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Abstract

We present an experimental study of the mixing processes in a gravity current flowing on an inclined plane.

The turbulent transport of momentum and density can be described in a very direct and compact form by

a Prandtl mixing length model: the turbulent vertical fluxes of momentum and density are found to scale

quadratically with the vertical mean gradients of velocity and density. The scaling coefficient, the square of

the mixing length, is approximately constant over the mixing zone of the stratified shear layer. We show how,

in different flow configurations, this length can be related to the shear length of the flow (ε/∂zu
3)1/2. We also

study the fluctuations of the momentum and density turbulent fluxes, showing how they relate to mixing and to

the entrainment/detrainment balance. We suggest a quantitative measure of local entrainment and detrainment

derived from observed conditional correlations of density flux and density or vertical velocity fluctuations.

Keywords: mixing, gravity current, mixing length, entrainment, oceanic circulation

1. Introduction

Mixing in stratified shear flows is an important

process in many geophysical situations. Ferrari and

Wunsch have detailed in [1] the kinetic energy bud-

get occurring over the large range of oceanic scales.

Several physical mechanisms, not all completely un-

derstood, allow the energy to be transferred from

large scale geostrophic motion to the very small

scales where irreversible mixing can take place. Of

particular current interest is the mixing and entrain-

ment of oceanic overflows where gravity currents

take place in particular regions of the oceans (Den-

mark Strait flow, Mediterranean outflow). Although

they occur in very localized regions, these currents,

through their mixing processes, contribute strongly

to the transport of heat and salinity in the global

ocean via the thermohaline “conveyor belt” [2, 3].

The mixing processes occur at scales too small to be

captured by the numerical simulations of this circu-

lation, requiring a sub-grid parametrization. In situ

measurements [4], as well as experimental studies,

are necessary to provide an accurate description. In

order to obtain a valid parametrization from a labo-

ratory experiment, there is also a need for a model

that extrapolates the parametrization to oceanic con-

ditions.

Ellison and Turner [5] were the first to investigate

this phenomenon experimentally, in the case of a cur-

rent flowing into a homogeneous ambient medium,

without rotation. They derived a model for the bulk

properties of the flow, based on measurements over

various quantities. Decades later, Baines [6, 7] re-

produced the experiment, with an ambient stratified

flow, while more recently, Cenedese [8] studied grav-

ity current in a rotating frame.

In a broader context, several studies have been de-

voted to the evolution of turbulence in a stratified

shear flow. In such cases, the flow was generally

not buoyancy-driven. Some of them, either numer-

ically [9] or experimentally [10, 11], were focusing

on general properties of turbulence, such as the in-
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fluence of stratification and shear intensity on the

growing or decaying character of turbulence. Others

looked at mixing properties in a similar way as we

did [12, 13, 14]. We give elsewhere [15] a compari-

son of our results with some of these studies. But in

all these cases, for the experimental studies, the type

of measurements used were either qualitative (video

with dye) or quantitative but pointwise (conductiv-

ity probe or density measured locally on a fluid sam-

ple). And in general, no velocity measurement was

performed. In order to better understand and model

the processes involved in turbulent mixing induced

by gravity currents, it is essential to measure velocity

and density fields over a spatially extended region, as

is now allowed by techniques such as particle image

velocimetry and laser induced fluorescence.

We developed an experimental apparatus where an

experimental gravity current can be created with the

ability to vary the flow conditions such as the de-

gree of stratification or the initial turbulence level.

Among the key quantities for describing turbulent

mixing processes are the fluxes of turbulent transport

of momentum and density, which can be computed

via the correlation terms between fluctuating compo-

nents of the velocity field or between one component

of velocity and density. One important feature of our

experiment is the ability to measure simultaneously

high resolution velocity and density fields, thus al-

lowing us to obtain such correlations. In the next

section, we present the experimental set-up. Then, in

section 3, we use our measurement of the turbulent

fluxes to determine eddy diffusivities in our mixing

processes. Section 4 recalls and extends the results

of an earlier publication [16], where we showed that

a mixing length model provides a better description

of how the turbulent fluxes are related to local mean

gradients, compared to the constant eddy diffusivity

hypothesis. In section 5, we use data taken in differ-

ent parameter configurations to determine a scaling

law for the measured mixing lengths. Finally, in sec-

tion 6, we use the PDF’s of the fluxes to better un-

derstand the location of entrainment and detrainment

processes in the gravity current, before concluding in

section 7.

2. Experimental set-up

The experiment, sketched in Fig. 1, and described

in detail elsewhere [15], consists of a turbulent,

uniform-density flow injected via a pump through a 5

cm high by 45 cm wide nozzle into a tank filled with

unstirred higher density fluid. The turbulence level

of the injection current can be enhanced by an ac-

tive grid device located just before the injection noz-

zle. The flow, upon exiting the nozzle, is bounded

from above by a transparent plate inclined at an an-

gle of 10o with respect to horizontal, is unbounded

below, and is confined in a tank about 2 m long,

0.5 m wide and 0.5 m high. The components of the

spatial position vector x describing the flow are the

mean flow direction x, the cross-stream direction y

and the downward distance perpendicular to the plate

z. The corresponding velocity u(x) has components

{u, v,w}. We use the notation 〈u〉 for a time- and

ensemble-averaged quantity and u′ = u − 〈u〉 for its

fluctuating part1. The injection fluid, a solution of

ethanol and water, is less dense than the fluid in the

tank, water and salt (NaCl). This situation is reversed

compared to oceanic overflows, where a denser fluid

flows down an incline, but within the Boussinesq

approximation, the physical mechanisms involved

are the same. The density difference is defined as

∆ρ = ρ − ρs, where ρ is the measured density and ρs

is the maximum density, corresponding to the initial

salt water density. The concentrations of ethanol and

salt are adjusted (and the fluid temperatures main-

tained equal within 0.2◦C) so that the fluids are index

matched to avoid optical distortions [18]. Each con-

figuration presented in this study consisted in several

runs with the same conditions, adding up to a total

between 500 and 800 velocity fields. All the fluids

are freshly prepared for each run.

Instantaneous velocity and density fields are mea-

sured in a 9 cm × 9 cm area of a 0.1 cm thick

laser sheet in the x − z plane. Velocity and den-

sity are measured simultaneously using particle im-

age velocimetry (PIV) and planar laser-induced fluo-

rescence (PLIF), respectively, at a rate of 3 Hz with

1In our previous publication, [16], · represents ensemble

averaging and 〈 · 〉 denotes spatial averaging. This adjustment in

nomenclature is made to be consistent with the popularly used

ones in literatures, e.g. [17].
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two 20482 pixels digital cameras. Fluorescent dye

(Rhodamine 6G) is added to the light fluid, and a

calibration of density versus fluorescence intensity is

performed for each position of the field of view.

The lighter exit fluid is stably stratified with re-

spect to the heavy fluid in the tank and forms a grav-

ity current on the bottom side of the plate. The

competition between the stabilizing effect of buoy-

ancy and the destabilizing shear is captured in a

dimensionless parameter, the Richardson number,

Ri = −(g∆ρ/ρsH)/(U2) where g is the acceleration

of gravity, U a typical velocity, and H the height

of the injection nozzle. For small Ri, shear domi-

nates buoyancy, and the flow is unstable to Kelvin-

Helmholtz instability [19]. In a standard configura-

tion, used for the results in section 3, 4 and 6, the

current is injected at a speed of U0 = 7 cm/s, with the

active grids on, and the initial density difference be-

tween the fluids is ∆ρ0 = 2.6 g/L. This results in an

initial value of Ri = 0.27 and a fully turbulent flow as

it exits the nozzle with streamwise velocity fluctua-

tions u′ about 25% of 〈u〉, corresponding to a Taylor

Reynolds number Reλ = u′2/
√

15εν ≈ 100, where

ν is the fluid kinematic viscosity and ε is the mean

dissipation rate measured directly from velocity field

(the spatial resolution of our velocity measurement

is 0.5 mm compared to the dissipation scale of 0.33

mm).

Other configurations (see section 5) were tested,

where injection speed and/or initial density differ-

ence were varied, and in one case the active grids

were removed.

In all configurations, there is rapid evolution of

mean quantities over the first 20 cm. In this report,

we focus on the region from 21 to 45 cm over which

averages are approximately uniform along x. Note,

however, that the results described here also apply

to the initial region, except with a stronger depen-

dence on downstream distance. A detailed descrip-

tion on the downstream evolution of various quanti-

ties associated to the current has been reported else-

where [15].

3. Eddy diffusivities

As mentioned in the introduction, correlation

products such as 〈u′w′〉 and 〈ρ′w′〉, which we can

Figure 1: Sketch of the experimental device.

measure in our experiment, can be interpreted, re-

spectively, as the vertical2 flux of downstream mo-

mentum and of density due to turbulent fluctuations.

We show in Fig. 2 the vertical profiles of these two

quantities computed locally as an ensemble average

over all PIV/PLIF images and over all experimental

runs. As expected, they display a maximum in the

mixing region, close to the initial interface between

the current and the ambient fluid. Close to the plate

the mixing is reduced because perturbations that ad-

vect high concentration regions towards the plate are

very rare, and far from the plate the ambient fluid is

also undisturbed. In addition, the amplitude of the

fluxes decreases as one goes away from the injection

nozzle. This reduction reaches a factor of 1.5 for the

momentum flux when the distance is doubled, and a

factor of 3 for the density flux.

In models of oceanic circulation, various closure

schemes are used to parametrize turbulent transport

(for a review, see [20, 21]). Some of these models are

highly elaborate, closing the turbulence equations ei-

ther at first moment level, providing sets of differ-

ential equations relating turbulent fluxes to the mean

motion or even at second moment level, with equa-

tions for quantities like pressure strain-rate correla-

tions. In more basic models (zero-equation models),

the relation between turbulent fluxes and mean gra-

dients is considered to be an algebraic one. For ex-

ample, the model initially proposed by Pacanowski

and Philander [22], assumes a proportionality be-

tween fluxes and gradients, the proportionality con-

stant being an effective diffusivity times a simple an-

alytical function of the Richardson number. This

proportionality constant is thus defined as νT =

−〈u′w′〉/〈∂zu〉 in the case of momentum transport and

γT = −〈ρ′w′〉/〈∂zρ〉 for density transport.

2Note that for simplicity we use the word “vertical” for a

direction that, strictly speaking, makes a 10o angle with the ver-

tical.
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Figure 2: Vertical profiles of the measured momentum turbu-

lent flux (a) and density turbulent flux (b) measured at differ-

ent distances downstream.

Our respective measurements of the fluxes and the

corresponding gradients allow us to make an exper-

imental determination of the eddy diffusion coeffi-

cients. Figure 3 shows the vertical profiles of the

measured eddy diffusivities, in the case of momen-

tum transport (coefficient νT ) and density transport

(coefficient γT ). They are not shown for extreme lo-

cations, too close to the plate (x < 1.5 cm) and too far

away from the plate (x > 7.5 cm), where the mixing

is too weak to allow reliable measurement.They are

displayed for 3 different distances from the injection

nozzle.

It is interesting to note that the measured value

of both coefficients is the same, about 30 times the

molecular viscosity. In addition, these values vary

by a factor of 3 between the central region, where

most of the mixing occurs, and the top and bottom

regions, which are respectively the less disturbed re-
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Figure 3: Vertical profiles of the measured eddy viscosity

(a) and eddy density diffusivity (b) computed at different dis-

tances downstream.

gion in the current near the inclined plate and the less

disturbed region in the ambient fluid away from the

current. The coefficients also seem to decrease as

one measures them further away from the injection

nozzle.

For comparison, we show in Fig. 4 the corre-

sponding plot (analogous to Fig. 3a) in a case where

there is no density difference between the injected

fluid and the ambient fluid. This configuration cor-

responds to a plane jet along a wall. One can ob-

serve that the dependence of the eddy viscosity with

the distance to the wall is much weaker: the verti-

cal variation is of the order of 30%, instead of the

factor 3 observed in the stratified case. This observa-

tion is consistent with what has been measured in the

case of unstratified jets (see for example figure 5.10
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in [17]). In the same reference, the study of a plane

self-similar jet shows that the eddy viscosity is ex-

pected to increase with downstream distance, which

is what we observe in Fig. 4, but not in Fig. 3. That

the constant eddy viscosity model works better in the

unstratified flow and fails rather badly in our strati-

fied flow experiments is interesting but we are unable

to explain this difference.
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Figure 4: Vertical profiles of the measured eddy viscosity,

computed at different distances downstream, for an unstrat-

ified flow. Because of the very different downstream evolu-

tion in this case, some measurements are shown for distances

downstream different from the ones used in the other figures,

and are therefore shown with different colors and symbols.

4. Mixing length model

The strong dependence of the turbulent diffusivi-

ties with depth and distance downstream calls for a

better scheme to model the relation between fluxes

and mean gradients. In an earlier publication [16],

we showed that the observed scaling between these

quantities is actually : 〈u′w′〉 ∝ 〈∂zu〉2 and 〈ρ′w′〉 ∝
|〈∂zu〉|∂zρ. We also demonstrated that this observa-

tion can be understood in the framework of Prandtl

mixing length theory [23]. Prandtl’s argument is

analogous to that applied in the kinetic theory of

gases to molecular transport processes: it assumes

that the coefficient of eddy viscosity is equal to

the product of a “mixing length” Lm, characteris-

tic of the mixing phenomena, by a suitable veloc-

ity: νT ≃ Lm × U(typical). Assuming that Lm is

small enough so that the variation of the gradient

over a distance Lm can be neglected, one can take

U(typical) = Lm|〈∂zu〉| and thus obtain the relation

〈u′w′〉 = L2
m〈∂zu〉2, which is indeed observed (see

figure 3 in [16]). The same argument for the density

flux yields: 〈ρ′w′〉 = −L2
ρ|〈∂zu〉|〈∂zρ〉, where Lρ is a

mixing length associated with the density transport.

As a result, we computed the mixing lengths as:

L2
m =
〈u′w′〉
〈∂zu〉2

and L2
ρ =

−〈ρ′w′〉
|〈∂zu〉|〈∂zρ〉

(1)

The resulting vertical profiles of mixing lengths

are shown in Fig. 5. They are much more uniform

over depth, compared to the turbulent diffusivities

profiles shown in Fig. 3. The dependence in down-

stream distance is also much weaker. No decrease of

the mixing lengths is observed as one approaches the

wall (z = 0), but one must remember that a law of the

wall should only start within a distance from the wall

of approximately 20% of the flow width [17], about

1 cm in our case, which is a region where we have no

accurate measurement of the mixing lengths (see the

remark about measurement errors in the caption of

Fig. 5). The mean values (average taken over depth

and downstream distance) for both mixing lengths

are the same: Lm = Lρ = 0.45 ± 0.1 cm

5. Shear scale

In order to allow extrapolations of these results to

oceanic conditions, it is necessary to understand how

the mixing lengths depend on the degree of stratifi-

cation of the current, as well as on its level of tur-

bulence. In [16], we derive an interpretation of the

mixing length using the balance between the produc-

tion of turbulent kinetic energy by the destabilizing

shear and its dissipation. This balance defines a scale

Ls = (ε/〈∂zu〉
3
)1/2, which we call “shear scale” [24].

This scale was defined initially by Corrsin [25] as

the smallest scale at which anisotropy effects result-

ing from a large scale shear are carried out by the

turbulent cascade. This scaling has been confirmed

experimentally in a boundary layer flow [26]. As

mentioned earlier, at low enough Richardson num-

ber, the effect of shear dominates the effect of buoy-

ancy, therefore the relevant quantity to define the

mixing scale is the shear and not the Brunt-Väisälä

5
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Figure 5: Vertical profiles of the measured mixing lengths for

momentum (a) and density (b) at different distances down-

stream. Note that close to the plate, as well as far away from it,

the gradients tend to vanish, producing large errors in the mix-

ing length calculation. This explains the “stray” data points

which can be observed at the extremity of some curves.

frequency N = (g〈∂zρ〉/〈ρ〉)1/2. Since we are inter-

ested in a global scale for the flow, a spatial aver-

age ( · symbol) is taken for the quantities used to

compute this scale, which corresponds to a different

definition than the one used for the mixing lengths

in equation 1. This is important because the whole

point of this section is to show that since the mixing

lengths, although they are defined locally, do not de-

pend on the local position, they can be related to a

global quantity, namely the shear scale.

We show in [16] that the value of the measured

mixing lengths in the standard configuration is very

close to the shear scale. In order to test the robustness

of this observation, we measured the mixing lengths

in various flow configurations. The results are dis-

played in table 1. Configuration 1 (shaded line in the

table) is the standard configuration used until now

(and also used for the data presented in [16]). We

then vary stratification and/or intensity of turbulence

in 5 different configurations. Since in all cases mo-

mentum and density mixing lengths are equal (ex-

cept the non stratified case where Lρ is undefined),

we give in column 7 the value of Lm only.

Compared to case 1, cases 2 and 3 show that the

value of the mixing length increases with turbulence

intensity.3 In the same way, as expected, cases 4 and

5 show that the stratification prevents mixing. In the

last case, both the stratification is stronger and the

shear weaker, resulting in a very short mixing length.

In Fig. 6, we plot the measured mixing length ver-

sus the computed shear scale, showing that in all

cases studied, there is a scaling between the two

quantities: Lm = (0.7 ± 0.03)Ls. In the unstratified

case, we observed that the quadratic scaling between

momentum flux and velocity gradient is less evident,

which may be related to the observation that the con-

stant eddy viscosity model seems to work better in

this case, as shown in section 3. We included this

data point in the graph however, since interestingly

enough, it fits nicely the general trend, with a much

larger value for the scales. One can see from the in-

set, which shows an expansion of small lengths (cor-

responding fit indicated in the main plot by a dashed

line), that the slope is not very different (5% change)

when the unstratified point is included (or not) in the

fit.

It may seem surprising that the mixing length

scales with a quantity apparently independent of the

stratification. But one must keep in mind that the

mean turbulent dissipation rate ε, and the mean shear

〈∂zu〉 depend on the stratification. A study we per-

formed, presented elsewhere [15], shows that the

shear is increased by the presence of stratification,

because this stratification partially prevents the mix-

ing that reduces the shear. This observation is in

3Note, however, that the quadratic relation between momen-

tum flux and velocity gradient could not be clearly observed in

the unstratified case because of a much larger spread of the data

points, possibly owing to stronger mixing. This makes the cor-

responding calculation of the mixing length less reliable.

6



# configuration ∆ρ0/ρs Ri U0 Rλ Lm 〈ε〉 |〈∂zu〉| Ls

[cm/s] [cm] [cm2/s3] [s−1] [cm]

1 standard 0.26% 0.3 7 100 0.45 0.8 1.4 0.55

2 larger injection speed 0.26% 0.2 9.5 140 0.6 1.4 1.4 0.7

3 no active grid 0.26% 0.35 6.5 42 0.35 0.7 1.7 0.35

4 unstratified 0 0 7.5 115 2.1 1.5 0.6 2.7

5 double density 0.52% 0.45 7 93 0.3 0.8 2.1 0.3

6 double dens. 0.52% 1.4 4.3 72 0.2 0.5 2.7 0.15

half veloc.

Table 1: Summary of the different experimental configurations. The first column is a reference number, the second gives the general

features of the configuration, compared to the standard one (shaded line). The third column gives the initial density difference and

the fourth the Ri. The fifth column shows the initial velocity of the current and the sixth shows Rλ. The 3 last columns give the data

necessary to compute the shear length, and the shear length itself. The mean shear (column 9) is averaged over the half width of

the vertical profile of the gradient.

agreement with the observed decrease of the mixing

length when the stratification is stronger. In the case

of the turbulent dissipation rate, its dependence on

the stratification is more subtle, since the buoyancy

force acts at the same time as a turbulence suppres-

sor and as a shear enhancer, since it is the driving

force of the current.
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Figure 6: Measured mixing length vs computed shear length,

for the different flow configurations indicated. The error bars

are determined by the standard deviation of the mixing length

values at different locations in the flow. The solid line is a linear

fit to the data. The inset shows a expanded view of the region

below 1 cm, with a fit not including the point for the unstratified

case. The slope for this fit is also shown in the main plot by a

dashed line.

6. Fluctuations of turbulent fluxes and entrain-

ment

The mixing length model and the scaling proper-

ties presented in the previous sections allowed a bet-

ter understanding of the average behavior of the tur-

bulent momentum and density fluxes. In this sec-

tion, we focus on the fluctuations of these fluxes,

and how they relate to the mechanisms of entrain-

ment and detrainment of the flow. Entrainment oc-

curs when a parcel of fluid that is heavier (in our

case) than the fluid within the gravity current and lo-

cated outside that current is advected into the cur-

rent and thoroughly mixed. Average measures of

entrainment show how much the gravity current in-

creases in overall volume flow rate. Similarly, de-

trainment is the process in which a lighter element of

fluid is transported by turbulent fluctuations into the

heavier fluid outside the gravity current and is ab-

sorbed by mixing. Below we present a novel method

for characterizing the distribution of correlations of

density and vertical velocity fluctuations that con-

tribute to understanding the dynamics of the entrain-

ment/detrainment process.

The probability density function (PDF) of the mo-

mentum and density fluxes, 〈u′w′〉 and 〈ρ′w′〉, re-

spectively, are shown in Fig. 7. We have to remind

the reader that using our convention of signs for w

and ρ, positive w′ corresponds to a downward veloc-

ity fluctuation and positive ρ′ corresponds to a fluctu-

ation of a particle heavier that the local mean. Each

7



color corresponds to a given horizontal band, thus

allowing one to see the evolution of the PDFs as z

increases. First, the fluxes reach large values com-

pared to the mean as shown in Fig. 2; there is still a

probability 10−3 that a fluctuation will reach a value

about 10 times the mean. As expected, this tendency

to produce large fluctuations is stronger as one ap-

proaches the mixing region around the initial inter-

face between the current and the ambient fluid (black

curve, z=3-4 cm).

The PDFs of momentum and density fluxes are

asymmetric. This asymmetry is the origin of the non-

zero mean value of the fluxes. With our conventions

of sign, it is positive for momentum and negative for

density. In order to understand this asymmetry, it is

necessary to give some considerations to the signs of

the fluxes. As can be seen in Fig. 1, the x axis is ori-

ented in the direction of the flow and the z axis points

downwards. Thus, a positive value of u′w′ corre-

sponds to either downward transport of downstream

momentum or upward transport of upstream momen-

tum. It is therefore understandable that the PDF of

u′w′ displays more positive events, since these corre-

spond to the standard transport of momentum owing

to Kelvin-Helmholtz mixing. In other words, down-

stream fluctuations with downward transport take

turbulent momentum from where it is large, namely

in the interior of the mixing zone, towards the qui-

escent regions in the heavier fluid below the gravity

current, i.e., at large z. In the same manner, negative

values of ρ′w′ correspond either to upward transport

of heavier fluid or to downward transport of lighter

fluid. Either of these transport mechanisms oppose

buoyancy and are caused again by Kelvin-Helmholtz

mixing. This explains the negative asymmetry ob-

served in Fig. 7b. In addition, we observe that this

asymmetry becomes stronger for the PDF in the cen-

ter region (red and green, then black curve), where

most of the mixing takes place. Finally, the PDFs

of both momentum and density are broadest for the

black curves, i.e., in the middle of the mixing zone.

On the other hand, the most extreme events occur on

either side of the peak of the mixing zone where the

average fluxes are largest.

In order to compare the momentum and density

flux PDFs to more standard probability distributions

studied in turbulence, we show in Fig. 8 PDFs of
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Figure 7: PDFs of the momentum flux (a) and density flux (b).

Each PDF is constructed using data in a horizontal band of 1

cm height (vertical position indicated in the legend), situated

between 20 and 49 cm from the injection nozzle.

the vertical velocity fluctuations, normalized by their

rms value, for horizontal layers at different distances

from the plate. The PDFs are fairly Gaussian in the

mixing region (black line, compared to a gaussian

fit, indicated by a dashed line), whereas close to the

plate or far away from it, the distributions differ from

a Gaussian shape, with broader tails, probably ow-

ing to the intermittent and not fully-developed turbu-

lence in these regions.

One can further elucidate the nature of the den-

sity flux by considering the instantaneous correla-

tions between density fluctuations ρ′ and density flux

ρ′w′. To understand these correlations, one needs to

consider the expected behavior of a parcel of fluid

in a background stratification defined by the average

density ρ̄(z). In the absence of turbulence, a parcel

of fluid with positive or negative ρ′ should move to-
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Figure 8: Normalized PDFs of the vertical velocity fluctua-

tions. Each PDF is constructed using data in a horizontal band

of 1 cm height (vertical position indicated in the legend), sit-

uated between 20 and 49 cm from the injection nozzle.

wards its neutral buoyancy position, exchanging its

potential energy for kinetic energy. In the case we

consider, a parcel of fluid that is lighter than its sur-

roundings has a negative value of ρ′ and should move

towards the plate, that is, have a negative vertical ve-

locity w′ < 0 so that the resultant density flux is pos-

itive ρ′w′ > 0, whereas a parcel of heavier fluid has a

positive ρ′ and would be expected to have a positive

vertical velocity so again one has positive density

flux, ρ′w′ > 0. This situation is illustrated schemat-

ically in Fig. 9a and indicates that for either positive

or negative ρ′, stabilizing return to neutral buoyancy

corresponds to positive density flux. Here, and in fur-

ther discussion below, we use an intuitive description

based on tracking a fluid parcel in time, i.e., a La-

grangian perspective. Our measurements, however,

are Eulerian so that the parcel of fluid we consider

at time t is advected away by the mean flow. In ad-

dition, the buoyancy condition implied by specifying

a value of ρ′ is not the instantaneous buoyancy ex-

perienced by a fluid parcel because ρ′ is determined

by a long-time density average rather than by the in-

stantaneous distribution of density. Nevertheless, the

description presented here gives a reasonable under-

standing of our results and provides the basis for fur-

ther exploration of these important correlations.

If we add turbulent fluctuations, the situation is a

bit more complex, see Fig. 9b. A positive vertical ve-

z

a)

ρ’ < 0

ρ’ > 0

w’ > 0

ρ’w’ > 0 ρ’w’ > 0

w’ < 0

Stabilizing

z

b)

w’ > 0

ρ’ < 0
ρ’ > 0

w’ < 0
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Destabilizing

ρ

ρ

z

c)

w’ > 0

δρ < 0

Mixing/Non-Mixing

δρ > 0

w’ < 0

z

ρ

z

ρ

z

ρ

Figure 9: Schematic illustration of a) stabilizing velocity and

density correlations resulting in ρ′w′ > 0, b) destabilizing ve-

locity and density correlations with ρ′w′ > 0, and c) the net

effect of mixing on fluid parcels that mix during a destabilizing

displacement before gravitational forces can restore the parcel

to its equilibrium vertical position of neutral buoyancy. In c),

the solid (dashed) arrows in c) indicate non-mixing (mixing)

processes, and the solid (dashed) curves show the non-mixing

(mixing) mean density profile.
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locity fluctuation w′ > 0 may advect a lighter parcel

of fluid with ρ′ < 0 into a region of higher density,

thereby producing a negative density flux ρ′w′ < 0

and a condition which is unstable with respect to the

potential energy of that parcel. Similarly, a negative

value of w′ < 0 advecting a parcel of fluid with ρ′ > 0

also produces an unstable condition with ρ′w′ < 0.

Thus, destabilizing fluctuations have negative den-

sity flux ρ′w′ < 0.

If no mixing occurs, these two processes of desta-

bilizing and stabilizing motions should balance in

that a parcel that is displaced vertically by turbulent

fluctuations would be restored to neutral buoyancy

owing to its adverse potential energy with respect to

the mean density profile. This process is illustrated in

Fig. 9c by the solid arrows. If mixing occurs along

this path, however, there will be a net effect on the

local mean density profile that reduces the local den-

sity gradient as indicated in Fig. 9c by the dashed

arrows; a positive vertical velocity (downward) pro-

duces a net reduction in density upon mixing, i.e.,

δρ < 0 whereas an initially negative w will produce a

net increase in density, δρ > 0. The overall effect of

many such parcels being displaced away from neu-

tral buoyancy, mixing partially or completely, and

returning to a new neutral buoyancy vertical position

is to reduce the global mean density gradient. These

examples described in Fig. 9c allow a reasonable in-

terpretation of the experimentally obtained correla-

tion PDFs between density fluctuations and density

flux shown in Fig. 10. In particular, it allows one to

obtain the amount of entrainment (fluid added to the

gravity current) or detrainment (fluid left behind in

the ambient fluid) of the flow as a function of verti-

cal height. The balance between entrainment and de-

trainment in a boundary flow is an unresolved issue

in numerical simulations [27] and may be resolved

using the correlations between ρ′ and ρ′w′.

Fig. 10 shows 2D PDFs of ρ′ versus ρ′w′, in each 1

cm horizontal band taken at different distances from

the inclined plate. From the earlier discussion illus-

trated in Fig. 9, we can tell that the right part of the

plots in Fig. 10 corresponds to the stabilizing return

to neutral buoyancy (positive flux, see also Fig. 9a),

while the top left quadrant corresponds to entrain-

ment (see right part of Fig. 9b) and the bottom left

quadrant to detrainment (see left part of Fig. 9b).

One observes that in the regions close to the plate, the

distributions are fairly symmetric with respect to the

sign of the fluxes, with only a slight negative skew-

ness in the positive ρ′ lobe, indicating a small level

of entrainment. Moving away from the plate, the

asymmetry in the upper entrainment lobe increases,

i.e., more entrainment, and the detrainment lobe with

ρ′ < 0 begins to become asymmetric as well. Near

the middle of the mixing zone with z ∼ 3 − 4 cm,

the entrainment and detrainment lobes are about the

same, indicating an approximately equal amount of

entrainment and detrainment. Finally, far from the

plate entrainment is inactive as indicated by the small

and symmetric entrainment lobe compared to ac-

tive detrainment demonstrated by the large and nega-

tively skewed detrainment lobe. The qualitative pic-

ture one gets from this analysis is that deep in the

gravity current entrainment dominates whereas out-

side the current detrainment is dominant.

The correlations presented in Fig. 10 should also

be reflected in correlations between vertical velocity

fluctuations and density flux. In Fig. 11, we show a

comparison between ρ′w′|ρ′ correlations in Fig. 10a

and ρ′w′|w′ correlations for conditions near the plate,

z = 0 − 1 cm. One gets a similar skewness indicat-

ing entrainment (the quadrants for entrainment and

detrainment are flipped vertically for w′ compared

to ρ′) although there are long tails in the stable re-

gion of the ρ′w′|w′ correlations. The precise details

of the shapes of these PDFs is beyond the scope of

this paper but overall they point to an interesting ap-

proach at a local measure of entrainment and detrain-

ment. In particular, one can compute, based on the

analysis above, an effective entrainment parameter

CE = −〈ρ′w′|ρ′ > 0〉 and a corresponding detrain-

ment parameter CD = −〈ρ′w′|ρ′ < 0〉 (minus sign

added because the fluxes are negative). In Fig. 12,

we show the quantities CE and CD as functions of

z. The results show the behavior described above,

namely that entrainment is dominant near the plate

whereas detrainment is larger in the quiescent fluid

far from the plate. The combined effect of entrain-

ment and detrainment is described by the addition of

the two parameters, i.e,. CE + CD, shown in Fig. 12

as (CE +CD)/2. The maximum density flux happens

in the middle of the mixing zone, between 3 and 5

cm.
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Figure 10: 2D PDFs of the density flux vs density fluctuations. Each PDF is constructed using data in a horizontal band of 1

cm height (vertical position indicated in the top right corner of each plot), situated between 20 and 49 cm from the injection

nozzle. 11
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from the injection nozzle.
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gles) as functions of z.

7. Conclusion

In order to allow a comparison of our results

with real oceanic situations, some additional features

would need to be taken into account. To start with,

as in any experimental study of an oceanic process,

the Reynolds number dependence needs to be inves-

tigated in more detail, since this number in the ocean

is far greater than can ever be achieved experimen-

tally. In addition, although the scales at which the

oceanic mixing takes place are much smaller than the

Rossby deformation radius, it has been shown [28]

that the combined effect of the Coriolis force and

the presence of topography (ridges or canyons on the

bottom surface) can lead to secondary flows that can

contribute to the mixing. Even without the Coriolis

force, secondary flows can be created by topographic

effects, for example in a curved channel. Finally, the

roughness of the bottom (or of the inclined plate in

our case) has been shown to influence the behavior of

gravity currents [7]. Extensions of this study, taking

some of these aspects into account, would contribute

to possible extrapolations to oceanic situations. Cer-

tain conclusions can already be drawn, however, re-

garding mixing processes in gravity currents.

Our experimental device provides us with the abil-

ity to derive correlations between components of

velocity, as well as between velocity and density,
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thanks to simultaneous measurements of these quan-

tities. In addition, good spatial resolution allows us

to study the evolution of these fluxes along both the

flow direction and the vertical direction perpendic-

ular to the plate. We measure eddy viscosity and

diffusivity, although the constant eddy diffusivity as-

sumption does not work well for the data. A mixing

length model provides a better fit of the data with the

definition of a typical length associated with the mix-

ing phenomena. Contrary to the eddy diffusivity, this

mixing length is very constant in space, allowing us

to study its scaling with a length scale constructed

from the turbulent dissipation rate ε and the mean

shear, Ls = (ε/〈∂zu〉
3
)1/2. Using data taken in differ-

ent configurations of turbulence level and stratifica-

tion, we show that this scaling is robust, even in the

case of a simple wall jet (no stratification), where the

mixing is much stronger with a mixing length almost

ten times larger than in the stratified cases.

Finally, mixing events can also be observed by

looking at the asymmetry of the probability density

functions of the momentum and density fluxes. As

expected, the strongest mixing takes place at the in-

terface between the current and the ambient fluid. In

addition, 2D PDFs of the correlation between the

density flux and the density fluctuations provide a

local measure of entrainment and detrainment. In

particular, we demonstrate that close to the plate

the mixing is predominately entrainment of heav-

ier fluid, whereas away from the plate, the mixing

is largely associated with detrainment, where the

current releases some of its fluid into the ambient

medium. Quantitative determinations of entrainment

and detrainment are derived from the asymmetry of

the PDFs and provide a possible means for obtaining

a global measure of net gravity current entrainment

from local measurements. Connecting these results

with more traditional measures of entrainment, i.e.,

mean vertical velocity divided by mean downstream

velocity would be an very interesting extension to the

present work.
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