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Violent relaxation in two-dimensional flows with varying interaction range
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Understanding the relaxation of a system towards equilibrium is a longstanding problem in statis-
tical mechanics. Here we address the role of long-range interactions in this process by considering a
class of two-dimensional flows where the interaction between fluid particles varies with the distance
as ∼ rα−2 for α > 0. We find that changing α with a prescribed initial state leads to different flow
patterns: for small α, a coarsening process leads to the formation of a sharp interface between two
regions of homogenized α-vorticity; for large α, the flow is attracted to a stable dipolar structure
through a filamentation process. Assuming that the energy E and the enstrophy Z are injected at
a typical scale smaller than the domain scale L, we argue that convergence towards the equilibrium
state is expected when the parameter

(

2π
L

)α E
Z

tends to one, while convergence towards a dipolar
state occurs systematically when this parameter tends to zero. This suggests that weak long-range
interacting systems are more prone to relax towards an equilibrium state than strong long-range
interacting systems.

PACS numbers:

Self-gravitating systems, non-neutral plasma and two-
dimensional (2D) flows are examples of long-range inter-
acting systems, for which the two-body potential decays
with the interparticle distance with an exponent smaller
than the dimensionality of the embedding space [1].
Those systems share the property to self-organize spon-
taneously into large scale coherent structures such as
globular clusters and elliptical galaxies in astrophysics
or vortices and jets in geophysics [2]. Equilibrium statis-
tical mechanics provides an explanation and a prediction
for this phenomenon as the most probable result of mix-
ing in phase space. It allows to reduce the study of the
large scale organization to a few parameters, without de-
scribing the full complexity of the dynamics involving a
huge number of degrees of freedom. The original idea
to use statistical mechanics arguments to describe self-
organization of 2D flows comes from L. Onsager himself
in the framework of point vortex models [3, 4]. A statis-
tical mechanics theory for the continuous Euler dynam-
ics has been proposed by Miller, Robert, Sommeria [5–8]
(MRS hereafter), which has led to several successful ap-
plications to geophysical flows [9–12]. This theory is the
equivalent of Lynden Bell’s statistical mechanics of the
Vlasov dynamics [13], which has been proven useful to
address self-organisation in self-gravitating systems [14],
or in toy models of long-range interacting particles [15].

The equilibrium theory of long-range interacting sys-
tems is now fairly well understood [1], but determining
how and when an initially unstable condition far from
equilibrium actually relaxes towards an equilibrium state
after a "violent relaxation" process [13] remains a chal-
lenging problem [16]. Here we will focus on physical mod-
els that are continuous dynamical systems involving an
infinite number of degrees of freedom, but their numerical
implementation requires a discrete approximation of the
dynamics. The "violent relaxation" corresponds to the

Figure 1: (Color online) Temporal evolution of the α-vorticity
field during the violent relaxation of an unstable initial con-
dition.

fast evolution of the discretized system towards a stable
state of the continuous dynamics, usually called quasi-
stationary state (QSS). This relaxation occurs on a typ-
ical time scale independent of the discretization [17, 18].

One key difficulty concerning the continuous dynam-
ics of long-range interacting systems is that the set of
stable states is usually much larger than the set of equi-
librium states, and there exists other invariant measures
than those predicted by the equilibrium theory [19]. Con-
sequently, a class of unstable initial conditions may be
attracted towards stable states different from the most
probable one. Indeed, various examples of ergodicity
breaking in non neutral plasma and self-gravitating sys-
tems have been reported [16]. Similarly, applications of
MRS theory to freely evolving flows have led to mitigated
results [20–24].
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In all those previous studies, the initial conditions was
varied but the range of the interaction was fixed. Here
we address the role of long-range interactions during the
violent relaxation of a given unstable initial condition
towards QSS by considering a class of 2D flow models
introduced in Ref. [25], in which interactions between
fluid particles (infinitesimal fluid volumes) are labelled
by a parameter α > 0. It includes 2D Euler dynamics
(α = 2), surface quasi-geostrophic dynamics (α = 1),
which is relevant to describe some aspects of atmospheric
and oceanic turbulence [26], and a model for mantle
convection (α = 3) [27, 28]. The initial goal for studying
this model was to address the locality hypothesis for
turbulent cascade [25, 29, 30]. It has then been proven
useful to investigate the possible emergence of finite time
singularities [31] and conformal invariance [32]. We will
see that it also sheds new light on the dynamical effects
underpinning self-organisation of long-range interacting
systems.

The continuous dynamics is expressed as the advection
of the α-vorticity q(r, t) by a 2D incompressible velocity
field v = (−∂yψ, ∂xψ), with r = (x, y) and ψ the stream
function:

∂tq + v · ∇q = 0, q = − (−∆)
α/2

ψ , (1)

where − (−∆)
α/2

is the fractional Laplacian defined in
term of the Fourier components qk = − |k|α ψk in the

case a doubly periodic domain D = [0, L]
2
, with k =

(k, ℓ) the wave vector. Length unit has been chosen such
that the domain scale is L = 2π. The dynamics conserves
the α-energy E [q] ≡ −

∫

D
dr qψ and the Casimir func-

tionals Cf [q] ≡
∫

D dr f(q), where f is any sufficiently
smooth function on D, which includes the α-enstrophy
Z [q] ≡

∫

D dr q2.
The α−energy can be formally written as a poten-

tial energy E =
∫

D
dr

∫

D
dr′ q(r)V (r, r′)q(r′), where

V is the Green function of the fractional Laplacian in
two-dimensions. In the case of an infinite domain D,
this Green function is a Riesz potential V ∼ rα−2 with
r = |r − r

′| except when α is even, in which case
V ∼ rα−2 (log r + C) [33, 34]. Whatever α > 0, inter-
actions between fluid particles are always long-range.

We present in this paper numerical simulations of the
freely evolving Galerkin-truncated dynamics of these 2D
flow models, which is obtained by projecting Eq. (1) on
the wave-numbers |k| ≤ kmax and |ℓ| ≤ kmax, where
kmax is the wave-number cut-off. This corresponds to
an effective spatial resolution N1/2 ×N1/2 with N1/2 =
3kmax [53]. The initial α-vorticity field is the same for
all numerical experiments presented in this paper (see
Fig. 1). It is characterised by a double peaked global dis-
tribution of α-vorticity, and by a typical injection scale
ki = 4. Anticipating that the equilibrium state is always
self-organized at the domain scale, choosing ki ≥ 2 en-
sures that the initial condition is far from equilibrium.
This initial condition is "typical", in the sense that other

initial conditions with similar injection length scale and
similar global distribution yield similar results.

The initial eddy turnover time can be estimated as
ti = (ki/2π)

α/2−2(2π/E1/2), and the time unit will be
chosen for each numerical experiment such that ti = 1.
The vorticity field is stirred by the turbulent flow dur-
ing a few eddy turnover times with concomitant self-
organization at domain scale and direct enstrophy cas-
cade, until it reaches a QSS around t ∼ 10, which can
for instance be quantified by checking that the isotropic
energy spectrum does not change significantly over few
dozens of eddy turnover times beyond that time. Two
striking features of the QSS are sumarized in Fig. 1.
First, there is a scale separation in space between erratic
small scale fluctuations and a well-defined large scale flow
structure organized at the domain scale. Second, the
large scale flow structure is drastically different depend-
ing on the value of α. We ask in the following whether
equilibrium statistical mechanics of the truncated system
and of the continuous system can account for those fea-
tures.

The truncated dynamics is a dynamical system with
a finite number of degrees of freedom given by the
Fourier components of q, for which a detailed Liou-
ville theorem holds [35]. This allows for a direct appli-
cation of the equilibrium statistical mechanics machin-
ery. Among the infinite number of conserved quanti-
ties by the continuous dynamics, only the α-energy E =
∑

k
Ek and the α-enstrophy Z =

∑

k
Zk are conserved

by Galerkin-truncated models, where Ek = −qkψ
∗
k

and
and Zk = |k|αEk are the energy and the enstrophy
of mode k, respectively. Computation of equilibrium
states of the truncated system in the thermodynamic
limit (N → +∞) is a classical result predicting conden-
sation of the α-energy in the lowest-wavenumber mode
(
∑

|k|=1Ek = E) and a concomitant loss of α-enstrophy

towards small scales [35, 36]. More precisely, for large
N , Fourier modes other than the lowest-wavenumber one
have a contribution to the equilibrium state given by

< Ek >= 1
4N

(

Z−E
|k|α−1

)

, where 〈·〉 stands for a tempo-

ral average, which shows equipartition of the enstrophy
Z − E among the Fourier modes for sufficiently large
|k| [37].

The “isotropic energy spectrum” defined as E(K) =
(

∑

|k|=K Ek

)

/ (2πK) is shown in Fig. 2-a for various

values of α. The spectra are computed for only one snap-
shot at large time (t ≈ 40), and we checked that aver-
aging over many snapshots did not make any difference.
As predicted by the theory, the energy is mostly con-
densed at the domain scale (K = 1), and Fourier modes
are thermalized with equipartition of α-enstrophy into
Fourier modes at large K, confirming previous numerical
studies performed in the context of 2D Euler dynamics
[35, 37, 38] or surface quasi-geostrophic dynamics [39].

The presence of a large scale flow containing most of
the energy coexisting with wild small scale fluctuations
of α-vorticity gives a strong incentive for a mean-field
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Figure 2: (Color online) a) Isotropic energy spectrum EK(K)
normalized by (Z − E)/(4NKα−1) at large time (t ≈ 40) for
numerical simulations at resolution N = 10242. b) Corre-
sponding local distributions of α-vorticity levels. The black
symbols in panel (a) and the black line in panel (b) are statis-
tical mechanics predictions for the truncated system, without
fitting parameters.

theory that would predict the probability density field
ρ(r, σ) to measure the α-vorticity level q = σ in the vicin-
ity of point r, and this is what is predicted by the MRS
equilibrium statistical mechanics [7, 8]. In this frame-
work, all conserved quantities of the continuous dynam-
ics can be expresssed in term of ρ(r, σ). One can then
count the number of microscopic configurations associ-
ated with each macroscopic state ρ(r, σ) and compute
the most probable macrostate ρ(r, σ) satisfying the con-
straints of the problem. The theory predicts a concen-
tration of all microscopic configurations close to the most
probable macrostate ρ(r, σ) [40]. The large scale flow is
then given by q(r) =

∫

dσ σρ, and the theory predicts a
monotonic relation between q and ψ [7, 8]. In practice,
following a standard procedure, the observed macrostate
q will be computed through a local coarse-graining of the
microscopic field q, by using a smoothing operator with
a typical length scale much larger than the effective grid
mesh, but much smaller than the domain scale. Equi-
librium states of the truncated system in the thermody-
namic limit (N → +∞) are a subclass of MRS equilib-
rium states, characterized by a linear q − ψ relation and
by local gaussian fluctuations of α-vorticity ρ(r, σ) with
variance (Z − E) [19, 41]. By contrast, when additional
invariants than the energy and the enstrophy are taken
into account, ρ(r, σ) is in general non-gaussian. For in-
stance, the initial condition shown on Fig. 1 has been
constructed in such a way that the global distribution is
close to a double peaked distribution, and MRS theory
predicts in that case that the local probability distribu-
tions of the equilibrium states of the continuous dynamics
should also be double peaked distributions [11].

To the best of our knowledge, we show in Fig. 2-b
the first observation of such local gaussian fluctuations
for the vorticity field in numerical simulations of the
Galerkin-truncated dynamics [54], confirming theoretical
predictions [19, 41]. However, the success of the statisti-

cal mechanics theory of the truncated system is restricted
to small scales: the theory underestimates the contribu-
tion of intermediate wavenumbers 1 < K < 30 in the
spectra of Fig. 2-a. In addition, Fig. 3 clearly shows that
the q−ψ relation of the large scale flow is non-linear: in
the case α = 0.5, it has a tanh-like shape, while it has
a sinh-like shape in the case α = 3. In any case, such
relations are not predicted by the statistical mechanics
of the truncated system, which fails to account for the
different large scale flow structures observed in Fig. 1.

For any monotonic functional q−ψ relation, there ex-
ists at least one set of constraints such that the MRS equi-
librium state associated with these constraints is charac-
terized by this functional relation [42]. In that respect,
the observed large scale flow is close to an equilibrium
state of the continuous dynamics. However, we see in
Fig. 3 that fluctuations around the observed q − ψ func-
tional relation are present, and we checked that these
fluctuations are independent of the wavenumber cut-off.
This means that the large scale flow is not exactly sta-
tionary. In addition, given our choice of an initial condi-
tion characterized by a global distribution of α-vorticity
levels with a double-peaked shape, MRS theory predicts
that the equilibrium state should be characterized by a
tanh-like shape, whatever the value of α, see e.g. [11].
This means that the large scale flow obtained in the case
α = 0.5 is close to the actual equilibrium state, but not
in the case α = 3.

A transition from a unidirectional flow to a dipolar
flow is expected when the q − ψ relation changes from a
tanh-like shape to a sinh-like shape [43], and the large
time flow structure shown in Fig. 3 are consistent with
these predictions. In order to study more quantitatively
the transition from one state to the other when α is var-
ied, it is useful to introduce an empirical order param-

eter O =
min{E(1,0);E(0,1)}
max{E(1,0);E(0,1)}

comparing the energy of the

lowest-wavenumber modes (k, l) ∈ {(1, 0) , (0, 1)}. This
parameter is zero in the case of a unidirectional state,
and one in the case of a purely dipolar state. Fig. 4-
a shows the temporal evolution of O in the high res-
olution runs N = 10242. The flow is trapped in the
dipole state when α ≥ 2. The order parameter decreases
with α for 1.25 < α < 2, which shows the existence of
a smooth transition from the dipole state to the unidi-
rectional state. For α ≈ 1 the order parameter is char-
acterized by small periodic or quasi-periodic oscillations,
which are related to the presence of unmixed vortices.
Such oscillations have previously been reported in the
context of 2D Euler dynamics, for particular initial con-
ditions [22, 24, 44]. For even smaller values of α (here
α = 0.5), the unidirectional state is characterized by peri-
odic oscillations corresponding to large scale oscillations
of the interface between two homogeneous regions of po-
tential vorticity. These states were previously observed
for some particular initial conditions in the context of
the 2D Euler equation [44]. In the presence of finite
small scale dissipation, these oscillations were found to
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Figure 3: (Color online) q−ψ relation for the fields shown in
Fig. 1 at t ∼ 100. The plain black line is obtained by consid-
ering the averaged α-vorticity value along a given streamline.

decay at sufficiently large time [21]; here effective dis-
sipation occurs due to finite resolution and we observed
that increasing resolution leads to an increase of the time
scale for the decay of these oscillations. Fig. 4-b shows
temporal averages of the order parameter O as function
of α and resolution N1/2. Time average is performed
over few dozens of eddy turnover times once the QSS is
reached. We see a sharp transition from one regime to
the other around α = 1 for low resolution runs, but the
transition becomes smoother for higher resolution runs,
as in Fig. 4-a. We checked that the dipolar state was
robust when further increasing the resolution for α = 2.
We also found that decreasing the injection length scale
ki shifted the transition from dipolar to unidirectional
states below α = 2, but did not change qualitatively the
results. We show in the following that phenomenological
arguments in limiting cases allows us to rationalize these
observations.

In the limit α → 0, the α-vorticity can be written
at lowest order as q = αL [ψ] − ψ, with L a negative
definite operator whose eigenmodes are Laplacian eigen-
modes and whose eigenvalues are increasing functions of
|k|. This is reminiscent of the 11/2 layer quasi-geostrophic
model, another 2D flow model for which the advected
tracer is q = ∆ψ − ψ/R2. In the limit R → 0, this flow
model is known to spontaneously form regions where q
is homogenized, separated by sharp jets [45, 46], which
is expected either from cascade phenomenology [47] or
from statistical mechanics arguments [48]. The formal
analogy between 11/2 layer quasi-geostrophic model and
2D α-turbulence in the limit α → 0 explains therefore
the coarsening process resulting in the phase separation
observed in Fig. 1 for α = 0.5. Once the two regions of
homogenized α-vorticity are formed, their interface sup-
ports the existence of neutral (or Kelvin) modes oscil-
lating periodically [49, 50]. This prevents a complete
relaxation towards the actual equilibrium state, which is
characterized by a minimal interface length [48].

When α → +∞, the stream function field is domi-
nated by the lowest-wavenumber modes |k| = 1 as soon
as the α-vorticity projections on the lowest-wavenumber

Figure 4: (Color online) a) Temporal evolution of the order
parameter O (see text) for various values of α, in the run with
resolution 10242 b) Temporal average of the order parameter
O for different values of α and wavenumber cut-off kmax =
N1/2/3.

modes (q1,0 or q0,1) are non-zero. The α-vorticity field
q is sheared by this large scale flow, except at the two
points where straining vanishes (provided that both q1,0
and q0,1 are non-zero). Since the large scale flow is
initially non stationary, the early evolution of the α-
vorticity field looks like chaotic mixing of a passive tracer
due to a large scale flow (see Fig. 1 for α = 3). This pro-
cess leads to a background of homogenized α-vorticity
field, with two isolated blobs of α-vorticity in the vicin-
ity of the two points where straining vanishes. Following
this phenomenology, irreversible mixing in physical space
through filamentation due to stretching prevents efficient
mixing in phase space.

For intermediate values of α, a useful non dimensional
parameter of the problem is given by P =

(

2π
L

)α E
Z com-

paring the enstrophy of the coarse-grained large scale flow
with the total enstrophy. This parameter varies from 0.5
to 0.02 in our simulations. It has been observed in the
Euler case that an unstable initial condition converges
in general towards a state close to the equilibrium one
when P is close to one [20], while the dynamics relaxes
towards a dipolar flow with two isolated vorticity peaks
and a background of homogenized vorticity when P is
small [51, 52]. A qualitative reason for the failure of sta-
tistical mechanics prediction in that case is that excess
enstrophy Z − E

(

2π
L

)α
initially at scale 2π/ki contains

most of the information on the large scale distribution
of α-vorticity, and yet does not contribute significantly
to the dynamics of the large scale flow since it is rapidly
lost into smaller scales through a direct enstrophy cas-
cade. In our numerical experiments Z is prescribed in-
dependently from α, and the energy is E ∼ k−α

i Z, which
yields P ∼ (kiL)

−α. We see that P decreases when either
ki increases or when α increases: as far as the conver-
gence towards the dipolar state is concerned, changing
the range of interactions has the same effect as changing
the initial condition. We also see that P tends to one
when α tends to zero, which suggests that the dynamics
is more likely to reach an equilibrium state in this limit,
consistently with our numerical results.

a. Conclusion. We have studied the dynamics of
truncated two-dimensional flows in which the energy and
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the enstrophy were injected at a scale 2π/ki smaller than
the domain scale L, ensuring that the initial state is far
from equilibrium. We have shown that small scales fea-
tures of the QSS following the initial violent relaxation
are well described by the equilibrium statistical mechan-
ics of the truncated system, but that the corresponding
large scale flow remains close to a stable state of the
continuous dynamics whose topology depends strongly
on the range of interactions, through the parameter
(

2π
L

)α E
Z . When this parameter is small, which occurs

whenever α is sufficiently large, the dynamics systemati-
cally relaxes towards a dipolar state through a filamenta-
tion. When this parameter is close to one, which occurs
whenever α is sufficiently small, the system relaxes close
to the equilibrium state of the continuous dynamics pre-
dicted by MRS theory through a coarsening process, but
we observed persistent large scale oscillations prevent-
ing a complete relaxation. On the basis of those results,
we conjecture that weak long-range interacting systems

are more prone to relax towards equilibrium than strong
long-range interacting systems, but that the time scale
for complete relaxation may diverge as the range of in-
teractions get weaker. We focused in this paper on a
small range of α that included existing physical models.
Exploring a larger range of α will be needed to test in
more detail the phenomenological argument obtained in
limiting cases.
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