CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014

N-Heterocyclic Carbene Formation Induced Fluorescent and Colorimetric Sensing of Fluoride Using Perimidinium Derivatives

Dawei Zhang,^[a, b] Haiqiang Yang,^[a] Alexandre Martinez,^{*[b]} Kelsey Jamieson,^[b] Jean-Pierre Dutasta,^[b] and Guohua Gao^{*[a]}

chem_201404806_sm_miscellaneous_information.pdf

Figure S1 Fluorescence spectra of 5 μ M chemodosisensor 1 excited at 353 nm upon addition of 3 equiv. of different anions (TBA salts) in DMSO. Inset: fluorescent color of chemodosisensor 1 (5 μ M) in the absence and presence of TBAF under UV lamp excited at 365 nm.

Figure S2 (a) Fluorescence spectra of 5 μM chemodosisensor **2** excited at 357 nm upon addition of 20 equiv. of different anions (TBA salts) in DMSO. Inset: fluorescent color of chemodosisensor **2** (5 μM) in the absence and presence of TBAF under UV lamp excited at 365 nm. (b) Fluorescence titrations of 5 μM chemodosisensor **2** with TBAF in DMSO. Inset: the fluorescence intensity at 402 nm as a function of the added TBAF.

Figure S3 (a) Absorption spectra of 50 μ M chemodosisensor 1 upon addition of 3 equiv. of different anions (TBA salts) in DMSO. Inset: solution color of the chemodosisensor 1 in the absence and presence of TBAF.

Figure S4 (a) Absorption spectra of 50 μ M chemodosisensor **2** upon addition of 3 equiv. of different TBA anions in DMSO. Inset: solution color of the chemodosisensor **2** in the absence and presence of TBAF. (b) Absorption titrations of 50 μ M chemodosisensor **2** with TBAF in DMSO. Inset: the absorbance at 357 nm as a function of added TBAF.

Figure S5 (a) Fluorescence titrations of 5 μM chemodosisensor 1 with TBAF excited at 353 nm in DMSO containing
10% water. Inset: the fluorescence intensity at 400 nm as a function of added TBAF. (b) Absorption titrations of 50 μM
1 with TBAF in DMSO containing 10% water. Inset: the absorbance at 353 nm as a function of added TBAF.

Figure S6 (a) Fluorescence titrations of 5 μM chemodosisensor 2 with TBAF excited at 357 nm in DMSO containing
10% water. Inset: the fluorescence intensity at 402 nm as a function of added TBAF. (b) Absorption titrations of 50 μM
2 with TBAF in DMSO containing 10% water. Inset: the absorbance at 357 nm as a function of added TBAF.

Figure S7 (a) ¹H NMR titrations of chemodosisensor **2** (5 mM) with TBAF in DMSO-d₆. (b) ¹³C NMR spectra of chemodosisensor **2** (5 mM) when in presence of 5.0 equiv. of TBAF in DMSO-d₆.

Figure S8 ¹H NMR spectra of chemodosisensor 1 unpon addition of 8.0 equiv. of TBAF in DMSO-d₆ after different time, and the spectra of compound 8a, 9a and the 1 : 1.18 mixture of 9a and 8a.

¹**H** NMR (400 MHz, DMSO-d₆) δ 4.42 (s, 2H), 4.55 (s, 4H), 6.51 (d, *J* = 7.6 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 7.18-7.26 (m, 4H), 7.30-7.37 (m, 8H).

¹³C NMR (100 MHz, DMSO-d₆) δ 53.34, 66.47, 104.03, 115.13, 116.98, 127.18, 127.43, 127.68, 128.95, 135.21, 138.50, 143.81.

HR MS: C₂₅H₂₂N₂, requires 350.1783, found [C₂₅H₂₂N₂Na]⁺ 373.1686.

Mass Spectrum SmartFormula Report

Figure S9 ¹H NMR (a), ¹³C NMR (b) and HR MS (c) spectra of compound 8a.

¹**H NMR** (400 MHz, DMSO-d₆) δ 5.30 (s, 4H), 6.61-6.66 (m, 2H), 7.24-7.41 (m, 14H).

¹³**C NMR** (100 MHz, DMSO-d₆) δ 46.96, 105.97, 114.85, 119.66, 126.93, 127.56, 128.28, 129.16, 134.51, 136.75, 136.95, 151.59.

HR MS: C₂₅H₂₀N₂O, requires 364.1576, found [C₂₅H₂₀N₂ONa]⁺ 387.1495.

Mass Spectrum SmartFormula Report

Figure S10 ¹H NMR (a), ¹³C NMR (b) and HR MS (c) spectra of compound 9a.

Figure S11 Solution colors and fluorescent colors of compounds 8a and 9a (5 μM).

¹**H NMR** (400 MHz, DMSO-d₆) δ 0.94 (t, *J* = 7.4 Hz, 6H), 1.35-1.41 (m, 4H), 1.57-1.63 (m, 4H), 3.33 (t, *J* = 7.4 Hz, 4H), 4.25 (s, 2H), 6.47 (d, *J* = 7.6 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 13.80, 19.87, 27.52, 48.45, 65.03, 102.12, 114.62, 115.63, 126.71, 134.91, 143.30.

HR MS: C₁₉H₂₆N₂, requires 282.2096, found [C₁₉H₂₇N₂]⁺ 283.2179.

Mass Spectrum SmartFormula Report

¹**H NMR** (400 MHz, DMSO-d₆): δ 0.90-0.95 (m, 6H), 1.35-1.41 (m, 4H), 1.56-1.64 (m, 4H), 3.94 (t, *J* = 7.4 Hz, 4H), 6.72 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 2H).

¹³**C NMR** (100 MHz, DMSO-d₆) δ 13.71, 19.51, 27.48, 42.40, 104.10, 114.43, 118.58, 127.93, 134.34, 136.42, 149.72.

HR MS: C₁₉H₂₄N₂O, requires 296.1889, found [C₁₉H₂₄N₂ONa]⁺ 319.1792.

Figure S13 1 H NMR (a), 13 C NMR (b) and HR MS spectra of compound 9b.

Figure S14 (a) ¹H NMR titrations of chemodosisensor **1** (5 mM) with AgF in DMSO-d₆. (b) ¹³C NMR spectra of chemodosisensor **1** (5 mM) when in presence of 96.0 equiv. of AgF in DMSO-d₆.

¹**H NMR** (400 MHz, DMSO-d₆) δ 6.67 (d, J = 8.0 Hz, 2H), 7.27-7.42 (m,14H).

¹³**C NMR** (100 MHz, DMSO-d₆) δ 54.37, 107.33, 116.45, 120.52, 126.03, 126.96, 127.97, 128.65, 133.68, 134.28, 135.29, 178.23.

HRMS: C₂₅H₂₀N₂S, requires 380.1347, found [C₂₅H₂₀N₂SNa]⁺ 403.1253.

(c)

Mass Spectrum SmartFormula Report

Figure S16 ¹H NMR (a), ¹³C NMR (b) and HR MS (c) spectra of chemodosisensor 1.

(c)

Mass S	pectrum	SmartF	ormula	Report

(c)

Figure S17 ¹H NMR (a), ¹³C NMR (b) and HR MS (c) spectra of chemodosisensor 2.

Compound	1	2	9a	
CCDC	1005672	1005673	1005674	
Empirical formula	C25H21CIN2	C19H25BrN2O	C25H20N2O	
$M_{ m r}$	384.90	377.32	364.43	
Temperature (K)	296(2)	296(2)	296(2)	
Crystal system	Orthorhombic	Triclinic	Monoclinic	
Space group	P212121	P-1	C2/c	
a/Å	7.2746(10)	10.4898(12)	30.3297(13)	
b/Å	14.2457(19)	11.5739(13)	8.7540(4)	
$c/{ m \AA}$	18.631(3)	16.4456(19)	14.8727(6)	
$\alpha/^{\circ}$	90.00	93.603(4)	90.00	
eta/°	90.00	98.485(3)	105.795(2)	
$\gamma/^{\circ}$	90.00)	106.291(4)	90.00	
$V/Å^3$	1930.8(5)	1884.0(4)	3799.7(3)	
Ζ	4	4	8	
Crystal size (mm ³)	0.32×0.21×0.12	0.48×0.36×0.22	0.33×0.28×0.14	
$D_{\rm c}/{ m g~cm^{-3}}$	1.324	1.330	1.274	
μ/mm^{-1}	0.21	2.188	0.078	
<i>F</i> (000)	808.0	784	1536	
θ range (°)	1.80-25.01	1.26-25.01	2.43-25.00	
Reflections	22626	22167	21508	
collected				
Unique reflections	3397	6613	3349	
GOF on F^2	1.029	1.036	1.028	
R _(int)	0.0795	0.0240	0.0531	
$R_1[I \ge 2\sigma(I)]$	0.0418	0.0518	0.0420	
w R_2 (all data)	0.0973	0.1536	0.1124	

Table S1. Crystal data and refinement of compounds 1, 2 and 9a.