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A radix-independent error analysis

of the Cornea-Harrison-Tang method

Claude-Pierre Jeannerod∗

Abstract

Assuming floating-point arithmetic with a fused multiply-add opera-
tion and rounding to nearest, the Cornea-Harrison-Tang method aims to
evaluate expressions of the form ab + cd with high relative accuracy. In
this paper we provide a rounding error analysis of this method, which un-
like previous studies is not restricted to binary floating-point arithmetic
but holds for any radix β. We show first that an asymptotically optimal

bound on the relative error of this method is 2βu+2u2

β−2u2 = 2u+ 2
β
u2 +O(u3),

where u = 1
2
β1−p is the unit roundoff in radix β and precision p. Then we

show that the possibility of removing the O(u2) term from this bound is
governed by the radix parity and the tie-breaking strategy used for round-
ing: if β is odd or rounding is to nearest even, then the simpler bound 2u
is obtained, while if β is even and rounding is to nearest away, then there
exist floating-point inputs a, b, c, d that lead to a relative error larger than
2u+ 2

β
u2 − 4u3. All these results hold provided underflows and overflows

do not occur and under some mild assumptions on β and p satisfied by
IEEE 754-2008 formats.

1 Introduction

Given four floating-point numbers a, b, c, d the Cornea-Harrison-Tang method [1,
p. 273] aims to evaluate

x = ab+ cd

efficiently and accurately using the fused multiply-add operation. Writing RN
to denote rounding to nearest, this method can be described as follows:

algorithm CHT(a, b, c, d)
p1 := RN(ab); p2 := RN(cd);
e1 := RN(ab− p1); e2 := RN(cd− p2); // these two operations are exact.
r := RN(p1 + p2); e := RN(e1 + e2);
x̂ := RN(r + e);
return x̂

One key feature of this algorithm is its use of the fused multiply-add oper-
ation to compute the rounding errors of the two multiplications exactly in the
absence of underflow and overflow, so that e1 = ab− p1 and e2 = cd− p2. The
rounded sum e of these error terms is then added to the (possibly highly inac-
curate) rounded sum r of the two products in order to obtain an approximation
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x̂ having a tiny relative error. Another attractive feature of this method is its
symmetry, which ensures that ab + cd and cd + ab are approximated by the
same quantity and thus makes it straightforward to provide implementations of
complex floating-point multiplication that preserve commutativity.

The accuracy of the CHT algorithm has been studied extensively in radix 2:
assuming p-bit floating-point numbers and an unbounded exponent range, Cornea,
Harrison, and Tang [1, pp. 273–275] showed that the relative error |x̂ − x|/|x|
is always in O(u) with u = 2−p the unit roundoff; this result was refined re-
cently by Muller [8], who derived the upper bound 2u + 7u2 + 6u3 and found
that |x̂− x|/|x| can be as large as 2u− 7u2 +O(u3) for some values of a, b, c, d.
In other words, in radix 2 the relative error of algorithm CHT is bounded by
2u+O(u2), and this bound is asymptotically optimal in the sense that there are
inputs for which the ratio error/(error bound) tends to one as u tends to zero.

These results raise two questions, however, which we answer in this paper:

1. Does the bound 2u + O(u2) hold beyond radix β = 2, that is, for β > 2
and u equal to 1

2β
1−p?

2. Is it possible to remove the quadratic term O(u2) and thus to bound the
relative error simply by 2u?

The first question is natural since the IEEE 754-2008 standard [3] specifies
floating-point arithmetic not only for radix 2, but also for radix 10. Furthermore,
although the techniques developed in [8] for β = 2 extend to β > 2, the resulting
bound on |x̂−x|/|x| would be larger than 3β+4

β+4 u and thus larger than 2.2u when
β > 6.

The second question is motivated by the rounding error analysis of another
method for evaluating ab + cd with a fused multiply-add, namely Kahan’s al-
gorithm [2, p. 60]. Kahan’s algorithm computes only one product and its error
term (say, p1 and e1), then handles the other product directly by using the fused
multiply-add operation r = RN(p1 + cd), and finally returns RN(r + e1). This
approach thus saves three floating-point operations compared with algorithm
CHT and, as shown in [5], it admits 2u as an asymptotically optimal bound on
its relative error. However, this comes at the price of a lack of symmetry, and it
is therefore important to understand whether this simple O(u2)-free bound 2u
can still be achieved in the symmetrized version provided by algorithm CHT.

Main results. Our first contribution is to answer the first question above
positively, by proving that the bound 2u+O(u2) holds for p > 6; this extends in
particular the result of [8] to the practical case β = 10. Our second contribution
is to show that, perhaps surprisingly, the answer to the second question depends
on the parity of β and the way RN breaks ties: in some cases (say, when β is
odd or ties are rounded to even), the bound 2u+O(u2) can be replaced by 2u,
while in other cases the O(u2) term cannot be removed.

More precisely, we shall work under the following customary assumptions
(all of which are implicitly or explicitly used for the analyses in radix 2 given
in [1, 8]), and establish Theorems 1 and 2 below. Here and hereafter a, b, c, d
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are taken from a set F of finite floating-point numbers in base β and precision p.
We assume that

β > 2 and p > 2,

and that the exponent range of F is unbounded, so

F = {0} ∪ {S · βe : S, e ∈ Z, βp−1 6 |S| < βp}.

We also assume that the exact result of every operation on some element(s)
of F is rounded back to F using a round-to-nearest function RN satisfying the
following properties: for all t ∈ R,

|RN(t)− t| = min
s∈F
|s− t|;

RN(−t) = −RN(t);

RN(βit) = βiRN(t) for all i ∈ Z.

The last two properties say that the way of breaking ties is independent of the
sign and magnitude of the number being rounded. This assumption is in partic-
ular satisfied by roundTiesToEven and roundTiesToAway, the two specifications
of rounding to nearest given in the IEEE 754-2008 standard: when t is a mid-
point, that is, a number halfway between two consecutive elements of F, then
roundTiesToEven requires that the significand S of RN(t) is an even integer,
while roundTiesToAway requires that |S| is maximal. For example, writing

u =
1

2
β1−p

for the unit roundoff associated with F and RN, the midpoint 1 + u is rounded
down to 1 ∈ F by roundTiesToEven, and up to 1+2u ∈ F by roundTiesToAway.

We can now state our main results more formally:

Theorem 1. If βp−1 > 24 then the value x̂ computed by algorithm CHT satisfies

x̂ = x(1 + ε), |ε| 6

{
2u if β is odd or RN(1 + u) = 1,

2βu+2u2

β−2u2 otherwise.

Furthermore, these bounds on the relative error |ε| are asymptotically optimal.

Since 2βu+2u2

β−2u2 = 2u + 2
βu

2 + O(u3), this first result shows that the relative

error of algorithm CHT is always bounded by 2u+O(u2) and that the leading
constant 2u is best possible as u tends to zero. The next result shows that when
β is even and RN is so that the midpoint 1 + u is rounded up to 1 + 2u, then
the term O(u2) cannot, in general, be removed.

Theorem 2. Assume β is even and RN(1 + u) = 1 + 2u. If β = 2 and 2p + 1
is not a Fermat prime, or if β 6= 2, then there exist a, b, c, d in F for which the
value x̂ computed by algorithm CHT satisfies

x̂ = x(1 + ε), |ε| > 2u+
2

β
u2 − 4u3.
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Consequences for IEEE arithmetic. When β = 2 Theorem 2 excludes
values of p such that 2p + 1 is a Fermat prime, that is, a prime number of the
form 22

q

+1 with q ∈ N. However, this is not a restriction in practice, since 2p+1
is known to be composite for any of the binary interchange formats specified
by the IEEE 754-2008 standard; see [6]. Similarly, it is easily checked that the
assumption βp−1 > 24 used in Theorem 1 is satisfied for all formats. Third,
roundTiesToEven and roundTiesToAway imply RN(1 + u) = 1 and RN(1 +
u) = 1 + 2u, respectively. Therefore, in the specific context of IEEE arithmetic
Theorems 1 and 2 lead to the following conclusion:

Corollary 1. Assume floating-point arithmetic as specified by the IEEE 754-
2008 standard, with radix β and unit roundoff u. Then, in the absence of under-
flow and overflow, algorithm CHT has a relative error bounded by 2u when RN

is roundTiesToEven, and by 2βu+2u2

β−2u2 = 2u + O(u2) when RN is roundTiesTo-

Away. Furthermore, for roundTiesToAway, the O(u2) term cannot be removed,
since there exist floating-point numbers a, b, c, d leading to a relative error larger
than 2u+ 2

βu
2 − 4u3.

Outline of the paper and additional background. The rest of this paper
is devoted to the proof of Theorems 1 and 2. We begin in Section 2 by presenting
the three main tools used to establish the upper bounds in Theorem 1. Then we
give in Section 3 an outline of our proof of that theorem, showing that it mainly
consists of analyzing separately several cases which depend on the features of
the exact or rounded values of the products ab and cd; overall, this case analysis
leads to about ten different error bounds, whose detailed proofs are postponed
to the appendix for readability. Finally, the lower bound given in Theorem 2 is
established independently in Section 4.

A useful tool for our analyses will be the unit in the first place function [9],
denoted by ufp and defined for t ∈ R by

ufp(t) =

{
0 if t = 0,

βblogβ |t|c if t 6= 0.

By definition of F, RN, and u we have the classical relations

|RN(t)− t| 6 uufp(t) 6 umin{|t|, |RN(t)|} for all t ∈ R,

which lead in particular to the standard models RN(t) = t(1 + ε) with |ε| 6 u
and RN(t) = t/(1 + ε′) with |ε′| 6 u. For |ε|, the upper bound u can in fact be
replaced by the slightly smaller quantity

u1 :=
u

1 + u
,

giving the following refined model:

RN(t) = t(1 + ε), |ε| 6 u1. (1)
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This refined bound appears for example in [7, p. 232] and its attainability was
noted in [6] along with the attainability of the bound |ε′| 6 u.

When using |ε| 6 u1 instead of |ε| 6 u, the bound 2u+7u2 +O(u3) obtained
in [8] immediately becomes 2u + 5u2 + O(u3). However, this sharper bound
is not enough for our purposes, since it assumes β = 2 and has a O(u2) term
regardless of the tie-breaking strategy.

2 Tools for the proof of Theorem 1

2.1 Inequalities resulting from the refined model

Applying the refined model (1) to the operations in algorithm CHT, we deduce
that there exist rational numbers ε1, ε2, ε3, ε4, ε5 such that

p1 = ab(1 + ε1), |ε1| 6 u1,
p2 = cd(1 + ε2), |ε2| 6 u1,
e = (e1 + e2)(1 + ε3), |ε3| 6 u1,
r = (p1 + p2)(1 + ε4), |ε4| 6 u1,
x̂ = (r + e)(1 + ε5), |ε5| 6 u1.

Recalling that e1 = ab− p1 and e2 = cd− p2, we have

x = p1 + p2 + e1 + e2

and, therefore,

x̂ = x(1 + ε4)(1 + ε5) + (e1 + e2)(ε3 − ε4)(1 + ε5). (2)

On the other hand, the definition of ε1 and ε2 implies that

e1 = −ε1ab and e2 = −ε2cd.

Hence, for x nonzero and with

K =
|ab|+ |cd|
|ab+ cd|

, (3)

we arrive at the following inequalities:

|x̂− x|
|x|

6 |ε4 + ε5 + ε4ε5|+ max{|ε1|, |ε2|} · |ε3 − ε4|(1 + ε5) ·K

6 |ε4 + ε5 + ε4ε5|+ 2u21(1 + u1) ·K. (4)

2.2 Range constraints resulting from large relative errors

In addition to the usual unit roundoff u and to the quantity u1 = u
1+u , the

following generalization will prove very useful in the sequel:

uk :=
u

1 + ku
, k ∈ R>0.
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In particular, for fixed k we see that uk = u− ku2 +O(u3) as u tends to zero.
Having defined uk, we can now state the following two properties, which in-

dicate the range constraints implied by large enough relative errors. Property 1
says that if rounding a real number t yields a relative error that is larger than
uk, then |t| is necessarily close enough to its ufp. This immediate property is
then refined by Property 2, which exploits further the sign of the relative error
in order to confine |t| to unions of about k/2 intervals of width O(u2) · ufp(t).

Property 1. Let k ∈ R>1. Then for t ∈ R 6=0 we have the following implication:

|RN(t)− t|
|t|

> uk ⇒ 1 <
|t|

ufp(t)
< 1 + ku.

Proof. The lower bound on |t|/ufp(t) follows from the fact that t 6∈ F, and the
upper bound follows from uk|t| < |RN(t)− t| 6 uufp(t). �

Property 2. Given k ∈ R>1, let ` = d(k − 1)/2e and define the half-open
intervals

Ij =
[
1 + (2j − 1)u,

1 + 2ju

1 + uk

)
, j = 1, . . . , `,

and

Ĩj =
(1 + 2ju

1− uk
, 1 + (2j + 1)u

]
, j = 0, . . . , `− 1.

Then for t ∈ R 6=0 we have the following implications:

(i)
RN(t)− t

t
> uk ⇒ |t|

ufp(t)
∈ I1 ∪ I2 ∪ · · · ∪ I`;

(ii)
RN(t)− t

t
< −uk ⇒ |t|

ufp(t)
∈ Ĩ0 ∪ Ĩ1 ∪ · · · ∪ Ĩ`−1.

Proof. We can assume t > 0 and ufp(t) = 1, so that 1 6 t < β and |RN(t)− t| 6
u. To prove (i), note first that since RN(t) is in F and larger than t, it has the
form

RN(t) = 1 + 2ju

for some integer j > 1. The assumption RN(t)−t
t > uk is thus equivalent to

t <
1 + 2ju

1 + uk
. (5a)

In addition, |RN(t)− t| 6 u implies RN(t)− t 6 u, that is,

1 + (2j − 1)u 6 t. (5b)

Hence the expression for interval Ij follows from the inequalities (5). Recalling
from Property 1 that t < 1+ku, we deduce from (5b) that the integer j and the
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real number k satisfy 2j − 1 < k, that is, j 6 d(k − 1)/2e = `. This concludes
the proof of (i).

Let us now prove (ii). From 1 6 RN(t) ∈ F it follows that RN(t) = 1 + 2ju

for some integer j > 0. The assumption RN(t)−t
t < −uk is then equivalent to

1 + 2ju

1− uk
< t. (6a)

On the other hand, |RN(t)− t| 6 u implies −u 6 RN(t)− t, that is,

t 6 1 + (2j + 1)u. (6b)

From the inequalities (6) we deduce the definition of interval Ĩj . Finally,
using again Property 1 we have t < 1 + ku, which together with (6a) and
uk = u/(1 + ku) leads to 1 + 2ju < (1 + ku)(1− uk) = 1 + (k− 1)u. The latter
inequality is equivalent to j 6 `− 1, which concludes the proof. �

In practice, when analyzing the CHT algorithm we shall avoid using the
unwieldy rational functions involved in the right endpoint of Ij and the left

endpoint of Ĩj . Instead, it will be enough to consider the following simpler

intervals Ij and Ĩj , defined by degree-2 polynomials in u: for j = 1, . . . , `,

Ij :=
[
αj , αj + εj,k

)
, αj := 1 + (2j − 1)u, εj,k := (k − 2j + 1)u2

and, for j = 0, . . . , `− 1,

Ĩj :=
(
α̃j − ε̃j,k, α̃j

]
, α̃j := 1 + (2j + 1)u, ε̃j,k := (k − 2j − 1)u2.

Since ` is defined in Property 2 as ` = d(k − 1)/2e, it is easily checked that

Ij ⊂ Ij , Ĩj−1 ⊂ Ĩj−1, j = 1, . . . , `.

2.3 Properties of floating-point products

Algorithm CHT is built upon the fact that for an unbounded exponent range,
the rounding error of the product of two elements of F is always itself in F. The
next two properties show that if this error is nonzero then its ulp cannot be
too small. Those properties (which are straightforward extensions to radix β of
those used in [8] for radix two) will be useful when dealing with the case where
p1 and −p2 are so close to each other that p1 + p2 is computed exactly.

Property 3. Let i ∈ Z and a, b ∈ F be such that βi 6 |ab| < βi+1. Then
ab− RN(ab) is an integer multiple of βi−2p+1.

Proof. Writing a = Aβea−p+1 and b = Bβeb−p+1 with A,B two integers such
that βp−1 6 |A|, |B| 6 βp − 1, we have ab = ABβea+eb−2p+2. Hence ab,
RN(ab), and ab − RN(ab) are integer multiples of βea+eb−2p+2. Now, i is ei-
ther ea + eb or ea + eb + 1, so ab − RN(ab) is always an integer multiple of
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min{βi−2p+2, βi−2p+1} = βi−2p+1. �

The property above can be refined in the sense that either the error is an integer
multiple of a larger quantity, or the product admits a smaller upper bound:

Property 4. Let i ∈ Z and a, b ∈ F be such that βi 6 |ab| < βi+1. Then

• either ab− RN(ab) is an integer multiple of βi−2p+2,

• or |ab| 6 (1− 2u
β )2βi+1.

Proof. Using the same notation and reasoning as in the proof of Property 3, if
i = ea+eb then ab−RN(ab) is an integer multiple of βi−2p+2. Else i = ea+eb+1,
but then |ab| = |AB|β1−2p+i 6 (βp − 1)2β1−2p+i = (1− 2u

β )2βi+1. �

3 Proof outline for Theorem 1

The first step of the proof of the bounds in Theorem 1 consists of restricting the
input set using symmetry arguments. Since CHT(a, b, c, d) = CHT(c, d, a, b),
we can exchange ab and cd to ensure |cd| 6 |ab|. On the other hand, using
RN(−t) = −RN(t) gives CHT(−a, b,−c, d) = −CHT(a, b, c, d), so that we can
also restrict further to ab > 0 and eventually assume that

|cd| 6 ab.

As a second step, we consider the situation where either ab or cd or x is zero.
In this case, by propagating the equality RN(0) = 0 within the CHT algorithm,
we see that x̂ = RN(x) and, recalling the refined model in (1),

x̂ = x(1 + ε), |ε| 6 u1. (7)

The third and main step of the proof is the analysis of the remaining cases,
namely when a, b, c, d are such that

ab > 0 and cd 6= 0 and − ab < cd 6 ab. (8)

To derive the bounds in Theorem 1 for inputs as in (8), we shall analyze sep-
arately several subcases and, using the tools described in Section 2, obtain the
nine bounds from (9) to (17) below. The rest of this section only gives an
overview of those subcases and the associated bounds, the detailed proofs being
deferred to Appendix.

3.1 Analysis when ab and cd have the same sign

In this case, the number K = (|ab| + |cd|)/|ab + cd| introduced in (3) satisfies
K = 1. If min{ε4, ε5} 6 u3 then, using (4), we easily obtain

|x̂− x|
|x|

< 2u− u2 + 4u3; (9)
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else, using further Property 1, we deduce that

|x̂− x|
|x|

< 2u− u2 + u4 for βp−1 > 3. (10)

3.2 Analysis when ab and cd have opposite signs

3.2.1 When 1
2p1 6 |p2|

In this case the sum p1 + p2 is computed exactly thanks to Sterbenz’s theo-
rem [10], and a direct consequence of this will be that if K 6 1/u1 then the
bound in (10) still applies here. If K > 1/u1, then ufp(cd) turns out to be either
ufp(ab) or β−1ufp(ab), and we can handle those two cases separately: in the first
case, by applying Property 3 to both ab and cd, we can show that e1 + e2 is a
floating-point number and then deduce that

|x̂− x|
|x|

6 u1; (11)

in the second case, applying Property 3 to ab and Property 4 to cd leads either
to the same bound as in (11) or to the bound

|x̂− x|
|x|

6
3

2
u. (12)

3.2.2 When 1
2p1 > |p2|

In this case, noting that K is at most about 3, we shall consider separately four
cases defined by the pair (ε4, ε5). The first two subcases can be handled using
this bound on K together with (4): if ε4 and ε5 have opposite signs, then

|x̂− x|
|x|

6 u+ 7u2 for βp−1 > 4; (13)

if min{|ε4|, |ε5|} 6 u7, then

|x̂− x|
|x|

< 2u for βp−1 > 24. (14)

The remaining two subcases, which correspond to min{|ε4|, |ε5|} > u7 with ε4
and ε5 either both positive or both negative, turn out to be more involved and
their analysis relies on either part (i) or part (ii) of Property 2 with k = 7.
When ε4 > u7 and ε5 > u7, we show the following:

• if β is odd or RN(1 + u) = 1, then

|x̂− x|
|x|

< 2u for βp−1 > 10; (15)
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• else
|x̂− x|
|x|

6
2βu+ 2u2

β − 2u2
for βp−1 > 10. (16)

When ε4 < −u7 and ε5 < −u7, we show that

|x̂− x|
|x|

< 2u− u2 for βp−1 > 10. (17)

The two error bounds in Theorem 1 then follow directly from the intermedi-
ate bounds (7) and (9–17) shown above: these ten bounds require no more than
βp−1 > 24; furthermore, all of them are less than 2u, except the one in (16),
which has the form 2u+ 2

βu
2 +O(u3).

Finally, we know from [4, Corollary 4.2] that if βp−1 > 11, then there exist
a, b, c, d ∈ F for which the CHT algorithm returns x̂ such that

|x̂− x|
|x|

> 2u− 8u1.5 − 6u2;

this proves the asymptotic optimality of the two error bounds in Theorem 1.

4 Proof of Theorem 2

The assumption on β and p implies that there exist a, b ∈ F such that

ab = 1 + u; (18)

see [6, Theorem 3.2]. Hence, using the assumption that RN(1 +u) = 1 + 2u, we
have

p1 = 1 + 2u and e1 = −u.

Define further

c = u+ 2u2 and d = −1 +
β − 1

β
· 2u.

Recalling that u = 1
2β

1−p, we have c = C · β1−2p with C = 1
2β

p + β
2 and

d = −D · β−p with D = βp − β + 1. Since C and D are integers such that
βp−1 6 C,D < βp, we deduce that c and d are in F. In addition,

cd = −
(
u+

2

β
u2 − 4(1− 1

β
)u3
)
, (19)

which implies

u < |cd| < u+
2

β
u2 = u+ uufp(u)

and thus
p2 = −u.
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Consequently, p1 + p2 = 1 + u, which rounds to

r = 1 + 2u.

On the other hand, noticing that e1 = p2 we obtain e = RN(p2 + e2) = p2, that
is,

e = −u.

Hence r + e = 1 + u, which rounds to

x̂ = 1 + 2u.

Finally, we deduce from (18) and (19) that

x = 1− 2

β
u2 + 4(1− 1

β
)u3,

which is such that 0 < x < x̂. Thus, overall, |x̂−x||x| = x̂
x −1 = 2u β+u+(2−2β)u2

β−2u2+(4β−4)u3 ,

and one can check that the latter quantity is larger than 2u+ 2
βu

2 − 4u3. This
concludes the proof of Theorem 2.

APPENDIX

A Analysis when the two products have the same
sign

When the products ab and cd have the same sign, the assumption in (8) implies
that they are both positive and that K in (3) is equal to one. Using (4), we
deduce that

|x̂− x|
|x|

6 |ε4 + ε5 + ε4ε5|+ 2u21 + 2u31.

Using the obvious inequality |ε4 + ε5 + ε4ε5| 6 2u1 + u21 is not enough, as this
would yield the bound |x̂− x|/|x| 6 2u1 + 3u21 + 2u31 = 2u+ u2 − 2u3 +O(u4),
which is slightly larger than 2u for any radix and tie-breaking rule. Instead, we
consider two sub-cases separately, as follows.

A.1 Case where ε4 6 u3 or ε5 6 u3

In this case ε4 + ε5 + ε4ε5 = (1 + ε4)(1 + ε5)− 1 satisfies

−2u1 + u21 6 ε4 + ε5 + ε4ε5 6 u1 + u3 + u1u3.

Since u1 + u3 + u1u3 > 2u1 − u21, we have

|ε4 + ε5 + ε4ε5| 6 u1 + u3 + u1u3,

11



which gives

|x̂− x|
|x|

6 u1 + u3 + u1u3 + 2u21 + 2u31

< 2u− u2 + 4u3

and thus proves (9).

A.2 Case where ε4 > u3 and ε5 > u3

Since both ab and cd are positive and since the exponent range of F is un-
bounded, we have p1 + p2 > 0. Thus, applying Property 1 with k = 3 gives

βi < p1 + p2 < (1 + 3u)βi, βi = ufp(p1 + p2).

Since ε4 is positive, rounding to nearest coincides here with rounding up, and
the rounded sum r = RN(p1 + p2) must be

r = (1 + 2u)βi.

Let us now bound |e|. We have |e| 6 (1 + u1)
(
|e1| + |e2|

)
6 (u1 + u21)x. Fur-

thermore, it follows from r = ab(1 + ε1)(1 + ε4) + cd(1 + ε2)(1 + ε4) that

(1− u1)2x 6 r 6 (1 + u1)2x. (20)

Using the lower bound in (20) thus leads to

|e| 6 u1 + u21
(1− u1)2

r = (1 + 2u)ur

< 2uβi for βp−1 > 3.

Consequently,
βi < r + e < (1 + 4u)βi 6 βi+1.

Now, the assumption ε5 > u3 implies that when rounding r + e to nearest then
rounding up occurs and, by Property 1, that r+ e must be less than (1 + 3u)βi.
In other words,

(1 + u)βi 6 r + e < (1 + 2u)βi

and
x̂ = (1 + 2u)βi.

Therefore, x̂ = r and, using (20), we conclude that

|x̂− x|
|x|

=
|r − x|
|x|

6 2u1 + u21

< 2u− u2 + u4 for βp−1 > 3. (21)

This proves (10) and concludes the analysis of the case where the two products
ab and cd have the same sign.

12



B Analysis when the two products have oppo-
site signs

When ab and cd have opposite signs, the assumption in (8) can be rewritten

−ab < cd < 0 < ab. (22)

For K as in (3), this implies

K =
ab+ |cd|
ab− |cd|

(23)

and, rounding being monotonic,

−p1 6 p2 < 0 < p1.

Note that neither p1 nor p2 can be zero (because the exponent range of F is
unbounded) and that p1 + p2 > 0.

B.1 When 1
2
p1 6 |p2|

In this case, the two floating-point numbers p1 and −p2 satisfy 1
2p1 6 −p2 6 p1,

so that for any radix β the sum p1 + p2 is computed exactly by Sterbenz’s
theorem [10, p. 138] (see also [2, p. 45]). Hence ε4 = 0 and, using (2),

|x̂− x|
|x|

6 |ε5|+
|(e1 + e2)ε3|

|x|
(1 + ε5) (24)

6 u1 + u21(1 + u1)K.

If K 6 1/u1 then we deduce immediately from the latter bound that the
relative error on x is bounded by 2u1 + u21 and thus as in (21). Hence the rest
of this section is devoted to handling the case

K >
1

u1
=

1

u
+ 1. (25)

(This case of a huge value of K does occur, for example when a = 1 + 2u,
b = 1− u, c = 1, and d = −1.)

From (22), (23), and (25) we deduce that

1

β
ab 6

1

1 + 2u
ab < |cd| < ab.

Consequently, if ab ∈ [βi, βi+1) with i ∈ Z, then |cd| is either in [βi−1, βi) or in
[βi, βi+1). This yields two sub-cases which we handle separately.
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B.1.1 Case βi 6 |cd| < ab < βi+1

In this case, ufp(ab) = ufp(cd) = βi and, using |e1| 6 uufp(ab) and |e2| 6
uufp(cd), we deduce that

|e1 + e2| 6 2uβi = βi−p+1.

On the other hand, Property 3 implies the existence of integers E1, E2 such
that

e1 = E1 · βi−2p+1, e2 = E2 · βi−2p+1.

Hence e1 + e2 = (E1 + E2)βi−2p+1 and the integer E1 + E2 must satisfy |E1 +
E2| 6 βp. This means that e1 + e2 ∈ F or, equivalently, ε3 = 0. It then follows
from (24) that |x̂− x|/|x| 6 |ε5| 6 u1, which proves (11).

B.1.2 Case βi−1 6 |cd| < βi 6 ab < βi+1

We now have ufp(ab) = βi and ufp(cd) = βi−1, so that

|e1 + e2| 6 uβi + uβi−1 < 2uβi. (26)

Property 3 still gives
e1 = E1 · βi−2p+1

for some integer E1, and by applying Property 4 to the product cd we have
either

e2 = E2 · βi−2p+1

for some integer E2, or

|cd| 6
(

1− 2u

β

)2
βi.

We handle these two situations independently as follows.

� If e2 = E2 · βi−2p+1, then |e1 + e2| = |E1 + E2|βi−2p+1. Using (26) gives
|E1 +E2| < βp, from which we deduce e1 + e2 ∈ F, that is, ε3 = 0. We conclude
as in Section B.1.1 that |x̂− x|/|x| 6 u1.

� Assume now that |cd| 6
(
1− 2u

β

)2
βi. Then

|x| = ab− |cd| > βi −
(

1− 2u

β

)2
βi.

On the other hand, the strict inequality in (26) implies ufp(e1 +e2) 6 βi−p and,
since RN(e1 + e2) = (e1 + e2)(1 + ε3), we obtain

|(e1 + e2)ε3| 6 uβi−p.

Applying (24) thus gives |x̂− x|/|x| 6 u1 + (1 + u1)ϕ with

ϕ :=
|(e1 + e2)ε3|

|x|
6

uβ−p

4u
β −

4u2

β2

.
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Recalling that u = 1
2β

1−p, it is easily checked that ϕ 6 u
2−2u/β 6

u
2−u for β > 2,

so that
|x̂− x|
|x|

6
3

2
u,

which is the bound claimed in (12).

B.2 When 1
2
p1 > |p2|

We begin by noting that in this case the ratio K = ab+|cd|
ab−|cd| is at most about 3:

since (1 + u1)ab > p1 and |p2| > (1− u1)|cd|, the assumption 1
2p1 > |p2| implies

ψ :=
ab

|cd|
>

1− u1
1
2 (1 + u1)

and, since K = 1 + 2
ψ−1 , this is equivalent to

K <
3− u1
1− 3u1

= 3 + 8u+O(u2). (27)

Combining (27) and (4), we obtain

|x̂− x|
|x|

6 |ε4 + ε5 + ε4ε5|+ 2u21(1 + u1)
3− u1
1− 3u1

. (28)

For the same reason as in Section A, applying to (28) the straightforward in-
equality |ε4 + ε5 + ε4ε5| 6 2u1 + u21 is not enough for our purpose, since the
resulting relative error bound would then have the form 2u + 5u2 + O(u3). In
order to achieve the sharper bounds claimed in Theorem 1, we shall refine fur-
ther this analysis by examining separately four cases defined by the pair (ε4, ε5).

B.2.1 Case where ε4 and ε5 have opposite signs

In this case |ε4 + ε5 + ε4ε5| 6 u1 and it follows from (28) that

|x̂− x|
|x|

6 u · 1 + 6u+ 13u2 + 6u3

(1− 2u)(1 + u)3
.

It is then easily checked that this bound is at most u + 7u2 when u 6 1/8 or,
equivalently, when βp−1 > 4, which proves (13).

B.2.2 Case where |ε4| 6 u7 or |ε5| 6 u7
In this case |ε4 + ε5 + ε4ε5| 6 u1 + u7 + u1u7, and applying (28) then leads to

|x̂− x|
|x|

6 2u ·
1 + 15

2 u+ 26u2 + 89
2 u

3 + 19u4

(1− 2u)(1 + 7u)(1 + u)3
= 2u− u2 +O(u3)

< 2u for βp−1 > 24,

which proves (14).
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B.2.3 Case where ε4 > u7 and ε5 > u7

In this case, we will derive the bounds in (15) and (16), depending on radix parity
and the tie-breaking strategy of rounding to nearest. Defining the condition

(C) : β is odd or RN(1 + u) = 1,

our goal in this section is thus to show that for βp−1 > 10,

|x̂− x|
|x|

6

2u− η for some η > 0 if (C) holds,

2βu+2u2

β−2u2 = 2u+ 2
βu

2 +O(u3) otherwise.
(29)

To establish (29), we shall apply Property 2 in order to obtain suitable ranges
for the exact sum p1 + p2 from which we can then deduce some values for x̂
together with some ranges for x, and eventually some bounds on |x̂− x|/|x|.

Preliminaries. Since ε4 is nonzero, p1 + p2 is not in F (and thus nonzero as
well), so there exists an integer i such that βi < p1 + p2 < βi+1. In order to
simplify the expressions used in the sequel, we shall assume that i = 0 (which
is possible up to a scaling by an integer power of the base β and because the
exponent range of F is unbounded). Therefore,

1 < p1 + p2 < β.

Since ε4 > u7, applying part (i) of Property 2 with k = 7 gives

p1 + p2 ∈ [1 + u, 1 + u+ 6u2)︸ ︷︷ ︸
=: I1

∪ [1 + 3u, 1 + 3u+ 4u2)︸ ︷︷ ︸
=: I2

∪ [1 + 5u, 1 + 5u+ 2u2)︸ ︷︷ ︸
=: I3

.

Furthermore, ε4 > 0 implies that r = RN(p1 + p2) satisfies

r > p1 + p2.

From this strict inequality and the range of p1 + p2 shown above, we deduce
that

r ∈ {1 + 2u, 1 + 4u, 1 + 6u}. (30)

Furthermore, the right endpoint of I3 leads to the following bound on |e|: since
1
2p1 > |p2| by assumption, we have p1 + |p2| < 3(p1 + p2) and thus

|e| 6 (1 + u1)
(
|e1|+ |e2|

)
6 u(1 + u1)

(
p1 + |p2|

)
< 3u(1 + u1)(p1 + p2)

< 4u when βp−1 > 10. (31)

From (30) and (31) we deduce that 1− 2u < r+ e < 1 + 10u. Since βp−1 > 10,
this implies r + e ∈ [β−1, 1) ∪ [1, β). On the other hand, if 1 − 2u < r + e 6 1
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then the relative error |ε5| is at most uβ−1/(1 − 2u), which contradicts the
assumption ε5 > u7. Thus, overall, we must have

1 < r + e < β,

and, using ε5 > 0, the rounded value x̂ = RN(r + e) must be such that

x̂ > r + e.

Finally, applying Property 2 (i) with k = 7, we deduce from ε5 > u7 that

r + e ∈ I1 ∪ I2 ∪ I3. (32)

Analysis depending on whether p1 + p2 belongs to I1, I2, or I3. We
now consider each of these three cases in turn in order to deduce the possible
values for x̂ together with the corresponding intervals for x.

� If p1 + p2 ∈ I1 then
r = 1 + 2u

and, using (32), we deduce that

e ∈ [−u,−u+ 6u2)︸ ︷︷ ︸
=: I(1)1

∪ [u, u+ 4u2)︸ ︷︷ ︸
=: I(2)1

∪ [3u, 3u+ 2u2)︸ ︷︷ ︸
=: I(3)1

.

These intervals are valid no matter what the radix β and the tie-breaking strat-
egy of RN. If in addition β is odd or RN rounds 1 + u down to 1, as is the case
when condition (C) holds, then we have further

−u < e and − u < e1 + e2 (33)

(see Appendix C for a detailed proof); thus, in this special case one can in

particular replace I(1)1 by

I(1,C)
1 := I(1)1 \{−u}

= (−u,−u+ 6u2).

Then, for each of the four intervals I(1)1 , I(1,C)
1 , I(2)1 , and I(3)1 we deduce the

value of x̂ and a range for e1+e2 and for x, as shown in Table 1 below. The value
of x̂ follows immediately from rounding the sum 1 + 2u + e up to the nearest

floating-point number. Let us now bound e1+e2 from below when e ∈ I(1)1 : since
in this case |e| 6 u, we have ufp(e) 6 ufp(u) = β−p; using |e1+e2−e| 6 uufp(e)

then gives e1 + e2 > e − uufp(e) > −u − 2
βu

2. When e ∈ I(1,C)
1 , we use the

strict lower bound already mentioned in (33). The remaining lower bounds and
upper bounds for e1 + e2 are all deduced from the fact that e1 + e2 = e(1 + δ)
with |δ| 6 u. Finally, since x = p1 + p2 + e1 + e2, the range of x is obtained
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Table 1: Ranges or values of e, x̂, e1 + e2, x in the case p1 + p2 ∈ I1.

e x̂ e1 + e2 x

I(1)1 1 + 2u [−u− 2
βu

2,−u+ 7u2 − 6u3) [1− 2
βu

2, 1 + 13u2 − 6u3)

I(1,C)
1 1 + 2u (−u,−u+ 7u2 − 6u3) (1, 1 + 13u2 − 6u3)

I(2)1 1 + 4u [u− u2, u+ 5u2 + 4u3) [1 + 2u− u2, 1 + 2u+ 11u2 + 4u3)

I(3)1 1 + 6u [3u− 3u2, 3u+ 5u2 + 2u3) [1 + 4u− 3u2, 1 + 4u+ 11u2 + 2u3)

simply by adding the range I1 = [1 + u, 1 + u+ 6u2) of p1 + p2 to the range of
e1 + e2 just computed.

� If p1 + p2 ∈ I2 then
r = 1 + 4u.

Furthermore, since 0 < −p2 < 1
2p1, we also have the lower bound

−5

2
u 6 e1 + e2. (34)

(See Appendix C for a detailed proof.) Recalling that e = (e1 + e2)(1 + ε3) with
|ε3| 6 u1, we deduce that

−5

2
u(1 + u1) 6 e.

Applying (32) with r = 1+4u and using the fact that −3u+6u2 6 − 5
2u(1+u1)

for βp−1 > 10, we finally obtain

e ∈ [−u,−u+ 4u2)︸ ︷︷ ︸
=: I(1)2

∪ [u, u+ 2u2)︸ ︷︷ ︸
=: I(2)2

.

Then we proceed in the same way as in the previous case and deduce for the

intervals I(1)2 and I(2)2 the data collected in Table 2: rounding 1+4u+e up to the
nearest floating-point number gives the values of x̂, applying e1 + e2 = e(1 + δ)
with |δ| 6 u gives the ranges of e1 + e2, and adding the ranges of e1 + e2 to the
one of p1 + p2 leads to the ranges of x.

Table 2: Ranges or values of e, x̂, e1 + e2, x in the case p1 + p2 ∈ I2.

e x̂ e1 + e2 x

I(1)2 1 + 4u [−u− u2,−u+ 5u2 − 4u3) [1 + 2u− u2, 1 + 2u+ 9u2 − 4u3)

I(2)2 1 + 6u [u− u2, u+ 3u2 + 2u3) [1 + 4u− u2, 1 + 4u+ 7u2 + 2u3)

� If p1 + p2 ∈ I3 then
r = 1 + 6u
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and, using (32) and recalling from (31) that e cannot be smaller than −4u, we
deduce that for βp−1 > 10

e ∈ [−3u,−3u+ 4u2)︸ ︷︷ ︸
=: I(1)3

∪ [−u,−u+ 2u2)︸ ︷︷ ︸
=: I(2)3

.

Proceeding as in the two previous cases, we then obtain the values of x̂ and the
ranges of e1 + e2 and x shown in Table 3.

Table 3: Ranges or values of e, x̂, e1 + e2, x in the case p1 + p2 ∈ I3.

e x̂ e1 + e2 x

I(1)3 1 + 4u [−3u− 3u2,−3u+ 7u2 − 4u3) [1 + 2u− 3u2, 1 + 2u+ 9u2 − 4u3)

I(2)3 1 + 6u [−u− u2,−u+ 3u2 − 2u3) [1 + 4u− u2, 1 + 4u+ 5u2 − 2u3)

Conclusion. For βp−1 > 10, the second and fourth columns of Tables 1–3
lead to x̂ > x > 0 and to the following relative error bounds:

|x̂− x|
|x|

=
x̂

x
− 1 6



2βu+2u2

β−2u2 = 2u+ 2
βu

2 +O(u3) if e ∈ I(1)1 ,

2u− η for some η > 0 if e ∈ I(1,C)
1 ,

2u+u2

1+2u−u2 = 2u− 3u2 +O(u3) if e ∈ I(2)1 ,

2u+3u2

1+4u−3u2 = 2u− 5u2 +O(u3) if e ∈ I(3)1 ,

2u+u2

1+2u−u2 = 2u− 3u2 +O(u3) if e ∈ I(1)2 ,

2u+u2

1+4u−u2 = 2u− 7u2 +O(u3) if e ∈ I(2)2 ,

2u+3u2

1+2u−3u2 = 2u− u2 +O(u3) if e ∈ I(1)3 ,

2u+u2

1+4u−u2 = 2u− 7u2 +O(u3) if e ∈ I(2)3 .

From these eight cases and for βp−1 > 10, it is easily deduced that when dis-

carding the interval I(1)1 , the error is always less than 2u, while it is at most
2βu+2u2

β−2u2 when discarding I(1,C)
1 . This shows (29) and, therefore, concludes the

analysis of the case where ε4 > u7 and ε5 > u7.

B.2.4 Case where ε4 < −u7 and ε5 < −u7
In this case our goal is to show (17), that is, |x̂−x|/|x| < 2u−u2 for βp−1 > 10.
This bound shall be obtained in the same way as in Section B.2.3, but since it
is less than 2u independently of the tie-breaking strategy of RN, the analysis
will be slightly simpler.
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Preliminaries. We can assume as before that

1 < p1 + p2 < β

and, applying Property 2 (ii) with k = 7, we deduce from ε4 < −u7 that

p1 + p2 ∈ (1 + u− 6u2, 1 + u]︸ ︷︷ ︸
=: Ĩ0

∪ (1 + 3u− 4u2, 1 + 3u]︸ ︷︷ ︸
=: Ĩ1

∪ (1 + 5u− 2u2, 1 + 5u]︸ ︷︷ ︸
=: Ĩ2

.

Since ε4 < 0, we have the strict inequality

r < p1 + p2

and then, no matter what the tie-breaking strategy of rounding to nearest,

r ∈ {1, 1 + 2u, 1 + 4u}.

Since βp−1 > 10 and since the right endpoint of Ĩ2 is not larger than the one of
I3 from Section B.2.3, the bound |e| < 4u established in (31) still holds. From
βp−1 > 10 and ε5 < −u7 it then follows that 1 < r + e < β and

x̂ < r + e

and, using again Property 2 (ii) with k = 7, that

r + e ∈ Ĩ0 ∪ Ĩ1 ∪ Ĩ2. (35)

Analysis depending on whether p1 + p2 belongs to Ĩ0, Ĩ1, or Ĩ2. As in
the previous section, we will now consider each of these three cases in turn in
order to deduce values for x̂ and intervals for x.

� If p1 + p2 ∈ Ĩ0 then
r = 1

and, using (35) together with the fact that e is less than 4u, we deduce that

e ∈ (u− 6u2, u]︸ ︷︷ ︸
=: Ĩ(1)0

∪ (3u− 4u2, 3u]︸ ︷︷ ︸
=: Ĩ(2)0

.

Proceeding as in Section B.2.3 we can set up the table below.

� If p1 + p2 ∈ Ĩ1 then
r = 1 + 2u.

Consequently, (35) implies

e ∈ (−u− 6u2,−u]︸ ︷︷ ︸
=: Ĩ(1)1

∪ (u− 4u2, u]︸ ︷︷ ︸
=: Ĩ(2)1

∪ (3u− 2u2, 3u]︸ ︷︷ ︸
=: Ĩ(3)1

,
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Table 4: Ranges or values of e, x̂, e1 + e2, x in the case p1 + p2 ∈ Ĩ0.

e x̂ e1 + e2 x

Ĩ(1)0 1 (u− 7u2 + 6u3, u+ u2] (1 + 2u− 13u2 + 6u3, 1 + 2u+ u2]

Ĩ(2)0 1 + 2u (3u− 7u2 + 4u3, 3u+ 3u2] (1 + 4u− 13u2 + 4u3, 1 + 4u+ 3u2]

Table 5: Ranges or values of e, x̂, e1 + e2, x in the case p1 + p2 ∈ Ĩ1.

e x̂ e1 + e2 x

Ĩ(1)1 1 (−u− 7u2 − 6u3,−u+ u2] (1 + 2u− 11u2 − 6u3, 1 + 2u+ u2]

Ĩ(2)1 1 + 2u (u− 5u2 + 4u3, u+ u2] (1 + 4u− 9u2 + 4u3, 1 + 4u+ u2]

Ĩ(3)1 1 + 4u (3u− 5u2 + 2u3, 3u+ 3u2] (1 + 6u− 9u2 + 2u3, 1 + 6u+ 3u2]

and in each case the value of x̂ and the ranges of e1 + e2 and x are as shown in
Table 5.

� If p1 + p2 ∈ Ĩ2 then
r = 1 + 4u.

Using (35), we deduce

e ∈ (−3u− 6u2,−3u]︸ ︷︷ ︸
=: Ĩ(1)2

∪ (−u− 4u2,−u]︸ ︷︷ ︸
=: Ĩ(2)2

∪ (u− 2u2, u]︸ ︷︷ ︸
=: Ĩ(3)2

and for each of these three intervals, the corresponding information about x̂,
e1 + e2, and x appears in Table 6.

Table 6: Ranges or values of e, x̂, e1 + e2, x in the case p1 + p2 ∈ Ĩ2.

e x̂ e1 + e2 x

Ĩ(1)2 1 (−3u− 9u2 − 6u3,−3u+ 3u2] (1 + 2u− 11u2 − 6u3, 1 + 2u+ 3u2]

Ĩ(2)2 1 + 2u (−u− 5u2 − 4u3,−u+ u2] (1 + 4u− 7u2 − 4u3, 1 + 4u+ u2]

Ĩ(3)2 1 + 4u (u− 3u2 + 2u3, u+ u2] (1 + 6u− 5u2 + 2u3, 1 + 6u+ u2]
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Conclusion. For βp−1 > 10, the second and fourth columns of Tables 4–6
imply x̂ 6 x and thus the following relative error bounds:

|x̂− x|
|x|

= 1− x̂

x
6



2u+u2

1+2u+u2 = 2u− 3u2 +O(u3) if e ∈ Ĩ(1)0 ,

2u+3u2

1+4u+3u2 = 2u− 5u2 +O(u3) if e ∈ Ĩ(2)0 ,

2u+u2

1+2u+u2 = 2u− 3u2 +O(u3) if e ∈ Ĩ(1)1 ,

2u+u2

1+4u+u2 = 2u− 7u2 +O(u3) if e ∈ Ĩ(2)1 ,

2u+3u2

1+6u+3u2 = 2u− 9u2 +O(u3) if e ∈ Ĩ(3)1 ,

2u+3u2

1+2u+3u2 = 2u− u2 −O(u3) if e ∈ Ĩ(1)2 ,

2u+u2

1+4u+u2 = 2u− 7u2 +O(u3) if e ∈ Ĩ(2)2 ,

2u+u2

1+6u+u2 = 2u− 11u2 +O(u3) if e ∈ Ĩ(3)2 .

Finally, it is easily checked that all these bounds are less than 2u − u2, which
proves (17) and finishes the case where ε4 < −u7 and ε5 < −u7.

C Proofs of (33) and (34)

We begin with the following lemma, which will be used to prove (33) .

Lemma 1. If β is even then u ∈ F. If β is odd then u is a midpoint for F and
its expansion in radix β has the form

u = (δ.δδ · · · )β · β−p, δ :=
β − 1

2
.

Proof. By definition, u = β
2 · β

−p. If β is even then β/2 is an integer less
than βp, which implies u ∈ F. Assume now that β is odd. In this case β/2 =
δ ·β/(β−1) = δ ·

∑∞
i=0 β

−i, which gives the announced expansion in radix β. It
remains to check that u is a midpoint for F. From the radix-β expansion of u,
we deduce that the two consecutive elements f1, f2 of F such that f1 < u < f2
are

f1 = (δ. δδ · · · δ︸ ︷︷ ︸
p − 1

)β · β−p and f2 = f1 + 2u · β−p.

The associated midpoint for F is thus f1+f2
2 = f1 + u · β−p =

(∑p−1
i=0 δβ

−i +∑∞
i=0 δβ

−i−p) · β−p =
∑∞
i=0 δβ

−i · β−p, which is precisely u. �

Proof of (33). This amounts to checking that −u < e and −u < e1 + e2 when

(i) r = 1 + 2u;

(ii) −u 6 e ∈ F;

22



(iii) x̂ := RN(r + e) > r + e;

(iv) condition (C) holds, that is, β is odd or RN(1 + u) = 1.

If β is odd, then Lemma 1 implies −u 6∈ F and it follows from (ii) that
−u < e. If RN(1 + u) = 1, then e 6= −u, for otherwise (i) and (iii) would yield
RN(1 + u) > 1 + u, a contradiction. Hence, we have in both cases

−u < e.

Let us now check that −u < e1 + e2. If β is odd, then −u < e with
e = RN(e1 + e2) and, by Lemma 1, −u is a midpoint for F. The definition of
RN thus implies that −u 6 e1 + e2. Now, since e1, e2 are in F and since, on the
other hand, −u has infinitely many radix-β digits, we must have −u 6= e1 + e2.
If β is even then Lemma 1 implies −u ∈ F, so that by the monotonicity of RN
the strict inequality −u < RN(e1 + e2) shown above leads to −u < e1 + e2. �

Proof of (34). This amounts to checking that − 5
2u 6 e1 + e2 when

(i) p1 + p2 ∈ [1 + 3u, 1 + 3u+ 4u2);

(ii) 0 < −p2 < 1
2p1;

(iii) p1, p2 ∈ F.

Applying (i) gives 1 + 3u− p2 6 p1 < 1 + 3u+ 4u2 − p2 and then, using (ii)
and u 6 1/4, we obtain

1 + 3u < p1 < 2 + 6u+ 8u2 6 2 + 8u.

Since p1 ∈ F by (iii), we deduce that

1 + 4u 6 p1 6

{
2 + 4u if β = 2,

2 + 6u if β > 2.
(36)

Let us now show that |p2| < 1. By (ii) and (36) we have |p2| = −p2 < 1
2p1 6

1+3u and thus |p2| 6 1+2u because p2 is in F by (iii). For contradiction, assume
that |p2| > 1, that is, p2 ∈ {−1,−1−2u}. It follows that p1 > 1+3u−p2 > 2+3u
and then p1 > 2+4u, since p1 is in F. Combining the latter inequality with (36),
we see that p1 = 2+4u if β = 2, and p1 ∈ {2+4u, 2+6u} if β > 2. Consequently,

p1 + p2 ∈

{
{1 + 2u, 1 + 4u} if β = 2,

{1 + 2u, 1 + 4u, 1 + 6u} if β > 2.

Thus, in both cases, p1+p2 is in F, which contradicts the fact that ε4 is nonzero.
Therefore,

|p2| < 1 for any β > 2. (37)

From (36) and (37) we deduce that ufp(p1) 6 2 and ufp(p2) 6 β−1 for
any β > 2. Since |e1| 6 uufp(p1) and |e2| 6 uufp(p2), we conclude that
|e1 + e2| 6 (2 + β−1)u 6 5

2u. �
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