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ABSTRACT  

 

 

The occurrence and distribution of archaeal and bacterial glycerol dialkyl glycerol tetraether 

lipids (GDGTs) in continental saline environments have been rarely investigated. Here, the 

abundance and distribution of archaeal isoprenoid GDGTs (iGDGTs) and archaeol, and of 

bacterial branched GDGTs (brGDGTs) in four tropical water ponds of contrasting salinity in 

two islands from the French Western Indies, Grande-Terre and La Désirade, have been 

determined. The sedimentary distribution of the GDGTs strongly differed between the two 

islands. Caldarchaeol was largely predominant among iGDGTs in the (hyper)saline ponds 

from Grande-Terre, suggesting a substantial contribution of iGDGTs derived from 

methanogenic Archaea. In contrast, both caldarchaeol and crenarchaeol were present in high 

relative abundance in the low salinity ponds from La Désirade, suggesting that iGDGTs were 

derived from mixed archaeal communities. In addition, the relative proportion of the most 

methylated brGDGTs was much higher in Grande-Terre ponds than in La Désirade ponds. 

The applicability of different proxies based on GDGTs and archaeol was tested for these 

specific environments. The relative abundance of archaeol vs. caldarchaeol (ACE index) was 
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comparable for the four ponds, independent of salinity, showing that the ACE might not 

necessarily track salinity change. Moreover, the relative proportion of caldarchaeol vs. total 

iGDGTs was unexpectedly observed to increase with salinity, suggesting production of this 

compound by halophilic Archaea. The supposed high abundance of methanogenic Archaea in 

Grande-Terre ponds prevented the application of TEX86 as a temperature proxy, whereas the 

TEX86 could be successfully used for local temperature reconstruction in La Désirade ponds. 

BrGDGTs seem to be produced predominantly in situ (water column and/or sediment) in 

hypersaline ponds from Grande-Terre, but in La Désirade ponds likely result from a mixture 

of soil and aquatic sources. In Grande-Terre ponds, brGDGT-derived temperature estimates 

generated using either soil or lacustrine calibrations were much lower than expected. The 

mismatch between expected and estimated temperature might be explained by the presence of 

halophilic microbial communities producing specific brGDGT distributions in the saline 

ponds from Grande-Terre. The study shows that the sources of brGDGTs, iGDGTs and 

archaeol (i) may strongly differ in aquatic environments of varying salinity, even at a regional 

scale, and (ii) have to be constrained before tetraether-derived proxies in such settings can be 

confidently applied. 

 

 

Keywords: GDGTs; archaeol; salinity; environmental proxies; coastal ponds; Guadeloupe 
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1. Introduction 

Glycerol dialkyl glycerol tetraethers (GDGTs) are complex lipids of high molecular weight 

(1000 Da), present in membranes of Archaea and some Bacteria. Archaeal membranes are 

formed predominantly of isoprenoid GDGTs (iGDGTs) with acyclic or ring-containing 

biphytanyl chains (Fig. 1). The iGDGTs occur ubiquitously in marine (Kim et al., 2008; Lipp 

and Hinrichs, 2009; Schouten et al., 2012) and lacustrine water columns and sediments 

(Sinninghe Damsté et al., 2009; Powers et al., 2010), as well as in peat and soil (Weijers et al., 

2006a,b; Huguet et al., 2010a,b). One particular GDGT, crenarchaeol (VI; Fig. 1), contains 

one cyclohexane moiety and four cyclopentane moieties. It is biosynthesised by 

Thaumarchaeota, recently proposed as a new phylum within the domain Archaea (formerly 

known as Group I Crenarchaeota; Brochier-Armanet et al., 2008), even though it has been 

recently suggested that it could also be produced by Marine Group II Euryarchaeota (Lincoln 

et al., 2014). Thaumarchaeota are among the most abundant oceanic microorganisms (Karner 

et al., 2001; Agogué et al., 2008). Schouten et al. (2002) showed that the relative distribution 

of iGDGTs in Thaumarchaeota depends on environmental conditions, the number of 

cyclopentyl moieties increasing with sea surface temperature (SST). The correlation between 

the temperature at the surface of the oceans and the membrane lipid composition of 

Thaumarchaeota was expressed in the TEX86 index. Subsequent analysis of iGDGTs in a 

wide range of marine (e.g. Kim et al., 2008) and lacustrine (e.g. Powers et al., 2010; Pearson 

et al., 2011) sediments revealed that TEX86 correlated linearly with marine and lacustrine 

surface water temperatures. Consequently, it has been increasingly used for the reconstruction 

of past oceanic (e.g. Schouten et al., 2003; Castañeda et al., 2010) or lacustrine (e.g. Powers et 

al., 2005; Berke et al., 2012) temperatures. Nevertheless, its applicability to lakes was shown 

to be limited and sometimes biased by (i) a high input of iGDGTs produced in surrounding 

soils (Blaga et al., 2009) and (ii) the production of iGDGTs by types of microorganisms other 
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than Thaumarchaeota (e.g. methanogenic Archaea) thriving in the water column and/or 

lacustrine sediments (Blaga et al., 2009; Powers et al., 2010). 

In addition to iGDGTs, Archaea also synthesize diphytanyl glycerol diethers, including 

archaeol (Fig. 1). Turich and Freeman (2011) compared the abundance of archaeol and 

caldarchaeol (GDGT I; Fig. 1) in a wide range of environments with varying salinity. They 

observed an increase in the ratio of archaeol to caldarcheol with increasing salinity and thus 

proposed the development of a paleosalinity index, the ACE (archaeol and caldarchaeol 

ecometric). The ACE was subsequently shown to successfully track changes in salinity in 

Tibetan lakes (Wang et al., 2013), but does not seem to be of use for all saline environments 

(Günther et al., 2014). 

Another group of GDGTs, containing branched instead of isoprenoid alkyl chains (VII-IX; 

Fig. 1), was recently discovered in peat deposits (Sinninghe Damsté et al., 2000). Based on 

the structures and stereochemistry, these branched GDGTs (brGDGTs) were suggested to be 

produced by unknown soil bacteria (Weijers et al., 2006a), which might belong to the phylum 

Acidobacteria (Weijers et al., 2009; Sinninghe Damsté et al., 2011, 2014). They occur 

ubiquitously in soil (Weijers et al., 2007a; Huguet et al., 2010a) and peat (Huguet et al., 

2010b, 2013; Weijers et al., 2011), as well as in lakes (Tierney et al., 2010; Pearson et al., 

2011) and coastal marine sediments (Hopmans et al., 2004; Kim et al., 2007). The analysis of 

brGDGTs in ca. 130 surface soils distributed worldwide showed that the distributions depends 

primarily on air temperature and soil pH (Weijers et al., 2007a). The degree of cyclisation of 

brGDGTs, expressed in the cyclisation ratio of branched tetraethers (CBT), correlates rather 

well with soil pH. The degree of methylation of the same compounds, expressed in the 

methylation index of branched tetraethers (MBT), depends on mean annual air temperature 

(MAAT) and to a lesser extent on soil pH. The initial MBT/CBT calibration (Weijers et al., 

2007a) was extended to a larger number of soils (Peterse et al., 2012). This new soil 
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calibration is based on the CBT and a simplified form of the MBT defined as MBT’. The 

MBT/CBT proxy is increasingly used to reconstruct past air temperatures, for example in 

deltaic and coastal regions (Weijers et al., 2007b; Donders et al., 2009), Chinese loess 

(Peterse et al., 2011) and lakes (Fawcett et al., 2011; Sinninghe Damsté et al., 2012a). 

Nevertheless, several recent studies have suggested that brGDGTs present in lakes can also 

originate from an in situ production in the water column or underlying sediment (e.g. Tierney 

and Russell, 2009; Wang et al., 2012), thereby complicating the use of the MBT/CBT proxy 

for lakes. This explains why several brGDGT calibrations based on lake sediments have been 

developed in recent years (e.g. Tierney et al., 2010; Pearson et al., 2011; Loomis et al., 2012). 

Based on the assumption that brGDGTs were synthesized mainly in soil, Hopmans et al. 

(2004) proposed another index, the BIT (branched isoprenoid tetraether) index, to track 

terrigenous organic matter (OM) input to aquatic settings. However, the in situ production of 

brGDGTs in aquatic environments and a terrestrial input of crenarchaeol questions the 

interpretation of BIT values (Schouten et al., 2013 and references therein). 

To date, the distribution of bacterial and archaeal ether lipids in continental saline 

environments has been rarely investigated (Günther et al., 2014). Here, we have examined the 

concentration and distribution of iGDGTs, brGDGTs and archaeol in surficial sediment cores 

from four ponds of contrasting salinity, located in two islands from Guadeloupe (French West 

Indies). The two pools of GDGTs, present as either core lipids (CLs) or derived from intact 

polar lipids (IPLs), were analysed. IPLs (glyco- and phospholipids) contain a polar head 

group and are presumably derived from recently active microorganisms, whereas CLs, which 

are hydrolysis products of IPLs, are presumed to be of fossil origin. The aims were to (i) 

characterize the presence of GDGTs in ponds with contrasting salinity, (ii) test the 

applicability of GDGT-derived proxies (MBT’/CBT, TEX86 and ACE) for such sites and (iii) 

investigate a potential influence of salinity on GDGT-based proxies.  
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2. Methods 

2.1.Site description and sampling 

Surficial sediment cores (between 6 and 20 cm long) were collected in Guadeloupe (French 

West Indies) in December 2009. Four small ponds (surface area between 0.5 and 2.1 ha; 

Table 1) were sampled: two (La Salinette and La Grande Saline, i.e. GdeT1 and GdeT2 

respectively) in Grande-Terre and two (Les Salines and La Saline, LD1 and LD2 respectively) 

on La Désirade Island, 10 km east of Grande-Terre (Fig. 2). The French West Indies are 

characterized by a wet tropical climate, with a mean annual air temperature of ca. 26 °C 

(France Meteorological Service, http://www.meteo.gp) and humidity ca. 75%. The average 

annual precipitation ranges from 1200 to 8000 mm/yr, depending on topography, with a wet 

rainy season from June to November and a drier season from December to May (Lloret et al., 

2011). Water depth is < 1 m in the four ponds. At the time of sampling, the water of the four 

studied ponds exhibited a similar pH in the range 7-7.5 and slightly different temperature 

ranging from 27 °C to 33 °C (Table 1). Water salinity showed large differences between sites, 

due to their geographical location (Fig. 2). Due to their shorter distance to the ocean and flat 

environment, ponds from Grande-Terre are more prone to seawater input than ponds from La 

Désirade. They constitute slightly evaporatitic environments, inducing higher salinity than sea 

water (41 and 93 for GdeT1 and GdeT2, respectively; Table 1). In contrast, ponds from La 

Désirade Island are strongly influenced by runoff due to the topography of the island and the 

location of the ponds at the base of a relief, inducing low salinity of the water (4 - 8; Table 1). 

Water salinity and pH were determined using a multi-parameter device (WTW Multi 340i, 

Germany). Cores were rapidly frozen and brought back to the laboratory where they were 

sliced in 2-2.5 cm intervals and stored at -20 °C. Slices were then freeze dried, powdered and 

homogenized before total organic carbon (Corg) and lipid biomarker analysis. 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=03788741&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.meteo.gp%252F
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2.2.Corg and lipid analysis 

Corg content was determined at the Service Central d’Analyse du CNRS (Vernaison, France). 

Aliquots of the sediment samples (ca. 2-4 g) were extracted using a modified Bligh and 

Dyer technique, as previously detailed (Huguet et al., 2013). The extract was treated with 

acid-activated Cu to remove elemental S and separated over a 2 cm diameter and 10 cm 

height silica gel column (activated at 130 °C overnight) preconditioned with dichloromethane 

(DCM), using a procedure described by Huguet et al. (2013). Briefly, three fractions were 

prepared: F1 containing apolar lipids (70 ml DCM), F2 containing CL-GDGTs [75 ml 

DCM/Me2CO (2:1, v/v) followed by 40 ml DCM/acetone (1:1, v/v) and F3 containing IPL-

GDGTs [10 ml DCM/MeOH (1:1, v/v) followed by 70 ml MeOH. A small aliquot of the IPL 

fraction (F3) was analyzed directly using high performance liquid chromatography–

atmospheric pressure chemical ionisation–mass spectrometry (HPLC-APCI–MS) to determine 

any carryover of CLs into the IPL fraction. The analysis showed nearly complete separation 

of the CL- and IPL-GDGTs. The rest of the fraction F3 was subjected to acid methanolysis 

(24 h at 100 °C in 1 M HCl/MeOH) to cleave off the polar head groups of IPL-GDGTs. F2 

and the hydrolysed fraction F3 were then dried under N2, ultrasonically dissolved in 

hexane:isopropanol (99:1, v/v) and centrifuged using an Eppendorf MiniSpin centrifuge (1 

min, 7000 rpm). The supernatants were collected and analysed using HPLC-MS.  

2.3.HPLC-APCI-MS 

HPLC-APCI-MS was performed with an Agilent 1100 series high performance liquid 

chromatograph equipped with an automatic injector coupled to a PE Sciex API 3000 mass 

spectrometer. GDGTs were analysed using a procedure described by Huguet et al. (2013). 

Semi-quantification was performed by comparing the integrated signal of the respective 
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compound to the signal of a C46 synthesised internal standard (IS, Fig. 1). The analytical error 

for the entire extraction and analysis procedure had been previously estimated at ca. 10%. 

Separate injections (10 μl) were achieved to determine the relative abundances of archaeol 

and caldarchaeol (GDGT I), which were analysed in single ion monitoring mode. The 

response factors for archaeol and caldarchaeol were assumed to be identical. Therefore, only 

the relative abundances of archaeol and caldarchaeol are reported.  

 

2.4.GDGT-based indices 

TEX86 was calculated following the equation of Schouten et al. (2002): 

     
       '

'
86

VIIVIIIII

VIIVIII
TEX




         (1) 

The Roman numbers correspond to the structures in Fig. 1. TEX86-derived water surface 

temperature (WST) values were calculated using the calibrations of Powers et al. (2010; Eq. 

2) and Kim et al. (2008; Eq. 3), developed for lacustrine and marine environments, 

respectively:  

WST = 55.2  TEX86 – 14.0          (2) 

WST = 56.2  TEX86 – 10.78             (3) 

The MBT and CBT indices were calculated as follows (Weijers et al., 2007a):  

                    
 

     IXcIXbIXaVIIIcVIIIbVIIIaVIIcVIIbVIIa

IXcIXbIXa
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IXaVIIIa

IXbVIIIb
CBT log         (5) 

The revised MBT’ was calculated according to the equation proposed by Peterse et al. (2012): 

 
     IXcIXbIXaVIIIcVIIIbVIIIaVIIa

IXcIXbIXa
MBT




'                  (6) 
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Mean annual air temperature (MAAT) was estimated using the global soil calibration 

developed by Weijers et al. (2007a; Eq. 7) and the extended soil calibration introduced by 

Peterse et al. (2012; Eq. 8), respectively:  

   
020.0

187.0122.0 CBTMBT
MAAT


                                          (7) 

MAAT = 0.81 – 5.67 × CBT + 31.0 × MBT’       (8) 

In some samples, GDGTs VIIIb and/or IXb were not detected and CBT could not be 

calculated. MAAT was therefore also estimated from MBT’ and pH using the following 

equation (Eq. 9; Peterse et al., 2012): 

MAAT = -23.2 + 2.86 × pH + 33.71 × MBT’       (9) 

Several lacustrine calibrations were also used to reconstruct MAAT. These calibrations are 

based on lake sediments collected along a transect from the Arctic circle to the Antarctic 

peninsula (Pearson et  al., 2011; Eq. 10) or on African sediments [Tierney et al., 2010 (Eq. 11) 

and Loomis et al., 2012 (Eq. 12)]: 

MAAT = 47.4 – 53.5 × f(VIIa) – 37.1 × f(VIIIa) – 20.9 × f(IXa)                                           (10) 

MAAT = 50.47 – 74.18 × f(VIIa) – 31.6 × f(VIIIa) – 34.69 × f(IXa)                           (11) 

MAAT = 22.77 – 33.58 × f(VIIa) – 12.88 × f(VIIIa) – 418.5 × f(IXb) + 86.4 × f(IXa)          (12) 

In these equations, using the three major brGDGTs (VIIa, VIIIa and IXa), f(i) represents the 

fractional abundance of each brGDGT (i) defined as: 

                        
 

     IXcIXbIXaVIIIcVIIIbVIIIaVIIcVIIbVIIa

i
if


)(  

where i varies from VIIa, to VIIb, etc. 

The ACE index was calculated according to the equation of Turich and Freeman (2011; Eq. 

13), except that it was not multiplied by 100 in order to facilitate comparison with other 

indices: 
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   Iarchaeol

archaeol
ACE


                                                    (13) 

The BIT index was calculated according to Hopmans et al. (2004; Eq. 14): 

        
     

       IXaVIIIaVIIaVI

IXaVIIIaVIIa
BIT




                                               (14) 

The standard deviation (based on duplicate analyses) for TEX86, MBT/MBT’, CBT, BIT and 

ACE indices was 0.005, 0.005, 0.02, 0.006 and 0.004, respectively. 

 

3. Results 

3.1.Occurrence of GDGTs 

HPLC-MS revealed the presence of iGDGTs and brGDGTs in all the CL and IPL fractions, 

although the relative abundance of the different GDGTs varied between the four ponds (Fig. 

3). Caldarchaeol (GDGT I) was predominant among iGDGTs in both CL and IPL fractions 

from Grande-Terre, representing more than ca 60% of total iGDGTs (Fig. 3). In contrast, 

crenarchaeol (GDGT VI) was more abundant than GDGT I in CL fractions of samples from 

La Désirade, but appeared as abundant as GDGT I (Fig. 3) in the IPL fractions of these 

samples. 

Regarding brGDGTs, GDGT VIIa was as abundant as the less methylated GDGTs VIIIa and 

IXa in CL and IPL fractions from Grande-Terre, each representing about 20 - 40% of total 

brGDGTs (Fig. 3). In contrast, in ponds from La Désirade, GDGT VIIa was present in much 

lower abundance (< 10% of total brGDGTs in both CL and IPL pools of most samples) than 

GDGTs VIIIa and IXa. In three of the four ponds (LD1, GdeT1 and GdeT2), brGDGTs 

containing one (VIIIb and IXb) and two (VIIIc and IXc) cyclopentyl moieties were much less 

abundant than the corresponding acyclic GDGTs (VIIIa and IXa) and were even not detected 

in some samples. In contrast to the other sites, GDGT IXb was as abundant as GDGT VIIIa in 

pond LD2, representing ca. 20 – 30% of total brGDGTs (Fig. 3). It should be noted that cyclic 
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GDGTs VIIb and VIIc were not detected in any sample, implying that MBT and MBT’ values 

were identical. 

 

3.2.Variation in GDGT abundance and distribution with depth 

The concentrations of the individual iGDGTs and brGDGTs normalised to Corg showed 

comparable patterns downcore (Supplementary Fig. 1). Therefore, only downcore trends in 

total iGDGT and total brGDGT concentrations (Fig. 4) are discussed in this section. For each 

pond, iGDGT and brGDGT concentrations generally show similar depth profiles. 

Nevertheless, the variation in concentration with depth was strongly dependent on the water 

pond. In LD1, the concentrations of CL iGDGTs and brGDGTs showed a decrease from the 

surface to the bottom of the core, whereas an opposite trend was observed for GdeT2. For 

LD2, iGDGT and brGDGT concentrations were low in the surface layer, reached a maximum 

between 2.5 and 5 cm depth, and increased slightly below 7 cm. In GdeT1, GDGT 

concentration decreased by a factor 2 between 2 and 8 cm depth, and was maximal between 

10 and 16 cm. 

GDGT concentration in CL and IPL pools generally showed similar downcore trends, except 

in GdeT2, where the abundance of IPL GDGTs reached a minimum between 8 and 10 cm 

depth, which was not visible in the CL pool (Fig. 4). Nevertheless, the relative proportion of 

CL GDGTs with respect to total (i.e. CL + IPL) GDGTs varied with depth at most sites. For 

example, for GdeT2, the relative abundance of iGDGT CLs vs. total iGDGTs increased 

downcore, from ca. 25% to ca. 63%.   

In the LD2, GdeT1 and GdeT2 ponds, no major change in brGDGT distribution was 

observed with depth, as shown by the generally low variability in MBT’ values along the 

cores (Fig. 4). In contrast, the distribution of brGDGTs showed downcore variability in LD1 

pond, as reflected in the variation in MBT’ values between 0 and 6 cm depth (Fig. 4).  
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The distribution of iGDGTs varied with depth in LD2, GdeT1 and GdeT2, inducing a high 

variability in TEX86 values in these ponds (Fig. 4). In LD1, iGDGTs II and IV, involved in the 

calculation of the TEX86, were not detected in the CL fractions until 4 cm depth. Comparable 

TEX86 values were nevertheless obtained from the three IPL fractions (Fig. 4). 

 

3.3.Comparison of GDGT-derived parameters from the four ponds 

BIT, TEX86, MBT’ and CBT mean values for Grande-Terre ponds were generally different 

from those of La Désirade ponds. For CL GDGTs, the BIT and CBT mean values were 

generally higher in Grande-Terre ponds (Supplementary Tables 1 and 2), whereas the mean 

MBT’ and TEX86 mean values were higher in ponds from La Désirade. With a few 

exceptions, the BIT, TEX86, MBT’ and CBT mean values calculated from the entire cores 

were similar in the two lipid pools (CLs and IPLs; Supplementary Tables 1 and 2).  

 

3.4.Archaeol and caldarchaeol distributions  

The ACE index, based on the relative abundances of caldarchaeol (GDGT I) and archaeol, 

was determined for the CL and IPLs fractions of the four ponds (Fig. 5; Supplementary Table 

2). It had similar values for all ponds (mean between 0.94 and 0.98 for the CL pool; Fig. 6) 

and there were no obvious differences in the values between the CL and IPL pools, except for 

GdeT1 (0.94 ± 0.06 and 0.87 ± 0.10 for CLs and IPLs, respectively). The relative abundance 

of caldarchaeol vs. total iGDGTs varied between the four ponds, increasing from ca. 20-30% 

for the CL pools of La Désirade to ca. 60-80% for Grande-Terre ponds (Fig. 5). A similar 

increase in the relative abundance of caldarchaeol with salinity was observed for IPLs.  

 

4. Discussion 

4.1.Sources of iGDGTs in La Désirade and Grande-Terre ponds 
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Caldarchaeol (GDGT I) is suggested to be produced by all major groups of Archaea, except 

halophilic Archaea, whereas crenarchaeol (GDGT VI) is hypothesized to be essentially 

produced by NH4
+
 oxidizing Thaumarchaeota (Schouten et al., 2013 and references therein). 

As for iGDGTs II, III and IV, they are produced mainly by three phyla within the domain of 

Archaea, namely: Thaumarchaeota, Crenarchaeota and Euryarchaeota (Pearson and Ingalls, 

2013 and references therein). For ponds from La Désirade, the iGDGT distribution resembles 

that described for mixed marine archaeal communities (e.g. Sinninghe Damsté et al., 2002; 

Wuchter et al., 2005; Lipp and Hinrichs, 2009). The high relative abundances of GDGTs I and 

VI and the low relative abundances of GDGTs II, III and IV (Fig. 3) suggest a mixed source 

(Thaumarchaeota, Crenarchaeota and Euryarchaeota) for iGDGTs in these two poorly saline 

ponds.  

In contrast, GDGT I is largely predominant among iGDGTs in Grande-Terre ponds (Fig. 3). 

The differences in iGDGT sources between the four ponds can be deciphered by calculating 

the ratio of GDGT I to GDGT VI, developed to assess the contribution of iGDGTs produced 

by methanogenic Archaea in lacustrine environments (Blaga et al., 2009). Cultures enriched 

in Thaumarchaeota exhibit a GDGT I/GDGT VI ratio always < 2, whereas methanogenic 

Archaea produce GDGT I but no GDGT VI. The ratio GDGT I/GDGT VI is lower than 1 in 

most samples from La Désirade, whereas values 3 to 6 times and 10 to 41 times higher occur 

in the CL and IPL fractions of Grande-Terre sediments, respectively (Supplementary Table 

2). This strongly suggests a substantial contribution of methanogenic Archaea to iGDGTs in 

Grande-Terre ponds, in contrast to La Désirade ponds. 

The CL and IPL pools of iGDGTs seem to be closely related in LD1, LD2 and GdeT1 

ponds, as shown by the similar downcore variation in CL and IPL iGDGT concentrations 

(Fig. 4). This indicates that CL GDGTs are likely derived from IPL GDGTs, although distinct 

functional head groups (phospho- vs. glycosyl-) may have different degradation kinetics 
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which may sometimes lead to differences in distribution between the CL and IPL pools 

(Schouten et al., 2010). The quantitative connection between the CL and IPL pools in most of 

the ponds might further indicate that the production of IPL iGDGTs by planktonic/benthic 

Archaea, the subsequent hydrolysis of their polar head groups and the 

preservation/degradation of the resulting CL GDGTs are closely related processes. In contrast, 

in GdeT2, the depth profiles of IPL and CL iGDGTs show different trends, likely reflecting 

the decoupling of IPL production and IPL degradation/CL preservation.  

The downcore trends in iGDGT concentration strongly differ between the different water 

ponds, depending on the relative importance and kinetics of iGDGT production in the water 

column/sediment and subsequent preservation within the sediments. Thus, the downcore 

decrease in CL and IPL iGDGTs concentrations in LD1 (Fig. 4) could result from a lower 

production of iGDGTs in the water column/sediment at the time of deposition, even though 

the hypothesis of a concomitant degradation of iGDGTs with depth cannot be totally 

excluded. In contrast, iGDGT profiles for LD2 and GdeT1 show significant peaks at 2.5-5 cm 

and 14-16 cm depth, respectively (Fig. 4). The high relative abundance of IPL vs. CL 

iGDGTs (> 50%) at these two depths suggests either a substantial in situ production of these 

compounds by benthic Archaea, or an increased production of iGDGT IPLs in the water 

column followed by their preservation in the sediment. 

The abundance of crenarchaeol regio isomer (GDGT VI’) relative to both isomers (VI + 

VI’) is unusually high in the four ponds, both in the CL (> 10% in most samples) and the IPL 

(> 20%) pools. This compound has been reported in very low abundance (< 5%) in 

enrichment cultures of Group 1.1a aquatic Thaumarchaeota (Pitcher et al., 2011) as well as in 

European (Blaga et al., 2009) and Tibetan (Wang et al., 2012) lacustrine sediments. In 

contrast, it has been observed to be much more abundant in Group 1.1b Thaumarchaeota 

enriched from soils (ca. 21%; Sinninghe Damsté et al., 2012b) as well as in Tibetan (Wang et 
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al., 2012; Liu et al., 2013) or African (Sinninghe Damsté et al., 2012a; Coffinet et al., 2014) 

soils, where its abundance is between 5 and 15%. In the present case, it seems unlikely that 

the high relative abundance of GDGT VI’ is due to a strong input of soil Thaumarchaeota and 

only a small contribution from aquatic Thaumarchaeota, both in Grande-Terre and La 

Désirade sediments. Indeed, it is essentially present in the IPL fraction, which is considered as 

deriving from recently active Archaea. We thus hypothesize that the crenarchaeol regio 

isomer (GDGT VI’) in the four ponds is produced mainly by some yet uncharacterized 

Thaumarchaeota, possibly belonging to Group 1.1b. This would be in good agreement with 

the observation of a high abundance of this GDGT in tropical marine waters and sediments 

(e.g. Wuchter et al., 2005; Kim et al., 2008; Pitcher et al., 2010) and with the presence of 

sequences of Group 1.1b Thaumarchaeota in some marine sediments (e.g. Park et al., 2008). 

It should be noted that crenarchaeol has been rarely reported from hypersaline environments 

such as GdeT2 pond. It has been detected in surface sediments from the Red Sea, where it was 

suggested to be biosynthesized by a specific population of Thaumarchaeota adapted to the 

high temperature and high salinity of this environment (Trommer et al., 2009). 

4.2.Sources of brGDGTs in La Désirade and Grande-Terre ponds 

BrGDGTs in aquatic environments can have two main sources. First, they can be eroded 

from catchment soils where they are produced (Weijers et al., 2007a) and be transported by 

rivers and run-off (e.g. Niemann et al., 2012; Günther et al., 2014). An increasing number of 

studies has shown, however, that brGDGTs can also be produced in situ, i.e. in the water 

column and/or within the sediment (e.g. Tierney and Russell, 2009; De Jonge et al., 2014). 

Depending on the aquatic system, brGDGTs can thus derive from either source, but more 

likely originate from both (e.g. Tierney et al., 2012; Naeher et al., 2014).  This consequently 

complicates the application of brGDGT-based proxies such as MBT/CBT to aquatic systems.  
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The comparison of brGDGT distribution and concentration between sediments from 

Grande-Terre and La Désirade ponds and surrounding soils could have unambiguously helped 

determine the brGDGT source(s) in these ponds. Unfortunately, no watershed soil sample was 

available for such a study. However, the high abundance of IPL relative to total (CL + IPL) 

brGDGTs in all the ponds (between 20 and 70%; Fig. 4) suggests that a significant part of 

brGDGTs originates from in situ production. The proportion of IPL brGDGTs in soils is 

indeed generally much lower (ca. 5-25%; e.g. Peterse et al., 2010; Buckles et al., 2014a) than 

in most of our sediments (30-65%), implying that all the IPL brGDGTs detected in Grande-

Terre and La Désirade ponds cannot be exclusively soil-derived. The relative abundance of 

IPL brGDGTs vs. CLs is especially higher in Grande Terre (ca. 50-65%) than in La Désirade 

ponds (< 40%), suggesting a larger contribution of in situ production vs. soil-derived 

brGDGTs in the former.  

Grande-Terre and La Désirade water ponds are also characterised by significant differences 

in brGDGT distributions, in both IPL and CL pools (Fig. 3). The relative abundance of GDGT 

VIIa is much lower in La Désirade sediments (< 10% of total brGDGTs) than in those from 

Grande-Terre (ca. 30-35%; Fig. 3). Several studies of tropical (e.g. Tierney et al., 2009; 

Loomis et al., 2011; Das et al., 2012) and temperate (e.g. Tierney et al., 2012; Loomis et al., 

2014) lakes have reported differences in brGDGT distribution between soils and adjacent lake 

sediments. They suggested that an increase in the abundance of the most methylated 

brGDGTs (GDGTs VII) may indicate in situ production of brGDGTs within the lacustrine 

water column (and/or sediment). Therefore, the higher relative abundance of GDGT VIIa in 

Grande-Terre vs. La Désirade further supports a significant in situ production of brGDGTs in 

the former ponds.  

Lastly, unlike ponds from Grande-Terre, ponds from La Désirade are strongly influenced by 

runoff due to the topography of the island. Therefore, topographical considerations, combined 
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with brGDGT distributions and IPL brGDGTs relative abundances, suggest that the 

proportion of soil-derived vs. in situ-produced brGDGTs is much higher in La Désirade than 

in Grande-Terre ponds. It thus seems likely that brGDGTs are produced predominantly in situ 

in Grande-Terre ponds, especially La Salinette (GdeT1), whereas in La Désirade ponds, 

brGDGTs likely result from a mixture of soil and aquatic sources. 

 As previously above for iGDGTs, the downcore trends in brGDGT concentration showed 

large differences between the four water ponds (Fig. 4), which may notably be explained by 

variation in (i) the relative importance of soil input vs. in situ production and, (ii) the 

accumulation and preservation potential of brGDGTs derived from these two sources in each 

pond. Additional studies are needed to decipher the differences in preservation of soil-derived 

and in situ-produced brGDGTs in sediments. Independently of this, depth profiles of 

brGDGTs and iGDGTs were observed to be mainly similar in each water pond, for both CL 

and IPL pools (Fig. 4). Similarly, iGDGT and brGDGT concentrations have been shown to 

co-vary along a 4.4 m sediment core from the southern Yellow Sea of China (Ge et al., 2014), 

and co-variation of brGDGT and crenarchaeol concentrations was also observed in marine 

and lacustrine environments (Fietz et al., 2011; Grauel et al., 2013). The concentrations in 

iGDGTs and brGDGTs in sediments are controlled by specific production, transport, 

deposition and preservation processes. Nevertheless, as suggested by Ge et al. (2014), the co-

variation in iGDGT and brGDGT concentrations may indicate a common environmental 

process, e.g. co-variance between riverine nutrient input and marine/lacustrine productivity. A 

similar explanation may hold for the co-variance of iGDGT and brGDGT concentrations in 

the present ponds. It is also possible that brGDGT-producing Bacteria have a similar 

ecological niche to Archaea, which would explain such co-variation in lipid profiles. The 

same hypothesis was formulated by Tierney et al. (2010) to explain the correlation between 

the concentrations of crenarchaeol and brGDGTs with two cyclopentyl rings in African lakes. 



  

 18 

Loomis et al. (2014) however recently dismissed this idea based on the fact that (i) brGDGT 

concentrations and distributions were not correlated with N in East African water 

column/sediments and (ii) Thaumarchaeota are ammonia-oxidising Archaea. Therefore, the 

hypothesis of an ecological relationship between Archaea and brGDGT-producing Bacteria 

will remain speculative until the exact brGDGT producers and the metabolic properties of 

these microorganisms are determined. 

 

4.3.Implications for GDGT-based environmental proxies 

4.3.1. ACE index 

Although the four ponds investigated are characterized by contrasting salinity values 

between 4 and 91 (Table 1), comparable ACE values (between ca. 0.9 and 1; Fig. 5) occur for 

all the ponds whatever the GDGT fraction (CL or IPL). A systematic higher concentration of 

archaeol relative to caldarchaeol (> 90 %) is present even for La Désirade ponds characterized 

by low salinity (<10). Such high values of the ratio were expected more for the hypersaline 

ponds of Grande-Terre, since the production of caldarchaeol was reported to be minimal in 

hypersaline environments (Turich and Freeman, 2011).   

The fact that the ACE index does not systematically reflect changes in salinity has already 

been cautioned by Günther et al. (2014) in a study of saline Tibetan lakes. The authors further 

suggested that the ACE index might better represent changes in archaeal communities 

occurring in environments with contrasting salinity. The comparison of the iGDGT 

distribution in the present four ponds may indicate a transition from a mixed archaeal 

community (Thaumarchaeota, Crenarchaeota and Euryarchaeota) in the least saline ponds of 

La Désirade, to a community dominated by methanogenic Archaea (Euryarchaeota) in 

Grande-Terre ponds. This transition is reflected in the relative abundance of caldarchaeol vs. 

total iGDGTs, which increases with salinity whatever the GDGT pool (Fig. 5). The strong 
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proportion of caldarchaeol in the most saline ponds from Grande Terre strongly supports a 

production of this GDGT by (hyper)halophilic archaea, although these microorganisms are 

generally believed to produce only archaeol (Teixidor et al., 1993; Kates et al., 1996; Grice et 

al., 1998). The presence of caldarchaeol in cultures of halophilic Archaea has never been 

reported, but there are indications that biphytane carbon chains can be biosynthesized by such 

microorganisms (Turich et Freeman, 2011 and references therein). Additional studies are 

clearly needed to better constrain the sources of caldarchaeol in various haline environments 

before the ACE can be confidently applied as a salinity proxy.  

 

4.3.2. BIT index 

The BIT index was initially developed as an indicator of the relative input of soil-derived vs. 

marine organic matter in marine settings (Hopmans et al., 2004). It is also used in lacustrine 

environments to estimate the input of soil OM (e.g. Blaga et al., 2009). Its application can be 

complicated by (i) high input of soil-derived crenarchaeol and (ii) in situ production of 

brGDGTs in the aquatic environment (Schouten et al., 2013 and references therein). In the 

present case, the BIT index based on the CL fraction is roughly higher than 0.8 in three of the 

four ponds (LD1, GdeT1 and GdeT2) and higher than 0.6 in the last one (LD2; Fig. 4). These 

high BIT values cannot result only from an important input of soil OM to the ponds, but also 

reflect a substantial in situ production of brGDGTs, especially in Grande-Terre ponds as 

discussed above. Lacustrine brGDGT production has already been observed to lead to high 

BIT index values for several lakes, such as lake Lugano (Bechtel et al., 2010), Lucerne (Blaga 

et al., 2011), Challa (Sinninghe Damsté et al., 2009; Buckles et al., 2014b), Tanganyika 

(Schouten et al., 2012), Superior (Woltering et al., 2012) or Loch Lomond (Buckles et al., 

2014a). The BIT values are lower for the ponds of La Désirade than for those of Grande-Terre 

(Fig. 4), which is likely due to (i) the lower abundance of crenarchaeol (both absolute and 



  

 20 

relative to total brGDGTs) and (ii) the potentially higher proportion of brGDGTs derived 

from in situ production in Grande-Terre ponds. These results warrant caution when applying 

and interpreting the BIT values from saline ponds, where the reliability of the index depends 

on the aquatic system considered and on the importance of autochthonous vs. allochthonous 

production of brGDGTs and crenarchaeol.  

 

4.3.3. TEX86 

Proper application of TEX86 requires that Thaumarchaeota living in the water column are 

the predominant source of iGDGTs in the underlying sediments. A strong input of soil-

derived iGDGTs to lakes can indeed modify the signal from iGDGTs produced in situ by 

Thaumarchaeota, leading to biased TEX86 values and TEX86-derived temperature values. 

Blaga et al. (2009) suggested that TEX86 could only be applied to lacustrine environments 

where the BIT was < 0.4 although, in some lakes, TEX86 may still be applied as a temperature 

proxy despite high BIT values (Buckles et al., 2014a). The substantial contribution of 

methanogenic archaea to iGDGTs in Grande-Terre ponds, supported by high values of GDGT 

I/GDGT VI (see above), would suggest that TEX86 values calculated for these sediments are 

probably not reliable for temperature reconstruction. This was indeed verified by estimating 

WST from TEX86 values using the calibrations developed for lacustrine sediments by Powers 

et al. (2010; Eq. 2) and for marine sediments by Kim et al. (2008; Eq. 3). The latter calibration 

was used since Grande-Terre water ponds show comparable or higher salinity than that 

observed in marine environments. TEX86-derived WST estimates were compared with WST 

measured during sampling (27-33 °C; Table 1) and with MAAT recorded in the region (ca. 26 

°C).  Whatever the calibration used, temperature estimates derived from Grande-Terre ponds 

are much lower (by up to 20 °C) than expected MAAT or measured WST (Fig. 6). In contrast, 

in La Désirade ponds, TEX86-derived temperature values generated with either the lake 
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calibration of Powers et al. (2010) or the marine calibration of Kim et al. (2008) are in relative 

agreement (although slightly higher) than the single point measurements of WST (Table 1) 

and the expected MAAT (Fig. 6), taking into account the calibration error in both calibrations 

(± 3.6 °C and ± 1.7 °C, respectively). The lacustrine calibration by Powers et al. (2010) was 

developed mainly from medium and large lakes, where in situ produced crenarchaeol is 

sufficiently abundant to provide valuable TEX86 values, in contrast with most of the small 

lakes. The present results indicate that TEX86 can also be suitable for local water temperature 

reconstruction in small ponds such as those of La Désirade, when (i) iGDGT production by 

methanogenic Archaea is not predominant and (ii) crenarchaeol is present at sufficient 

concentration to produce reliable TEX86 values. Whatever the calibration used, TEX86-derived 

temperature for the CL and IPL pools differs by only ca. 2-3 °C in most ponds (Fig. 6), 

suggesting that both lipid fractions can be differently used to reconstruct WST. 

 

4.3.4. MBT/CBT 

Several calibrations based on soil or lacustrine data were used to reconstruct brGDGT-

derived MAAT for the four ponds (Fig. 6). Similar MAAT values were generally obtained 

using CL or IPL brGDGTs supporting the idea that, for all the ponds, brGDGTs in the two 

lipid pools have the same origin. The application of the original soil calibration of Weijers et 

al. (2007a) to CL brGDGTs in La Désirade sediments yielded slightly lower temperature 

estimates than the recorded MAAT (Fig. 6). Nevertheless, these values can be considered as 

fairly reliable when considering the relatively large standard error associated with the 

calibration (± 5 °C). In contrast, MAAT estimates obtained using the revised soil calibration 

of Peterse et al. (2012) were lower (by 6 to 8 °C) than expected MAAT, and outside the 

calibration error. It should be noted that CBT could not be calculated for some of the samples. 
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Therefore, MAAT was also calculated from MBT’ and pH using Eq. 8 developed by Peterse 

et al. (2012), but this did not significantly improve MAAT reconstruction (Fig. 6). 

Lacustrine MBT/CBT calibrations have also been developed to take into account the in situ 

production of brGDGTs in the water column and/or sediment, which generally leads to an 

underestimation of observed MAAT (e.g. Tierney and Russell, 2009; Tierney et al., 2010). 

Here, MAAT values were reconstructed using two regional lake calibrations covering 

equatorial Africa (Tierney et al., 2010; Loomis et al., 2012), and with a more global 

calibration developed by Pearson et al. (2011). The latter was established on the basis of mean 

summer air temperature (rather than MAAT) from lakes distributed from the Scandinavian 

Arctic to the Antarctic. It is noteworthy that the air temperature in the French Western Indies 

region exhibits low seasonal variability (26.4 ± 1.2 °C; data from France Meteorological 

Service, http://www.meteo.gp), which is lower than the root mean squared error (RMSE) of 

each of the three calibrations considered (ranging from 1.9 and 2.2 °C). Therefore, the 

temperature values reconstructed from the Pearson et al. (2011) calibration can be considered 

as equivalent to MAAT. The three lake calibrations applied to the CL fraction and IPL 

fraction from La Désirade sediments yielded higher or lower MAAT values than expected 

(from ca. 4 to 14 °C; Fig. 6). Overall, the application of the Weijers et al. (2007a) soil 

calibration to La Désirade sediments generally yields better temperature estimates than 

lacustrine calibrations which provide overestimated temperature values. This further supports 

a predominant soil origin for brGDGTs in La Désirade ponds. 

MAAT estimates from Grande-Terre ponds generated using either soil or lacustrine 

calibrations are systematically much lower (by 11 to 21 °C) than recorded regional MAAT 

(Fig. 6). This shows that both types of calibration are unadapted to temperature reconstruction 

in Grande-Terre ponds. An offset between estimated temperature and measured temperature 

may be observed for lakes where the relative contributions of soil-derived and in situ-

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=03788741&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.meteo.gp%252F
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produced brGDGTs largely differ from those in the lakes included in the calibration set. As 

discussed above, a large part of brGDGTs in Grande-Terre sediments is likely derived from in 

situ production. This likely explains the large mismatch between estimated and expected 

temperatures at these sites. The offset might also be due to differences between bacterial 

communities biosynthesizing brGDGTs in Grande-Terre ponds and in most of the lakes 

investigated so far. Grande-Terre ponds are characterized by high salinity (> 40; Table 1), 

where specific halophilic microbial communities likely produce a specific distribution of 

brGDGTs. Consequently, the relationship between air temperature and brGDGT distribution 

at such sites may differ from those observed previously in the marine realm and lakes. The 

production of brGDGTs in different types of saline and hypersaline environments clearly 

needs to be further investigated. 

 

 

 

5. Conclusions 

The abundance and distribution of brGDGTs, iGDGTs and archaeol in four tropical water 

ponds of contrasting salinity located in two islands from the French Western Indies, Grande-

Terre and La Désirade were examined. Distinctive GDGT distributions between the two sites 

have major implications in terms of application of GDGT-based proxies that can be 

summarized as follows: 

- Despite the much higher salinity of Grande-Terre ponds, the relative abundance of 

archaeol vs. caldarchaeol (ACE index) was constant in all ponds, implying that the 

sources of caldarchaeol in saline environments need to be better constrained before the 

ACE index can be confidently applied as a salinity proxy. 
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- A substantial contribution of caldarchaeol (GDGT I) from methanogenic Archaea was 

evidenced in the most saline ponds from Grande-Terre, preventing the application of 

TEX86 as a temperature proxy. In contrast, both caldarchaeol and crenarchaeol were 

present in high relative abundances in La Désirade ponds, where the TEX86 appeared a 

suitable proxy for local temperature reconstruction. 

- Based on the relative proportions of CLs and IPLs, lipid distributions and 

topographical considerations, brGDGTs are suggested to be predominantly produced in 

situ in Grande-Terre ponds, whereas they likely result from a mixture of soil and 

aquatic sources in La Désirade. 

- The differences in brGDGT sources between the two islands are reflected in the 

temperature estimates based on these compounds and most of the available lacustrine 

or soil calibrations. The soil calibration of Weijers et al. (2007a) yielded the best 

temperature estimates for the least saline La Désirade ponds, whereas temperature 

reconstructed for the most saline Grande-Terre ponds was systematically lower than 

expected. 

- The higher proprotion of in situ-produced vs. soil-derived brGDGTs in Grande-Terre 

ponds, combined with the presence of halophilic microbial communities 

biosynthesizing specific brGDGT distribution, might explain the offset between 

expected and estimated temperatures in these (hyper)saline ponds. 

Overall, our work shows that the sources of brGDGTs, iGDGTs and archaeol may strongly 

differ in aquatic environments with varying salinity even at a regional scale, so caution is 

warranted before tetraether-based environmental proxies can be applied to such settings. 

 

Acknowledgments 



  

 25 

The authors thank F. Cordey and M. Grossi for help with sampling and C. Anquetil for help 

with organic geochemistry analyses. Two anonymous reviewers are thanked for constructive 

comments. 

Associate Editor – A. Pearson 

 

References 

 

Agogué, H., Brink, M., Dinasquet, J., Herndl, G.J., 2008. Major gradients in putatively 

nitrifying and non-nitrifying Archaea in the deep North Atlantic.  Nature 456, 788-791. 

 

Bechtel, A., Smittenberg, R.H., Bernasconi, S.M., Schubert, C.J., 2010. Distribution of 

branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: 

Insights into sources and GDGT-based proxies. Organic Geochemistry 41, 822-832. 

 

Berke, M.A., Johnson, T.C., Werne, J.P., Schouten, S., Sinninghe Damsté J.S., 2012. A mid-

Holocene thermal maximum at the end of the African Humid Period. Earth and Planetary 

Science Letters 351-352, 95-104. 

 

Blaga, C.I., Reichart, G.-J., Heiri, O., Sinninghe Damsté, J.S., 2009. Tetraether membrane 

lipid distributions in water-column particulate matter and sediments: a study of 47 

European lakes along a north-south transect. Journal of Paleolimnology 41, 523-540. 

 

Blaga, C.I., Reichart, G.-J., Vissers, E.W., Lotter, A.F., Anselmetti, F.S., Sinninghe Damsté, 

J.S., 2011. Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and 

fluxes in a perialpine lake: Implications for the use of the TEX86 and BIT proxies. 

Geochimica et Cosmochimica Acta 75, 6416-6428. 

 

 

Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. 

Canadian Journal of Biochemistry and Physiology 37, 911-917. 
 

Brochiet-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P., 2008. Mesophilic 

crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews 

Microbiology 6, 245-252. 

 

Buckles, L.K., Weijers, J.W.H., Tran, X.-M., Waldron, S., Sinninghe Damsté, J.S., 2014a. 

Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): 

implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry. 

Biogeosciences 11, 5539-5563. 

 

Buckles, L.K., Weijers, J.W.H., Verschuren, D., Sinninghe Damsté, J.S., 2014b. Sources of 

core and intact branched tetraether membrane lipids in the lacustrine environment: 

anatomy of Lake Challa and its catchment, Equatorial East Africa. Geochimica et 

Cosmochimica Acta 140, 106-126. 
 

Castañeda, I.S., Schefuß, E., Pätzold, J., Sinninghe Damsté, J.S, Weldeab, S., Schouten, S., 

2010. Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile 

River Delta region) over the last 27,000 years. Paleoceanography 25, PA 1208. 

http://pubget.com/search?q=author:%22H%C3%A9l%C3%A8ne%20Agogu%C3%A9%22&from=pgtmp_c0e34fe9-bebd-e7f0-f502-8f567e95ca42
http://pubget.com/search?q=author:%22Maaike%20Brink%22&from=pgtmp_c0e34fe9-bebd-e7f0-f502-8f567e95ca42
http://pubget.com/search?q=author:%22Julie%20Dinasquet%22&from=pgtmp_c0e34fe9-bebd-e7f0-f502-8f567e95ca42
http://pubget.com/search?q=author:%22Gerhard%20J%20Herndl%22&from=pgtmp_c0e34fe9-bebd-e7f0-f502-8f567e95ca42


  

 26 

 

Coffinet, S., Huguet, A., Williamson, D., Fosse, C., Derenne, S., 2014. Potential of GDGTs as 

a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania). Organic 

Geochemistry 68, 82-89. 

 

Das, S.K., Bendle, J., Routh, J., 2012. Evaluating branched tetraether lipid-based 

palaeotemperature proxies in an urban, hyper-eutrophic polluted lake in South Africa. 

Organic Geochemistry 53, 45-51. 

 

De Jonge, C., Stadnitskaia, A., Hopmans, E.C., Cherkashov, G., Fedotov A., Sinninghe 

Damsté, J.S., 2014. In situ produced branched glycerol dialkyl glycerol tetraethers in 

suspended particulate matter from the Yenisei River, Eastern Siberia. Geochimica et 

Cosmochimica Acta 125, 476-491. 

 

Donders, T.H., Weijers, J.W.H., Munsterman, D.K., Hoeve, M.L.K.V., Buckles, L.K., 

Pancost, R.D., Schouten, S., Sinninghe Damsté, J.S., Brinkhuis, H., 2009. Strong climate 

coupling of terrestrial and marine environments in the Miocene of northwest Europe. 

Earth and Planetary Science Letters 281, 215-225. 

 

Fawcett, P.J., Werne, J.P., Anderson, R.S., Heikoop, J.M., Brown, E.T., Berke, M.A., Smith, 

S.J., Goff, F., Donohoo-Hurley, L., Cisneros-Dozal, L.M., Schouten, S., Sinninghe 

Damsté, J.S., Huang, Y.S., Toney, J., Fessenden, J., WoldeGabriel, G., Atudorei, V., 

Geissman, J.W., Allen, C.D., 2011. Extended megadroughts in the southwestern United 

States during Pleistocene interglacials. Nature 470, 518-521. 

 

Fietz, S., Martínez-Garcia, A., Huguet, C., Rueda, G., Rosell-Melé, A., 2011. Constraints in 

the application of the branched and isoprenoid tetraether index as a terrestrial input proxy. 

Journal of Geophysical Research 116, C10032. http://dx.doi.org/10.1029/2011JC007062. 

 

Ge, H., Zhang, C.L., Li, J., Versteegh, G.J.M., Hu, B., Zhao, J., Dong, L., 2014. Tetraether 

lipids from the southern Yellow Sea of China: Implications for the variability of East Asia 

Winter Monsoon in the Holocene. Organic Geochemistry 70, 10-19. 

 

Grauel, A.L., Leider, A., Goudeauc, M.L.S., Müller, I.A., Bernasconi, S.M., Hinrichs, K.U., 

Langec, G.J.D., Versteegh, G.J.M., 2013. What do SST proxies really tell us? A high-

resolution multiproxy (U
K’

37, TEX
H

86 and foraminifera δ
18

O) study in the Gulf of Taranto, 

central Mediterranean Sea. Quaternary Science Reviews 73, 115–131. 

 

Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., Sinninghe Damsté, J.S., 1998. 

Isotopically heavy carbon in the C21 to C22 regular isoprenoids in halite-rich deposits from 

the Sodom Formation, Dead Sea Basin, Israel. Organic Geochemistry 28, 349–359. 

 

Günther, F., Thiele, A., Gleixner, G., Xu, B., Yao, T., Schouten, S., 2014. Distribution of 

bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: 

Implications for GDGT-based proxies in saline high mountain lakes. Organic 

Geochemistry 67, 19-30.  

 

Hopmans, E.C., Weijers, J.W.H., Schefuß, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, 

S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and 

isoprenoid tetraether lipids. Earth and Planetary Science Letters 224, 107-116. 

http://dx.doi.org/10.1029/2011JC007062


  

 27 

 

Huguet, A., Fosse, C., Metzger, P., Fritsch, E., Derenne, S., 2010a. Occurrence and 

distribution of extractable glycerol dialkyl glycerol tetraethers in podzols. Organic 

Geochemistry 41, 291-301.  

 

Huguet, A., Fosse, C., Laggoun-Défarge, F., Toussaint, M.-L., Derenne, S., 2010b. 

Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog. 

Organic Geochemistry 41, 559-572. 

 

Huguet, A., Fosse, C., Laggoun-Défarge, F., Delarue, F., Derenne, S., 2013. Effects of a 

short-term experimental microclimate warming on the abundance and distribution of 

branched GDGTs in a French peatland. Geochimica et Cosmochimica Acta 105, 294-315. 

 

Karner, M., DeLong, E.F., Karl, D.M., 2001. Archaeal dominance in the mesopelagic zone of 

the Pacific Ocean. Nature 409, 507-510. 

 

Kates, M., 1996. Structural analysis of phospholipids and glycolipids in extremely halophilic 

archaebacteria. Journal of Microbiological Methods 25, 113–128. 

 

Kim, J.-H., Ludwig, W., Schouten, S., Kerhervé, P., Herfort, L., Bonnin, J., Sinninghe 

Damsté J.S., 2007. Impact of flood events on the transport of terrestrial organic matter to 

the ocean: A study of the Têt River (SW France) using the BIT index. Organic 

Geochemistry 38, 1593-1606. 

 

Kim, J.-H., Schouten, S., Hopmans, E.C., Donner, B., Sinninghe Damsté, J.S., 2008. Global 

core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et 

Cosmochimica Acta 72, 1154-1173. 

 

Lincoln, S.A.,  Wai, B., Eppley, J.M., Church, M.J., Summons, R.E., DeLong, E.F., 2014.  

Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. 

Proceedings of the National Academy of Sciences of the United States of America 111, 

9858–9863. 

 

Lipp, J.S., Hinrichs, K.-U., 2009. Structural diversity and fate of intact polar lipids in marine 

sediments. Geochimica et Cosmochimica Acta 73, 6816-6833.  

 

Liu, W., Wang, H., Zhang, C.L., Liu, Z., He, Y., 2013. Distribution of glycerol dialkyl 

glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan 

Plateau, China. Organic Geochemistry 57, 76-83. 

 

Lloret, E., Dessert, C., Gaillardet, J., Albéric, P., Crispic, O., Chaduteau, C., Benedetti, M.F., 

2011. Comparison of dissolved inorganic and organic carbon yields and fluxes in the 

watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). 

Chemical Geology 280, 65-78. 

 

Loomis, S.E., Russell, J.M., Sinninghe Damsté, J.S., 2011. Distributions of branched GDGTs 

in soils and lake sediments from western Uganda: Implications for a lacustrine 

paleothermometer. Organic Geochemistry 42, 739-751. 

 



  

 28 

Loomis, S.E., Russell, J.M., Ladd, B., Street-Perrott, S., Sinninghe Damsté, J.S., 2012. 

Calibration and application of the branched GDGT temperature proxy on East African 

lake sediments. Earth and Planetary Science Letters 357-358, 277-288. 

 

Loomis, S.E., Russell, J.M., Heureux, A.M., D’Andrea, W.J., Sinninghe Damsté, J.S., 2014a. 

Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a 

temperate lake system. Geochimica et Cosmochimica Acta 144, 173-187.  

 

Loomis, S.E., Russell, J.M., Eggermont, H., Verschuren, D., Sinnighe Damsté, J.S., 2014b.  

Effects of temperature, pH and nutrient concentration on branched GDGT distributions in 

East African lakes: Implications for paleoenvironmental reconstruction. Organic 

Geochemistry 66, 25-37. 

 

Naeher, S., Peterse, F., Smittenberg, R.H., Niemann, H., Zigah, P.K., Schubert, C.J., 2014. 

Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column 

and sediments of Lake Rotsee (Switzerland) – Implications for the application of GDGT-

based proxies for lakes. Organic Geochemistry 66, 164-173.  

 

Niemann, H., Stadnitskaia, A., Wirth, S.B., Gilli, A., Anselmetti, F.S., Sinninghe Damsté, 

J.S., Schouten, S., Hopmans, E.C., Lehmann, M.F., 2012. Bacterial GDGTs in Holocene 

sediments and catchment soils of a high Alpine lake: application of the MBT/CBT-

paleothermometer. Climate of the Past 8, 889–906. 

 

Park, S.J., Park, B.J., Rhee S.K., 2008. Comparative analysis of archaeal 16S rRNA and 

amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in 

marine sediments. Extremophiles 12, 605–615. 

 

Pearson, E.J., Juggins, S., Talbot, H.M., Weckström, J., Rosén, P., Ryves, D., Roberts, S., 

Schmidt, R., 2011. A lacustrine GDGT-temperature calibration from the Scandinavian 

Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in 

lakes. Geochimica et Cosmochimica Acta 75, 6225-6238. 

 

Pearson, A., Ingalls, A.E., 2013. Assessing the use of archaeal lipids as marine environmental 

proxies. Annual Review of Earth and Planetary Sciences 41, 359–384. 

 

Peterse, F., Nicol, G.W., Schouten, S., Sinninghe Damsté, J.S., 2010. Influence of soil pH on 

the abundance and distribution of core and intact polar lipid-derived branched GDGTs in 

soil. Organic Geochemistry 41, 1171-1175. 

 

Peterse, F., Prins, M. A., Beets, C. J., Troelstra, S. R., Zheng, H., Gu, Z., Schouten, S., 

Sinninghe Damsté, J., 2011. Decoupled warming and monsoon precipitation in East Asia 

over the last deglaciation. Earth and Planetary Science Letters 301, 256–264. 

 

Peterse, F., van der Meer, J., Schouten, S., Weijers, J.W.H., Fierer, N., Jackson, R.B., Kim, J.-

H., Sinninghe Damsté, J.S., 2012. Revised calibration of the MBT-CBT paleotemperature 

proxy based on branched tetraether membrane lipids in surface soils. Geochimica et 

Cosmochimica Acta 96, 215-229. 

 

Pitcher, A., Rychlik, N., Hopmans, E.C., Spieck E., Rijpstra W.I.C., Ossebaar, J., Schouten, 

S., Wagner, M., Sinninghe Damsté, J.S., 2010. Crenarchaeol dominates the membrane 

http://www.ncl.ac.uk/gps/research/publication/170947
http://www.ncl.ac.uk/gps/research/publication/170947
http://www.ncl.ac.uk/gps/research/publication/170947


  

 29 

lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon. The 

ISME Journal 4, 542-552. 

 

Pitcher, A., Hopmans, E.C., Mosier, A.C., Park, S., Rhee, S., Francis, C.A., Schouten, S., 

Sinninghe Damsté, J.S., 2011. Core and intact polar glycerol dibiphytanyl glycerol 

tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine 

sediments. Applied and Environmental Microbiology 77, 3468–3477. 

 

Powers, L.A., Johnson, T.C., Werne, J.P., Castañeda, I., Hopmans, E.C., Sinninghe Damsté, 

J.S., Schouten, S., 2005. Large temperature variability in the southern African tropics 

since the Last Glacial Maximum. Geophysical Research Letters 32, L08706. 

 

Powers, L.A., Werne, J.P., Vanderwoude, A.J., Sinninghe Damsté, J.S., Hopmans, E.C., 

Schouten, S., 2010. Applicability and calibration of the TEX86 paleothermometer in lakes. 

Organic Geochemistry 41, 404–413. 
 

Schouten, S., Hopmans, E.C., Schefuss, E., Sinninghe Damsté, J.S., 2002. Distributional 

variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient 

sea water temperatures? Earth and Planetary Science Letters 204, 265–274. 

 

Schouten, S., Hopmans, E.C., Kuypers, M.M.M., Breugel, Y., Forster, A., Sinninghe Damsté, 

J.S., 2003. Extreme high sea water temperatures at low latitudes during the middle 

Cretaceous as revealed by archaeal membrane lipids. Geology 31, 1069-1072. 

 

Schouten, S., Middelburg, J.J., Hopmans, E.C., Sinninghe Damsté, J.S., 2010. Fossilization 

and degradation of intact polar lipids in deep subsurface sediments: a theoretical approach. 

Geochimica et Cosmochimica Acta 74, 3806–3814. 

 

Schouten, S., Rijpstra, I.C., Durisch-Kaiser, E., Schubert, C.J., Sinninghe Damsté, J.S., 2012. 

Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake 

Tanganyika. Organic Geochemistry 53, 34-37. 

 

Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013. The organic geochemistry of 

glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry 54, 19-61. 

 

Sinninghe Damsté, J.S., Hopmans, E.C., Pancost, R.D., Schouten, S., Geenevasen, J.A.J., 

2000. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in 

sediments. Chemical Communications 17, 1683-1684. 

 

Sinninghe Damsté, J.S., Rijpstra, W. I. C., Hopmans, E. C., Prahl, F.G., Wakeham, S., 

Schouten, S., 2002. Distribution of membrane lipids of planktonic crenarchaeota in the 

Arabian sea. Applied and Environmental Microbiology 68, 2997–3002. 

 

Sinninghe Damsté, J.S., Ossebaar, J., Abbas, B., Schouten, S., Verschuren, D., 2009. Fluxes 

and distribution of tetraether lipids in an equatorial African lake: Constraints on the 

application of the TEX86 palaeothermometer and BIT index in lacustrine settings. 

Geochimica et Cosmochimica Acta 73, 4232-4249.  

 

Sinninghe Damsté, J.S., Rijpstra, W.I., Hopmans, E.C., Weijers, J.W.H., Foesel, B.U., 

Overmann, J., Dedysh, S.N., 2011. 13,16-Dimethyl octacosanedioic acid (iso-diabolic 



  

 30 

acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Applied 

and Environmental Microbiology 77, 4147-4154. 

 

Sinninghe Damsté, J.S., Ossebaar J., Schouten, S., Verschuren, D., 2012a. Distribution of 

tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 

and MBT/CBT palaeotemperatures from an equatorial African lake. Quaternary Science 

Reviews 50, 43-54. 

 

Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Man-Young, J, Jong-Geol, K., 

Rhee, S.-K., Stieglmeier, M., Schleper, C., 2012b. Intact polar and core glycerol 

dibiphytanyl glycerol tetraether lipids of group 1.1a and 1.1b ammonia-oxidizing archaea 

in soil. Applied and Environmental Microbiology 78, 6866–6874. 

 

Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Foesel, B.U., Wüst, P.K., 

Overmann, J., Tank, M., Bryant, D.A., Dunfield, P.F., Houghton, K., Stott, M.B., 2014. 

Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria 

subdivision 4. Applied and Environmental Microbiology 80, 5207-5218. 

 

Teixidor, P., Grimait, J.O., Pueyo, J.J., Rodriguez-Valera, F., 1993. Isopranylglycerol diethers 

in non-alkaline evaporitic environments. Geochimica et Cosmochimica Acta 57, 4479–

4489. 

 

Tierney, J.E., Russell, J.M., 2009. Distributions of branched GDGTs in a tropical lake system: 

implications for lacustrine application of the MBT/CBT paleoproxy. Organic 

Geochemistry 40, 1032-1036. 

 

Tierney, J.E., Russell, J.M., Eggermont, H., Hopmans, E.C., Verschuren, D., Sinninghe 

Damsté, J.S., 2010. Environmental controls on branched tetraether lipid distributions in 

tropical East African lake sediments. Geochimica et Cosmochimica Acta 74, 4902-4918. 

 

Tierney, J.E., Schouten, S., Pitcher, A., Hopmans, E.C., Sinninghe Damsté, J.S., 2012. Core 

and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, 

Rhode Island (USA): Insights into the origin of lacustrine GDGTs. Geochimica et 

Cosmochimica Acta 77, 561-581. 

 

Trommer, G., Sicca, M., van der Meer, M.T.J., Schouten, S., Sinninghe Damsté, J.S., Schulz, 

H., Hemleben, C., Kucera, M., 2009. Distribution of Crenarchaeotal tetraether membrane 

lipids in surface sediments from the Red Sea. Organic Geochemistry 40, 724–731. 

 

Turich, C., Freeman, K.H., 2011. Archaeal lipids record paleosalinity in hypersaline systems. 

Organic Geochemistry 42, 1147–1157. 

 

Wang, H., Liu, W., Zhang, C., Wang, Z., Wang, J., Liu, Z., Dong H., 2012. Distribution of 

glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding 

soil. Organic Geochemistry 47, 78-87. 

 

Wang, H., Liu, W., Zhang, C., Jiang, H., Dong, H., Lu, H., Wang, J., 2013. Assessing the 

ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern 

Qinghai-Tibetan plateau. Organic Geochemistry 54, 69-77. 

 



  

 31 

Weijers, J.W.H., Schouten, S., Hopmans, E.C., Geenevasen, J.A.J., David, O.R.P., Coleman, 

J.M., Pancost, R.D., Sinninghe Damsté, J.S., 2006a. Membrane lipids of mesophilic 

anaerobic bacteria thriving in peats have typical archaeal traits. Environmental 

Microbiology 8, 648-657.  

 

Weijers, J.W.H., Schouten, S., Spaargaren, O.C., Sinninghe Damsté, J.S., 2006b. Occurrence 

and distribution of tetraether membrane lipids in soils: Implications for the use of the 

TEX86 proxy and the BIT index. Organic Geochemistry 37, 1680–1693. 

 

Weijers, J.W.H., Schouten, S., van den Donker, J.C., Hopmans, E.C., Sinninghe Damsté, J.S., 

2007a. Environmental controls on bacterial tetraether membrane lipid distribution in soils. 

Geochimica et Cosmochimica Acta 71, 703-713. 

 

Weijers, J.W.H., Schefuss, E., Schouten, S., Sinninghe Damsté, J.S., 2007b. Coupled thermal 

and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 

1701–1704. 

  

Weijers, J.W.H., Panoto, E., van Bleijswijk, J., Schouten, S., Rijpstra, W.I.C., Balk, M., 

Stams, A.J.M., Sinninghe Damsté, J.S., 2009. Constraints on the biological source(s) of 

the orphan branched tetraether lipids. Geomicrobiology Journal 26, 402-414. 

 
Weijers, J.W.H., Steinmann, P., Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 2011. 

Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-CBT temperature 

proxy for climate reconstruction. Organic Geochemistry 42, 477-486. 

 

Woltering, M., Werne, J.P., Kish, J.L., Hicks, R., Sinninghe Damsté, J.S., Schouten, S., 2012. 

Vertical and temporal variability in concentration and distribution of thaumarchaeotal 

tetraether lipids in Lake Superior and the implications for the application of the TEX86 

temperature proxy. Geochimica et Cosmochimica Acta 87, 136-153. 

 

Wuchter, C., Schouten, S., Wakeham, S., Sinninghe Damsté, J. S., 2005. Temporal and spatial 

variation in tetraether membrane lipids of marine crenarchaeota in particulate organic 

matter: implications for TEX86 paleothermometry. Paleooceanography 20, PA3013.  

 



  

O

O

OH

 
 
 
 
 
 

        Isoprenoid GDGTs                         m/z                              Branched GDGTs                           m/z 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            654 
 
 
Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OH

O

O
O

O

OH
I 1302 OH

O

O

O O

OH

II 1300 
OH

O

O O

O

OH

III 1298 
OH

O

O O

O

OH

IV 1296 

O O

O

OH

O

OH

V 1294 

O O

O

OH

O

OH

VI 
(+ VI’) 1292 

OH

O

O
O

OH

O 744 
Internal 
standard 

OH

O

O
O

O

OH

VIIa 1050 
OH

O

O

O

O

OH

VIIb 1048 

OH

O

O

O

O

OHVIIc 1046 
OH

O

O
O

O

OH

VIIIa 1036 
OH

O

O

O

O

OH

VIIIb 1034 
OH

O

O

O

O

OHVIIIc 1032 
OH

O

O
O

O

OH

IXa 1022 

OH

O

O

O

O

OH

IXb 1020 

OH

O

O

O

O

OHIXc 1018 

Archaeol 



  

 
 
 
 
 
 
 
 
 

 
 
Grande-Terre (Pointe des Châteaux)                    La Désirade 

 
Fig. 2. 
 
 
 
 
 
 
 
 

La Grande Saline 
(GdeT2) 

La Salinette 
(GdeT1) 

La Saline 
(LD2) 

Les Salines 
(LD1) 



  

0

10

20

30

40

50

60

70

80

90

100

I II III IV VI VI'

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

Isoprenoid GDGTs - CLs

0

10

20

30

40

50

60

70

80

90

100

VIIa VIIIa VIIIb IXa IXb IXc

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

Les Salines (LD1)
La Saline (LD2)
La Salinette (GdeT1)
La Grande Saline (GdeT2)

Branched GDGTs - CLs

0

10

20

30

40

50

60

70

80

90

100

VIIa VIIIa VIIIb IXa IXb IXc

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

Branched GDGTs - IPLs

0

10

20

30

40

50

60

70

80

90

100

I II III IV VI VI'

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

Isoprenoid GDGTs - IPLs

Fig. 3. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

µg/g Corg µg/g Corg 

0

5

10

15

20

0 2 4

CLs
IPLs

0

5

10

15

20

0 5 10

0

5

10

15

20

0 5 10 15

0

5

10

15

20

0 5 10

0

5

10

15

20

0 0.25 0.5 0.75 1

0

5

10

15

20

0 0.25 0.5 0.75 1

0

5

10

15

20

0 0.25 0.5 0.75 1

0

5

10

15

20

0 0.25 0.5 0.75 1

0

5

10

15

20

0 0.25 0.5 0.75 1

0

5

10

15

20

0 0.25 0.5 0.75 1

0

5

10

15

20

0 0.5 1 1.5

0

5

10

15

20

0 0.5 1 1.5

Fig. 4. 

0

5

10

15

20

0 1 2 3
0

5

10

15

20

0 2 4 6
0

5

10

15

20

0 0.25 0.5 0.75 1
0

5

10

15

20

0 0.25 0.5 0.75 1
0

5

10

15

20

0 0.25 0.5 0.75 1
0

5

10

15

20

0 0.5 1 1.5

0

5

10

15

20

0 2 4
0

5

10

15

20

0 2 4
0

5

10

15

20

0 0.25 0.5 0.75 1
0

5

10

15

20

0 0.25 0.5 0.75 1
0

5

10

15

20

0 0.25 0.5 0.75 1
0

5

10

15

20

0 0.5 1 1.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Total isoGDGTs Total brGDGTs BIT 

De
pt

h 
(c

m
) 

Sa
lin

et
te

 (G
de

T1
) 

La
 S

al
in

e 
(L

D2
) 

Le
s S

al
in

es
 (L

D1
) 

TEX86 MBT’ CBT 

G
ra

nd
e 

Sa
lin

e 
(G

de
T2

) 
 



  

 
 
 

 
 
Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Salinity 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Caldarc. CLs
Caldarc. IPLs
ACE CLs
ACE IPLs

Ca
ld

ar
ch

ae
ol

  /
 to

ta
l i

so
G

D
G

Ts
 ( 

re
la

tiv
e 

%
)

AC
ELD1 

LD2 

GdeT2 

GdeT1 



  

 
 (a)  
 

 
 
(b)  
 

 
 
Fig. 6. 

0

5

10

15

20

25

30

35

40

45

50

0.09 0.14 0.19 0.24 0.29 0.34 0.39 0.44

Les Salines (LD1)
La Saline (LD2)
La Salinette (GdeT1)
La Grande Saline (GdeT2)

W
ei

je
rs

, 2
00

7

P
et

er
se

, 2
01

2 
(C

B
T)

P
et

er
se

, 2
01

2 
(p

H
)

Ti
er

ne
y,

 2
01

0

P
ea

rs
on

, 2
01

1

Lo
om

is
, 2

01
2

P
ow

er
s,

 2
01

0

K
im

, 2
00

8

Te
m

pe
ra

tu
re

 (°
C

)

Branched GDGTs Isoprenoid GDGTs

Recorded MAAT

CLs

0

5

10

15

20

25

30

35

40

45

50

0.09 0.14 0.19 0.24 0.29 0.34 0.39 0.44

Les Salines (LD1)
La Saline (LD2)
La Salinette (GdeT1)
La Grande Saline (GdeT2)

W
ei

je
rs

, 2
00

7

P
et

er
se

, 2
01

2 
(C

B
T)

P
et

er
se

, 2
01

2 
(p

H
)

Ti
er

ne
y,

 2
01

0

P
ea

rs
on

, 2
01

1

Lo
om

is
, 2

01
2

P
ow

er
s,

 2
01

0

K
im

, 2
00

8

Te
m

pe
ra

tu
re

 (°
C

)

Branched GDGTs Isoprenoid GDGTs

Recorded MAAT

IPLs



  

 32 

Fig. 1. Structures of isoprenoid and branched glycerol dialkyl glycerol tetraether (GDGT) 

core lipids, archaeol and internal standard (IS). 

Fig. 2. Location of the four ponds investigated in the French Western Indies. Two [La 

Salinette (GdeT1) and La Saline (GdeT2)] are located on Grande-Terre Island and two [Les 

Salines (LD1) and La Saline (LD2)] on La Désirade Island. Map of the French Western Indies 

is issued from: http://www.monguidevoyages.com/caraibes.html; those from Grande-Terre 

and La Désirade are issued from: http://www.geoportail.gouv.fr/. 

Fig. 3. Relative abundances (%) of the different iGDGTs and brGDGTs in both CL and IPL 

fractions. Mean values and standard errors are presented for the four water ponds investigated. 

Fig. 4. Downcore profiles of absolute concentrations (μg g-1 organic carbon) in CL and IPL 

GDGTs and of iGDGT- and brGDGT-derived proxies in the four ponds investigated. The 

CBT could not be calculated in the samples from la Grande Saline. 

Fig. 5. Relative abundance of caldarchaeol with respect to total iGDGTs (left axis) and values 

of the ACE index (right axis) vs. salinity. Mean values and standard errors in the CL and IPL 

fractions are presented for the four ponds investigated: Les Salines (LD1), La Saline (LD2), 

La Salinette (GdeT1) and la Grande Saline (GdeT2). Error bars are included in the symbols of 

the ACE values for Les Salines, La Saline and La Grande Saline. 

Fig. 6. Comparison of brGDGT-derived temperatures based on soil (Weijers et al., 2007; 

Peterse et al., 2012) and lacustrine (Tierney et al., 2010; Pearson et al., 2011; Loomis et al., 

2012) calibrations, and of iGDGT-derived temperatures based on lacustrine (Powers et al., 

2010) and marine (Kim et al., 2008) calibrations. Mean values and standard errors of 

temperature estimates in (a) CL and (b) IPL fractions are presented for the four ponds 

investigated. The dashed line shows the mean annual air temperature (26 °C) recorded in the 

area. 

Table 1. Biogeochemical characteristics of the water from the four ponds at the time of 

sampling, and organic carbon (Corg) contents of the sediment samples. 

Island Sample 

(abbreviation)  

Surface area 

(ha) 

Temperature 

(°C) 

Salinity  pH Corg (%) 

 Les Salines 

(LD1) 

 29 4 7.0   

La Désirade 0-2 cm     0.1 

 2-4 cm      2.1    0.7 

 4-6 cm     2.5 

 La Saline (LD2)  33 8 7.5   

 0-2.5 cm     0.6 

 2.5-5 cm     0.3 

 5-7.5 cm      1.9    1.4 

 7.5-10 cm     1.2 

 10-12.5 cm     0.3 

Grande-

Terre 

La Salinette 

(GdeT1) 

 27 41 7.5   

 2-4 cm     7.5 

 6-8 cm     11.3 

 10-12 cm      0.5    13.2 

 14-16 cm     9.6 

 16-18 cm     9.3 

 18-20 cm     15.1 

 La Grande 

Saline (GdeT2) 

 30 93 7.0   
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 0-2 cm     2.0 

 4-6 cm      0.6    1.5 

 8-10 cm     0.3 

 12-14 cm     0.3 
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Highlights 

 GDGTs and archaeol in cores from 4 tropical ponds with varying salinity analyzed. 

 Substantial differences in GDGT distributions between the 4 ponds, reflected in 

temperature estimates. 

 GDGT sources have to be constrained before applying GDGT-derived proxies to 

saline environments. 


