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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01224448


Filleton et al. Epigenetics & Chromatin  (2015) 8:26 
DOI 10.1186/s13072-015-0019-3

RESEARCH

The complex pattern of epigenomic 
variation between natural yeast strains 
at single-nucleosome resolution
Fabien Filleton1, Florent Chuffart1, Muniyandi Nagarajan1,2, Hélène Bottin‑Duplus1 and Gaël Yvert1*

Abstract 

Background: Epigenomic studies on humans and model species have revealed substantial inter‑individual vari‑
ation in histone modification profiles. However, the pattern of this variation has not been precisely characterized, 
particularly regarding which genomic features are enriched for variability and whether distinct histone marks co‑vary 
synergistically. Yeast allows us to investigate intra‑species variation at high resolution while avoiding other sources of 
variation, such as cell type or subtype.

Results: We profiled histone marks H3K4me3, H3K9ac, H3K14ac, H4K12ac and H3K4me1 in three unrelated wild 
strains of Saccharomyces cerevisiae at single‑nucleosome resolution and analyzed inter‑strain differences statistically. 
All five marks varied significantly at specific loci, but to different extents. The number of nucleosomes varying for a 
given mark between two strains ranged from 20 to several thousands; +1 nucleosomes were significantly less subject 
to variation. Genes with highly evolvable or responsive expression showed higher variability; however, the varia‑
tion pattern could not be explained by known transcriptional differences between the strains. Synergistic variation 
of distinct marks was not systematic, with surprising differences between functionally related H3K9ac and H3K14ac. 
Interestingly, H3K14ac differences that persisted through transient hyperacetylation were supported by H3K4me3 dif‑
ferences, suggesting stabilization via cross talk.

Conclusions: Quantitative variation of histone marks among S. cerevisiae strains is abundant and complex. Its relation 
to functional characteristics is modular and seems modest, with partial association with gene expression divergences, 
differences between functionally related marks and partial co‑variation between marks that may confer stability. Thus, 
the specific context of studies, such as which precise marks, individuals and genomic loci are investigated, is primor‑
dial in population epigenomics studies. The complexity found in this pilot survey in yeast suggests that high complex‑
ity can be anticipated among higher eukaryotes, including humans.

Keywords: Epigenomics, Histone modification, Yeast, Evolution, Natural strains, Epi‑polymorphism, Epi‑allele, Ecology

© 2015 Filleton et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Epigenomes differ between individuals and the extent of 
this diversity has received increasing attention because of 
its potential impact on cellular processes (proliferation, 
differentiation, response to environmental cues and con-
tribution to pathological processes). For various species, 

from yeast to plants and mammals, natural popula-
tions were found to display substantial variation in sev-
eral chromatin hallmarks, including DNA methylation 
[1–5], histone post-translational modifications [6–9] and 
accessibility to DNA [10, 11]. However, registering this 
diversity and understanding its possible consequence is 
challenging, because variation in chromatin marks has 
complex properties. Unlike the DNA sequence itself, 
chromatin modifications include a large repertoire of 
chemical modifications. These modifications are revers-
ible, they are established and removed dynamically at 
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various timescales, they differ between cell types and 
their presence or absence can result from a response to 
environmental conditions. In addition, several cross talk 
mechanisms have been described, where the presence of 
one modification aided the establishment of other modi-
fications. Comparing epigenomes is therefore more chal-
lenging than population genomics, because there is more 
to read than a four nucleotide sequence and the ‘text’ 
differs quantitatively rather than qualitatively, not only 
between individuals, but also according to various fac-
tors. In this regard, yeast offers the possibility to study 
epigenomic variation in a simplified context, where the 
complexity of multiple cell types is avoided and environ-
mental conditions can be controlled.

Although chromatin marks are often called ‘epige-
netic marks’, we have avoided this term here because 
their mode of inheritance is not the focus of the study. 
We nonetheless use the term ‘epigenome’ to describe the 
genomic profile of one or several chromatin marks, and 
the term ‘epi-polymorphism’ to describe variation in the 
epigenome, regardless of the possible epigenetic mainte-
nance of these marks.

Histone post-translational modifications comprise a 
large set of chromatin marks, and their variation within 
species has been investigated in several studies. In yeast, 
about 10% of nucleosomes displayed quantitative differ-
ences in H3K14 acetylation between two wild strains [6]. 
In A. thaliana, the genomic profiles of H3K4me2 and 
H3K27me3 were reported for the Col-0 and Cvi acces-
sions [12]. The authors compared the lists of regions 
associated with H3K4me2 in the two accessions, which 
differed for about 4% of genic regions and 25% of trans-
posable element regions. Variation was also seen for 
H3K27me3-associated regions, with 10% of genic 
regions and 20% of transposable element regions spe-
cifically listed in either Col-0 or Cvi. These proportions 
are comparable to the fraction of the rat genome sub-
jected to variation in H3K4me1, H3K4me3, H3K27me3 
and H4K20me1 between strains. These marks were pro-
filed recently in liver and heart tissues using a statistical 
design that revealed quantitative differences in 7–16% of 
the regions tested [13]. In humans, inter-individual varia-
tions in histone modifications have been estimated from 
lymphoblastoid cell lines. An initial study detected allelic 
specificities and Mendelian inheritance of histone acety-
lation in families of the Human Polymorphism Study 
Center [14]. A more recent characterization of human 
lymphoblastoid cells revealed that the proportion of 
allele-specific sites ranged from 6% (for H4K20me1) to 
30% (for H3K27me3) [7]. In a parallel study, between 10% 
(H3K36me3) and >30% (H3K27ac) of genomic regions 
were reported to vary between cell lines derived from 
different individuals [9]. Taken together, these studies 

illustrate that histone modification marks vary within 
species at a substantial fraction of genomic positions.

Histone modifications are closely associated with tran-
scriptional regulations; therefore, their variation could 
reflect variation in transcript levels. This proved to be 
only partially true. In human lymphoblastoid cell lines, 
Kasowski et  al. reported that genes showing histone 
marks variability at multiple enhancers tended to vary 
in expression as well [8]. However, 74% of genes with no 
expression variation also displayed variable levels of his-
tone modification at one or more enhancers. Kilpinen 
et  al. reported a significant haplotypic coordination 
between transcription levels and H3K27ac, H3K4me1 
and H3K4me3 variation across gene regions, but no asso-
ciation with H3K27me3 variation [7]. McVicker et  al. 
reported that expression quantitative trait locus (eQTL) 
alleles enhancing transcription are associated with lower 
levels of H3K27me3 and higher levels of H3K4me3 
and H3K27ac around the transcription start site (TSS) 
[9]. These observations are consistent with those from 
Rintisch et  al. who found that 14–20% of eQTLs in rat 
tissues were also QTLs of histone modifications (and vice 
versa). However, 36% of genes displayed variable histone 
marks that could not be attributed to transcriptional 
differences [13]. This is also in line with previous obser-
vations in yeast, where H3K14ac variation was not sys-
tematically associated with differences in mRNA levels 
[6] and where ≥30% of QTLs of H3K14ac could not be 
attributed to genetic regulations of gene expression [15]. 
These studies demonstrated the link between variation in 
histone marks and variation in gene expression, but also 
showed that this association is not systematic. It would 
be informative to describe which genomic regions sup-
port this association in a given organism and tissue.

Another important question is whether different his-
tone marks co-vary between individuals. Co-variation of 
distinct marks has been observed, but not as a system-
atic correlation. At the scale of entire human genes, cor-
related allelic imbalances were reported between distinct 
histone marks [7]. Co-variation among active marks was 
remarkably apparent when considering only the genomic 
regions where DNase-sensitivity was under genetic con-
trol [9]. However, the expected negative correlation 
with the repressive mark H3K27me3 was not observed 
[7] or only poorly [9]. In rat tissues, numerous QTLs 
were found to control both H3K4me3 and H3K27me3, 
but 25% of these co-regulations acted in a compensat-
ing manner (e.g., upregulating H3K27me3 together with 
H3K4me3, which is expected to act antagonistically on 
gene expression) [13]. These observations demonstrated 
the existence of correlated patterns of variation. How-
ever, the extent and location of co-variation between 
marks remain poorly characterized.
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In the present study, to obtain a detailed view of intra-
species variation in histone modifications, we determined 
the quantitative variation of five marks at single-nucle-
osome resolution in Saccharomyces cerevisiae. We took 
advantage of three wild strains for which transcriptome 
variation has been extensively characterized. This new 
dataset allowed us to precisely map the location of varia-
tion, to investigate whether variability is focused on pre-
cise nucleosomes or spread on many consecutive ones 
and to determine the degree of co-variation between 
marks on individual nucleosomes.

Results and discussion
We report on the extent and pattern of intra-species 
quantitative variation of histone modifications in the epi-
genome of S. cerevisiae. Three natural yeast strains were 
compared. For each strain, epigenomic profiling of five 
histone modification marks was performed at single-
nucleosome resolution, in biological replicates. Evidently, 
profiling more strains would provide a larger view of vari-
ation, but we invested in biological replicates instead to 
control for biological and technical variability. In this sec-
tion, we describe and discuss results first at the genomic 
scale, then at the level of protein-coding genes and finally 
at the level of individual nucleosomes.

Wild yeast strains display distinct histone modification 
epigenomes
Our previous observation of H3K14 acetylation vari-
ation between two natural strains [6, 15] raised ques-
tions regarding specificity: Is this variation caused by 
one strain having a specific H3K14ac profile? Do nucle-
osomes displaying H3K14ac variation also vary in their 
level of other chromatin marks? To address these ques-
tions, we chose to profile the epigenome of this and four 
other histone modifications, in three strains. H3K14, 
H3K9 and H4K12 acetylation, as well as H3K4 tri-meth-
ylation are abundant in highly transcribed genes and are 
particularly present in the 5′ parts of gene bodies [16–
18]. These four marks therefore target many nucleosomes 
in common. Studying them simultaneously in three 
strains should determine whether variation of H3K14ac 
correlates with the variation of other marks. In addition, 
we chose to profile H3K4 mono-methylation because it 
is distributed on a different set of nucleosomes: those 
located at the 3′ of gene bodies [16, 18]. This way, all five 
marks cover biochemical information on the majority of 
the chromatin. Such a dataset should also reveal if one 
strain is particularly different from the two others. The 
strains used were BY, RM and YJM789 (hereafter called 
‘YJM’). BY and RM are those where H3K14ac was stud-
ied previously [6]. YJM derives from a clinical isolate and 
is genetically equidistant to BY and RM, with an SNP 

frequency of about 0.5% [19, 20]. All three strains have 
been used extensively to study complex traits and to map 
genetic determinants of gene expression variation; their 
genomes have been fully sequenced and assembled [19, 
21–23].

We first verified the specificity of antibodies by West-
ern blot, by probing extracts of yeast strains carrying 
point mutations in histones [24] (Additional file 1A). We 
also compared on Western blot the three strains, BY, RM 
and YJM, for their level of bulk histone acetylation or 
methylation and saw no sign of global differences (Addi-
tional file 1B).

We then grew each strain in 18 independent cultures, 
using standard laboratory conditions. For each strain, 
three samples were processed for MNase-seq to identify 
nucleosome positions. All other samples were processed 
for MN-ChIP-seq (immunoprecipitation of chroma-
tin after MNase digestion, followed by sequencing). The 
design was such that every antibody was applied on 
three biological replicates of each strain, except for five 
samples which did not meet the quality criteria (see 
“Methods”). The experiment produced between 7 and 
41 million Illumina short reads per sample (Additional 
file 2). Reads were then mapped to the genome of the rel-
evant strain. To enable quantitative comparisons between 
the strains, we performed pairwise alignments of their 
genomes, producing tables of corresponding coordinates. 
We defined regions of sufficient sequence similarity for 
unambiguous alignment (called common uninterrupted 
regions or CURs, see “Methods”), which altogether cov-
ered ~8.5  Mb of the 12  Mb genome. Note that regions 
of high sequence divergence (such as transposons) were 
excluded from our analysis, because they are not ame-
nable to quantitative comparisons of MNase-based 
ChIP-seq data. The diversity reported hereafter therefore 
likely reflects a low boundary of the whole epigenomic 
variation.

To visualize how samples differed from one another, 
we performed a principal component analysis (PCA) of 
the genome coverage profiles. The first four principal 
components were statistically significant, as determined 
by a permutation test, and explained 78% of the variance 
in the data (Additional file  3). We plotted the samples 
according to their coordinates along these components. 
Remarkably, the first two components discriminated 
histone marks, showing that the profile of each mark 
was specific and globally consistent across the strains 
(Fig. 1a). Samples corresponding to the three acetylation 
marks tended to group together. This was expected given 
the similar distribution of these marks along gene bod-
ies. They were also proximal to the MNase-seq samples, 
which is consistent with the presence of these acetylation 
marks on many nucleosomes. H3K4me1 profiles differed 
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from all others, which was expected because this mark 
targets a distinct set of nucleosomes. Finally, H3K4me3 
also defined its own group, which probably reflected its 
known enrichment in small regions containing TSSs. 
Strikingly, components 3 and 4 discriminated the strains, 
which revealed the presence of intra-species variation for 
all marks (Fig. 1b). Importantly, biological replicates were 
grouped together, showing that inter-strain variation was 
greater than intra-strain biological and technical vari-
ability. If PCA was applied on ChIP-seq profiles normal-
ized by the mean MNase-seq profile of each strain, marks 
were again strongly discriminated by (PC1, PC2) and 
strains were separated by (PC3, PC4), but, as expected, 
less strongly (Additional file 4).

We then examined the specific extent of inter-strain 
variation for each mark. To do this, we computed dis-
similarities between samples based on the correla-
tion between their epigenomic profiles of the mark and 
applied hierarchical clustering on these dissimilarities. 
The resulting trees revealed interesting properties of 
epigenomic variation among the strains (Fig.  2a). First, 
the three acetylation marks displayed greater variation 
than the two methylation marks (higher branches of the 
tree). This could simply be due to the fact that acetyla-
tion marks probe more nucleosomes. If strains differ 
only a little for each nucleosome, then the cumulative 
effect on the genome is greater for marks that are widely 
distributed. Another explanation would be that the two 
biochemical mechanisms vary to different degrees. For 
example, if strains differ in the concentration or dynamics 
of acetyl-CoA but not of S-adenosyl methionine (SAM) 
biosynthesis, then protein acetylation patterns may glob-
ally differ more between the strains than methylation 
patterns. However, the metabolomic data previously col-
lected on BY and RM did report differential steady-state 

levels of SAM between the strains [25]. Acetyl-coA con-
centration also seemed to differ but to a lower extent 
(Sean Hackett and Josh Rabinowitz, personal communi-
cation). Thus, the higher divergence in acetylation than 
methylation cannot be directly attributed to pronounced 
differential levels of the donor group. It remains possi-
ble that the dynamics of acetyl-CoA availability may be 
critical, as highlighted by the very rapid changes in chro-
matin acetylation, but not methylation upon cell cycle re-
entry from starvation [26]. In this regard, it is interesting 
to note that the concentrations of compounds located 
upstream (e.g., fructose-6-phosphate) and downstream 
(e.g., citrate) acetyl-coA along glycolysis were linked to 
the ira2 locus [25], which coincides with one of the QTLs 
controlling the acetylation level of multiple nucleosomes 
[15].

Secondly, the trees revealed interesting epigenomic 
specificities of the strains. BY differed from the other 
two strains in H3K9ac, H4K12ac and H3K4me3, whereas 
RM differed in H3K14ac and YJM differed mildly in 
H3K4me1. This indicates that intra-species epigenomic 
diversity is modular, with some histone marks differing 
globally in some strains/individuals, and other marks dif-
fering globally in others. Compared with previous stud-
ies, it is surprising that we observed this modularity at 
the full genomic scale. In human lymphoblasts, about 6% 
of genomic regions analyzed by Kasowski et al. displayed 
variation in H3K27ac, which matched population ances-
try groups, and equivalent matching was observed for 
H3K4me1 and H3K27me3 [8]. Therefore, we expected 
that unrelated yeast strains would display modular varia-
tion at given regions, but we did not anticipate observing 
pronounced deviations at the scale of the entire genome.

Finally, trees were radically different between H3K9ac 
and H3K14ac variation. For H3K9 acetylation, the BY 

Fig. 1 Principal component analysis (PCA) of epigenomic variation. Each dot represents one experiment, with symbols indicating the antibodies 
that were used (if any) and colors indicating the strains. PCA was performed on genomic coverages by dividing the genome into 90 bp bins and 
counting the number (per million) of forward sequence reads covering each bin. a The first two components discriminate the nucleosomal marks 
(identical symbols are grouped). b The next two components discriminate the strains (identical colors are grouped).
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strain differed from both RM and YJM, whereas for 
H3K14 acetylation RM was clearly distant from BY and 
YJM. This was unexpected, because H3K9 and H3K14 
are both acetylated by Gcn5 [27, 28], and their acetyla-
tion profiles on the genome were described as very simi-
lar, with a common enrichment in highly transcribed 
genes [16, 18]. It is therefore surprising to see that a 

strain can display a specific H3K9ac, but not H3K14ac 
profile, and vice versa. This could result from differential 
targeting or activity of other lysine acetyl-transferases or 
deacetylases. For example, Sas3 can substitute Gcn5 in 
the acetylation of H3K14, but not of H3K9 [28, 29]. Simi-
larly, deacetylation by Hda1 was reported for H3K9 [30], 
but not for H3K14.

Fig. 2 Inter‑strain distances according to five epigenomic marks. a Hierarchical clustering of strains. For each histone modification, the distance 
between two samples was determined as 1 − ρ, where ρ is the Spearman rank‑based correlation coefficient between the profiles of the two 
samples. Profiles comprised ChIP counts computed at every nucleosome by NucleoMiner2.0 [44] (see “Methods”). b–f ChIP coverage profiles of the 
indicated marks along an average gene (in per‑million reads, normalized and averaged across replicates). Colors correspond to strains as in a. g 
Same representation but for MNase average profile. h H3K14 acetylation differences between the BY and RM strains, before and after the transient 
reprogramming described in [15]. The distribution of log2(RM/BY) of ChIP‑CHIP intensities is shown for all nucleosomes (gray) and for the subset of 
nucleosomes (magenta) located in the second half of the body of 529 genes responsible for the specific pattern of RM. Magenta and gray distribu‑
tions significantly differ (Kolmogorov–Smirnov p value <10−15) both before and after reprogramming. i Genomic QTL scan for regulators of the RM‑
specific K14ac profile in f. Red line significance threshold determined by permutations. Linkage score: −log10(P), where P is the nominal QTL p value.
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We therefore searched for variants among BY, RM 
and YJM protein sequences of these and other histone 
modifiers that could explain strain specificities. Non-
synonymous SNPs and/or short indels were present in 
16 of the 23 proteins considered (Additional file 5). The 
most remarkable mutation was a premature stop codon 
in YJM that removed the C-terminal bromodomain of 
Gcn5. By binding to acetyl lysines, this domain is respon-
sible for the cooperative and site-specific acetylation of 
nucleosomes by SAGA [31, 32]. It is surprising to see 
that, although the strain lacking this functionally impor-
tant domain is YJM, BY and RM display distinguishable 
acetylation profiles of Gcn5 substrates H3K9 and H3K14. 
It is possible that (1) the mutation affects the dynam-
ics rather than the steady-state levels of acetylation, (2) 
that it affects only few genes or (3) that mutations in 
other genes compensate for it. Unlike Gcn5, Sas3 con-
tained mutations in BY that might explain the particular 
H3K9ac profile in this strain. In addition, several of these 
genes displayed differential expression between strains. 
Direct manipulation of these genes is needed to deter-
mine their contribution to chromatin divergence, espe-
cially since our previous genome-by-epigenome linkage 
analysis showed that divergence arose from multiple 
other genetic sources [15].

Where are these global epigenomic specificities located 
relative to protein-coding genes? At the genomic scale, 
we computed averaged ChIP-seq profiles over all genes 
and visualized them for each strain (Fig.  2b–g; Addi-
tional file  6). These profiles were consistent with previ-
ous observations [16, 18] and showed interesting strain 
specificities. Strain BY displayed reduced acetylation of 
H3K9 in the middle of genes and of H4K12 in the sec-
ond half of genes. Strain RM showed a redistribution of 
H3K14 acetylation compared with the other two strains, 
with a higher level in promoters, a lower level immedi-
ately downstream the transcription start site, a higher 
level in the second half of the gene body and a lower level 
around the transcription end site (TES). As mentioned 
above, the fact that both H3K9 and H3K14 acetylation 
showed a specific, but different pattern, was unexpected.

The redistribution of H3K14 acetylation in RM con-
firmed our previous comparative analysis by ChIP-CHIP 
[6]. The fact that YJM showed a similar profile to BY indi-
cated that specific regulation of H3K14ac occurred in the 
RM strain. What these regulations are is unclear; none-
theless, we made two observations based on previous 
data. In a previous study, we quantified the persistence 
of BY/RM H3K14 acetylation differences over a repro-
gramming experiment. This was done by culturing the 
strains first in the presence of a high dose of trichosta-
tin-A, an inhibitor of HDACs, and then in normal con-
ditions for a prolonged time. Comparing again BY and 

RM H3K14 acetylation after this treatment and recovery 
allowed to determine which of the inter-strain differ-
ences were particularly labile or persistent [15]. Here, we 
re-analyzed this dataset to determine if the RM-specific 
profile of H3K14ac had persisted. We selected 529 genes 
having a pronounced BY/RM difference in H3K14ac 
ChIP-seq profile in the present study and extracted the 
nucleosomes located in the last two-thirds of the bod-
ies of these genes. We then extracted from the previous 
dataset the log(RM/BY) ChIP-CHIP intensities at these 
nucleosomes, both before and after the transient per-
turbation (Fig.  2h). This showed that the high H3K14 
acetylation of these nucleosomes in the RM strain per-
sisted after recovery from the epidrug treatment. The 
specific regulations of H3K14ac taking place in the RM 
strain are therefore robust to such transient perturba-
tions. This robustness could result from genetic control. 
If DNA polymorphisms of the RM strain regulate the 
redistribution of H3K14ac, then the specific acetylation 
profile would be re-established after perturbation. We 
previously described the genetic control of H3K14ac 
BY/RM epigenomic variation and found no evidence 
of such master regulators [15]. However, the statisti-
cal power of that analysis was limited by the multiplicity 
of traits considered in the study and it remained possi-
ble that regulators of a single and global trait had been 
missed. Thus, we re-analyzed this genetic data and spe-
cifically searched for genetic loci having a global effect on 
the acetylation profiles along gene bodies. We did this by 
constructing one metaphenotype that quantifies, in each 
BY × RM segregant, the degree of imbalance of H3K14ac 
in the body of 529 relevant genes. No statistically signifi-
cant locus was detected by this dedicated genome scan 
(Fig.  2i), which confirmed that the global redistribution 
of H3K14ac in RM is not caused by one or few master 
genetic regulators. If the origin of the RM-specific genic 
profile of H3K14ac is genetic, it is likely driven by multi-
ple small effect loci.

Yeast genes differ in their pattern of natural epigenomic 
divergence
We then searched for shared or distinct patterns of vari-
ation among genes. We performed hierarchical cluster-
ing of the genes according to their differential profile of 
histone modifications between two strains. Importantly, 
differences in gene size did not seem to bias the epig-
enomic distances used for clustering, since no correla-
tion was seen between the two (Additional file 7). Based 
on visual inspection of the entire clustering tree related 
to BY/RM differences, we extracted 23 gene clusters 
showing specific patterns of divergence between the two 
strains (Fig. 3a). Many clusters corresponded to elevated 
H3K4me3, H3K9ac and H3K14ac near the TSS in BY, 
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which could result from higher expression of Gcn5, Sas3 
and Set1 in this strain (Additional file 5). The genic pat-
terns revealed two remarkable features. First, some clus-
ters showed consistent co-variation of different histone 
marks, whereas others showed independent or negatively 
correlated variation of the different marks. For exam-
ple, all four marks generally associated with active tran-
scription (H3K4me3, H3K9ac, H3K14ac and H4K12ac) 
co-varied in clusters 9, 14, 20 and 23, but not in several 
other clusters. Genes of cluster 1 displayed lower levels 
of H3K4me3, but higher levels of H3K9ac and H3K14ac, 
in RM than in BY. Conversely, cluster 18 corresponded to 
higher levels of H3K4me3, but lower levels of H3K9ac, 
H3K14ac and H4K12ac, in RM than in BY. Cluster 2 
grouped genes with increased mono-methylation and 
reduced tri-methylation of H3K4 in their bodies, with no 
remarkable variation of acetylation marks. When averag-
ing all genes, co-variation of acetylation marks was also 
apparent in the BY/RM comparison, but not in the BY/
YJM and RM/YJM comparisons (Additional file  8). The 
second observation was that variation could be restricted 
to particular portions of genes or was spread over the 
entire gene length. For example, the differential levels of 
H3K4me3, H3K9ac, H3K14ac and H4K12ac in genes of 
clusters 6 and 17 were focused at, or immediately down-
stream of, the TSS. Similarly, genes of cluster 4 varied in 
H3K9ac and H3K14ac specifically at promoter regions, 
and genes of clusters 3 and 10 differed in H3K9ac and 
H3K14ac at both TSSs and TESs, but not in between. In 
contrast, variation spread the entire length of genes from 
clusters 1, 2, 7, 8, 9, 14, 18, 20, 22 and 23. These results 
illustrated the complexity of natural epigenomic vari-
ation, with incomplete correlation between chromatin 
marks and localization within genes, which could be 
either focused or widespread.

Genes sharing similar patterns of variation may be 
functionally related. To examine this possibility, we 
searched every cluster for enrichment in gene ontology 
terms among the annotations of its genes. As indicated 
in Table  1, five clusters showed significant enrichments 
relating to amino acid catabolism, transmembrane 

transport, RNA metabolism, RNA translation (these 
genes are transcribed at high rate, Additional file 9) and 
oxido-reduction, respectively.

Given the known participation of histone modifications 
in transcriptional regulations, we examined if genes dis-
playing chromatin divergence also displayed inter-strain 
differences in mRNA levels. The yeast strains used here 
have previously been an experimental model for com-
parative transcriptomics. Large datasets are available 
that quantify mRNA divergence in several environmental 
conditions, including standard growth conditions simi-
lar to the ones we used here. This allowed us to directly 
compare chromatin divergence patterns with the differ-
ential mRNA levels previously reported between the BY 
and RM strains [33] and between the BY and YJM strains 
[23]. As indicated in Table 1, of the 23 gene clusters cor-
responding to shared patterns of BY/RM chromatin dif-
ferences, 11 showed evidence of transcriptional changes. 
One of them contained 25 genes sharing functional 
annotations related to oxido-reduction. These genes 
displayed high H3K4 tri-methylation in their gene bod-
ies, accompanied by an elevated transcription in the RM 
strain (Fig. 3b, bottom). Interestingly, these 25 genes also 
showed this pattern of chromatin and transcriptional 
variation between the BY and YJM strains (Additional 
file  10, bottom), which argued for a specific down-reg-
ulation of both transcription and H3K4 tri-methylation 
of these genes in the BY strain. The remaining 12 clus-
ters defined by BY/RM chromatin differences showed no 
such association with transcriptional changes (Table  1). 
In particular, the 35 genes of cluster 17, having a focused 
increase of acetylation in BY immediately downstream 
the TSS, were not particularly more expressed in this 
strain, which was also true when comparing BY with 
YJM (Additional file 10, top). Similarly, only one of the 48 
genes of cluster 18, with contrasted tri-methylation and 
acetylation patterns between BY and RM, also varied in 
mRNA abundance (Fig. 3b). Such a partial co-variation of 
histone marks and mRNA levels was also observed when 
clustering genes on the basis of their epigenomic differ-
ences between the BY and YJM strains. In this case, 43 

(See figure on previous page.) 
Fig. 3 Gene clustering according to BY–RM epigenomic divergence. For each gene, the ChIP/MNase log ratio in each strain was computed on 
genomic bins covering the gene body (from TSS to TES, orange box, divided in percentiles) together with 500 bp of their upstream and downstream 
regions. The difference in signal between the two strains was computed (black to red color scale). Genes were clustered by their similarity in this dif‑
ferential signal across the five chromatin marks. a Average pattern of the 23 clusters described in Table 1. b Details of three clusters with previously 
measured differential mRNA expression [33]. Cyan missing mRNA data. c Correlation between gene expression (y‑axis) and histone modification 
(x‑axis) variation. For each modification, inter‑strain difference was computed as the mean of (log2(ChIP/Mnase) of strain 1 − log2(ChIP/Mnase) strain 
2) from the TSS to the TES. Each plot corresponds to one histone modification compared between two strains, with dots representing genes. Only 
genes for which the mean log ratio was above zero in at least one strain were considered. Upper panels BY versus RM. Lower panels BY versus YJM. ρ 
Pearson correlation coefficient. Lines linear fits. d Same analysis as in c but for the expression of non‑coding transcripts in BY and YJM [23].
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clusters could be extracted and evidence of gene expres-
sion variation was identified for 11 of them (Additional 
file 11).

Observing numerous genes where histone modifica-
tions and transcripts co-vary was expected. Several stud-
ies showed that eQTLs and histone modification QTLs 
tend to overlap [8, 9, 13, 15] and, in humans, histone 
mark variation could partially be attributed to the disrup-
tion of transcription factor binding sites [7–9].

We further examined the correlation between mRNA 
differences and variation of each of the five marks indi-
vidually. As shown in Fig.  3c, H3K4me3 was the only 
mark to display co-variation with transcript levels in 
the BY/RM comparison. This is consistent with a recent 
study comparing the BY strain to an S. paradoxus strain, 
where variation of H3K4me3, but not of H3K9ac, was 
associated with transcriptional differences [34]. However, 
this was not true when comparing BY with YJM (Fig. 3c), 
indicating that generalization is not straightforward. 
Finally, differences in histone modifications between BY 
and YJM were also not associated with different levels of 
non-coding RNA (Fig. 3d).

Overall, our gene-centered analysis of histone mark 
variation showed that (1) groups of genes can share 
similar patterns of variation without significant mRNA 

changes and (2) histone marks mostly vary independently 
of expression changes except for H3K4me3 in one pair 
of strains. How can this be interpreted? Both chroma-
tin and gene expression regulations are under complex 
regulatory control. The transcriptional activity of a gene 
is modulated by different types of signals, some related 
to the deposition of active histone marks and others 
related to transcription factors. These signals can be syn-
ergistic or antagonistic; they interact with one another, 
and each signal can have its own source of variation. 
The possibility that this complexity blurs the correlation 
between chromatin and transcriptional variation is sup-
ported by earlier observations. We and others showed 
that the genetic control of chromatin variation does not 
fully overlap with the control of gene expression. At least 
30% of yeast QTLs of H3K14ac are not eQTLs [15], and 
36% of the histone mark variation among a population of 
rats could not be attributed to variation in gene expres-
sion [13]. In addition, the genetic control of one histone 
mark sometimes compensates for the genetic control of 
another one. Among the QTLs controlling the antagonis-
tic marks H3K4me3 and H3K27me3 at the same genes 
in rat tissues, 24% upregulated both marks, contributing 
compensatory actions on gene activity [13]. Similar com-
plex scenarios are probably present in humans, because 

Table 1 Clusters of genes with similar patterns of epigenomic differences between the BY and RM strains

Cluster ID Number of genes GO term enrichment BY versus. RM mRNA diff.

1 15 Serine family amino acid catabolic process BY > RM

2 6 Transmembrane transport –

3 52 None BY > RM

4 32 None BY > RM

5 85 None –

6 12 None –

7 40 None –

8 31 None RM > BY

9 477 None RM > BY

10 1,389 None –

11 56 None RM > BY

12 22 None –

13 29 None RM > BY

14 40 None –

15 141 None –

16 195 None –

17 35 RNA metabolic process –

18 48 Translation process –

19 25 Oxidation–reduction process RM > BY

20 80 None RM > BY

21 21 None –

22 22 None RM > BY

23 192 None RM > BY
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variability at multiple enhancers is needed to predict var-
iable gene expression [8]. The correlation between chro-
matin and mRNA variation seems more detectable from 
heterozygous individuals displaying allelic imbalance [7]. 
This could be because allelic imbalance is not sensitive to 
the action of trans-acting factors that can antagonize cis-
regulations in inter-individual studies. An example of cis/
trans antagonistic control of H3K14ac levels was previ-
ously reported in BY × RM yeast strains [15]. Finally, we 
used transcriptomic data corresponding to steady-state 
mRNA levels, which, unlike RNA PolII ChIP, NET-seq 
[35] or DTA [36] do not reflect transcriptional activity 
itself. Turnover and post-transcriptional regulations of 
mRNAs probably also depend on various sources of vari-
ation, further attenuating the correlation between chro-
matin and transcript levels differences.

Highly responsive and TATA box‑containing genes show 
elevated epigenomic divergence
We asked if genes with the greatest intra-species epig-
enomic variation were associated with specific features. 
We computed a statistic (called ‘epidiv’ hereafter) that 
quantifies the extent of chromatin variation at every 
gene. This value corresponds to an interaction term in 
a linear model representing a strain-specific difference 
in at least one histone mark along the body of the gene 
(see “Methods”). Marked differences in epidiv values 
were observed between genes (Additional file  12). For 
example, RVB2, which encodes an ATP-dependent DNA 
helicase of the INO80 complex [37], displayed high con-
servation of epigenomic profiles with only one nucleo-
some having increased H3K14ac in the RM strain and 
decreased H3K9ac in the BY strain. The profiles of this 
gene and of genes with extreme epidiv values are shown 
in Fig.  4a. An example of medium epidiv value (ISY1 
gene) is shown in Additional file 13. Gene QDR2, which 
encodes a membrane transporter involved in multi-drug 
resistance [38], displayed variation in spanning from TSS 
to TES, with a remarkable enrichment of H3K4 mono- 
and tri-methylation in the BY strain, but little variation of 
other marks. The profiles observed were similar to those 
obtained when segmenting in absolute distance from TSS 
to TES (Additional file  13). A radically different pattern 
of elevated variation was seen for PET122, which encodes 
a mitochondrial translational activator. In this case, all 
five marks showed variation but with distinct patterns: 
YJM had increased levels of H3K4me1 downstream of 
the TES and of H3K4me3 on all four nucleosomes of 
the gene body; RM had high levels of H3K14ac along 
the entire gene; and BY had reduced levels of H3K9ac 
and H4K12ac. Other remarkable examples were the 
antagonistic variation of H3K9ac and H3K4me3 in the 
LCL2 gene, and the specific and pronounced variation 

of H3K9ac in the ATG17 gene (Additional file 13). Inter-
estingly, the mating-type-specific genes STE2, expressed 
in RM (MATa), and AFB1, expressed in BY and YJM 
(MATalpha), also showed complex patterns, with high 
levels of H3K4me3 but not of other active marks in the 
expressing strains, a redistribution of H3K4me1 and an 
unexpected increase of H3K14ac in some non-expressing 
strains (Fig. 4a). A complex and more precise redistribu-
tion of marks was also apparent on some nucleosomes of 
the alpha-specific SAG1 gene (Additional file 13). Finally, 
gene NIT1, encoding a nitrilase [39], showed another 
striking case of epigenomic divergence. Strain BY, where 
expression of this gene was higher than in RM [33], 
displayed increased H3K4me3 and a redistribution of 
H3K4me1 toward the 3′ end (Additional file 13). At the 
DNA sequence level, BY contained a frameshift mutation 
that was absent in RM and YJM. It is therefore possible 
that its specific epigenomic pattern results from a feed-
back-regulated compensation of the protein activity.

Using gene-level epidiv values, we searched for 
genomic features associated with elevated epigenomic 
divergence. We first determined whether genes with 
high DNA sequence variation among the strains also 
displayed high epigenomic divergence. This was only 
partially true: when plotting epidiv values as a function 
of SNP and indel density, a weak positive correlation was 
observed (Fig. 4b). Observing such a correlation is con-
sistent with the numerous cis-acting polymorphisms pre-
viously reported to control histone modifications [7–9, 
13, 15]. The weak association shows that high epigenomic 
divergence could be observed in genes with conserved 
DNA sequences. In addition, we observed no correlation 
between epidiv values and the ratio of nonsynonymous 
versus synonymous sequence divergence (dN/dS; Spear-
man ρ =  0.02, using the adjusted values of Wall et  al. 
[40]). Epigenomic signatures are, therefore, not particu-
larly constrained in genes that are under negative selec-
tion at the protein level.

We previously found increased variability of H3K14 
acetylation in genes with high expression evolvability 
[6], and a similar observation was reported recently for 
H3K4me3 [34]. To examine this property further, we 
tested for correlations between inter-strain epigenomic 
divergence and various measures associated with gene 
expression evolution. Epidiv showed a weak positive cor-
relation with expression mutational variance estimated 
from mutation accumulation lines (Wilcoxon P  <  10−7 
when testing the difference in epidiv between ‘evolvable’ 
and ‘non-evolvable’ genes defined in [41]), with inter-
species expression divergence [42] (Spearman ρ =  0.14, 
P < 10−11) and with transcriptional responsiveness to vari-
ous environmental or genetic perturbations [42] (Spear-
man ρ =  0.164, P  <  10−15), and it was slightly reduced 
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Fig. 4 Intra‑species chromatin divergence of every gene. Genes were segmented in bins corresponding to percentiles of the gene body (from TSS 
to TES) plus 500 bp of the upstream and downstream regions. For every gene, the divergence was quantified from an ANOVA model and termed 
‘epidiv’ (see “Methods”). a Examples of genes with low (0.35) and high (>100) epidiv values. The normalized ChIP/MNase profiles are colored accord‑
ing to strains. Black BY, red RM and green YJM. b Epidiv values as a function of DNA sequence divergence of every gene. c Epidiv values as a function 
of transcription responsiveness from [60]. The red line is a smoothed average, showing that the correlation is mainly supported by highly responsive 
genes. ρ Spearman correlation coefficient. P value: significance rank‑based correlation test. d Epidiv values for genes with or without a TATA box 
[60]. P value: Wilcoxon Mann–Whitney test. Colored bar median.
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in essential genes (Wilcoxon P  =  0.002). Consistently, 
epidiv was also associated with strain-specific expres-
sion response to different growth conditions (Spearman 
ρ = 0.1, P = 10−7, between epidiv and the statistical sig-
nificance of the strain-by-environment interaction term 
described in [33]). Importantly, these correlations were 
mainly supported by few genes with very high expression 
divergence or responsiveness (Fig. 4c). These genes were 
previously shown to frequently contain a TATA box [42]. 
Consistently, we observed a mild, but statistically signifi-
cant difference in epidiv values between TATA-less and 
TATA box-containing genes (Fig. 4d). Note that this does 
not imply that TATA boxes themselves favor epigenomic 
diversity, as they may have co-evolved with other cis-act-
ing determinants. We also noticed a slight increase in epi-
genomic divergence in genes transcribed at very low rates 
in standard conditions (Additional file  14). This is con-
sistent with many highly responsive genes being poorly 
transcribed in these conditions [43]. Taken together, these 
results demonstrated a statistical association between epi-
genomic variability and transcriptional evolvability.

Given that half of the genomic bins used to com-
pute epidiv are bigger for long genes, it is important to 
exclude that this association results from differences in 
gene size. Although small genes displayed higher epidiv 
values (Additional file  15), the association with TATA 
box remained when comparing genes of similar size 
(Additional file  16). We also re-calculated epidiv values 
using only fixed-size bins flanking the TSS (independ-
ent of gene size) and observed the same association with 
expression divergence (Spearman ρ =  0.11, P =  10−6), 
responsiveness (ρ  =  0.24, P  <  10−15) and TATA box 
(P < 10−15) (Additional file 17). Thus, this association is 
not a by-product of gene size differences.

What does this association imply? Chromatin diversity 
probably diversifies gene expression regulations. Genes 
with high epidiv values in our study may display inter-
strain mRNA divergence under wild or stressful envi-
ronmental conditions. It is also likely that the chromatin 
landscape modifies the regulatory effect of de novo muta-
tions. For example, a mutation in a transcription factor 
may have negligible effects on the expression of target 
genes if these genes are in a repressive chromatin con-
text. Diversity of chromatin states could therefore under-
lie diversity of fitness effects for regulatory mutations, 
increasing the evolutionary possibilities for gene expres-
sion. Further studies are needed to determine whether 
such chromatin-by-environment and chromatin-by-
mutation interactions shape gene expression evolution.

Extent of natural variation in nucleosome positioning
We next quantified inter-strain variation at every nucleo-
some individually. To do this, we developed a statistical 

framework, called NucleoMiner2.0, which aligned the 
genome of the strains, inferred nucleosome positions, 
determined the reproducibility of positioning across bio-
logical replicates, matched nucleosome maps of two dif-
ferent strains and tested for differential level of histone 
modification at every nucleosome. This data-processing 
pipeline is free and open-source and its details will be 
presented elsewhere [44]. The algorithm defines two 
types of nucleosomal regions: well-positioned nucle-
osomes, which correspond to individual nucleosomes 
displaying reproducible positioning across biological 
replicates; and “fuzzy” nucleosomes, which correspond 
to regions occupied by one or more nucleosomes having 
variable positioning between replicate experiments. Note 
that this definition of fuzziness is slightly different from 
the one commonly used in single experiments (e.g., peak 
width/height ratio), but the two are highly connected. 
When comparing two strains, two types of regions are 
determined: matched well-positioned nucleosomes, 
which correspond to individual nucleosomes that are 
well positioned in both strains and whose positions are 
consistent between the strains; and unaligned nucleoso-
mal regions (UNRs), which correspond to the remaining 
regions occupied by one or more nucleosomes in at least 
one strain.

About 40,000 and 25,000 well-positioned and fuzzy 
nucleosomes were mapped in each strain, respectively 
(Additional file 18). Maps of these nucleosomes are pro-
vided in Additional file 19. After comparing these maps 
between strains, we examined the extent of variation in 
positioning by considering the nucleosomes that were 
reproducibly well positioned in one strain and query-
ing their correspondence in another strain. Of 40,643 
well-positioned nucleosomes of the BY strain, 30,464 
matched a well-positioned nucleosome in RM and 
31,689 matched a well-positioned nucleosome in YJM. 
To visualize the conservation in positioning between 
these matched well-positioned nucleosomes, we plotted 
the distribution of the difference in dyad position in the 
two strains. For most of them, the positions differed by 
less than ten nucleotides (Fig.  5a). However, some pairs 
showed large differences (up to 75 nucleotides), which 
could represent functionally relevant differential posi-
tioning. This was the case for 2,928 nucleosomes in the 
BY/RM comparison. We then considered the well-posi-
tioned nucleosomes of BY that did not reliably match a 
well-positioned nucleosome of RM. In many cases, the 
misalignment created a UNR. In other cases, another 
well-positioned nucleosome of BY better matched the 
nearest well-positioned nucleosome of the RM strain, 
creating a partially overlapping UNR [44]. To look for 
these cases of positioning divergence, we plotted the frac-
tion of overlap with a UNR as a function of the distance to 



Page 13 of 24Filleton et al. Epigenetics & Chromatin  (2015) 8:26 

the nearest well-positioned nucleosome of RM (Fig. 5b). 
This revealed a subpopulation of 4,818 nucleosomes that 
were well positioned in BY and did not match a well-
positioned or fuzzy nucleosome in RM. Altogether, we 
identified 7,746 nucleosomes whose positions diverged 

between the BY and RM strains. Very similar numbers 
were obtained when comparing BY with YJM or RM with 
YJM (Fig. 5a; Additional file 20).

To see where these ‘shifted’ nucleosomes localized rela-
tive to gene positions, we plotted their frequency along 

Fig. 5 Divergence in nucleosome positioning. Our nucleosome mapping method defined two types of nucleosomal regions: well‑positioned 
nucleosomes and UNRs, which correspond to conserved and variable positioning across biological replicates, respectively. a Shift in dyad position 
between strains for matched well‑positioned nucleosomes. Lines show the distribution of the shifts between two strains. This panel considers the 
well‑positioned nucleosomes of both strains that could be reliably matched. b Positioning divergence of nucleosomes that are well positioned 
in BY, but did not match a well‑positioned nucleosome of RM. For all such BY nucleosomes (gray ellipse), two measures were retrieved that reflect 
distance to the nearest UNR (red rectangle) and nearest well‑positioned nucleosome (red ellipse) in RM. Cases of full overlap (>99%) with a UNR from 
RM are not displayed because they correspond to conserved occupancy between the two strains. The blue line distinguishes a subpopulation of 
BY nucleosomes (pink dots) whose positions differ in RM [poorly matching a well‑positioned nucleosome of RM (high x‑axis value) or incomplete 
overlap with a nucleosomal region of RM (low y‑axis value)]. c Average genic location of nucleosomes with differential positioning. The distributions 
show the location of well‑positioned BY nucleosomes along an average gene. Gray all. Pink subset of nucleosomes whose positions differ in RM 
(pink flagged nucleosomes in a, combined with pink flagged nucleosomes in b). The fraction of nucleosomes that are not shifted (orange smoothed 
line) reflects conservation. d Transcriptional divergence between BY and RM. X‑axis: log2 ratio of mRNA levels (data from [33]). Y‑axis: density of 
genes. Black all genes. Pink 411 genes containing at least one nucleosome with differential positioning (from c). Shoulders in the pink distribution 
indicate matches between differential positioning and differential expression. The mode at zero shows that, for most of these genes, differential 
positioning is not accompanied by differential expression.
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an average gene and compared it with the frequency of 
all nucleosomes. Positioning divergence was evenly dis-
tributed along genes, except immediately downstream 
of the TSS (Fig.  5c). This was explained by a higher 
positioning conservation of +1 nucleosomes (those 
located immediately downstream of a TSS): only 3% of 
+1 nucleosomes were listed as ‘shifted’ between BY and 
RM, whereas 12% of all other nucleosomes were shifted 
(P  <  10−15, Chi square). Also, DNA sequence polymor-
phism was reduced at +1 positions (mean polymorphism 
among strains within ±30 bp of 0.28 versus 0.32% for all 
other nucleosomes, Wilcoxon P =  0.01). Finally, nucle-
osomes that were ‘shifted’ in RM as compared to BY cor-
responded to regions of higher sequence polymorphism 
(0.63 versus 0.32%, P  <  10−15) and the same was true 
when considering nucleosomes ‘shifted’ in YJM as com-
pared to BY (0.62%).

Nucleosome eviction has been associated with 
increased transcriptional activity [45]. We asked whether 
the ‘shifted’ nucleosomes were located proximal to tran-
scription factor binding sites. Using the map of MacIsaac 
et al. [46], we observed that 0.18% of ‘shifted’ and 3.1% of 
‘conserved’ nucleosomes were located within 30 bp of a 
binding site. This difference in frequency was marginally 
significant (P = 0.05, Chi square test). Thus, positioning 
tends to be more conserved in the proximity of transcrip-
tion factor binding sites. We then looked at the BY/RM 
mRNA fold change for genes containing a ‘shifted’ nucle-
osome (Fig.  5d). Expression changes were slightly more 
pronounced among these genes than among all genes: 
the proportion of genes with >2-fold expression differ-
ence was 10% for this set as compared to 7% for all genes. 
Notably, many genes containing shifted nucleosomes 
were not particularly differently expressed between the 
strains. Thus, as for histone modification marks, inter-
strain differences in nucleosome positioning is partially 
associated with differential mRNA levels.

Single‑nucleosome epi‑polymorphisms (SNEPs) of five 
histone modifications
We identified inter-strain variation on individual nucle-
osomes by considering differences in ChIP-seq counts 
while accounting for differences in MNase-seq counts 
(input). This corresponds to differential loading of the 
histone modification per occupied nucleosome, which 
meets the definition of an SNEP [6, 15]. As illustrated by 
the examples shown in Fig. 6 for H3K4me3, we detected 
multiple cases of differential occupancy of the nucleo-
some, numerous cases of differential ChIP counts and 
several instances where both ChIP and input counts 
varied between strains. On average, 3,150 SNEPs were 
detected at a false discovery rate (FDR)  =  0.0001 in 
pairwise comparisons of the strains for the five histone 

modifications (Table  2a). This represented about 10% 
of the nucleosomes tested. Applying the test to UNRs 
revealed a similar proportion of regions with significant 
variation (Table  2b). This showed that the fraction of 
chromatin subjected to variation was large. Note, how-
ever, that the extent of variation (fold change) could be 
modest (Additional files 21, 22, 23). For all marks, the 
distribution of SNEPs relative to gene position was con-
sistent with the average profiles of the marks shown in 
Fig.  2 (Additional file  24). Remarkably, five to ten times 
more SNEPs were found for H3K14ac than for the other 
modifications. This high proportion was driven by the 
RM strain and the numbers obtained were consistent 
with our previous estimates of H3K14ac variation [6], 
and with the divergence of the RM H3K14ac epigenome 
from the other strains (Fig. 2a). As mentioned above, the 
origin of this RM specificity is unclear.

Genic patterns showed that variation could be focused 
at specific loci or spread over large regions (Fig.  3). To 
determine the proportion of SNEPs falling in loci of 
regional or focused variation, we plotted the fraction of 
nearby nucleosomes that were also SNEPs for the same 
histone mark (Fig. 7a). This showed a significant region-
ality of variation for all marks: nucleosomes close to an 
SNEP were more likely to carry similar SNEPs than ran-
dom nucleosomes. We also observed different proper-
ties between marks: variation of H3K4 tri-methylation 
was predominantly regional, whereas H3K14ac variation 
was more focused (low shoulders in Fig.  7a; Additional 
file  25). Examples of regional methylation in the QDR2 
gene and focused acetylation variation in the RVB2 gene 
are shown in Fig. 4a.

In summary, SNEPs were found on ~10% of analyzed 
nucleosomes; the majority of them corresponded to 
H3K14 acetylation variation; and variation in H3K4 
tri-methylation tended to spread to consecutive nucle-
osomes, whereas variation in H4K12 acetylation was 
often focused on specific nucleosomes.

Intra‑species variation is reduced at +1 (and −1) 
nucleosomes
Nucleosomes located immediately downstream of a TSS 
are critically important in the regulation of transcription 
[47, 48]. Their positioning is strong and, as stated above, 
less variable between S. cerevisiae strains. Therefore, we 
asked if these nucleosomes also have reduced variabil-
ity in histone modification levels. Compared with other 
nucleosomes, we observed fewer BY/RM SNEPs on 
these nucleosomes for all five marks and the difference 
was statistically significant for H3K14ac, H3K4me3 and 
H3K4me1 (Fig.  7b). Counting BY/YJM SNEPs showed 
the same trend for four of the five marks, although the 
total number of observations in this case was sometimes 
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Fig. 6 Statistical detection of SNEPs. a Statistical tests applied to 39,961 matched well‑positioned nucleosomes and UNRs (dots). The x‑axis is the 
significance of a differential MNase‑seq signal between the strains, which reflects different levels of nucleosome occupancy. The y‑axis is the statisti‑
cal significance of SNEP detection for H3K4me3, which corresponds to the null hypothesis of no interaction term in a generalized linear model 
implemented in DESeq (see “Methods” and [44]). Orange (black) dots correspond to nucleosomes for which the test was (was not) significant at the 
genome‑wide level, respectively (FDR = 0.0001). Labels B, C and E indicate nucleosomes presented in the corresponding panels. b Count data for 
a nucleosome where an SNEP is detected. A differential H3K4me3 ChIP‑seq value was observed, with no significant change in MNase‑seq counts 
between the strains. c Count data for a nucleosome where an SNEP is detected, with differential MNase‑seq values. Despite a lower abundance 
of the nucleosome in RM, the ChIP signal for this strain is comparable or even higher than that for BY. The trimethylation level therefore differs 
between strains after accounting for nucleosome abundance. d Coverage profile of the locus containing the SNEP presented in b. The figure was 
produced by prolonging the reads to a final length of 150 nucleotides and normalizing by the sample size factor (see “Methods”). Boxes below the 
profiles indicate six well‑positioned nucleosomes (top BY, bottom RM), colored in violet for the one presented in b. x‑axis: genomic coordinates (in 
nucleotides) on the BY genome. e Count data for a nucleosome where the differential ChIP signal is fully explained by differential occupancy. Varia‑
tion at this nucleosome is therefore not an SNEP.

Table 2 Number of regions with quantitative inter-strain differences in histone modifications (at FDR = 0.0001)

Nucleosomes tested H3K4me1 H3K4me3 H3K9ac H3K14ac H4K12ac

(a) Matched well‑positioned nucleosomes carrying SNEPs

 BY–RM 30,464 478 744 73 3,549 20

 BY–YJM 31,689 253 554 78 64 105

 RM–YJM 30,421 48 257 24 3,186 10

Regions tested H3K4me1 H3K4me3 H3K9ac H3K14ac H4K12ac

(b) UNRs with significant differences

 BY–RM 9,497 302 257 107 1,559 46

 BY–YJM 9,207 89 124 111 83 84

 RM–YJM 9,935 32 60 29 1,248 10
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too low to reach statistical significance. Interestingly, 
nucleosomes located immediately upstream the TSS −1 
position) also showed reduced variability (Fig.  7b). This 
contrasts with the known increase of genetic variants at 
these positions [49]. The BY/RM SNEPs that did occur 
for H3K4me3, H3K9ac, H4K12ac and H3K4me1 on +1 
nucleosomes were associated with expression changes, 
but this was not the case for BY/YJM SNEPs (Addi-
tional file 26). Given their critical role in gene expression 

regulation, it is possible that the histone modification sig-
nature of these nucleosomes is under negative selection, 
thereby explaining the observed reduced variability.

Frequent co‑variation of different histone modification 
marks
When a significant variation is observed for one mark 
on a nucleosome, is it accompanied by variation of 
another mark on the same nucleosome? We attempted 

Fig. 7 Regionality versus. precision of nucleosomal variation. a Analysis of BY/RM SNEPs. For each histone mark, regionality of variation was exam‑
ined by counting, for each SNEP, the frequency of SNEPs on the ten upstream and ten downstream nucleosomes (black bars). Expected frequen‑
cies in the absence of regionality were estimated by re‑assigning the SNEPs of this mark to random nucleosomes (red bars). Large black shoulders 
correspond to high regionality, where SNEPs tend to group together. Regionality of H3K4me3 remained when randomization was restricted to 
nucleosomes having above‑background ChIP signal in at least one strain (Additional file 25, C). b SNEP frequency among +1, −1 and all other 
nucleosomes. Chi square test significance: **p value <10−6, *p value <0.01.

(See figure on next page.) 
Fig. 8 Co‑variation of chromatin marks. a Correlation of epigenomic profiles in each strain. Colors represent Spearman coefficients of pairs of 
histone marks, computed on the genome‑wide vectors of nucleosome‑level ChIP/MNase signal. Low or negative correlations correspond to marks 
located on different nucleosomes. b Correlation between inter‑strain difference in one histone mark and inter‑strain difference in another mark. 
In each strain–strain comparison, the divergence of one mark was quantified on every nucleosome, while accounting for differential nucleosomal 
abundance (Fig. 6). Color Spearman correlation coefficient between such estimates of two histone marks, across all nucleosomes. c Fraction of 
SNEPs co‑varying with another mark. For each strain pair, the set of nucleosomes harboring an SNEP of mark (1) was analyzed by counting how 
many showed significant divergence in mark (2) (at p value <0.01) in the same direction [higher level of mark (2) in the strain with higher level of 
mark (1)]. The p value corresponded to the nominal test used to detect SNEPs of mark (2). d Co‑variation of specific H3K14ac SNEPs with other active 
marks. All ‘labile’ and ‘persistent’ SNEPs described in [15] were matched to nucleosomes of the current study and retained if matching was unambigu‑
ous and if H3K14ac SNEP significance in the current study verified p value <0.001. They were then analyzed by counting how many of them co‑
varied consistently with H3K9ac, H4K12ac, or H3K4me3 in the BY–RM comparison. e Co‑variation with H3K4me3 is more frequent among persistent 
H3K14ac SNEPs than among labile H3K14ac SNEPs even when accounting for genetic control. The 327 persistent SNEPs (d) were split according to 
whether they were under the control of an aceQTL or not [15]. Stars indicate the significance of a Chi square test of independence at p = 0.012 (*) 
and p < 10−13 (**).
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to answer this question in three steps. First, we examined 
the extent of correlation (similarity of profiles) between 
marks within each strain. As expected from previous 
studies [16, 18], active marks were correlated and dif-
fered from H3K4me1 (Fig.  8a). Two interesting specifi-
cities were observed. The correlation between H3K9ac 
and H3K4me3 was weak in the BY strain. This is prob-
ably caused by gene promoter regions that have normal 
H3K4me3, but reduced H3K9ac in this strain (Fig. 2c). In 
addition, the negative correlation between H3K14ac and 
H3K4me1 was absent in the RM strain (Fig. 8a). This was 
consistent with the partial redistribution of H3K14ac in 
the downstream part of gene bodies, where H3K4me1 
was maximal (Fig. 2f ).

Second, we directly quantified the co-variation of dis-
tinct marks. Thanks to the scan for SNEPs described 
above using NucleoMiner2.0, the variation of each mark 
in each pair of strains was quantified for every nucleo-
some. Therefore, co-variation across all nucleosomes 
could be estimated by the correlation between the varia-
tion of one mark and that of another. We observed cases 
of substantial co-variation and different degrees of corre-
lation between strain pairs (Fig. 8b). For example, the co-
variation of all three acetylation marks was strong in the 
BY–RM comparison, weak in the RM–YJM comparison, 
and occurred only between H3K9ac and H4K12ac in the 
BY–YJM comparison. Notably, no mark co-varied with 
H3K14ac in the BY–YJM comparison when all nucle-
osomes were considered.

Co-variation of distinct active marks might be more 
pronounced on nucleosomes showing marked differences 
in at least one mark. We therefore focused on nucle-
osomes carrying SNEPs of active marks. For each mark, 
we counted the fraction of SNEPs that showed evidence 
of co-variation with another active mark. In all cases, this 
fraction was higher than the random expectation (Fisher’s 
exact test, P < 0.03), but the enrichment could be mod-
est or pronounced (Fig. 8c). H4K12ac SNEPs consistently 
co-varied with the three other marks in all strain pairs. 
The co-variation of H3K14ac SNEPs with active marks 
was pronounced on comparing BY with YJM, weak on 
comparing BY with RM and nearly absent on comparing 
RM with YJM. Thus, the co-variation of H3K14ac with 
other acetylation marks on all nucleosomes in the BY–
RM comparison (Fig. 8b) was not driven by nucleosomes 
carrying H3K14ac SNEPs. This also indicated that the 
majority of RM-related H3K14ac SNEPs were not accom-
panied by variation of other active marks, whereas the 
few H3K14ac SNEPs differing between BY and YJM were.

Finally, we asked if co-variation of active marks was 
more pronounced at sites showing regional variation (dif-
ferential levels of the same mark on consecutive nucle-
osomes). To do this, we distinguished ‘regional’ BY/RM 

SNEPs, where one of the flanking nucleosomes also car-
ried an SNEP for the same mark, from ‘isolated’ BY/RM 
SNEPs, where none of the flanking nucleosomes did. The 
fraction of SNEPs co-varying with another mark was 
similar in the two categories (Additional file 27), indicat-
ing that regionality of variation was not generally associ-
ated with variation of multiple marks.

Persistent, but not labile H3K14ac SNEPs co‑vary 
with H3K4me3
We showed previously that H3K14ac SNEPs could be 
partially reprogrammed after a transient treatment with 
trichostatin-A (TSA, an inhibitor of histone de-acety-
lases) followed by prolonged recovery. This earlier study 
was based on microarrays and identified SNEPs (termed 
‘labile’) that were significantly affected by the treat-
ment/recovery protocol and SNEPs (termed ‘persistent’) 
that remained different between the strains. The study 
also included an independent genetic mapping of DNA 
polymorphisms regulating H3K14ac levels (aceQTL), 
which revealed that, as expected, SNEPs under genetic 
control displayed higher persistence [15]. However, this 
association between genetic control and persistence 
was only partial, leaving the possibility that persistence 
of H3K14ac SNEPs could also result from non-genetic 
sources. In particular, if other active chromatin marks 
differed between BY and RM at the same loci, then these 
marks might contribute to the maintenance or re-estab-
lishment of H3K14 acetylation differences.

This possibility can, at least partly, be investigated here. 
If other active marks confer persistence to H3K14ac 
variation, then the nucleosomes containing persistent 
H3K14ac SNEPs should show variation in these marks. 
We therefore counted how many persistent and labile 
SNEPs showed evidence of synergistic variation in the 
level of H3K9ac, H4K12ac or H3K4me3. As shown in 
Fig. 8d, the fraction of H3K14ac SNEPs co-varying with 
H3K9ac was similar for persistent or labile H3K14ac 
SNEPs (~30%). The fraction co-varying with H4K12ac 
was slightly higher when analyzing persistent (40%), as 
compared to labile (31%) H3K14ac SNEPs. Strikingly, 
the fraction co-varying with H3K4me3 was several times 
higher among persistent (44%) than among labile (12%) 
H3K14ac SNEPs. This revealed that inter-strain differ-
ences in H3K4me3 levels correlated with the persistence 
of H3K14ac differences. However, this correlation might 
be causal (differences in H3K4me3 conferring persistence 
to H3K14ac differences) or not (another factor, such as a 
DNA polymorphism, controlling both marks in a persis-
tent manner).

We therefore asked if the correlation resulted from a 
common genetic control of both H3K14ac and H3K4me3. 
Using the map of genetic modifiers of H3K14 acetylation 
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(aceQTL), we distinguished the genetically controlled 
H3K14ac SNEPs from those for which no genetic control 
was found. The correlation between H3K14ac SNEP per-
sistence and their co-variation with H3K4me3 was sig-
nificant in both categories of H3K14ac SNEPs (Fig.  8e). 
Thus, even when no genetic control of H3K14ac variation 
was detected, its persistence could be associated with 
co-variation of H3K4me3. Although it remains possible 
that undetected genetic modifiers control both marks, 
this observation suggested that inter-strain differences in 
H3K4me3 confer persistence to H3K14ac SNEPs.

It is remarkable that H3K14ac SNEP persistence could 
be associated with co-variation of a methylation mark 
and not of acetylation marks. The transient perturba-
tion of chromatin was achieved by TSA, which inhibits 
histone de-acetylases, but not de-methylases. It is there-
fore likely that differential levels of H3K4me3 and other 
methylation marks were not affected by the treatment. 
Persisting differential levels of histone methylation could 
then induce the re-establishment of differential levels 
of H3K14ac during recovery, via cross talk between the 
marks. Although still poorly understood, such cross talk 
exists. For example, deletion of the SET2 histone meth-
yltransferase modifies the genic distribution of H3K14ac, 
which is associated with appearance of cryptic transcrip-
tion [18]. Histone methylation (especially H3K4me2 
and H3K36me3) could also increase the recruitment of 
NuA4, a lysine acetyl-transferase, which in turn facili-
tates the recruitment of SAGA, a major acetyl-trans-
ferase complex targeting H3K14 [50]. Conversely, histone 
hypo-acetylation could induce hypo-methylation via the 
recruitment of the Jhd2 demethylase [51]. Determining 
which cross talk mechanism underlies the contribution 
of H3K4me3 differences to H3K14ac SNEP persistence 
requires additional dedicated experiments.

In conclusion, we propose that a fraction of H3K14ac 
inter-strain differences can be robust to a transient TSA 
treatment via cross talk and synergy with differential lev-
els of H3K4me3 and, perhaps, other methylation marks.

What does quantitative variation imply?
Finally, we emphasize on the biological importance of 
observing quantitative, often subtle, differences between 
the strains. Quantitative differences imply that, in a cell 
population, only a fraction of the cells possess the histone 
modification at certain positions and that this fraction 
differs from one strain to another. How is the popula-
tion affected by this fraction of cells? If the presence of 
active marks renders these cells more responsive to 
transcriptional activation, then a higher fraction of such 
cells can provide the population with a better potential 
of adaptation. However, if the response involves costly 
cellular decisions (e.g., arrest from cell cycle, synthesis 

of protective components or entry in meiosis), then trig-
gering the response when it is not needed is counter-
productive. In this case, a population with fewer cells 
carrying the active mark is better fit. It is possible that the 
different environmental history of the strains, especially 
the dynamics of the challenges they experienced, contrib-
uted to establish different fractions of cells carrying his-
tone marks at certain positions.

Conclusions
Understanding the complex pattern of epigenomic vari-
ation within a species is a key component of population 
epigenomics. In this report, we quantified this variation 
in yeast at individual nucleosomes using a new statisti-
cal framework. We generated maps of nucleosomes 
harboring inter-strain variation for H3K4me3, H3K9ac, 
H3K14ac, H4K12ac or H3K4me1. For every modifica-
tion, variation was abundant and complex, with partial 
association with the variation of gene expression. Genes 
with evolvable or highly responsive expression displayed 
higher chromatin variability, and +1 nucleosomes were 
less variable than other nucleosomes. Co-variation 
between marks was detected and the data suggested that 
H3K4me3 differences could help re-establish H3K14ac 
differences after reprogramming. However, co-variation 
was not systematic, with surprisingly distinct patterns of 
variation between the functionally related H3K9ac and 
H3K14ac modifications. The complexity found in this 
pilot survey in yeast suggests that modularity and high 
complexity can be anticipated in population epigenomics 
of higher eukaryotes, including humans.

Methods
Strains
Yeast strains used were BY4716 MATalpha lys2Δ0 [52], 
RM11-1a MATa leu2Δ0 ura3Δ0 hoΔ::KanMX [21] and 
YJM789 MATalpha lys2 gal2 ho::hisG strain [19].

Single‑nucleosome ChIP
Yeast cells were grown to exponential phase in flasks 
containing synthetic medium with 2% glucose (SDall) 
at 30°C. Cells were processed for MNase-seq and MN-
ChIP-seq as previously described for MNase-CHIP and 
MN-ChIP-CHIP [6]. Briefly, cells were fixed with for-
maldehyde and their cell wall was digested with zymol-
yase. After lysis, samples were digested with micrococcal 
nuclease. Digestion was controlled on 2% agarose gel 
to verify the predominance of a single band at 150  bp. 
For MNase-seq, DNA was recovered and processed for 
library construction. For MN-ChIP-seq, immunoprecipi-
tation was performed using: 10  µl anti-H3K4me1 poly-
clonal antibody (ActiveMotif, 39297), 3 µl anti-H3K4me3 
polyclonal antibody (Diagenode, CS-003-100), 8  µl of 
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anti-H3K9ac polyclonal antibody (Abcam, ab10812), 3 µl 
of anti-H3K14Ac polyclonal antibody (Upstate, 07–353) 
and 4  µl of anti-H4K12ac polyclonal antibody (Upstate, 
07-595), respectively. All strain/antibody combinations 
were performed in three biological replicates (independ-
ent cultures).

Library construction and sequencing
Illumina sequencing libraries were built using BioScien-
tific NEXTflex™ ChIP-Seq Kit and NEXTflex™ ChIP-seq 
Barcodes, adapting the manual with the following modi-
fications: we did not include a pre-size selection PCR and 
agarose gel size selection, and we applied only ten cycles 
of amplification. DNA library concentration was quanti-
fied using the Qubit fluorometer (Life Technologies) and 
its size distribution was verified on a Bioanalyzer system 
(Agilent). One library (H3K4me1, strain YJM) had very 
low concentration and was discarded. All other librar-
ies were sequenced in single read mode, 50 bp long, on a 
Illumina HiSEQ 2000 sequencer at ViroScan3D/ProfileX-
pert (Lyon, France).

Reads mapping
The genome sequences of S288c (isogenic to BY) and RM 
were downloaded in December 2007 from NCBI (ftp://
ncbi.nih.gov/genomes/Saccharomyces_cerevisiae) and 
the Broad Institute (http://www.broad.mit.edu/annota-
tion/genome/saccharomyces_cerevisiae/Home.html), 
respectively. The genome of YJM was downloaded from 
http://www-sequence.stanford.edu/yjm789_public/yjm-
download.html in February 2009. Reads were aligned 
using Bowtie 2 (2.0.0-beta7) [53], with option “–very-sen-
sitive”. Alignments were collected in SAM format, con-
verted into BAM files using SAMTools (0.1.18) [54] and 
then into BED files using BEDtools (v2.16.2) [55].

Pairwise genome alignments
Genomes of two strains were aligned using MUMmer 
[56] and custom scripts developed in version 1.0 of Nucl-
eoMiner [6]. This step produced a.c2c file listing all simi-
larities and polymorphisms. We used this file to define 
regions that are common to both genomes, larger than 
4 Kb and containing no indel greater than 30 bp. These 
regions of interest were called common uninterrupted 
regions (CUR) [44]. All statistical analyses were then 
done using R (http://www.r-project.org).

Coverage profiles
We built coverage profiles of every experiment as fol-
lows. Every CUR was segmented in 90  bp chunks. For 
each chunk, the coverage of one experiment was com-
puted by translating the coordinates of the chunk in the 
genomic coordinates of the strain used in this experiment, 

and counting the number of forward reads having a start 
position within the chunk. Values were converted in per-
million reads and divided by the chunk size to account for 
(1) shorter chunks truncated at the border of CURs and 
(2) chunks with length different from 90 bp after transla-
tion, because of the presence of indels. We then inspected 
the consistency of coverages across biological replicates by 
plotting the distributions of the values obtained. Triplicates 
displayed similar distributions except for one (H3K9ac, 
YJM) sample, one (H4K12ac, RM) sample, one (H4K12ac, 
BY) sample and one (H3K14ac, RM) sample, which mark-
edly deviated from their corresponding replicates. The data 
of these four samples were discarded from further analysis.

PCA analysis
For simplicity, only forward reads were used because 
reverse reads contained redundant information (dos-
age of the same nucleosome, at the other extrem-
ity). The matrix of coverages (columns  =  experiments, 
rows =  chunks) was normalized by dividing each value 
by the sum of its column. PCA was performed using the 
prcomp() function in R. To assess the significance of the 
components, PCA was run three times on permuted 
datasets. On average, the fraction of variance explained 
by the first component on permuted data was 2.3%.

Gene‑level statistical analysis
IDs of genes in clusters are provided in Additional 
file 28. ChIP coverage profiles of all biological replicates 
along an average gene are shown in Additional file  29. 
Genes that were longer than 100 bp and which were fully 
included in CURs (3,078 genes in total) were segmented 
in 100 bins from TSS to TES, plus 250 bins of 10  bp 
upstream and downstream. For every bin, the per-million 
reads coverage of each sample was normalized using the 
size factor of the sample computed by DESeq [57], and 
replicates were averaged. For Fig.  2b–g, profiles were 
averaged across all genes. For gene clustering, profiles 
were transformed in ChIP/MNase log-ratios. Nine genes 
displaying near-zero signal for all marks were discarded. 
For the remaining 3,069 genes, the five profiles (one 
per histone mark) were truncated to keep only 500  bp 
upstream TSS and downstream TES, and were concat-
enated in a single vector (one vector per gene). The dif-
ferential pattern between two strains was then obtained 
by subtracting the resulting vector of one strain from the 
vector of the other strain. Hierarchical clustering was 
then performed on these differential patterns, using com-
plete linkage (Fig. 3a, b). For each gene, epidiv was com-
puted from an analysis of variance (ANOVA) with the 
linear model:

coverage ∼ strain+mark+ bin+ strain:mark

+ strain:bin+ strain:mark:bin+ ε,

ftp://ncbi.nih.gov/genomes/Saccharomyces_cerevisiae
ftp://ncbi.nih.gov/genomes/Saccharomyces_cerevisiae
http://www.broad.mit.edu/annotation/genome/saccharomyces_cerevisiae/Home.html
http://www.broad.mit.edu/annotation/genome/saccharomyces_cerevisiae/Home.html
http://www-sequence.stanford.edu/yjm789_public/yjm-download.html
http://www-sequence.stanford.edu/yjm789_public/yjm-download.html
http://www.r-project.org
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 where coverage is the ChIP/MNase log ratio mentioned 
above at genomic bin bin for histone mark mark in strain 
strain. Colons indicate interaction terms in the model 
and ε the residual error. The term of the model reflect-
ing inter-strain divergence across the entire gene was 
strain:mark, and epidiv was defined as the F statistics 
associated with this term (Fig.  4). Note that (1) we did 
not use this term to reject the null hypothesis that it is 
zero, but to capture the amount of variation according 
to the model and (2) the term strain:mark:bin captures 
strain-specific redistribution of some marks along the 
gene, which is also relevant to divergence in chromatin 
pattern. However, this triple interaction term is equally 
affected by local variation between nearby bins as by 
more pronounced redistribution between distant bins. 
The biological interpretation of the proportion of vari-
ance explained by this term is not straightforward.

QTL scan for determinants of RM‑specific H3K14ac 
enrichment in 3′ of genes
As stated above, the chromatin profiles of each gene 
consisted of ChIP-seq signals computed on physical seg-
ments of the gene body. Segments 1–250, 251–350, and 
351–600 matched the 5′ upstream region (10  bp per 
segment), the TSS to TES region (1% per segment) and 
the 3′ downstream region (10  bp per segment), respec-
tively. The RM-specific H3K14ac pattern corresponded 
to incomplete acetylation in segments 251–266 (region 
immediately downstream of the TSS, termed R1 here-
after) and increased acetylation in segments 284–333 
(termed R2 hereafter) (Fig.  2f ). To determine the genes 
contributing to this pattern, we computed, at every seg-
ment, the differential profile d of H3K14ac between 
RM and BY. We next computed, for each gene, the dif-
ference δ between the median of d values in R2 and the 
median of d values in R1. As expected, the distribution 
of δ values among genes was skewed toward high val-
ues; an upper tail at δ > 10 was contributed by 529 genes, 
where the re-distribution of H3K14ac in RM was the 
most pronounced. We next extracted, for these genes, 
the nucleosome-level ChIP-CHIP H3K14ac values of 
[15] in 60 BY × RM segregants. For each segregant, we 
constructed a gene-level ‘phenotype’ phen = m2 − m1, 
where m2 was the mean rank of the segregant over nucle-
osomes of the second half of the gene body, and m1 was 
the mean rank of the segregant over nucleosomes of the 
first half of the gene body. This way, a high ‘phenotypic’ 
trait corresponded to pronounced imbalance of H3K14ac 
toward the 3′ end of the gene. A principal component 
analysis of these 529 phenotypes revealed two significant 
components, which were then considered as ‘metaphe-
notypes’ representing the global trend in each segregant. 
We searched for QTL linked to these metaphenotypes by 

applying a non-parametric linkage test at every marker 
position, as previously described [58]. The significance 
was determined empirically, by running the linkage test 
on ten permuted datasets.

Nucleosome‑level analysis
Inference of nucleosome positions, their correspond-
ence between strains and the inference of SNEPs were all 
done using NucleoMiner2.0, which are described in detail 
elsewhere [44]. Briefly, this pipeline called Template-
Filter [59] maps nucleosomes in each strain; it applies 
likelihood ratio test to match nucleosomes and test the 
reproducibility of their positions, both across biological 
replicates and across strains; and it uses DESeq [57] to 
detect SNEPs by testing the statistical significance of an 
interaction term in a generalized linear model fitted to 
the data.

Data availability
The raw data is available at Array Express (http://www.
ebi.ac.uk/arrayexpress/) under accession numbers 
E-MTAB-3390 and E-MTAB-2671.

Additional files

Additional file 1: Western blot control experiments. A) Antibody 
specificity. Whole cell extracts of wild‑type BY strain (black symbol) as well 
as indicated histone point mutants were probed with antibodies indi‑
cated above the gels. B) Whole cell extracts from BY, RM and YJM strains 
(symbols in black, red and green respectively).

Additional file 2: List of samples generated and their sequencing depth.

Additional file 3: Proportion of variance explained by each princi-
pal component. The red line indicates the highest proportion of variance 
that is expected to be explained by chance only. It was calculated as 
the proportion of variance explained by the first component obtained 
on a permuted dataset, and averaged over three permutations. The first 
four components obtained on the actual data are highly significant. 
Components 5 and 6 are marginally significant, and all successive ones are 
non‑significant.

Additional file 4: Principal Component Analysis performed on ChIP/
MNase profiles.

Additional file 5: Table of sequence polymorphisms and expression dif‑
ferences of 23 chromatin modifiers among the BY, RM and YJM strains.

Additional file 6: Normalized coverage profiles along an average 
gene. The ChIP coverage values of each histone mark shown in Fig. 2A 
were divided by the MNase coverage of each strain (in per‑million reads, 
normalized by the size factor of the MNase sample, and averaged across 
replicates). Colors correspond to strains.

Additional file 7: Distances used for gene clustering are not correlated 
with differences in gene size. For each pair of genes (dots), the gene–gene 
epigenomic distance that was used for gene clustering (Fig. 3A‑B) is 
indicated on the y‑axis. The difference in size between the two genes is 
indicated on the x‑axis. Pairs of genes with identical size were set to x = 1 
to allow logarithmic scaling of the axis. Only 10,000 random gene pairs are 
represented to allow visualization. The Spearman correlation coefficient 
using these pairs was ‑0.03.

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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Additional file 8: Inter‑strain differential profiles of acetylation along an 
averaged gene (same binning as for Fig. 3).

Additional file 9: Transcription rates (y‑axis) reported in [43] for all genes 
(grey) and for genes belonging to clusters 17, 18 and 19 of Fig. 3.

Additional file 10: Epigenomic BY-YJM divergence of three sets of 
genes. The gene clusters of Fig. 3B, which were defined by similarity in 
BY–RM divergence, are represented here to display their pattern of BY‑YJM 
divergence. They are displayed in the exact same order as on Fig. 3B, with 
colors showing the difference between the log2(ChIP/MNase) profiles of 
the BY and YJM strains. Differential gene expression is from [23] in stand‑
ard rich conditions (YPD medium). Cyan: missing mRNA data.

Additional file 11: Table of clusters of genes sharing similar chromatin 
variation profiles in the RM/YJM comparison (A) or in the BY/YJM compari‑
son (B).

Additional file 12: Table of epidiv values of all genes.

Additional file 13: A) Relative profiles (region from TSS to TES was 
divided in 1% bins) of inter‑strain chromatin divergence of the LCL2, 
ATG17, SAG1, and NIT1 genes. B) Absolute profiles (region from TSS to TES 
was divided in 10 bp bins) of genes ISY1 (medium epidiv, no TATA) and 
QDR2 (extreme epidiv, TATA).

Additional file 14: Epidiv values of all genes as a function of the 
transcription rate in standard growth conditions, as determined by Miller 
et al. [43].

Additional file 15: Epidiv dependence on gene size.

Additional file 16: Epidiv association with TATA within classes of genes 
of similar size. Same representation as Fig. 4D, but on subcategories of 
genes of indicated size range (from TSS to TES). P values correspond to 
Wilcoxon test against the null hypothesis of no epidiv difference between 
TATA and TATA‑less genes. Bars: median values.

Additional file 17: Epidiv recalculated using fixed‑size physical regions. 
For each gene, the region spanning 500 bp upstream the TSS to 1,500 bp 
downstream the TSS was segmented in 10 bp bins and epidiv was cal‑
culated using the same anova model and procedure as described in the 
main text. A) Correlation between these recalculated epidiv values and 
transcriptional responsiveness. B) Correlation between these recalculated 
epidiv values and presence of a TATA box.

Additional file 18: Number of well‑positioned and fuzzy nucleosomes 
mapped in each strain.

Additional file 19: Tables of nucleosomal positions in each strain.

Additional file 20: Positioning divergence of nucleosomes that are 
well‑positioned in BY (A) or in RM (B) but did not match a well‑positioned 
nucleosome of YJM. Same representation as Fig. 5B. Numbers in magenta 
indicate how many of these nucleosomes are considered to be ‘shifted’ 
between the two strains.

Additional file 21: Table of SNEP detection between BY and RM strains.

Additional file 22: Table of SNEP detection between BY and YJM strains.

Additional file 23: Table of SNEP detection between RM and YJM strains.

Additional file 24: Density of SNEPs along an average gene. Curves are 
colored according to the strain where the mark is more abundant. For 
example, BY/RM SNEPs for H4K12ac where acetylation is higher in RM 
correspond to the red curve of the top right panel. Note that, since SNEPs 
account for MNase‑seq inter‑strain differences, these profiles do not nec‑
essarily correspond to the differences between the ChIP profiles in Fig. 2.

Additional file 25: Regionality vs. precision of variation relative 
to the YJM strain. As in Fig. 7A, regionality of variation of each mark is 
shown for the BY/YJM (A) and for the RM/YJM (B) comparisons. C) Same 
as Fig. 7A for H3K4me3, together with a randomization applied only to 
nucleosomes where the ChIP/MNase ratio is above 1 in at least one strain.

Additional file 26: Inter‑strain expression changes (y‑axis) for all genes 
(grey dots) and for genes containing a SNEP at nucleosome position +1. 

Upper panels: BY/RM comparison (using mRNA data from [33]). Lower 
panels: BY/YJM comparison (using mRNA data from [23]). Dots are colored 
according to the strain where the epigenetic mark is enriched (black: 
BY, red: RM, green: YJM). High values on the y‑axis correspond to higher 
mRNA expression in the BY strain.

Additional file 27: Similar co‑variation of histone marks at isolated 
vs. regional SNEPs. H3K4me3 SNEPs were termed ‘isolated’ when both 
flanking nucleosomes did not contain an H3K4me3 SNEP. All others were 
termed ‘regional’. The same definition was applied to SNEPs of other 
marks. On each set of nucleosomes (those corresponding to regional 
and those corresponding to isolated SNEPs for mark (1)), co‑variation was 
quantified as in Fig. 8C, by computing the fraction of BY–RM isolated or 
regional SNEPs of mark (1) that showed synergistic and significant BY–RM 
differences in mark (2).

Additional file 28: IDs of genes in clusters of shared inter‑strain patterns 
of chromatin variation.

Additional file 29: ChIP coverage profiles of the indicated marks along 
an average gene for each sample (in per‑million reads, normalized and 
averaged across replicates).
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