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Abstract

There is a growing interest around the utilisation of cloud computing in education. As organisations involved
in the area typically face severe budget restrictions, there is a need for cost optimisation mechanisms that explore
unique features of digital learning environments. In this work, we introduce a method based on Maximum Likelihood
Estimation that considers heterogeneity of IT infrastructure in order to devise resource allocation plans that maximise
platform utilisation for educational environments. We performed experiments using modelled datasets from real
digital teaching solutions and obtained cost reductions of up to 30%, compared with conservative resource allocation
strategies.
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1. Introduction

Digital teaching requires new methods to continu-
ously evaluate student performance [1]. These meth-
ods revolve around collecting, classifying, and under-
standing events that happen during in-classroom activ-
ities [2]. They require the instrumentation of learning
environments to generate multi-dimensional signals ca-
pable to define key contextual elements. This approach
generates large amounts of data that need intense com-
puting power and storage. As a solution, Sclater envi-
sions that “the majority of educational services will be
hosted in the cloud and institutions no longer host their
own data centres with expensive hardware, power bills,
staff salaries and computing resources which are rarely
fully utilised” [3]. A challenge in this context is to bal-
ance resource demand, expected quality of services, and
operational costs thus making the use of technology vi-
able for the education environment.

In terms of cloud computing, this means to minimise
the number of allocated resources subject to keeping
quality of service at an acceptable level [4]. We claim
that, given the unique features of digital education, one
can devise mechanisms of resource allocation tailored
for this domain. For instance, it is possible to estimate
the number of resources required by a classroom during
a specific class based on information such as features of
the learning objects in digital education material, num-

ber of students, and historical resource demand. Tradi-
tional methods, however, estimate the peak usage and
allocate resources considering a safety margin over the
worst-case scenario; this over-allocation approach re-
sults in large and undesired resource waste. The work
presented by Koch et al. compared different allocation
strategies and evaluated their expenditures and impact
upon Quality of Service (QoS) [5].

In order to optimally exploit the cost-effectiveness of
cloud computing in education, we propose a probabilis-
tic method that allows fine-grained adjustments of load
forecast models and hence enables significant cost re-
ductions in a pay-as-you-go business model. We con-
sider the number of resources wc for delivering a class
c, a prime αr of demand fluctuation based on limita-
tions of the cloud infrastructure supporting activities in
classroom r, and a prime β of safety margin which is
adjusted according to the confidence level of the esti-
mations. Special care must be taken with such methods,
though, as they bring larger risks to QoS. The research
questions addressed in this paper are:

• How to adjust prime αr in order to optimise re-
source allocation?

• How to adjust prime β to achieve acceptable QoS
levels?

To address these research questions, we constructed
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scenarios based on real-world digital teaching initia-
tives. In particular, we evaluated these scenarios consid-
ering fluctuations of infrastructure availability, which is
typical in developing countries. The proposed method is
analysed via discrete-event simulations considering var-
ious numbers of classrooms and using resource savings
and QoS violation as metrics.

The contributions of the paper are the following:

• A probabilistic resource allocation method for ed-
ucational institutions to optimise their use of cloud
resources;

• An evaluation of the method under several scenar-
ios using data based on existing digital teaching
initiatives.

The article is structured as follows. Section 2 intro-
duces the motivation of this work by describing how
resource demand behaves in a real world implementa-
tion of a digital teaching platform and presents the for-
mal description of the problem. Section 3 describes the
probabilistic algorithm used for resource allocation. Re-
sults of a computational evaluation involving the pro-
posed method are presented in Section 4. Section 5 con-
tains the description of related work in the literature, and
Section 6 presents our conclusion.

2. Motivation and Problem Description

Digital teaching provides means for instrumenting
learning environments and novel methods to collect,
classify, and understand in-classroom learning activi-
ties. The workload of such systems varies over time
depending on the context and elements composing the
delivered education material. For example, there are de-
mand peaks throughout the delivery of a class when the
material comprises videos, pictures, tests, screen shar-
ing, and so forth. Moreover, fluctuations of network
availability highly influence the flow of incoming re-
quests, which leads to an undesired decrease in resource
demand. When using resources from a cloud, these nu-
ances must be considered when optimising allocation of
resources in order to minimise cost and avoid waste.

The scenario considered here is that of a service
provider—or educational organisation—that needs to
automatically allocate resources from a cloud to deliver
education services required by a school or university.
We considered Samsung School solutions in this arti-
cle, a real world implementation of a digital teaching
platform. The addressed problem can formally be de-
fined as follows. Let R denote a set of classrooms and
C denote a set of classes. We assume that all classes are

presented in each classroom exactly once over T time-
slots, so that we denote by S r,t the class c being taught
in classroom r at the t-th time-slot, 1 ≤ t ≤ T . Let us
consider that there is a set of learning objects L(c) as-
sociated to class c. Each object l is a media element of
type m(l), where type in this context may refer to text,
image, and video. Let us denote the amount of resources
consumed by learning objects of type m by w(m). The
sequence of events are as follows:

1. Educator signs into a classroom r at time-slot t and
confirms that class c = S r,t will be delivered.

2. Students located in r sign in and the applications
running on their devices load the links to content
in L(c).

3. Educator starts the class.
4. Educator requests students to go to specific objects

or pages, act upon objects, respond to tests, watch
videos, etc.

5. Students react to educator’s command in hetero-
geneous ways, depending on the behaviour of the
cloud infrastructure supporting material delivery
in r and their level of engagement.

6. The cycle loops to Step 4 until the class ends (i.e.,
until the end of time-slot t).

7. Applications upload log files reporting all activities
during the class.

8. Students and educators are prepared to start activi-
ties scheduled for time-slot t + 1.

9. The cycle loops to Step 1, if more classes exist.

It is clear that peak load can happen at distinct points,
such as when the applications load the material (Step 2),
when students act upon the content (Step 5), and when
the application uploads the log files for processing (Step
7). Thus, the maximum resource demand per student
throughout class c is roughly maxl∈L(c) w(m(l)), and if
the number of students located in classroom r is n ∈ N,
then the maximum resource demand of c is given by

wc = n
(
max
l∈L(c)

w(m(l))
)
.

One may infer c from r and t given S . We will use
wr,t and wc interchangeably whenever c = S r,t. We re-
mark that maximum resource demand wc is achieved if
all students access the most resource-demanding learn-
ing content simultaneously.

Ideally, each class c is expected to have maximum
demand wc, independently from the classroom where it
is being presented. However, as classrooms may be lo-
cated in different regions and, consequently, subject to
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different IT infrastructure, deviations on wc may occur.
For instance, in places where data transmission is inef-
ficient, students may not be able to access the content
smoothly. In these situations, allocated resources may
be underused.

The goal of an optimum resource allocation method
is to maximise system utilisation while delivering good
QoS, where QoS is harmed whenever the number of
allocated resources is insufficient for the load require-
ments.

We propose a method that considers usage variations
caused by cloud infrastructure issues to reduce over-
allocation and set adequate safety margins that reduce
risk of QoS degradation. This technique is specially
useful in emerging countries such as Brazil, where fluc-
tuations of data communication availability is a com-
mon reality; moreover, a successful implementation of
this technique will rationalise the cost factor around
cloud computing for education.

3. Probabilistic Workload-Aware Dynamic
Resource Allocation

Let w′r,t = w′c denote the actual resource consumption
demand of class c = S r,t for classroom r, as explained
in Section 2. This value can be smaller than wc in cases
where the underlying IT infrastructure r does not deliver
optimal service. That is, quality of infrastructure influ-
ences directly upon resource utilisation. This scenario
emerges in schools with poor Internet connection, as ex-
ecution of specific content may be impacted by the slow
communication—thus students give up from playing the
content, consequently curbing the data load. Moreover,
for each time-slot t, let

wt =
∑
r∈R

wr,t

denote the total expected number of resources and

w′t =
∑
r∈R

w′r,t

denote the actual resource demand at t
We assume that deviations on wc for each class c

presented in classroom r are given by a multiplicative
factor αr drawn from a gaussian distribution N(µr, σ

2
r )

whose values are truncated on the interval [0, 1], that is,
w′r,c = αrwc. Parameters µr and σ2

r depend only on the
classroom r, i.e., we assume that the variations are de-
pendent exclusively on the classrooms, and not on the
classes.

We extend the algorithm presented in our previous
work by considering values αr for the estimation of the
required number of resources from the cloud [5]. In
real-world settings, it is typically not possible to know
a priori the values of µr and σ2

r , so we employ Maxi-
mum Likelihood Estimation (MLE) to compute the val-
ues of these parameters for each r and for each time-
slot t based on the actual values of α that have been
observed in previous time-slots. Namely, our approach
“guesses” a resource consumption value w∗r,t for each
pair (r, t), so it assumes that the total allocation will be
given by

w∗t =
∑
r∈R

w∗r,t.

The algorithm also employs a safety margin β for re-
source allocation, which changes over time according
to the quality of forecast results but never goes below a
given constant β′ (e.g., β′ = 1.3 represents a minimum
margin of 30%). Therefore, the actual allocation will be
given by βtw∗t , where βt denotes the current value of β
at time-slot t.

The pseudo-code of the resource allocation algorithm
is presented in Algorithm 1. As input data, it receives
parameters R, C, S , and T and as output it delivers a
QoS violation value Q, which is given by

Q =
1
T

∑
t∈[1,T ]

max(w′t − βtw∗t , 0)
w′t

.

Q can be interpreted as follows: in each time-slot t, if
βtw∗t < wt, the number of resources is insufficient, so a
fraction of the students, given by (w′t − βtw∗t )/w′t , will
suffer with bad QoS. The value of Q is the sum of these
fractions for every time-slot t in [1,T ] divided by T , so
it is equal to the average percentage of students that will
receive bad QoS per time-slot.

Variables Q and β are initialised with 0 and 0.2, re-
spectively (Lines 1 and 2). Moreover, the algorithm
maintains a “list of lists” α′ that, in each time-step t,
will be given by α′r = {α′r,1, α

′
r,2, . . . , α

′
r,t−1}, with

α′r,t′ =
w′S r,t′

wS r,t′

for 1 ≤ t′ < T . For each r, α′r is initialised as an empty
list (Lines 3-4).

Algorithm 1 main loop iterates over each time-step t
(Lines 6–17). Initially, it obtains an estimation of re-
source demand using Algorithm 2, described below
(Line 7). Afterwards, it computes the actual resource
demands (Lines 8 and 10) and updates α′ by append-
ing α′r,t to each list α′r (Line 10). Once the difference ∆
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Algorithm 1: Proposed resource allocation.
Input: R, C, S , T
Output: QoS estimation

1 β← 0.2;
2 Q← 0 ;
3 β′ = // administrator’ specified minimum safety

margin (e.g 1.3);
4 for r in R do
5 α′r = [];

6 for t in [1,T ] do
7 w∗t = Algorithm 2(R,C, S , t, α′);
8 w′t ← 0;
9 for r in R do

10 w′t ← w′t + w′r,t;
11 α′r.append(α′r,t);

12 ∆ = βw∗t − w′t ;
13 if ∆ > 0 then
14 β← max(β(1.0 − s′), β′);

15 else
16 β← (1.0 + s)β;
17 Q← Q − ∆/w′tT ;

18 return Q;

Algorithm 2: Estimation of resources demand.
Input: R, C, S , time-slot t, α′

Output: Number w∗t of resources to be allocated
1 w∗t ← 0;
2 for r in R do
3 c = S r,t;
4 µr, σ

2
r ← MLE(α′r);

5 αr = draw(N(µr, σ
2
r ));

6 w∗t ← w∗t + wcαr;

7 return w∗t ;

between the estimated and the actual resources demand
has been computed (Line 12), the algorithm adjusts the
value of β according to the progression of this error.
Namely, if the error in t is greater than 0, β becomes
the maximum between (1.0 − s′)β, s′ ≥ 0, and β′ (Line
14). Both s and s′ are constants that contain the value
0.005. Conversely, if it is smaller than 0, β is multiplied
by (1.0+s) and Q is incremented by −∆/(w′tT ) (Lines 16
and 17). Finally, after the end of the loop, Q is returned.

Algorithm 2 is used to estimate the number of re-
quired resources. As input data, it receives the set R
of classrooms, the set C of classes, the schedule S ,
the time-slot t for which the allocation is being per-

formed, and α′. Initially, it sets w∗t to zero (Line 1).
Then, for each classroom r (Lines 2-6), the algorithm
retrieves the class c that is going to be presented at r in
time-step t (Line 3). Afterwards, it estimates the val-
ues of parameters µr and σr

R characterising the normal
distribution that describes αr using MLE on α′r (Line
4). Once µr and σ2

r have been computed, the algorithm
draws a value αr from N(µr, σ

2
r ) (Line 5) and w∗t is in-

cremented by the product of the estimated resource con-
sumption wc and αr (Line 6). For a class r for instance,
if αr = 0.7 and the maximum number of resources for
delivering the class wc = 100, then w∗t is incremented
by 70 resources. After the end of the main loop, the
method returns the number w∗t of resources required in
time-slot t (Line 7).

We assume that the behaviour of the IT infrastructure
is stable along the delivery of material in each class-
room r. That is, µr and σ2

r do not change over time.
We remark that the method can be easily adapted to
situations where this assumption does not hold by sim-
ply restricting the application of MLE to the last values
of vector α′r, eliminating hence the influence of values
w′c/wc that do not reflect the current distribution.

4. Performance Evaluation

4.1. Experimental Setup and Metrics

In order to perform experiments in a controlled and
repeatable manner we generated a set of synthetic work-
loads that resemble the log files created by the digital
teaching problem described in Section 2. We consider
a number of classrooms, with each having a maximum
number of students who attend a number of classes per
day. As detailed later, a generated workload contains the
hourly demand for number of resources for each class-
room over a number of days.

We associate the conduction of each class in a class-
room to a time-step in T , so an iteration of Algorithm 1’s
main loop (Lines 5-16) is executed before all classes
taking place in the associated time-step. In the begin-
ning of each iteration, Algorithm 2 estimates the num-
ber of resources that will be required by the set of
classes being conducted in the associated time-step. Es-
timations made in Algorithm 2, safety margin β, and
QoS violation are updated in each iteration according to
actual demands registered in previous steps.

To emulate the difficulty that students located in a
given classroom may experience while accessing the ed-
ucational content due to infrastructure issues, we sort
parameters µr ∈ [0.5, 1.0] and σ2

r ∈ [0.01, 0.2] uni-
formly for each classroom r. Then, in each time-slot t,
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we draw αr,t from the gaussian distribution N(µr, σ
2
r )

truncated at the interval [0, 1] and multiply it by the
maximum number of students in the class [6]. If αr =

0.8, only 80% of the students in the class are able to
properly access the educational content.

We generate the set of classes C considering the av-
erage content used by Samsung School solutions in
Brazil. We vary the number of classes rather than sub-
ject areas and teacher behaviour in order to enable a
more fair comparison of the allocation models. Each
subject consists of a number of pages uniformly dis-
tributed between 18 and 25; each page is accessed at
a specific time during class and contains from 6 to 12
learning objects, which can be text, image, or video.
Typically, approximately 20% of the learning objects
are text, 30% are images, and 50% are videos. In our
experiments, we purposefully extended the amount of
video considering new pedagogical models being ap-
plied in digital teaching solutions and the fact that this
type of learning object constitutes the de facto standard
of add-on support material. For the sake of this analysis,
let us consider that the objects’ sizes are pre-established:
texts are between 2KB and 8KB; images are between
180KB and 1.5MB, and videos are between 6MB and
15MB. These numbers are aligned with actual parame-
ters observable in Samsung School solutions. Peak load
is computed based on (i) the number of students able to
access the content during a class, and (ii) the number of
HTTP requests (i.e., HTTP chunks) required to trans-
fer the content into the students’ devices. The peak pa-
rameter is applied to determine the maximum resource
demand of the class.

We evaluate two performance metrics to determine
the provided QoS levels and the resource savings
achieved by the proposed allocation method:

Resource saving: the ratio between the amount of
resources allocated by the algorithm, given by
β
∑

t∈[1,T ] w∗t , and the maximum estimated amount
of resources, given by

∑
t∈[1,T ] wt.

QoS violations: the value Q defined in Section 3.

Finally, for the sake of comparability, we remark that
“conservative” approaches allocate resources according
to

∑
t∈[1,T ] wt (possibly with an additional safety margin)

and, therefore, typically have Q = 0, since they avoid
situations with insufficient resource allocation.

4.2. Results and Analysis
We evaluate the performance of the proposed alloca-

tion method by considering scenarios with various num-
bers of classrooms. In the first set of experiments |R|
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Figure 1: Resource savings under various numbers of classrooms
(σ2

r ∈ [0.01, 0.2]); where β′ is the minimum resource safety margin.

varies from 1 to 301 (with step size 10) and different
values for the minimum safety margin β′ are considered.
We argued in our previous work that a safety margin of
30% (i.e., β′ = 1.3) is commonplace in the industry [5],
and therefore we included it for comparison. Note that
the margin is necessary not only because of possible er-
rors with predictions, but also because Cloud resources
may not offer a steady performance [7].

Figure 1 shows resource savings under various num-
bers of classrooms and values of β′, where the savings
are computed as the difference between the resources
required to handle peak load and the actual provision.
Initially, we observe that, not surprisingly, low values
of β′ lead to large savings, while β′ = 1.3 is less effec-
tive. In most cases, savings are above 25%, except un-
der certain scenarios where the number of classrooms is
small.

This difference between instances with small and
large values of |R| can be explained by the possibili-
ties that large |R| provides to error cancellation. In each
time-slot t, our algorithm assumes that the amount of re-
sources that will be used by classroom r is w∗r,t = wr,tα

′
r,

where α′r is a random variable drawn from a truncated
gaussian distribution. It is clear that w∗r,t will almost al-
ways be wrong, but since errors in the estimation of the
distribution decrease over time, deviations tend to de-
crease. Moreover, w∗r,t ≥ w′r,t in some cases and w∗r,t ≤
w′r,t in others, so underestimations are frequently com-
pensated by overallocation. For higher values of |R|,
such cancellations happen frequently, whereas extreme
cases with just 1 classroom depend strongly on the ac-
curacy of its distribution’s estimation. This strategy fits
very well in digital teaching environments as it is pos-
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Figure 2: QoS violations under various numbers of classrooms (σ2
r ∈

[0.01, 0.2]); where β′ is the minimum resource safety margin.

sible to have a fairly accurate estimate on resource us-
age since classes happen in pre-defined time slots and
their content are known in advance. Apart from that,
classes happen in parallel, thus amortising error among
the classrooms. It is also important to notice that we in-
cluded experiments with small numbers of classrooms
for the sake of completeness, even though the average
number of classrooms in public schools in Brazil is of-
ten greater than the point where the proposed method
presents substantial savings.
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Figure 3: QoS violations under various numbers of classrooms (σ2
r ∈

[0.01, 0.1]); where β′ is the minimum resource safety margin.

Figure 2 presents QoS violations for scenarios with
varying number of classrooms; for the sake of better
visualisation the values have been multiplied by 100.
Two observations should be made regarding these re-
sults. First, the accumulated QoS violation is consider-

ably low (always under 2%), and this holds for all the
values of β′. Second, direct comparison between curves
show that adding 0.01 to β′ reduces considerably the
percentage of QoS violations. This fact is a direct con-
sequence of the relatively large standard deviation val-
ues; clearly, in cases where σ is large, mistakes in pre-
dictions are more likely to occur and to be larger. There-
fore, for scenarios where β′ is too low, the adjustments
it yields may not be sufficient to overcome an overall
estimation w∗r,t that was too low.

The observations above motivated an investigation of
scenarios where σ2

r assume significantly smaller values.
Figures 3 and 4 show the results of experiments in sce-
narios where σ2

r ∈ [0.01, 0.1] for each r in R. Figure 3
corroborates the discussions above by showing that QoS
violations are significantly smaller in scenarios with low
variance (as presented in Figure 2). Conversely, im-
provements on QoS typically lead to more costs, and
this is exactly what can be observed in a direct compar-
ison between Figure 4 (lower variances) and Figure 1
(higher variances). In resume, we observe a clear trade-
off between QoS and resource savings, and this aspect
becomes more evident in scenarios where |R| is small
(as discussed below).
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Figure 4: Resource savings under various numbers of classrooms
(σ2

r ∈ [0.01, 0.1]); where β′ is the minimum resource safety margin.

Figure 2 shows that QoS violation is very close to
zero for instances with 10 and 20 classes if the al-
gorithm is set with β′ = 1.3 and β′ = 1.1, respec-
tively. Higher values of β′ clearly improve QoS, but
as lower values lead to significant resource savings (up
to 20% in some scenarios), we decided to investigate
the trade-off between QoS and resource savings for rel-
atively small values of β′ and |R|, i.e., 1 ≤ R ≤ 70 and
β′ ∈ {1.04, 1.06, 1.08, 1.1, 1.2}. The results are reported
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Figure 5: QoS violations between 1 to 70 classrooms (σ2
R ∈

[0.01, 0.2]); where β′ is the resource minimum safety margin.
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Figure 6: Resource savings between 1 to 70 classrooms (σ2
R ∈

[0.01, 0.2]); where β′ is the resource minimum safety margin.

in Figures 5 and 6, which show QoS levels and resource
savings, respectively. Both figures suggest that there is a
certain “critical mass” related to the quality of our algo-
rithm; in particular, the curves reach a certain stability
when |R| becomes larger than 30 due to error cancella-
tion.

To further explain the reasons of these results, we
note that scenarios with few classrooms reduce the pos-
sibilities of error cancellation, making hence the perfor-
mance of our method more unpredictable and more sus-
ceptible to the mean and, more important, to the vari-
ance of the distributions. For instance, a sequence of
time-steps where most deviations are either positive or
negative lead to “abnormalities” such as the one ob-
served with |R| ≈ 6, where QoS violations and resource
savings abruptly increased and decreased, respectively.

Therefore, scenarios with small values of |R| make our
method more susceptible to the values of σ2. Never-
theless, our results show that these effects can be miti-
gated if we set β′ = 1.1 because, in this case, QoS viola-
tions are negligible and resource savings are significant
(above 20%). In summary, higher values of β′ make the
MLE method less sensitive to the parameters of the dis-
tributions and reduce QoS violations at the expense of
additional expenses with resources.

Finally, we observe that the MLE method in Algo-
rithm 2 has a convergence rate that is satisfactory for
digital teaching scenarios. Namely, after few time-steps
(approximately 10), it is possible to observe that the
effects of noise start to be adequately filtered out and
parameters (µr, σ

2
r ) become indeed subject to fine-grain

adjustments. Typically, after 20 time-steps, significant
changes on (µr, σ

2
r ) cease to happen, suggesting hence

that the algorithm is also suitable for scenarios where
the behaviour of the IT infrastructure may change over
time.

5. Related Work

Cloud Computing is being used by educational in-
stitutions as a platform for offering modern and up-to-
date IT resources to students [8, 9]. This is particularly
important in developing countries and for meeting the
limited budgets that institutions often have as a result
of the current economic turmoil [10, 11, 12, 13]. The
2010 UNESCO Report points out that Cloud comput-
ing offers opportunities for cost reduction due to the
economies of scale, thus resulting in a shift away from
locally-hosted services [3]. The same report highlights
the benefits of cloud computing for institutions and stu-
dents. Apart from the claimed benefits of cost reduction,
elasticity [14], and concentration on core business, the
report mentions enhanced resource availability, better
end-user satisfaction, and augmented learning process
and collaboration. Cloud is also an interesting mecha-
nism for schools to use software licenses over the Inter-
net [15].

Another study has focused on the opportunities of
cloud computing to increase collaboration among mul-
tiple institutions [16]. In addition, as discussed by Sul-
tan, there are several examples of educational institu-
tions that have adopted cloud computing not only to ra-
tionalise the management of IT resources, but also to
make the education process more efficient [13].

Cost reductions and quality of service are key fac-
tors for educational institutions and are impacted by
how cloud providers manage their resources. Having

7



appropriate tools for doing so is an important differ-
entiator. The following projects, for instance, have in-
vestigated aspects related to Service Level Agreements
(SLAs) and load prediction methods for optimising re-
source management. Emeakaroha et al. investigated
monitoring time intervals for detecting SLA violations
and for informing the resource allocation system of
such violations [17]. The solution is reactive and does
not use service workload for proactively predicting re-
source consumption. Li et al. introduced an approach
to optimal virtual-machine placement for predictable
and time-constrained load peaks [18]. The solution, al-
though focuses on a proactive resource allocation using
prediction techniques, does not leverage specific infor-
mation about the workload domain. Similar approaches
were investigated by Ali-Eldin et al. [19]. McGougha
et al. compared on-premise and cloud resources [20]—
such a study is relevant for better understanding the
cost-benefit of moving workloads to the Cloud.

As in other domains, educational institutions can also
utilise hybrid clouds to balance their workloads between
on-premise and remote infrastructure [21, 22, 23]. The
selection of a cloud can range from a single provider
to multiple providers. For the latter, recommendation
systems could be leveraged to select providers [24, 25].

Bodenstein et al. have focused on resource alloca-
tion decisions, ignoring application information to pre-
dict when resource allocation should be adapted [26].
Gong et al. introduced a system called PRedictive Elas-
tic ReSource Scaling (PRESS), which aims at avoiding
resource waste and service level objective violations in
the context of cloud computing [27]. Their goal is to
avoid the use of application profiling, model calibra-
tion, and understanding of user applications. Our work
takes another direction where cloud customers provide
information about their workloads to avoid SLA viola-
tions and reduce resource waste. Gmach et al. also in-
vestigated capacity planning using historical data, but
without considering the nature of the workload [28].
Other projects [29, 30] have also explored the use of
resource consumption prediction to better allocate re-
sources. However they have not considered IT cost re-
ductions and QoS in their studies. Adaptive resource
allocation and demand prediction have also been ex-
plored in Grid and cluster computing environments
[31, 32, 33, 34].

Our work exploits a gap in the state-of-the-art for a
method to assess the impact of using specific domain
information of a workload to assist resource allocation
considering both IT costs and QoS for educational insti-
tutions.

6. Conclusion

We presented in this work a probabilistic resource al-
location method that can be specially tailored for cloud
computing environments providing services to educa-
tion institutions. The proposed method explores the fact
that IT infrastructure instrumenting physical classrooms
may be heterogeneous and may prevent students from
accessing the education material, which leads to under
used resources. The method improves system utilisation
(and, simultaneously, reduce allocation costs) at the ex-
pense of a minor impact on QoS.

For our evaluation, we generated datasets reproduc-
ing scenarios that are similar to those identified in real-
world digital teaching initiatives. Using resource sav-
ings and QoS violation as metrics, we investigated sev-
eral configurations, typically characterised by the num-
ber of classrooms and the minimum safety margin being
employed. Results show that error cancellation plays a
major role and allows for considerable cost reductions
and that QoS violation is small even in situation where
large deviations in the behaviour of the IT infrastruc-
tures are to be expected. This error cancellation is pos-
sible in digital teaching environments due to two main
reasons: (i) it is possible to have a fairly accurate es-
timate on resource usage since classes happen in pre-
defined time slots and their content are known in ad-
vance; and (ii) classes happen in parallel, thus making
error amortisation possible among the classrooms.

The results of our experiments allow us to con-
clude that the probabilistic resource allocation method
is very satisfactory, since it is able to deliver alloca-
tion plans which are considerably more economic and
largely compensate the marginal impacts they have on
QoS when compared with a typical worst-case-oriented
approach. Finally, we believe that the performance of
this algorithm has the potential to motivate several edu-
cation institutions to employ cloud solutions to deliver
electronic material to their students.
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