2+

  it would be worth while 

to investigate the influence of other ions on the dissolution process. For instance, 

Mg
2+

 and Cr
3+

 have been observed to significantly influence the growth and 

dissolution of calcite. In addition, further insight may be gained from molecular level 

simulations such as molecular dynamics (MD) which is capable of accommodating 

the energy considerations  associated with these surface processes.   

The dissolution process was further probed with an investigation of the 

reactivity of basal (010) and edge (001) surfaces of gypsum and polycrystalline 

anhydrite crystals, in a bulk study (Chapter 5). To probe the intrinsic dissolution 
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rates, the study was carried out under far from equilibrium conditions, via the CFC 

method, which was coupled to off-line ICP-MS for the measurement of dissolved 

Ca
2+

.  The dominant kinetic regime was determined by taking measurements over 

the wide range of flow rates accessible with the CFC technique. Using quantitative 

computer modelling, convective-diffusion equations were formulated, which 

describe mass transport in the CFC. These equations were coupled with a boundary 

condition for the dissolving crystal surface and it was found that a linear rate law (Jo 

= kdiss × ceq) applies to the dissolution process.  

The basal gypsum surface was found to exhibit a flux of Jo = 5.7 (±1.4) × 10
-9

 

mol cm
-2

 s
-1

 into pure water and a rate constant of, kdiss = 6.0 (±1.5) × 10
-4

 cm s
-1

, 

while polycrystalline anhydrite yielded Jo = 4.1 (±0.7) × 10
-9

 mol cm
-2

 s
-1

. 

Conversely, the highly reactive edge (001) plane exhibits very high rates, yielding a 

lower limit for the rate constant of kdiss > 0.1 cm s
-1

accessible via the CFC technique. 

Thus the reaction is a transport-controlled process (in pure water). These 

observations are wholly consistent with those determined in the etch pit analysis 

study (Chapter 4).  

The effects of common humid-creep inhibitors: STMP and tartaric acid on 

gypsum dissolution kinetics, are investigated and it  was found that STMP 

significantly retards gypsum dissolution, with Jo = 1.6 (±0.6) × 10
-9

 mol cm
-2

 s
-1

. 

Additional etch pit studies suggest that the STMP anion acts by preferentially 

adsorbing onto the edge planes (both (100) and (001)) with a smaller effect on the 

basal (010) plane, thus inhibiting further dissolution.  

  The CFC technique was further applied to the study of industrially 

relevant materials (Chapter 6), in order to address the mode of action of common 

humid creep additives. Polycrystalline gypsum samples are impregnated with 
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common humid creep inhibitors such as STMP, and some organic acids (tartaric 

acid, boric acid and gallic acid), and bound in a resin matrix. In this case, a simple 

flux rate law was applied and when corrected for surface roughness, all samples 

yielded a flux of 1.4 (±0.6)  10
-8

 mol cm
-2

 s
-1

, compared to 1.1 (±0.4)  10
-8

 mol 

cm
-2

 s
-1

 from the control sample, thus indicating a negligible effect on dissolution 

kinetics. However, STMP showed a small inhibitory influence, yielding a flux of 7.4 

(±2.0)  10
-9

 mol cm
-2

 s
-1

. With the observations made in this study, current theories 

on the mode of action of humid creep additives were assessed. It was concluded that 

models that involve surface binding of additives that reduce water adsorption in the 

inter-crystal region, are more plausible than those proposing a dissolution-

precipitation pathway. In addition, the fluxes deduced in this study are comparatively 

higher than those observed for the basal plane surface (Chapters 4 and 5). However, 

the higher reactivity can be rationalised by the fact that in this study (Chapter 6), the 

polycrystalline nature of the surface exposes the edge planes, which have been 

shown to be highly reactive (Chapters 4 and 5). 

The versatility of the CFC technique is non-trivial when one considers that it 

can be coupled with a wide range of other techniques such as in-line electrochemical 

methods and others such as UV/vis.  In addition, there is virtually no limit to the 

range of substrates (treated, synthetic) which can be investigated due to the 

simplicity of the CFC cell assembly. When coupled with the fact that it is just as 

straightforward to change the solution, this technique opens up numerous options. 

For instance, it may be used to quickly screen for appropriate crystal dissolution 

retarders for a wide range of substrates. 

Using an approach reminiscent of the etch pit analysis study (Chapter 3), the 

growth kinetics of micro-sized gypsum crystals are determined by visualising their 
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growth using in-situ AFM. The influence of solution stoichiometry was investigated 

by varying the relative activities of reagent ions, 2+ 2-
4Ca SO

( )r a a  in the growth 

solution, while maintaining a constant driving force (S). A robust seeding process 

was shown to produce well-defined isolated crystals which strongly adhered to a 

silanized glass substrate. In this case, the mass transport vs. surface kinetics problem 

was addressed by imposing restrictions on the proximity of adjacent crystals in order 

to ensure diffusional isolation. It was found that crystal growth was entirely 

controlled by surface kinetics for the entire range of r, with the edge planes 

dominating the process at an early time.  Plane-specific velocities in the lateral 

directions were found to be at their highest under equimolar conditions (r = 1), 

decreasing to their lowest values at rmin = 0.13 and rmax = 7.12. These rates 

manifested a dramatic effect on crystal morphology yielding large plate-like 

geometry in SO4
2-

-rich solutions, while in Ca
2+

-rich conditions, the crystals take on a 

needle-like shape.  The basal (010) surface exhibits low rates of growth (relative to 

the edge planes) which are seen decrease slightly as r increases. This was due to the 

slow dehydration kinetics of the cation relative to the anion and the stability of the 

basal plane to growth (or dissolution).  

The propagation of nanoscale steps on the basal (010) surface reveal only 2D 

islands, while spiral hillocks are not observed at any time, thus indicating a ‘layer-

by-layer’ growth mechanism. However, the velocities of these steps in the lateral 

[001] and vertical [010] directions reveal a significant discrepancy between 

nanoscale (steps) and microscopic (plane-specific) growth rates with the former 

accounting for only a small fraction of growth in the latter. It was proposed that the 

basal plane is likely to grow via a complex polynuclear process. When compared to 

previous bulk measurements, it  was found that the average rates of growth of the 



Conclusions 

196 
 

crystal match relatively well, indicating the powerful insights gained from this 

approach.   

In summary, the studies conducted in this thesis have shown that by applying 

approaches and techniques which successfully separate mass transport effects and 

surface kinetics, the prevailing kinetic regime can be determined. When effectively 

coupled with powerful quantitative models which complement the diffusion-

reaction, intrinsic reaction kinetics can be elucidated, and under such well-defined 

conditions, it is possible to reliably probe crystal growth and dissolution processes. 

The comprehensive approach applied in this work allows for the discrimination of 

individual crystal planes based on their reactivity and more significantly, the 

deduction average macroscopic fluxes which can be compared directly to bulk 

studies, thus providing a powerful link between experimental length scales.  

Furthermore, the techniques and approaches used in this thesis are generally 

applicable. 
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