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The numerical measure of a complex matrix

Thierry Gallay∗ Denis Serre†

November 11, 2015

Abstract

We introduce a natural probability measure over the numerical range of a complex matrix A ∈
Mn(C). This numerical measure µA can be defined as the law of the random variable 〈AX,X〉 ∈ C

when the vector X ∈ Cn is uniformly distributed on the unit sphere. If the matrix A is normal, we
show that µA has a piecewise polynomial density fA, which can be identified with a multivariate
B-spline. In the general (nonnormal) case, we relate the Radon transform of µA to the spectrum of
a family of Hermitian matrices, and we deduce an explicit representation formula for the numerical
density which is appropriate for theoretical and computational purposes. As an application, we show
that the density fA is polynomial in some regions of the complex plane which can be characterized
geometrically, and we recover some known results about lacunas of symmetric hyperbolic systems
in 2 + 1 dimensions. Finally, we prove under general assumptions that the numerical measure of a
matrix A ∈ Mn(C) concentrates to a Dirac mass as the size n goes to infinity.

1 Introduction

If A ∈ Mn(C) is a complex square matrix of size n ∈ N
∗, the numerical range of A is the compact

subset of the complex plane defined by

W (A) =
{

〈Ax, x〉 ∈ C

∣

∣

∣x ∈ C
n , ‖x‖ = 1

}

,

where 〈x, y〉 = y∗x is the usual scalar product in C
n and ‖x‖ = 〈x, x〉1/2. It is quite obvious that

W (A) ⊃ σ(A), where σ(A) (the spectrum of A) is the collection of all eigenvalues of A, and that
W (A) = W (U∗AU) for any unitary matrix U ∈ Un(C). Moreover, a celebrated result due to Toeplitz
[25] and Hausdorff [13] asserts thatW (A) is always a convex subset of the complex plane. In particular,
W (A) contains the convex hull of σ(A), and it is easy to verify that W (A) = conv(σ(A)) if the matrix
A is normal, namely AA∗ = A∗A. The interested reader is referred to Chapter 1 of [15] for a detailed
discussion of the various properties of the numerical range, including complete proofs.

Let ∂Bn = {x ∈ C
n | ‖x‖ = 1} be the unit sphere in C

n, considered as a real manifold of dimension
2n − 1. By definition, the numerical range W (A) is the image of the numerical map ΦA : ∂Bn → C

defined by
ΦA(x) = 〈Ax, x〉 , x ∈ ∂Bn .

The algebraic and geometric properties of the map ΦA have been extensively studied, see [19, 27, 4,
9, 16, 17]. In particular, the set of all critical values of ΦA, which we denote by ΣA ⊂ C, has received
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much attention, because this is an interesting object which contains a lot of information on the matrix
A. For instance, it is known that ∂W (A) ⊂ ΣA and W (A) = conv(ΣA). As is shown in [17], there
exists a real algebraic curve CA ⊂ C ≃ R

2 with the property that ΣA = CA ∪ C ′
A, where C ′

A denotes
the set of all line segments joining pairs of points of CA at which CA has the same tangent line [17].
Under generic assumptions on A, the bitangent set C ′

A is empty, and the critical set ΣA is therefore
the union of a finite number of closed curves, one of which is the boundary of the numerical range
W (A). This distinguished curve is smooth, and encloses all the other ones in its interior. We refer
to Section 5 below for more details on the geometry of the singular set, and to Section 7 for a few
concrete examples.

Our purpose in this paper is to introduce another mathematical quantity which is naturally related
to the numerical map ΦA. Given A ∈ Mn(C), the numerical measure of A is the probability measure
µA on C defined by the formula

∫

C

φ(z) dµA(z) =

∫

∂Bn

φ(〈Ax, x〉) dσ̄(x) , (1)

for all continuous functions φ : C → C. Here σ̄ denotes the Euclidian measure on the unit sphere ∂Bn,
normalized as a probability measure. In words, the numerical measure is thus the image under the
numerical map of the normalized Euclidean measure on the unit sphere. Equivalently, if X is a random
variable that is uniformly distributed on ∂Bn, the numerical measure µA is just the distribution of
the random variable 〈AX,X〉 ∈ C. This probabilistic interpretation will be useful later, especially in
Section 8.

Our first goal is to establish a few general properties of the numerical measure µA. It is clear
by construction that µA is invariant under unitary conjugations of A, namely µU∗AU = µA for all
U ∈ Un(C). This is precisely the reason why we used the Euclidean measure on ∂Bn in the definition
(1). It is also easy to verify that the support of µA is exactly the numerical range W (A), see Section 2
below. Less obvious, perhaps, is the fact that µA is absolutely continuous with respect to the Lebesgue
measure λ on W (A), so that we can define the numerical density fA as the Radon-Nikodym derivative
of µA with respect to λ (in the particular situation where W (A) reduces to a line segment Γ, we
understand λ as the one-dimensional Lebesgue measure on Γ, see Section 2.) We also prove that the
numerical density fA is strictly positive in the interior of A, a property that can be interpreted as a
strong version of Hausdorff’s theorem [13]. Finally, we shall see that the singular support of µA is
contained in the critical set ΣA, which means that the numerical density fA is smooth outside ΣA. In
fact, we conjecture that sing supp(µA) = ΣA for all A ∈ Mn(C), but this has not been proved yet.

After these general properties have been established, our next goal is to give a more precise
description of the numerical density fA. For this purpose, it is convenient to distinguish between
various cases:

1. (The scalar case) If W (A) is reduced to a single point {z}, then A = zIn (where In ∈ Mn(C)
denotes the identity matrix) and µA = δz. In this trivial situation, of course, there is no need to
introduce a numerical density.

2. (The Hermitian case) Assume that n ≥ 2 and that W (A) ⊂ C is a line segment. Then we can find
z ∈ C, θ ∈ [0, 2π], and a Hermitian matrix H such that A = zIn+ eiθH. If λ1 ≤ λ2 ≤ · · · ≤ λn are the
eigenvalues of H, we shall see in Section 3 that the numerical measure µH is absolutely continuous with
respect to Lebesgue’s measure on R, and that the corresponding density fH is exactly the normalized
B-spline of degree n− 2 with knots λ1, . . . , λn [7]. In particular, fH is polynomial of degree n− 2 on
each interval [λi, λi+1], vanishes identically outside [λ1, λn], and is continuous at each point λi together
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with its derivatives up to order di = n−2−mi, where mi ≥ 1 is the multiplicity of λi as an eigenvalue
of H (if di < 0, then fH is discontinuous at λi.) This gives an explicit representation of the numerical
measure µH , and the measure µA is the image of µH under the affine isometry w 7→ z + eiθw.

3. (The normal case) Suppose now that n ≥ 3 and that A ∈ Mn(C) is a normal matrix whose
spectrum σ(A) is not contained in a line segment. Then W (A) = conv(σ(A)) is a convex polygon
with nonempty interior, and it turns out that the numerical density fA is the bivariate B-spline of
degree n − 3 whose knots are the eigenvalues of A. Here we refer to the work of W. Dahmen [6] for
the definition and the main properties of multivariate B-splines. In this particular case, the critical
set ΣA is thus the collection of all line segments joining pairs of eigenvalues of A, and the density fA
is polynomial of degree n− 3 in each connected component of C \ΣA. In the generic situation where
no straight line contains more than two eigenvalues of A, one can show that fA is continuous together
with its derivatives up to order n− 4 (and is discontinuous on ∂W (A) if n = 3.)

4. (The nonnormal case) Finally, we consider the most interesting situation where the matrix A ∈
Mn(C) is not normal. In that case, there is no explicit formula for the numerical density, but the
problem can be reduced in some sense to the Hermitian case by the following simple observation. For
any θ ∈ S1 = R/(2πZ), let H(θ) be the Hermitian matrix defined by

H(θ) =
1

2
(e−iθA+ eiθA∗) = A1 cos(θ) +A2 sin(θ) , (2)

where A1 = (A+A∗)/2 and A2 = (A−A∗)/(2i). Then Re (e−iθ〈Ax, x〉) = 〈H(θ)x, x〉 for all x ∈ ∂Bn.
Now, if the random variable X is uniformly distributed on ∂Bn, the distribution of 〈H(θ)X,X〉 is by
definition the numerical measure µH(θ), whereas the distribution of Re (e−iθ〈AX,X〉) is easily identified
as the two-dimensional Radon transform of the numerical measure µA, with angular parameter θ ∈
[0, 2π]. We thus have

RµA(θ) = µH(θ) , θ ∈ S1 , (3)

where R denotes the two-dimensional Radon transformation. Since the numerical density of H(θ) is
known to be the B-spline based on the eigenvalues λ1(θ), . . . , λn(θ) of H(θ), we can reconstruct the
numerical measure µA by inverting the Radon transformation in (3), using the well-known backprojec-
tion method which plays an important role in tomography [12]. This provides a useful representation
formula for the numerical density, as well as an efficient algorithm for numerical calculations, see
Section 4 for more details.

It is worth mentioning here that the critical set ΣA can be conveniently characterized using the
family of Hermitian matrices H(θ) associated with A. Indeed, if we define the eigenvalues λj(θ) in
such a way that they depend analytically on θ, one can shown that the algebraic curve CA which
generates ΣA is given by

CA =
{

eiθ(λj(θ) + iλ′
j(θ))

∣

∣

∣
j ∈ {1, . . . , n} , θ ∈ [0, π]

}

,

see [27, 16, 17] and Section 5 below. In the generic case where λ1(θ) < λ2(θ) < · · · < λn(θ) for all
θ ∈ [0, π], the bitangent set C ′

A is empty and ΣA = CA.
As was already mentioned, the numerical density fA is smooth (in fact, real-analytic) on each

connected component of C\ΣA. The regularity across ΣA is more difficult to study, but we shall show
in Section 6.2 that fA is everywhere of class Cn−3 if n ≥ 3 and A ∈ Mn(C) satisfies some generic
hypotheses, which exclude in particular the case of normal matrices. In addition, for an arbitrary
matrix of size n, we shall prove that all derivatives of fA of order n − 2 vanish identically in some
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Figure 1: The numerical density fA is represented for a typical matrix A ∈ M3(R), given by (55) below. In
the contour plot (left), the exterior ovate curve is the boundary of the numerical range W (A), and the other
component of the critical set ΣA is the interior cuspidal triangle. The three-dimensional plot (right) confirms
that the numerical density is continuous, positive inside the numerical range, and constant over the cuspidal
triangle, in agreement with the results of Section 6.

distinguished regions, which have the following geometric characterization. For any z ∈ C \ ΣA, let
N(z) be the number of straight lines containing z which are tangent to the curve CA, see Eq. (39) below
for a precise definition where possible multiplicities are taken into account. It is easy to verify that
N(z) is constant in each connected component of C \ΣA, and that N(z) ≤ n [27]. The distinguished
regions where fA is polynomial of degree n − 3 (if n ≥ 3) or fA ≡ 0 (if n = 2) are exactly those
connected components of C \ΣA on which N(z) takes its maximal value n. This remarkable property
of the numerical density, which is one of our main results, will be established in Section 6.1. The
geometric condition N(z) = n is always satisfied in the complement of the numerical range, where fA
vanishes identically, but for many matrices of size n ≥ 3 is it also met in some regions inside W (A).
For instance, in the three-dimensional example represented in Fig. 1, it is easy to verify that N(z) = 3
if z is outside W (A) or inside the cuspidal triangle, and N(z) = 1 in the intermediate region where
the numerical density is not constant.

At this point, it is necessary to make a connection with the theory of lacunas of symmetric
hyperbolic systems of partial differential equations in 2 + 1 variables. Given A ∈ Mn(C), we consider
the following system of linear PDE’s in Rt × R

2
x:

∂tu+A1∂x1
u+A2∂x2

u = 0 , (4)

where A1, A2 are as in (2) and u = (u1, . . . , un)
⊤ : R × R

2 → R
n. The fundamental solution of (4) is

the unique (matrix-valued) distribution E supported in the half-space R+ × R
2 which satisfies

∂tE +A1∂x1
E +A2∂x2

E = In δt=0 ⊗ δx=0 . (5)

One can show that E(t, x) is homogeneous of degree −2 in t and x. It is thus sufficient to consider
the time-one trace E∗ = E(1, ·), which is a distribution on R

2. Due to the finite speed of propagation,
it is well-known that E∗ is zero outside a compact set of R2, but it may also happen that E∗ vanishes
identically in some regions inside the domain of influence of the origin. Such regions are called lacunas
of the hyperbolic system (4).

The properties of the fundamental solution of symmetric hyperbolic systems have been studied by
many authors, see e.g. [22, 27, 4, 2, 3]. In the particular case of system (4), J. Bazer and D. Yen
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have shown that, if one identifies C with R
2, the singular support of the distribution E∗ is contained

in the critical set ΣA, and the (stable) lacunas of system (4) are exactly the regions described above
where the numerical density fA is polynomial of degree n − 3. This remarkable coincidence is of
course not fortuitous. In Section 6.3, we explain it by showing that the fundamental solution E can
be expressed as a linear combination of derivatives of order n − 1 of a homogeneous extension of
the numerical density fA. This connection allows us to recover some of the main results of [4], and
therefore confirms that the numerical measure is a natural quantity attached to the matrix A. One
might even argue that µA contains more information than E∗, since for instance supp(µA) = W (A)
while supp(E∗) is in general strictly smaller and not necessarily convex, see Section 7. Similarly, we
believe that sing supp(µA) always coincide with ΣA, while sing supp(E∗) is usually smaller.

A final question that is worth investigating is the behavior of the numerical measure µA when the
size of the matrix A goes to infinity. Here of course, specific assumptions have to be made in order to
obtain convergence results. Suppose for instance that {An}n≥1 is a sequence of complex matrices with
An ∈ Mn(C), Tr(An) = 0, and ‖An‖ ≤ C for all n ≥ 1. If, for each n ≥ 1, Xn is a random variable
that is uniformly distributed on ∂Bn, we show in Section 8 that the complex variable 〈AnXn,Xn〉
converges almost surely to zero as n → ∞. This is reminiscent of the strong law of large numbers in
probability theory. Under slightly stronger assumptions, we also establish the analog of the central
limit theorem in this context. Our convergence results mean that µA is very close to δz when dim(A)
is large, where z is the barycenter of σ(A). This explains why plotting 〈Ax, x〉 for randomly chosen
points x ∈ ∂Bn is a very unefficient algorithm for determining the numerical range W (A) if A is a
large matrix!

The rest of the paper is organized as follows. In Section 2, we establish some general properties
of the numerical measure. Section 3 is devoted to the particular situations where the matrix A is
Hermitian or normal. The nonnormal case is treated in Sections 4–6, which constitute the core of the
paper. In Section 4, we derive a representation formula for the numerical density using the inversion
of the Radon transformation. Section 5 collects a few results on the geometry of the critical set ΣA,
which are mainly borrowed from [19, 27, 17]. These informations are used in Section 6 to derive an
explicit formula for the derivatives of order n− 2 of the numerical density, which allows us to obtain
generic regularity results and to express the fundamental solution of the hyperbolic system (4) in
terms of derivatives of the numerical density. To illustrate our results, a few explicit examples are
treated in Section 7. Finally, we investigate in Section 8 the concentration properties of the numerical
density for large matrices, and we discuss in Section 9 a possible extension of our results to hyperbolic
polynomials with an arbitrary number of variables.

Acknowledgements. This work has benefited of stimulating discussions with several of our col-
leagues, including Y. Colin de Verdière, F. Faure, and A. Joye.

2 General properties of the numerical measure

In this section, we establish a few general properties of the numerical measure of a complex matrix. In
particular, we show that µA is absolutely continuous with respect to the Lebesgue measure on W (A),
and we prove a direct sum formula which will be useful later.
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2.1 Support and regularity properties

We first show that the support of the numerical measure always coincides with the numerical range
of the matrix.

Lemma 2.1 For any A ∈ Mn(C), one has supp(µA) = W (A).

Proof. If V = C \ W (A), then Φ−1
A (V ) = ∅, hence µA(V ) = σ̄(Φ−1

A (V )) = 0. This shows that
supp(µA) ⊂ W (A). Conversely, if V ⊂ C is any open set such that V ∩W (A) 6= ∅, then Φ−1

A (V ) is a
nonempty open subset of ∂Bn, hence µA(V ) = σ̄(Φ−1

A (V )) > 0. Thus W (A) ⊂ supp(µA).

Our next goal is to locate the singular support of µA. We recall that x ∈ ∂Bn is a regular point
of ΦA if the differential map dxΦA : T ∗

x∂B
n → C is onto. Otherwise, we say that x is a critical point.

The following characterization will be useful:

Lemma 2.2 [16, 17] Let A ∈ Mn(C).
1) A point x ∈ ∂Bn is a critical point of the numerical map ΦA if and only if x is an eigenvector of
the Hermitian matrix H(θ) defined in (2) for some θ ∈ [0, π].

2) The differential of ΦA vanishes at x ∈ ∂Bn if and only if x is an eigenvector of both A and A∗.

In other words, the range of the differential dxΦA has (real) dimension 1 if and only if x is an
eigenvector of H(θ) for a unique θ ∈ [0, π), and is reduced to {0} if and only if x is an eigenvector of
H(θ) for all θ ∈ [0, π]. The proof is neither new nor difficult, but we shall repeat it here in order to
introduce some notation that will be needed later on.

Proof. Since ΦA(e
iθx) = ΦA(x) for all θ ∈ [0, 2π], we can consider the numerical map as acting on

the quotient space ∂Bn/S1 ≃ CPn−1 [16]. Thus, to detect the critical points of ΦA, we study the
reduced map Φ̃A : ∂Bn/S1 → C defined by

Φ̃A([x]) = ΦA(x) = 〈A1x, x〉+ i〈A2x, x〉 , x ∈ ∂Bn ,

where [x] = {eiθx | θ ∈ S1} and A1, A2 are the Hermitian matrices introduced in (2).
If x ∈ ∂Bn, the tangent space to ∂Bn/S1 at [x] is just the (2n − 2)-dimensional affine subspace

{[x + y] | y ∈ C
n , 〈x, y〉 = 0}. Thus, using the definition above of Φ̃A, it is straightforward to verify

that, for all y ∈ C
n with 〈x, y〉 = 0, one has

1

2
d[x]Φ̃A(y) = (A1x|y) + i(A2x|y) = (v1(x)|y) + i(v2(x)|y) , (6)

where (x|y) = Re 〈x, y〉 = (Rex)⊤(Re y)+ (Imx)⊤(Im y) denotes the real scalar product in C
n ≃ R

2n,
and

v1(x) = A1x− 〈A1x, x〉x , v2(x) = A2x− 〈A2x, x〉x .

Of course, replacing A1x, A2x with v1(x), v2(x) has no effect in (6) since 〈x, y〉 = 0, but after this
substitution we can let y run over the whole of Cn without increasing the range. So our task is reduced
to computing the rank of the R-linear map y 7→ (v1(x)|y) + i(v2(x)|y), which is just the rank of the
2× 2 matrix

D(x) =

(

(v1(x)|v1(x)) (v1(x)|v2(x))
(v2(x)|v1(x)) (v2(x)|v2(x))

)

. (7)
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By the Cauchy-Schwarz inequality, the positive matrix D(x) is singular if and only if there exists
θ ∈ [0, π] such that v1(x) cos θ+ v2(x) sin θ = 0, which exactly means that x is an eigenvector of H(θ).
Moreover, D(x) = 0 if and only if v1(x) = v2(x) = 0, which is equivalent to saying that x is an
eigenvector of both A1 and A2, hence of both A and A∗.

Let ΣA ⊂ C denote the set of all critical values of ΦA, namely ΣA = ΦA(Γ(A)) where Γ(A) ⊂ ∂Bn

is the set of all critical points of ΦA. Our next result is:

Lemma 2.3 If A ∈ Mn(C), then sing supp(µA) ⊂ ΣA.

Proof. If the numerical rangeW (A) is reduced to a line segment or to a single point, then ΣA = W (A),
hence sing supp(µA) ⊂ supp(µA) = ΣA by Lemma 2.1. Thus, we assume from now on that W (A) has
nonempty interior. By Sard’s lemma, the critical set ΣA is then a compact subset of W (A) with zero
Lebesgue measure. We have to show that there exists a smooth density function fA ≥ 0 such that
dµA(z) = fA(z) dz on C \ ΣA. Clearly, we must have fA = 0 on C \W (A).

If z ∈ W (A) \ ΣA, then Nz := Φ−1
A (z) is a compact submanifold of ∂Bn of codimension 2, which

depends smoothly on z. Using classical arguments, involving a partition of unity and the Implicit
Function Theorem, it is not difficult to verify that, for any continuous function φ with supp(φ) ⊂
W (A) \ ΣA, one has

∫

∂Bn

φ(〈Ax, x〉) dσ̄(x) =
1

ωn

∫

C

φ(z)

{∫

Nz

dν(x)

2∆(x)1/2

}

dz ,

where ωn = 2πn/((n−1)!) is the total measure of ∂Bn, ν is the (2n−3)-dimensional Euclidean measure
on the submanifold Nz, and ∆(x) = detD(x) where D(x) is the 2× 2 matrix defined in (7). Remark
that 2∆(x)1/2 = λ̄1(x)λ̄2(x), where λ̄1(x), λ̄2(x) are the singular values of the differential map dxΦA.
In view of (1), we conclude that dµA(z) = fA(z) dz on C \ ΣA, where

fA(z) =
1

ωn

∫

Nz

dν(x)

2∆(x)1/2
, z ∈ C \ ΣA . (8)

It is easily verified that the density fA is smooth and strictly positive on W (A) \ ΣA.

The results obtained so far are summarized in the following proposition, which also asserts that
the numerical measure is absolutely continuous with respect to Lebesgue’s measure on W (A).

Proposition 2.4 Let A ∈ Mn(C).
1) If the numerical range W (A) has nonempty interior, the numerical measure µA is absolutely con-
tinuous with respect to the (two-dimensional) Lebesgue measure on C ≃ R

2. The numerical density
fA = dµA/dz is smooth outside the critical set ΣA.

2) If A is a nonscalar Hermitian matrix, then W (A) ⊂ R and the numerical measure is absolutely
continuous with respect to the (one-dimensional) Lebesgue measure on R. The numerical density
fA = dµA/dx is smooth outside the spectrum σ(A).

Remark 2.5 As is explained in the introduction, Proposition 2.4 covers all interesting cases. Indeed,
if the numerical range has empty interior, then either W (A) is reduced to a single point, in which case
A is a scalar matrix and µA is just a Dirac mass, or W (A) is a line segment of nonzero length, in
which case A can be reduced to a nonscalar Hermitian matrix by a simple affine transformation.

7



Proof. Using the same notations as in Lemmas 2.2 and 2.3, we observe that Γ(A) = {x ∈ ∂Bn |∆(x) =
0}, where ∆(x) = detD(x) is a polynomial in the 2n variables Rexi, Imxi (i = 1, . . . , n). Thus one of
the following two situations must occur:

1) Γ(A) is an algebraic submanifold of ∂Bn of codimension at least 1. By Sard’s lemma, this is the
case if and only if W (A) has nonempty interior. In that situation, since we already know that µA has
a smooth density outside the critical set ΣA, we only need to show that µA(ΣA) = 0. Given ǫ > 0,
let Γǫ(A) = {x ∈ ∂Bn |dist(x,Γ(A)) ≤ ǫ}, where “dist” denotes here the geodesic distance on the unit
sphere. We decompose

Φ−1
A (ΣA) =

(

Φ−1
A (ΣA) ∩ Γǫ(A)

)

∪
(

Φ−1
A (ΣA) ∩ Γǫ(A)

c
)

= E1(ǫ) ∪ E2(ǫ) ,

where Γǫ(A)
c = ∂Bn \ Γǫ(A). Since σ̄(Γ(A)) = 0, we have σ̄(E1(ǫ)) ≤ σ̄(Γǫ(A)) → 0 as ǫ → 0.

Moreover, the proof of Lemma 2.3 shows E2(ǫ) is a codimension two submanifold of ∂Bn, so that
σ̄(E2(ǫ)) = 0 for any ǫ > 0. Using the definition of the numerical measure, we conclude that µA(ΣA) =
σ̄(Φ−1

A (ΣA)) = 0.

2) Γ(A) = ∂Bn. This is the case if and only if W (A) has empty interior, and without loss of generality
we can then assume that the matrix A is Hermitian. Since W (A) ⊂ R, it is more natural here to
consider ΦA as a map from ∂Bn into R. If we do that, then repeating the proofs of Lemmas 2.2 and 2.3
we easily find that the critical points of ΦA are exactly the eigenvectors of A. Moreover, the numerical
measure has a smooth density on R \σ(A), and is absolutely continuous with respect to the Lebesgue
measure dx if A is not a scalar matrix. We skip the details here, because the Hermitian case will be
treated in full details in Section 3 below.

To conclude this section, we show that the numerical density is strictly positive in the interior of
W (A). A little care is needed in the formulation of that result, because as we shall see in Section 4.2
the numerical density need not be a continuous function.

Proposition 2.6 If z0 ∈ C is an interior point of W (A), then

lim inf
ǫ→0

1

ǫ2
µA({z ∈ C | |z − z0| ≤ ǫ}) > 0 . (9)

Proof. If z0 is an interior point of W (A), it is shown in [17, Proposition 2.11] that the preimage
Φ−1
A (z0) contains at least one regular point x0. Let V be an open geodesic ball centered at x0 ∈ ∂Bn

whose closure does not intersect Γ(A). Proceeding as in the proof of Lemma 2.3, we find

µA({z ∈ C | |z − z0| ≤ ǫ}) ≥ 1

ωn

∫

|z−z0|≤ǫ

{∫

Nz∩V

dν(x)

2∆(x)1/2

}

dz .

If ǫ > 0 is sufficiently small, the integral inside the curly brackets is a smooth and positive function of
z, and (9) follows.

2.2 The direct sum formula

Let p, q ∈ N
∗ and n = p + q. Given A ∈ Mp(C) and B ∈ Mq(C), the direct orthogonal sum of A and

B is the matrix A⊕B ∈ Mn(C) defined by

A⊕B =

(

A 0
0 B

)

.

In this situation, we have a formula for the numerical measure µA⊕B in terms of µA and µB.
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Proposition 2.7 For any φ ∈ C0(C), we have

∫

C

φ(z) dµA⊕B(z) =
1

B(p, q)

∫

C

∫

C

∫ 1

0
φ(tz′ + (1− t)z′′) tp−1(1− t)q−1 dt dµA(z

′) dµB(z
′′) , (10)

where B(p, q) is Euler’s beta function

B(p, q) =

∫ 1

0
tp−1(1− t)q−1 dt =

Γ(p)Γ(q)

Γ(p+ q)
.

Proof. Any unit vector x ∈ ∂Bn can be written as

x =

( √
t u√

1− t v

)

,

where u ∈ ∂Bp, v ∈ ∂Bq, and t ∈ [0, 1]. Up to negligible sets, the map (u, v, t) 7→ x defines a
diffeomorphism from ∂Bp×∂Bq× [0, 1] onto ∂Bn. With this parametrization it is not difficult to verify
that the Euclidean measure on ∂Bn has the following expression

dσn(x) =
1

2
tp−1(1− t)q−1 dt dσp(u) dσq(v) .

Equivalently, since σn(∂B
n) = ωn = 2πn/Γ(n), the normalized Euclidean measure satisfies

dσ̄n(x) =
1

B(p, q) t
p−1(1− t)q−1 dt dσ̄p(u) dσ̄q(v) .

Thus, using definition (1) and the fact that 〈(A⊕B)x, x〉 = t〈Au, u〉+(1− t)〈Bv, v〉, we easily obtain

∫

C

φ(z) dµA⊕B(z) =
1

B(p, q)

∫

∂Bp

∫

∂Bq

∫ 1

0
φ
(

t〈Au, u〉 + (1− t)〈Bv, v〉
)

tp−1(1− t)q−1 dt dσ̄q(v) dσ̄p(u)

=
1

B(p, q)

∫

C

∫

C

∫ 1

0
φ(tz′ + (1− t)z′′) tp−1(1− t)q−1 dt dµA(z

′) dµB(z
′′) ,

which is the desired result.

As an application, if we choose φ(z) = e−iξ·z in Proposition 2.7, we obtain the following relation
between the Fourier transforms of the measures µA, µB and µA⊕B :

µ̂A⊕B(ξ) =
1

B(p, q)

∫ 1

0
µ̂A(tξ) µ̂B((1− t)ξ) tp−1(1− t)q−1 dt , ξ ∈ R

2 . (11)

The formula given in Proposition 2.7 can be generalized in a straightforward way to a direct sum
with an arbitrary number of terms. Assume that A = A1 ⊕ · · · ⊕ Ak where Aj ∈ Mpj (C), so that
A ∈ Mn(C) with n = p1 + · · ·+ pk. Setting p = (p1, . . . , pk), we denote

B(p) =

∫

Dk−1

tp1−1
1 · · · tpk−1

k dt1 . . . dtk−1 =
Γ(p1) · · ·Γ(pk)
Γ(p1 + · · ·+ pk)

,
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where tk = 1− (t1 + · · · + tk−1) and Dk−1 denotes the (k−1)-dimensional simplex

Dk−1 =
{

(t1, . . . , tk−1) ∈ R
k−1
+

∣

∣

∣
t1 + · · ·+ tk−1 ≤ 1

}

. (12)

Using (10) and proceeding by induction over k, we easily obtain the general formula

∫

C

φ(z) dµA(z) =
1

B(p)

∫

Ck

∫

Dk−1

φ(t1z1 + · · · + tkzk) t
p1−1
1 · · · tpk−1

k

dt1 . . . dtk−1 dµA1
(z1) . . . dµAk

(zk) , (13)

where it is understood again that tk = 1− (t1 + · · ·+ tk−1).

3 The numerical density of a normal matrix

If A ∈ Mn(C) is a normal matrix, the numerical measure µA is entirely determined by the spec-
trum σ(A) = {λ1, . . . , λn}. Indeed, we know that A is unitarily equivalent to the diagonal matrix
diag(λ1, . . . , λn), and that a unitary conjugation does not affect the numerical measure. Using this
observation and the direct sum formula of Section 2.2, we shall prove that the numerical density of A
is a piecewise polynomial function, which can be characterized as a multivariate B-spline whose knots
are the eigenvalues of A. We begin with the important particular case where all eigenvalues of A are
colinear.

3.1 The Hermitian case

If A ∈ Mn(C) is a Hermitian matrix, then W (A) ⊂ R and the numerical measure µA is therefore
supported on the real axis. Assuming that A is not a multiple of the identity matrix, we show in
this section that µA is absolutely continuous with respect to Lebesgue’s measure on R, and we give a
simple characterization of the numerical density fA = dµA/dx. The result is:

Proposition 3.1 If A ∈ Mn(C) is a nonscalar Hermitian matrix, the numerical density fA : R → R+

is the normalized B-spline of degree n− 2 whose knots are the eigenvalues of A.

To make the statement clear, we briefly recall the definition and some elementary properties of
the classical B-splines [7]. If λ1, . . . , λn ∈ R are pairwise distinct, the (n−1)th divided difference of a
continuous function g at the points λ1, . . . , λn is the quantity

δn−1[λ1, . . . , λn]g =

n
∑

j=1

g(λj)
∏

k 6=j(λj − λk)
. (14)

This is the leading coefficient of the unique polynomial of degree at most n−1 which agrees with g at
the points λ1, . . . , λn. It is easy to verify that the right-hand side of (14) is a completely symmetric
function of the variables λj. If g ∈ Cn−1(R), the divided difference can be extended by continuity to
arbitrary (not necessarily distinct) values of λ1, . . . , λn, and we have the integral formula:

δn−1[λ1, . . . , λn]g =

∫

Dn−1

g(n−1)(t1λ1 + · · ·+ tnλn) dt1 . . . dtn−1 , (15)
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where Dn−1 is the (n−1)-dimensional simplex defined in (12) and tn = 1− (t1 + · · ·+ tn−1). In what
follows, we shall always assume that the set S = {λ1, . . . , λn} is not reduced to a single point, so that
the (n−1)th divided difference is well-defined as soon as g is of class Cn−2 in a neighborhood of S.

With these notations, the normalized B-spline of degree n−2 with knots λ1, . . . , λn is the function
B : R → R defined by

B(x) ≡ B[λ1, . . . , λn](x) = (n− 1) δn−1[λ1, . . . , λn](· − x)n−2
+ , x ∈ R , (16)

where (· − x)n−2
+ denotes the map y 7→ max(0, y − x)n−2. If λ1 ≤ · · · ≤ λn, it is not difficult to show

that B(x) vanishes identically outside [λ1, λn], and coincides with a polynomial of degree at most n−2
on each nonempty interval (λj , λj+1). Moreover, if mj denotes the multiplicity of λj in S, one can
verify that B(x) is continuous at x = λj together with its derivatives up to order dj = n − 2 − mj,
provided dj ≥ 0. If dj = −1, then B(x) is discontinuous at λj . Finally, we shall see below that B(x)
is positive on (λ1, λn) and that

∫

R
B(x) dx = 1.

Proof of Proposition 3.1. Let A ∈ Mn(C) be a normal matrix with eigenvalues λ1, . . . , λn. To
compute the numerical density, we can assume without loss of generality that A is diagonal, namely
A = A1 ⊕ · · · ⊕An with Aj = λj ∈ M1(C). Thus we can use the direct sum formula (13) with k = n
and p = (1, . . . , 1). Since B(p)−1 = (n− 1)! and µAj

= δλj
for j = 1, . . . , n, we obtain the relation

∫

C

φ(z) dµA(z) = (n− 1)!

∫

Dn−1

φ(t1λ1 + · · ·+ tnλn) dt1 . . . dtn−1 , (17)

for any continuous function φ : C → C.
Assume now that A is Hermitian, so that λ1, . . . , λn ∈ R, and that σ(A) is not reduced to a single

point. If B = B[λ1, . . . λn] is the normalized B-spline defined by (16), we claim that

∫

R

φ(x)B[λ1, . . . , λn](x) dx = (n− 1)!

∫

Dn−1

φ(t1λ1 + · · ·+ tnλn) dt1 . . . dtn−1 . (18)

Indeed, it is clearly sufficient to prove (18) for compactly supported functions φ ∈ C0(R). Moreover,
since both members of (18) depend continuously on λ1, . . . , λn, we can also assume that the eigenvalues
of A are all distinct. In that case, it follows immediately from (14), (16) that

∫

R

φ(x)B[λ1, . . . , λn](x) dx = (n− 1) δn−1[λ1, . . . , λn]Φ ,

where Φ(y) =
∫

R
φ(x)(y− x)n−2

+ dx. Since Φ(n−1) = (n− 2)!φ, we can use the integral formula (15) to
evaluate the divided difference in the right-hand side, and we obtain (18).

Now, comparing (17) and (18), we conclude that µA is absolutely continuous with respect to
Lebesgue’s measure on R, and that the numerical density fA = dµA/dx is precisely the normalized
B-spline B[λ1, . . . , λn]. Incidentally, the argument above shows that B is positive on its support (see
Proposition 2.6) and that

∫

R
B(x) dx = 1.

3.2 The quasi-Hermitian case

We say that a matrix A ∈ Mn(C) is quasi-Hermitian if the numerical range W (A) ⊂ C has empty
interior, i.e. W (A) is a single point or a line segment. In such a case, there exist z ∈ C, θ ∈ S1,
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and a Hermitian matrix H such that A = zIn + eiθH (in particular, A is normal). Indeed, if we
choose z, θ such that W (A) ⊂ z + eiθR, the matrix H = e−iθ(A − zIn) satisfies W (H) ⊂ R and is
therefore Hermitian. Since 〈Ax, x〉 = z + eiθ〈Hx, x〉 for all x ∈ ∂Bn, it is clear from (1) that the
numerical measure µA is just the image of µH under the affine isometry w 7→ z + eiθw. Combining
this remark with Proposition 3.1, we thus obtain a precise characterization of the numerical measure
of any quasi-Hermitian matrix.

3.3 The normal case

Finally, we consider the case of a normal matrix A ∈ Mn(C) whose numerical range W (A) has
nonempty interior. This, of course, is possible only if n ≥ 3. By Proposition 2.4, the numerical
measure µA is absolutely continuous with respect to Lebesgue’s measure, and we have the following
characterization of the numerical density fA = dµA/dz:

Proposition 3.2 If A ∈ Mn(C) is a normal matrix whose numerical range W (A) ⊂ C has nonempty
interior, the numerical density fA : C → R+ is the bivariate B-spline of degree n− 3 whose knots are
the eigenvalues of A.

The reader is referred here to the work of W. Dahmen [6], where multivariate B-splines are defined
and studied in detail. To make the connection with the numerical density of a normal matrix, we use
the relation (17), which corresponds to formula (2.2) in [6]. In the rest of this section, we assume that
A ∈ Mn(C) is a normal matrix whose eigenvalues λ1, . . . , λn are not colinear, and we often identify
the complex plane C with R

2.

Proof of Proposition 3.2. Assume first that n = 3. Then W (A) ⊂ C ≃ R
2 is the 2-simplex with

vertices λ1, λ2, λ3, and using the change of variables w = t1λ1+ t2λ2+(1− t1− t2)λ3 in (17) we easily
obtain

∫

C

φ(z) dµA(z) =
1

|W (A)|

∫

W (A)
φ(w) dw .

This shows that the numerical measure µA is uniformly distributed on W (A). The numerical density
is thus a multiple of the characteristic function of W (A), which (by definition) is the bivariate B-spline
of degree zero with knots λ1, λ2, λ3.

We now assume that n ≥ 4. Then we can choose n vectors v1, . . . , vn ∈ R
n−1 such that

1) The (n−1)-simplex S ⊂ R
n−1 with vertices v1, . . . , vn has unit volume;

2) Pvi = λi for i = 1, . . . , n, where P : Rn−1 → R
2 is defined by P (x1, . . . , xn−1) = (x1, x2).

This (elementary) claim is proved in [6, Section 2]. The simplex S ⊂ R
n−1 is not uniquely defined,

but any choice satisfies PS = W (A) = conv(σ(A)). Returning to (17), we have

∫

C

φ(z) dµA(z) = (n− 1)!

∫

Dn−1

φ(P (t1v1 + · · · + tnvn)) dt1 . . . dtn−1 =

∫

S
φ(Pw) dw ,

where the second equality is obtained by applying the change of variables (t1, . . . , tn−1) 7→ w =
t1v1 + · · ·+ tnvn, with tn = 1− (t1 + · · ·+ tn−1). This shows that the numerical measure is the image
under the projection P of the Lebesgue measure on the simplex S ⊂ R

n−1. Given z ∈ C ≃ R
2, the

numerical density fA(z) is thus the (n−3)-dimensional measure of the simplex P−1z ∩ S. This is
precisely the definition given in [6] of a bivariate B-spline of degree n− 3 with knots λ1, . . . , λn.
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We conclude by listing a few properties of the numerical density fA, which follow from [6, The-
orem 4.1]. Let ΣA ⊂ C be the union of all line segments joining pairs of eigenvalues of A. Using
Lemma 2.2, it is straightforward to verify that ΣA is exactly the set of critical values of the numerical
map ΦA. Then fA is a polynomial of total degree n − 3 in each connected component of C \ ΣA.
Moreover, if ℓ ⊂ C is a straight line passing through a pair of eigenvalues of A, the numerical density
is continuous across ℓ∩W (A) together with its derivatives up to order n− 2−m ≥ 0, where m ≥ 2 is
the number of eigenvalues of A (counted with multiplicities) which belong to ℓ. If m = n− 1, then fA
is discontinuous on ℓ ∩W (A). In particular, in the generic case where no straight line contains more
than two eigenvalues of A, the numerical density fA is of class Cn−4 if n ≥ 4.

Remark. In the Hermitian and normal cases, the fact that the numerical density fA is a projection
of the characteristic function of a convex set, which is a log-concave function, implies that the density
is itself a log-concave function. We thus have the following inequality

fA(λz + (1− λ)z′) ≥ fA(z)
λ fA(z

′)1−λ , (19)

for all z, z′ ∈ C and all λ ∈ (0, 1). This follows from the Prékopa–Leindler inequality, see e.g. [10,
Section 9]. We warn the reader that this property does not extend to nonnormal matrices, as we can
see already from the two-dimensional case considered in Section 4.1.

4 The Radon transform of the numerical measure

Our purpose in this section is to derive a representation formula for the numerical density of a non-
normal matrix A ∈ Mn(C). Our approach is based on a natural expression of the Radon transform
of the numerical measure µA in terms of the Hermitian matrices H(θ) defined in (2). By definition,
the Radon transform of µA is the family RµA = {RµA(θ) | θ ∈ S1}, where RµA(θ) denotes the Borel
measure on R defined by

(RµA(θ))(I) = µA({z ∈ C | Re (e−iθz) ∈ I}) ,

for any open set I ⊂ R. In other words, RµA(θ) is the image of the measure µA under the orthogonal
projection in C ≃ R

2 onto the line eiθR. The fundamental observation is:

Proposition 4.1 For any θ ∈ S1 = R/(2πZ), one has RµA(θ) = µH(θ).

Proof. The definition (2) implies that Re (e−iθ〈Ax, x〉) = 〈H(θ)x, x〉 for any x ∈ ∂Bn. Thus, for any
open set I ⊂ R, we have

(RµA(θ))(I) = σ̄({x ∈ ∂Bn | Re (e−iθ〈Ax, x〉) ∈ I})
= σ̄({x ∈ ∂Bn | 〈H(θ)x, x〉 ∈ I}) = µH(θ)(I) ,

which proves the claim.

Proposition 4.1 shows that the numerical measure of an arbitrary matrix A ∈ Mn(C) is entirely
determined by the one-dimensional measures associated with the Hermitian matrices {H(θ) | θ ∈ S1}.
If we assume that W (A) has nonempty interior, which is always the case if A is nonnormal, the matrix
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H(θ) is nonscalar for every θ ∈ S1 and Proposition 3.1 shows that its numerical density is the B-
spline B[λ1(θ), . . . , λn(θ)], where λ1(θ), . . . , λn(θ) are the eigenvalues of H(θ). In that case, the result
of Proposition 4.1 can be stated in the following equivalent form

∫

R

fA(e
iθ(x+ iy)) dy = B[λ1(θ), . . . , λn(θ)](x) , (20)

where equality holds for all θ ∈ S1 and almost all x ∈ R since the numerical density fA belongs to
L1(C).

Our goal is to invert the Radon transform (20) to obtain a representation formula for the numerical
density fA. The general results established in [12] show that

(JfA)(x+ iy) =
1

4π

∫

S1

B[λ1(θ), . . . , λn(θ)](x cos θ + y sin θ) dθ , (21)

where J = (−∆)−1/2 is the Riesz potential defined by (Jf)(z) = 1
2π

∫

C
|z − z′|−1f(z′) dz′. The idea

is thus to apply the nonlocal operator (−∆)1/2 to both sides of (21), but since we are not dealing
with smooth functions we have to differentiate in the sense of distributions. As a preliminary remark,
if f(x, y) = g(x cos θ + y sin θ) for some test function g : R → R and some fixed θ ∈ S1, a direct
calculation shows that (∆f)(x, y) = g′′(x cos θ+y sin θ), and a standard interpolation argument allows
us to conclude that (−∆)1/2f(x, y) = Hg′(x cos θ + y sin θ), where Hg′ denotes the Hilbert transform
of the derivative g′. Using this observation, we easily obtain the representation formula

fA(x+ iy) =
1

4π

∫

S1

HB′[λ1(θ), . . . , λn(θ)](x cos θ + y sin θ) dθ , (22)

where both sides define integrable functions of z = x+ iy ∈ C, and equality holds almost everywhere.
So we have shown:

Proposition 4.2 If the numerical range of a matrix A ∈ Mn(C) has nonempty interior, the numerical
density of A can be represented as in (22) for almost all (x, y) ∈ R

2.

In the rest of this section, we shall apply Proposition 4.2 to compute the numerical density of a
two-dimensional nonnormal matrix. We shall also consider the interesting particular situation where
the numerical density is radially symmetric, in which case the representation formula takes a simpler
form. Proposition 4.2 will be used again in Section 6 to derive some important properties of the
numerical measure in the general case.

4.1 The two-dimensional case

Let A ∈ M2(C), and assume that the numerical range W (A) has nonempty interior. As is well-known
[15], W (A) is then a filled ellipse, and without loss of generality we can assume that this ellipse is
centered at the origin and that its major axis is aligned with the real axis of the complex plane. In
that case, up to a unitary conjugation, the matrix A has the following form

A =

(

−c 2b
0 c

)

, W (A) =
{

x+ iy ∈ C

∣

∣

∣

x2

a2
+

y2

b2
≤ 1
}

, (23)

where b > 0, c ≥ 0, and a = (b2 + c2)1/2. For θ ∈ S1 = R/(2πZ), let

H(θ) =
1

2
(e−iθA+ eiθA∗) =

(

−c cos θ b e−iθ

b eiθ c cos θ

)

.
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The eigenvalues of H(θ) are ±λ(θ), where λ(θ) = (b2 + c2 cos2 θ)1/2. It follows that

B[−λ(θ), λ(θ)](s) =
1

2λ(θ)
1[−λ(θ),λ(θ)](s) .

According to (22), we have to differentiate this expression with respect to s, which yields a linear
combination of Dirac masses, and to apply the Hilbert transformation, which is the convolution with
the distribution p.v. 1

πs . We obtain

HB′[−λ(θ), λ(θ)](s) =
1

2πλ(θ)

(

p.v.
1

s+ λ(θ)
− p.v.

1

s− λ(θ)

)

=
1

π
p.v.

1

λ(θ)2 − s2
,

hence

fA(x+ iy) =
1

4π2
p.v.

∫

S1

1

b2 + c2 cos2 θ − (x cos θ + y sin θ)2
dθ . (24)

It remains to compute the right-hand side of (24), which is a simple exercise in complex analysis.
Setting z = x+ iy and w = e2iθ, we first observe that

b2 + c2 cos2 θ − (x cos θ + y sin θ)2 =
1

4w

(

(c2 − z2) + 2w(a2 + b2 − |z|2) + w2(c2 − z̄2)
)

,

hence

fA(z) =
1

iπ2
p.v.

∮

|w|=1

1

(c2 − z2) + 2w(a2 + b2 − |z|2) + w2(c2 − z̄2)
dw . (25)

In (25), the roots of the denominator are

w± =
1

c2 − z̄2

(

−a2 − b2 + |z|2 ∓
√

(a2 + b2 − |z|2)2 − (c2 − z2)(c2 − z̄2)
)

=
1

c2 − z̄2

(

−a2 − b2 + |z|2 ∓
√

4(a2b2 − b2x2 − a2y2)
)

. (26)

We can therefore distinguish between two cases:

1. The point z = x+ iy belongs to the interior of W (A). Then the expression under the square root
is positive, and it is easy to verify that |w+| > 1, |w−| < 1 (in the limiting case where z = ±c is a
focus of the ellipse, one can set w− = 0 and w+ = ∞.) Thus the principal value in (25) is not needed,
and the residue theorem shows that

fA(z) =
1

π

1

(a2 + b2 − |z|2) + (c2 − z̄2)w−
=

1

2π

1
√

a2b2 − b2x2 − a2y2
. (27)

2. The point z = x + iy lies outside W (A). Then the expression under the square root in (26) is
negative, and one verifies that |w±| = 1. Thus the integrand in (25) is holomorphic outside the unit
circle {|w| = 1} and decreases like 1/|w|2 at infinity. It follows that

Iz(r) :=
1

iπ2

∮

|w|=r

1

(c2 − z2) + 2w(a2 + b2 − |z|2) + w2(c2 − z̄2)
dw = 0 ,

for all r 6= 1, hence fA(z) =
1
2(Iz(1+) + Iz(1−)) = 0.

Summarizing, we have shown that the numerical density of the matrix (23) is the function fA ∈
L1(C) defined by (27) insideW (A), and vanishing identically outsideW (A). Note that sing supp(µA) =
∂W (A) = ΣA, in agreement with Lemma 2.3, and that fA(z) blows up when z converges to the bound-
ary of W (A) from inside. In particular fA is not log-concave, in contrast to what happens when A is
normal.
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4.2 The radially symmetric case

It sometimes happens that the numerical range of a matrix A ∈ Mn(C) is a disk in the complex plane
and that the numerical density is radially symmetric about the center. In such a case, it is possible
to obtain a representation formula which is simpler than (22). Indeed, assume that the disk W (A) is
centered at the origin, and let R > 0 denote the numerical radius of A (or any larger positive number).
We set

fA(z) = FA(R
2 − |z|2) , z ∈ C , |z| ≤ R , (28)

where FA : [0, R2] → R+ has to be determined. Since the numerical measure is invariant under
rotations about the origin, it follows from Proposition 4.1 that the projected measure µH(θ) does not
depend on θ. In analogy with (28), if fH denotes the numerical density of H(θ) for any θ ∈ S1, we set

fH(x) = FH(R2 − x2) , x ∈ R , |x| ≤ R . (29)

We then have the following result:

Proposition 4.3 If the numerical density of a nonscalar matrix A ∈ Mn(C) is radially symmetric,
the functions FA, FH defined in (28), (29) satisfy the relations

FH(t) =

∫ t

0
FA(t− s)

1√
s
ds , FA(s) =

1

π

d

ds

∫ s

0
FH(s− t)

1√
t
dt , (30)

for t, s ∈ [0, R2].

Proof. By the definition of the Radon transformation, we have fH(x) =
∫

R
fA(x+iy) dy for all x ∈ R.

Using (28), (29) and the support property, we thus find

FH(R2 − x2) =

∫

y2≤R2−x2

FA(R
2 − x2 − y2) dy =

∫ R2−x2

0
FA(R

2 − x2 − s)
1√
s
ds ,

for all x ∈ [−R,R]. Setting t = R2 − x2, we obtain the first relation in (30). So far, we have shown
that FH = π1/2IFA, where I is the Riesz potential

(If)(t) =
1√
π

∫ t

0
f(t− s)

1√
s
ds , t > 0 .

Now, it is well known that (I2f)(t) =
∫ t
0 f(s) ds, see e.g. [12, Chapter V.5], thus the second relation

in (30) follows from the first one.

Examples. Let A = (aij) be a complex matrix, and assume that there exists a nonzero integer k
such that aij = 0 whenever j − i 6= k. Then W (A) is a disk centered at the origin, and the numerical
density fA is radially symmetric. Indeed, given any θ ∈ S1, the map

x =







x1
...
xn






7→ xθ =







eiθx1
...

einθxn







is a measure-preserving isomorphism of the unit sphere ∂Bn, and our assumption on A implies that
〈Axθ, xθ〉 = eikθ〈Ax, x〉 for all x ∈ ∂Bn. This proves that a rotation of angle kθ about the origin
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does not affect the numerical measure µA. Since θ is arbitrary, the numerical density fA is necessarily
radially symmetric.

The simplest example in this category is the 2× 2 Jordan block

A2 =

(

0 2
0 0

)

. (31)

Here W (A2) = {z ∈ C | |z| ≤ 1}, and applying (27) with a = b = 1 we find

fA2
(z) =

1

2π

1
√

1− |z|2
1{|z|<1} . (32)

Alternatively, since the eigenvalues of H2 =
1
2(A2 +A∗

2) are ±1, we have fH2
= 1

2 1[−1,1] and applying
Proposition 4.3 we easily obtain (32).

As a more interesting application, consider the 3× 3 matrix

A3 =





0 a 0
0 0 b
0 0 0



 , (33)

where a, b ∈ C and |a| + |b| > 0. Multiplying A3 with a positive constant, we can assume that
|a|2 + |b|2 = 4. Then W (A3) = {z ∈ C | |z| ≤ 1}, and

fA3
(z) =

1

π
log

1 +
√

1− |z|2
|z| 1{0<|z|<1} . (34)

Indeed, the eigenvalues of H3 =
1
2(A3 +A∗

3) are 0 and ±1, hence fH3
(x) = B[−1, 0, 1](x) = (1−|x|)+.

Applying Proposition 4.3, we obtain (34) by a straightforward calculation. Alternatively, if we take
(a, b) = (0, 2), we can use the direct sum formula (10) to deduce (34) from (32). Here again, we
have sing supp(µA3

) = ∂W (A3) ∪ {0} = ΣA3
, in agreement with Lemma 2.3. Remark that fA3

(z) =
O((1−|z|)1/2) as |z| → 1−, so that the singularity of the numerical measure at the boundary is weaker
than it was for A2. This reflects the fact that fH3

(x) = (1 − |x|)+ is Lipschitz continuous, whereas
fH2

(x) = 1[−1,+1](x) had jump discontinuities. However, we observe that the (logarithmic) singularity
of fA3

at the origin is much stronger than the (square root) singularity at the boundary of W (A3).
As we shall see in Section 5, this is a nongeneric concentration phenomenon due to the fact that the
component of the critical set ΣA3

associated with the eigenvalue 0 of H(θ) is reduced to a single point.
We have here the rare instance of an unbounded numerical density for a matrix of size n ≥ 3.

Another interesting conclusion that can be drawn from this example is that the numerical density
µA does not determine the matrix A ∈ Mn(C) up to unitary conjugations if n ≥ 3. Indeed, if we set
(a, b) = (0, 2) and (a, b) = (

√
2,
√
2) in the definition (33) of A3, the resulting matrices are not even

similar, yet they have the same numerical density, given by (34).

5 The geometry of the singular set

We know from Lemma 2.3 that the numerical density of a matrix A ∈ Mn(C) is smooth outside the
set ΣA of all critical values of the numerical map ΦA. In this section, we describe a few geometric
properties of the singular set ΣA which will be needed to formulate our main results in Section 6. We do
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not claim much originality here: the material of this section is essentially borrowed from [19, 4, 16, 17],
and is reproduced below for the reader’s convenience.

As was shown by Kippenhahn [19], the singular set ΣA has a natural description in terms of the
eigenvalues λ1(θ), . . . , λn(θ) of the Hermitian matrices H(θ) defined in (2). To see that, we first recall
that these eigenvalues can be numbered in such a way that they are real-analytic functions of θ ∈ R,
see [27]. By analyticity, any two eigenvalues either coincide for all θ ∈ R or cross at most a finite
number of times on each compact interval. As a consequence, there exists an integer m ≤ n such that
H(θ) has exactly m distinct eigenvalues for all θ ∈ [0, π) \ Θ, where Θ ⊂ [0, π) is a finite set. Since
H(θ + π) = −H(θ), it follows that we can number the eigenvalues in such a way that

σ(H(θ)) = {λ1(θ), . . . , λm(θ)} , for all θ ∈ R ,

where λ1(θ), . . . , λm(θ) are pairwise distinct and have constant multiplicities outside the crossing set
Θ + πZ. Let τ : {1, . . . ,m} → {1, . . . ,m} be the permutation defined by

{λτ(1)(θ), . . . , λτ(m)(θ)} = {−λ1(θ + π), . . . ,−λm(θ + π)} , (35)

for any θ ∈ [0, π) \ Θ (hence for all θ ∈ R). If we decompose τ into disjoint cycles C1, . . . ,Ck, we
can associate with each cycle CJ its length ℓJ and its multiplicity mJ , the latter being defined as the
multiplicity of λj(θ) as an eigenvalue of H(θ) for any j ∈ CJ . By construction, we have

ℓ1 + · · · + ℓk = m , and ℓ1m1 + · · ·+ ℓkmk = n .

Moreover, if j ∈ CJ , then λj(θ + ℓJπ) = (−1)ℓJλj(θ), hence λj(θ) is periodic with period ℓJπ if ℓJ is
even and 2ℓJπ if ℓJ is odd. Note however that these periods are not necessarily minimal.

Now, we associate with each cycle CJ of the permutation τ a closed curve CJ ⊂ C defined by

CJ =
{

eiθ(λj(θ) + iλ′
j(θ))

∣

∣

∣
θ ∈ R

}

, (36)

where j ∈ {1, . . . ,m} is any element of the cycle CJ . Since λj(θ+2ℓJπ) = λj(θ), it is clear that CJ is
indeed a closed curve, and the definition of the permutation τ shows that the right-hand side of (36)
does not depend on the choice of j ∈ CJ . Equivalently, we can define CJ as the union over all j ∈ CJ

of the curve segments {eiθ(λj(θ) + iλ′
j(θ)) | θ ∈ [0, π]}. Let

CA = C1 ∪ . . . ∪ Ck ⊂ C ,

and let C ′
A ⊂ C be the bitangent set of CA, namely the set of all line segments joining pairs of points

of CA at which CA has the same tangent line. With these definitions, we have the following useful
characterization of the singular set ΣA:

Proposition 5.1 [17, Theorem 3.5] ΣA = CA ∪ C ′
A.

Proof. According to Lemma 2.2, ΣA is the set of all complex numbers of the form 〈Ax, x〉 where
x ∈ ∂Bn is a normalized eigenvector of the Hermitian matrix H(θ) for some θ ∈ [0, π]. To describe
that set, fix j ∈ {1, . . . ,m}, θ0 ∈ R, and for θ in a neighborhood of θ0 let

zj(θ) = 〈Axj(θ), xj(θ)〉 ,
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where xj(θ) is a normalized eigenvector of H(θ) associated with the eigenvalue λj(θ) and depending
smoothly on θ. General results in perturbation theory imply that such an eigenvector indeed exists
[27]. Using the definition (2) of H(θ), we find

Re (e−iθzj(θ)) = Re 〈e−iθAxj(θ), xj(θ)〉 = 〈H(θ)xj(θ), xj(θ)〉 = λj(θ) ,

Im (e−iθzj(θ)) = Im 〈e−iθAxj(θ), xj(θ)〉 = 〈H ′(θ)xj(θ), xj(θ)〉 = λ′
j(θ) ,

since 〈H(θ)x′j(θ), xj(θ)〉 + 〈H(θ)xj(θ), x
′
j(θ)〉 = 2λj(θ)Re 〈xj(θ), x′j(θ)〉 = 0 due to the normalization

condition. Thus

zj(θ) = eiθ(λj(θ) + iλ′
j(θ)) , hence z′j(θ) = ieiθ(λj(θ) + λ′′

j (θ)) . (37)

These relations show that the curve CJ = {zj(θ) | θ ∈ R} is tangent, at each point zj(θ), to the straight
line

Lj(θ) = {eiθ(λj(θ) + iα) |α ∈ R} = {z ∈ C | Re (ze−iθ) = λj(θ)} . (38)

In other words CJ is the envelope of the family of straight lines Lj(θ), for any j ∈ CJ . Since CJ ⊂ ΣA

by construction, we have shown that ΣA contains the curve CA = C1 ∪ . . . ∪ Ck.
However, it is important to realize that ΣA can be larger than CA if the crossing set Θ ⊂ [0, π)

defined above is nonempty. Indeed, assume that λj(θ0) = λp(θ0) for some θ0 ∈ Θ and some
j, p ∈ {1, . . . ,m} with j 6= p. For θ in a neighborhood of θ0, let xj(θ), xp(θ) be smooth, normal-
ized eigenvectors of H(θ) corresponding to λj(θ), λp(θ) respectively. Using the same notations as
above, we have zj(θ0) 6= zp(θ0) in general, because λ′

j(θ0) 6= λ′
p(θ0). Now, since 〈xj(θ), xp(θ)〉 = 0

whenever λj(θ) 6= λp(θ), we also have 〈xj(θ0), xp(θ0)〉 = 0 by continuity. In particular, if α, β ∈ C

satisfy |α|2 + |β|2 = 1, then x = αxj(θ0) + βxp(θ0) is a normalized eigenvector of H(θ0), and a direct
calculation yields

Im 〈e−iθ0Ax, x〉 = 〈H ′(θ0)x, x〉 = |α|2λ′
j(θ0) + |β|2λ′

p(θ0) ,

whereas Re 〈e−iθ0Ax, x〉 = 〈H(θ0)x, x〉 = λj(θ0) = λp(θ0). This shows that ΣA contains the line
segment [zj(θ0), zp(θ0)], which by construction is tangent to the curve CJ at zj(θ0) and to the curve
CP at zp(θ0). Repeating the same argument for all eigenvalue crossings, we conclude that ΣA contains
the whole bitangent set C ′

A. Finally, it is clear from Lemma 2.2 that all points of ΣA either belong to
CA or to C ′

A.

Examples:

1. (The generic case) As is well known, within the space of all Hermitian matrices of size n ≥ 2, the set
of matrices having a multiple eigenvalue is a finite union of submanifolds of codimension at least three.
This implies that, for a generic matrix A ∈ Mn(C), the Hermitian matrices H(θ) defined by (2) will
have simple eigenvalues for all θ ∈ S1 [16]. In that situation, we denote by λ1(θ) < λ2(θ) < . . . < λn(θ)
the eigenvalues of H(θ). Using the notations introduced above, we have m = n and the permutation
τ defined in (35) is simply

τ =

(

1 2 . . . n
n n− 1 . . . 1

)

.

If n = 2k is even, τ has k cycles with ℓ1 = · · · = ℓk = 2; if n = 2k− 1 is odd, τ has one fixed point and
k−1 cycles of length 2. In all cases, the multiplicities m1, . . . ,mk are all equal to 1, and the bitangent
set C ′

A is empty by assumption. Thus ΣA = CA is the union of k = [n+1
2 ] closed curves. It is not
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difficult to prove that the curve C1 associated with the cycle C1 = (1 n) is smooth, strictly convex,
and contains all the other curves C2, . . . , Ck in its interior [19]. In particular, C1 = ∂W (A). Consider
now the curve CJ = {zj(θ) | θ ∈ R} for some j 6= 1, n. If δj(θ) = λj(θ) + λ′′

j (θ) is not identically zero,
the formulas (37) show that the curvature of CJ at any regular point zj(θ) is strictly positive:

κj(θ) =
1

|z′j(θ)|
=

1

|λj(θ) + λ′′
j (θ)|

> 0 .

This means that the tangent vector z′j(θ) always rotates counterclockwise when θ is increased. Never-
theless, the whole curve CJ is not convex in general, because it may have a finite number of singular
points corresponding to zeros of δj(θ). As is easily verified, simple zeros of δj(θ) correspond to cusp
points of the curve CJ , see e.g. Fig. 1 where a generic example with n = 3 is represented. On the
other hand, if δj(θ) vanishes identically, then z′j(θ) ≡ 0 and the curve CJ reduces to a single point.
Under our generic assumptions, this can happen only if n is odd and j = (n + 1)/2. As an example,
the singular set of the matrix A3 defined in (33) includes the isolated point {0}.
2. (The normal case) In contrast with the previous example, we now consider the particular case where
the matrix A is normal. If λ1, . . . , λm denote the distinct eigenvalues of A, it is straightforward to verify
that the eigenvalues of the Hermitian matrices H(θ) defined in (2) are simply λj(θ) = Re (λj e

−iθ),
j = 1, . . . ,m. In view of (37), this means that zj(θ) = λj for all θ ∈ R, hence the curve Cj is reduced
to the single point {λj} for all j = 1, . . . ,m. Needless to say, the permutation τ defined by (35)
is the identity here. It follows that CA = σ(A) = {λ1, . . . , λm}, and proceeding as in the proof of
Proposition 5.1 we easily see that C ′

A is the set of all line segments joigning pairs of eigenvalues of A.
This is in full agreement with the conclusions of Section 3.3.

Remark: We have seen that the curve CA which generates the singular set ΣA is the envelope of the
family of straight lines Lj(θ) defined in (38). This geometric construction can be formulated in an
equivalent way [1], which is more conceptual and worth mentioning here. Assume for simplicity that
the matrix A ∈ Mn(C) is “generic” in the sense of Example 1 above, and let a(ξ) be the homogeneous
polynomial of degree n defined by

a(ξ) = det
(

ξ0In + ξ1A1 + ξ2A2

)

, ξ = (ξ0, ξ1, ξ2) ∈ R
3 ,

where A1, A2 are as in (2). Since a(ξ) has real coefficients, the equation a(ξ) = 0 defines, in homoge-
neous coordinates, an algebraic curve Γ in the projective plane RP 2. Moreover, our genericity assump-
tion on A implies that this curve is nonsingular: for each ξ̄ ∈ Γ, the tangent line to Γ at ξ̄ is uniquely
defined and satisfies, in homogeneous coordinates, an equation of the form x0ξ0+x1ξ1+x2ξ2 = 0. The
set of all x = (x0, x1, x2) obtained in this way is again a curve Γ′ in RP 2 (the dual curve of Γ) given by
the equation b(x) = 0 for some homogeneous polynomial b. As is shown in [9], the degree of b does not
exceed n(n− 1) if n ≥ 2. Now, it is rather straightforward to verify that the curve CA defined as the
envelope of the family of straight lines (38) is nothing but the restriction of the projective curve Γ′ to
the subspace x0 = 1, namely z = x+ iy ∈ CA if and only if b(1, x, y) = 0. Thus CA is a real algebraic
curve in C ≃ R

2 of degree at most n(n− 1) if n ≥ 2. In the language of partial differential equations,
the algebraic variety Γ is the characteristic variety of the symmetric hyperbolic system (4), and we
shall see in Section 6 that the dual variety Γ′ is related to the singular support of the fundamental
solution of (4). Note that our genericity assumption on A precisely means that system (4) is strictly
hyperbolic.
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We conclude this section with a brief discussion of the number of tangent lines to the algebraic
curve CA which can be drawn from a given point. We recall that CA = C1 ∪ . . . ∪ Ck, where each
CJ is a closed curve associated with the cycle CJ of the permutation (35). For all J ∈ {1, . . . , k} and
all z ∈ C \ CJ , we denote by NJ(z) the number of straight lines that are tangent to the curve CJ

and contain the point z. Note that, since CJ was itself defined as the envelope of a family of straight
lines, the tangent line to CJ is well defined even at singular points. In the degenerate case where
CJ reduces to a single point {zJ}, the set of tangent lines should be understood as the pencil of all
straight lines through zJ . Now, if z ∈ C \CA, we denote by N(z) the total number of tangents to the
curve CA = C1 ∪ . . . ∪Ck that can be drawn from the point z, with multiplicities taken into account:

N(z) = m1N1(z) + · · · +mkNk(z) , z ∈ C \ CA . (39)

The following elementary properties of NJ(z) and N(z) will be useful.

Proposition 5.2 For each J ∈ {1, . . . , k}, the number NJ(z) is constant in each connected component
of C \ CJ . Moreover N(z) ≤ n for all z ∈ C \ CA.

Proof. Fix J ∈ {1, . . . , k} and pick j ∈ CJ . For any z ∈ C \ CJ , NJ(z) is the number of zeros of the
function

fj(θ, z) = λj(θ)− Re (ze−iθ)

for θ in the interval [0, ℓJπ). When z is varied, this number can only change if fj(θ, z) has a double
zero for some θ, but this would mean that z = zj(θ) = eiθ(λj(θ) + iλ′

j(θ)) ∈ CJ , thus contradicting
our assumption. Therefore NJ(z) is necessarily constant in each connected component of C \ CJ . On
the other hand, we have the identity

det
(

H(θ)− Re (ze−iθ)In

)

=

k
∏

J=1

∏

j∈CJ

fj(θ, z)
mJ . (40)

Fix z ∈ C \ CA, and consider both sides of (40) as functions of θ. If multiplicities are taken into
account, the number of zeros of the right-hand side on the interval [0, π) is precisely N(z). But the
left-hand side, being a trigonometric polynomial of degree at most n, cannot have more than n zeros
in [0, π). This proves the claim.

Remark 5.3 As was mentioned in the proof of Proposition 5.1, if z ∈ C \ CA it is possible that
fj(θ, z) = fp(θ, z) = 0 for some θ ∈ [0, π) and some j 6= p. This is the case, in particular, whenever
z ∈ C ′

A. However, if z ∈ C \ΣA, we have

∂θfj(θ, z) · ∂θfp(θ, z) > 0 whenever fj(θ, z) = fp(θ, z) = 0 .

Indeed, replacing A with A − zIn, we can assume without loss of generality that z = 0. If λj(θ) =
λp(θ) = 0 for some θ ∈ [0, π) and some j 6= p, then λ′

j(θ) and λ′
p(θ) have necessarily the same sign,

otherwise (37) would imply that the origin belongs to the line segment [zj(θ), zp(θ)], thus contradicting
our assumption that z /∈ C ′

A.

Proposition 5.2 asserts that the integer NJ(z) can only change if z crosses the curve CJ . In fact,
if the crossing occurs at a regular point z̄ ∈ CJ , it is not difficult to verify that NJ(z) is decreased by
two units if z crosses CJ from the convex to the concave side (i.e., in the direction of the local center
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Figure 2: The singular set ΣA (left) and the eigenvalues λ1(θ), . . . , λ5(θ) (right) are represented for a typical
matrix A ∈ M5(R). The singular set consists of three closed curves, one of which (the boundary of W (A)) is
smooth, and the other two have cusps. In this example, the set ΠA defined in (46) has six connected components.

of curvature), and increased by two units if z crosses CJ in the converse direction, see [4, Section 4.1]
or Section 6.2 below. These simple rules give an efficient algorithmic way to compute NJ(z), and
hence N(z), in concrete examples. Consider for instance Fig. 2, where the singular set ΣA of a generic
matrix A ∈ M5(R) is represented. Here ΣA = CA = C1∪C2 ∪C3, where C1 is the boundary of W (A),
C2 is the closed curve with two swallowtails, and C3 is the triangle with three cusps. The set C \ ΣA

has 11 connected components, on which N(z) is equal to 5, 3, or 1. Using the crossing rules above,
and the fact that m1 = m2 = m3 in the present case, it is easy to verify that N(z) = 5 in six different
regions: inside both swallowtails, inside the three tips of the triangle, and outside W (A). Such a result
is definitely more cumbersome to obtain by counting directly the number of tangents to CA from a
given point.

6 Qualitative properties of the numerical density

Equipped with the results of Sections 4 and 5, we now derive some of the main properties of the
numerical density fA of an arbitrary matrix A ∈ Mn(C). We first establish an explicit formula for the
derivatives of order n−2, which allows us to prove that fA is polynomial in some distinguished regions
of the complex plane which can be characterized geometrically. We next show that, for a generic matrix
A ∈ Mn(C), the density fA is of class Cn−3 if n ≥ 3. Finally, as announced in the introduction, we
prove that the fundamental solution of the linear hyperbolic system (4) can be represented in terms
of derivatives of the numerical density fA. In particular, the lacunas of system (4) are precisely the
regions where fA is polynomial of degree n− 3.

6.1 Polynomial regions

Most of what we know about the numerical density of nonnormal matrices is based on the following
result:

Proposition 6.1 Let A ∈ Mn(C), where n ≥ 2, and let P = P (∂x, ∂y) be a homogeneous differential
operator of degree n− 2. Then, for all z = x+ iy ∈ C \ ΣA, we have

(PfA)(z) = −(n−1)!

4π2
f.p.

∫

S1

P (cos θ, sin θ)

∆(θ, z)
dθ , (41)
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where
∆(θ, z) = det

(

H(θ)− Re (ze−iθ)In

)

, θ ∈ S1 . (42)

In (41) the symbol f.p. denotes the finite part of the integral in the sense of Hadamard, but in
many situations it is sufficient to take simply the Cauchy principal value, as in (24). This is the
case in particular for generic matrices in the sense of Section 5 (Example 1), because all multiplicities
m1, . . . ,mk are all equal to one and formula (40) then shows that the map θ 7→ ∆(θ, z) has only simple
zeros on S1 if z ∈ C \ ΣA.

In fact, using the analyticity of the integrand, it is possible to rewrite (41) in a slightly different
form which is appropriate for further analysis. As in Section 4.1, we set w = e2iθ and we observe that

P (cos θ, sin θ) = w1−n
2 P̃ (w) , ∆(θ, z) = w−n

2 ∆̃(w, z) ,

where (if z = x+ iy)

P̃ (w) = P
(w + 1

2
,
w − 1

2i

)

, ∆̃(w, z) = det

(

A

2
+

wA∗

2
−
(

x
w + 1

2
+ y

w − 1

2i

)

In

)

.

Thus (41) is equivalent to

(PfA)(z) =
i(n−1)!

4π2
f.p.

∮

|w|=1

P̃ (w)

∆̃(w, z)
dw

≡ i(n−1)!

8π2

∮

|w|=1−ǫ

P̃ (w)

∆̃(w, z)
dw +

i(n−1)!

8π2

∮

|w|=1+ǫ

P̃ (w)

∆̃(w, z)
dw , (43)

where ǫ is any positive number that is sufficiently small, depending on z. In the particular case where
P = 1 and A ∈ M2(C) is given by (23), we recover (25).

Proof of Proposition 6.1. We first consider the generic situation where the Hermitian matrices
H(θ) have simple eigenvalues λ1(θ) < λ2(θ) < · · · < λn(θ) for all θ ∈ S1. In that case, the B-spline
representing the numerical density of µH(θ) can be given an explicit expression using the divided
difference formula (14), (16):

B[λ1(θ), . . . , λn(θ)](s) = (n− 1)
n
∑

j=1

(λj(θ)− s)n−2
+

∏

k 6=j(λj(θ)− λk(θ))
.

In particular, differentiating (n− 1) times with respect to s, we find

B(n−1)[λ1(θ), . . . , λn(θ)](s) = (n− 1)!

n
∑

j=1

δ(s − λj(θ))
∏

k 6=j(λk(θ)− λj(θ))
. (44)

Let P = P (∂x, ∂y) be a homogeneous differential operator of degree n − 2. From the representation
formula (22), we deduce at least formally

(PfA)(x+ iy) =
1

4π

∫

S1

P (cos θ, sin θ)HB(n−1)[λ1(θ), . . . , λn(θ)](x cos θ + y sin θ) dθ . (45)
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To evaluate the integrand in the right-hand side, we start from (44) and recall that the Hilbert
transform (with respect to the variable s) of the Dirac measure δ(s− λ) is the distribution 1

π p.v. 1
s−λ .

We also use the identity
n
∑

j=1

1

µj
∏

k 6=j(µk − µj)
=

n
∏

j=1

1

µj
,

which holds for any collection of pairwise distinct nonzero complex numbers µ1, . . . , µn. We thus find

HB(n−1)[λ1(θ), . . . , λn(θ)](s) = −(n−1)!

π
p.v.

n
∏

j=1

1

λj(θ)− s
= −(n−1)!

π
p.v.

1

det(H(θ)− sIn)
.

Setting s = x cos θ + y sin θ and inserting this expression into (45), we obtain (41).
The calculations so far are formal, but they can be justified if we assume that z = x+ iy ∈ C\ΣA.

In that case, we know from the proof of Proposition 5.2 that the map θ 7→ ∆(θ, z) has only simple
zeros on S1, because this is the case for each of the factors fj(θ, z) in (40) and, by assumption, the
eigenvalues λj(θ) are all distinct for θ ∈ S1. It follows that the integral in (41) is well-defined in the
sense of Cauchy’s principal value, and depends smoothly on z ∈ C \ΣA. This in turn implies that the
density fA given by (22) is smooth on C \ ΣA, as it should be, and that the calculations above are
correct.

To conclude the proof of Proposition 6.1, it remains to verify that (41) or (43) holds for an
arbitrary matrix A ∈ Mn(C). To do that, we first observe that the singular set ΣA ⊂ C is an
upper-semicontinuous function of A in the sense that

δ(ΣB ,ΣA) ≡ sup
z∈ΣB

dist(z,ΣA) −−−→
B→A

0 .

Moreover the numerical density fA, together with its derivatives, depends continuously on A in C\ΣA.
These rather classical facts can be established using, for instance, the representation formula (8) (we
omit the details). On the other hand, it is not difficult to verify that the right-hand side of (43)
depends continuously on A for each z ∈ C \ ΣA. The crucial point here is that the polynomial map
w 7→ ∆̃(w, z) keeps the same number of zeros on the unit circle (counted with multiplicities) if the
matrix A is slightly varied; in particular, we can choose the same ǫ > 0 in (43) for all matrices in
a neighborhood of A. This property can be established using the factorization (40), Remark 5.3,
and general results for perturbations of eigenvalues of Hermitian matrices, see [18, 23]. Now, given
A ∈ Mn(C), there exists a sequence {Aℓ}ℓ∈N of generic matrices converging to A as ℓ → ∞. If
z ∈ C \ ΣA, we know that equation (43) holds for Aℓ if ℓ is sufficiently large, hence taking the limit
ℓ → ∞ and using the continuity properties mentioned above we obtain the desired equality.

As a consequence of Proposition 6.1, we now establish an important property of the numerical
density in the regions of the complex plane where the number N(z) defined in (39) takes its maximal
value n.

Corollary 6.2 Given A ∈ Mn(C), let

ΠA =
{

z ∈ C \ ΣA

∣

∣

∣N(z) = n
}

. (46)

If n ≥ 3, the numerical density fA is polynomial of degree at most n− 3 on each connected component
of ΠA. If n = 2, then fA = 0 on ΠA.
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Proof. We shall prove that PfA vanishes identically on ΠA for any homogeneous differential operator
of order n−2. Indeed, in view of (40), (42), the assumption z ∈ ΠA implies that the map θ 7→ ∆(θ, z)
has exactly n zeros (counting multiplicities) on [0, π). Equivalently, the polynomial ∆̃(w, z) has exactly
n zeros on the unit circle {|w| = 1}. But since ∆̃(w, z) has degree n, this polynomial has no zeros
outside the unit circle, and using Cauchy’s theorem we conclude that the first integral in the last
member of (43) vanishes. The second integral is also zero, because the numerator is a polynomial of
degree at most n− 2, while the denominator has degree exactly n, hence the integrand P̃ (w)/∆̃(w, z)
decays at least like |w|−2 as |w| → ∞. Thus PfA ≡ 0 on ΠA, and the conclusion follows.

Remark 6.3 If z = x + iy ∈ σ(A), then the polynomial ∆̃(w, z) has degree strictly less than n, and
it follows from the above proof that z /∈ ΠA. Thus σ(A) ∩ΠA = ∅.

The set ΠA is never empty, because it always contains the complement of the numerical range
W (A), where the density fA vanishes identically [27, 4]. Moreover, in many situations, one or several
components of ΠA are contained in W (A), in which case Corollary 6.2 gives nontrivial informations
on the numerical density. For instance, if A ∈ Mn(C) is a normal matrix whose numerical range has
nonempty interior, then N(z) = n for all z ∈ C \ σ(A), and it follows from Corollary 6.2 that fA
is polynomial of degree at most n − 3 in each connected component of C \ ΣA, in agreement with
Proposition 3.2. In the same spirit, if A = A1 ⊕A2 with A1 ∈ Mn1

(C) and A2 ∈ Mn2
(C), it is easily

verified that N(z) = n = n1 + n2 if z /∈ W (A1) ∪W (A2), hence fA is piecewise polynomial outside
W (A1) ∪W (A2). Finally, Fig. 1 shows a typical example of a matrix A ∈ M3(C) for which ΠA has a
component inside W (A), on which the density fA is identically constant by Corollary 6.2.

6.2 Generic regularity results

Our purpose here is to establish regularity results for the numerical density fA in the whole complex
plane, and not only outside the singular set ΣA. For simplicity, we assume henceforth that our matrix
A ∈ Mn(C) enjoys the following (generic) properties:

H1: The eigenvalues of (2) satisfy λ1(θ) < . . . < λn(θ) for all θ ∈ S1.

H2: For all j ∈ {1, . . . , n}, the function λj(θ) + λ′′
j (θ) is not identically zero.

The second assumption guarantees that the curve (36) associated with λj does not degenerate to a
single point. Since the two-dimensional case n = 2 is completely treated in Section 4.1, we can assume
that n ≥ 3 and we have the following result:

Proposition 6.4 Assume that A ∈ Mn(C) satisfies H1, H2 above. If n ≥ 3, the numerical density
fA : C → R+ is of class Cn−3.

We have already seen that both hypotheses H1, H2 are necessary, in general, for the conclusion
of Proposition 6.4 to hold. For instance, if A ∈ M3(C) is a normal matrix whose numerical range
W (A) has nonempty interior, the numerical density fA is proportional to the characteristic function
of W (A) and is therefore discontinuous on ∂W (A). A more subtle example is provided by the matrix
A3 defined in (33): if |a|2 + |b|2 = 4, we have here λ1(θ) = −1, λ2(θ) = 0, λ3(θ) = 1 for all θ ∈ S1.
Thus H1 is satisfied, but obviously not H2, and the explicit formula (34) shows that the numerical
density of A3 is discontinuous at the origin.
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Proof of Proposition 6.4. Assume that n ≥ 3 and that A ∈ Mn(C) satisfies H1, H2. If Q =
Q(∂x, ∂y) is a homogeneous differential operator of degree n− 3, we have as in (45):

(QfA)(x+ iy) =
1

4π

∫

S1

Q(cos θ, sin θ)HB(n−2)[λ1(θ), . . . , λn(θ)](x cos θ + y sin θ) dθ , (47)

where

B(n−2)[λ1(θ), . . . , λn(θ)](s) = −(n− 1)!
n
∑

j=1

H(λj(θ)− s)
∏

k 6=j(λk(θ)− λj(θ))
. (48)

Here H : R → [0, 1] denotes the Heaviside function. Taking the Hilbert transform of (48) with respect
to s and using (47), we thus find

(QfA)(z) =
(n−1)!

4π2

n
∑

j=1

∫

S1

Q(cos θ, sin θ)
∏

k 6=j(λk(θ)− λj(θ))
log |fj(θ, z)|dθ

≡
n
∑

j=1

∫

S1

hj(θ) log |fj(θ, z)|dθ , (49)

where fj(θ, z) = λj(θ)− Re(ze−iθ) and hj : S
1 → R is a smooth function. Note that the integrand in

(49) is 2π-periodic, because by assumption H1 this is the case for all eigenvalues λ1(θ), . . . , λn(θ).
It remains to show that each integral in the right-hand side of (49) defines a continuous function

of z ∈ C. Replacing A by A− zIn (an operation which does not affect the properties H1, H2), we see
that it is sufficient to prove continuity at z = 0. This in turn is obvious if λj(θ) = fj(θ, 0) does not
vanish, so from now on we focus on the case where λj(θ) has (isolated) zeros on S1. Using a partition
of unity, we can treat each zero separately, so it is sufficient to consider the case where λj(θ) has a
single zero of order q ≥ 1 at θ = 0, and hj(θ) is localized near the origin. By analyticity, for z close
to zero we have the factorization

fj(θ, z) = g(θ, z)

q
∏

p=1

(θ − µp(z)) ,

where the (possibly complex) roots µp(z) depend continuously on z, with µp(0) = 0, and g(·, z) does
not vanish in a neighborhood of zero. The quantity we have to study is therefore

q
∑

p=1

∫

R

hj(θ) log |θ − µp(z)|dθ +
∫

R

hj(θ) log |g(θ, z)|dθ .

The last term is clearly a continuous function of z. In the integral involving µp, we make the change
of variables θ = t + Reµp(z) and observe that log |t| ≤ log |t − i Imµp(z)| ≤ 0 in a neighborhood
of (t, z) = (0, 0), hence continuity with respect to z follows from Lebesgue’s dominated convergence
theorem.

Once continuity of the derivatives of order n − 3 has been established, we can obtain further
regularity results for the numerical density by using the representation formula (41) or (43). In view
of Lemma 2.3, it is sufficient to study the density in a neighborhood of a point z̄ ∈ ΣA. Since
ΣA = CA = C1 ∪ . . . ∪ Ck by assumption H1, there exists j ∈ {1, . . . , k} such that z̄ ∈ Cj, and for
simplicity we assume that z̄ /∈ Cp for all p 6= j and that the curve Cj has no self-intersection at z̄.
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This means that the function θ 7→ fj(θ, z̄) has a zero of order m ≥ 2 at some point θ̄ ∈ S1, and only
simple zeros for θ 6= θ̄ mod π; moreover, if p 6= j, θ 7→ fp(θ, z̄) has only simple zeros and does not
vanish for θ = θ̄.

Without loss of generality, we assume from now on that z̄ = 0 and θ̄ = 0, and we first consider
the simplest case where m = 2. This means that λj(θ) =

α
2 θ

2 +O(θ3) near θ = 0, for some α 6= 0. If
z = x+iy is sufficiently small, it follows that the analytic function θ 7→ fj(θ) = λj(θ)−(x cos θ+y sin θ)
has exactly two zeros θ±(z) in a neighborhood of the origin, which satisfy

θ±(z) =
1

α

(

y ± sign(α)
√

y2 + 2αx
)

+O(|x|+ |y|2) .

The critical curve Cj, which is the set of all points z for which θ+(z) = θ−(z), is therefore given by
the equation x = − 1

2αy
2 + O(y3) in a small ball B around the origin. Moreover B \ Cj = Br ∪ Bc,

where Br is the set of all z ∈ B for which the roots θ±(z) are real and distinct, whereas z ∈ Bc when
θ±(z) are complex conjugate with nonzero imaginary part. As is easily verified, the local center of
curvature of Cj is located on the side of Bc.

Now, let P = P (∂x, ∂y) be a homogeneous differential operator of degree n − 2, and consider the
expression of (PfA)(z) given by (43). Assume that, in the right-hand side, the parameter ǫ > 0 is
chosen in such a way that the slit annulus Aǫ = {w ∈ C | 0 < |1 − |w|| < ǫ} contains the points
w±(z) = e2iθ±(z) for all z ∈ Bc, but that A2ǫ does not contain any other root of the determinant
∆̃(w, z) for z ∈ B (these conditions are easily achieved by choosing first ǫ and then B sufficiently
small). Under these assumptions, the right-hand side of (43) defines a smooth function of z ∈ B,
which coincides with (PfA)(z) if z ∈ Br but not if z ∈ Bc. Indeed, in the latter case, we have
to consider in addition the roots w±(z) of ∆̃(w, z) which are not taken into account by the fixed
integration contours in (43) since |1− |w±(z)|| < ǫ. Using Cauchy’s theorem, we easily obtain

(PfA)(z) = (PfA)reg(z) +
(n−1)!

4π

Q̃(w−(z), z) + Q̃(w+(z), z)

w−(z) −w+(z)
, z ∈ Bc ,

where (PfA)reg(z) denotes the regular part of (PfA)(z), given by the right-hand side of (43) with
fixed ǫ, and

Q̃(w, z) =
P̃ (w)(w − w+(z))(w − w−(z))

∆̃(w, z)
.

In particular, we have for all z ∈ Bc

∣

∣

∣
(PfA)(z)− (PfA)reg(z)

∣

∣

∣
≤ C

|w+(z) −w−(z)|
≤ C

|θ+(z)− θ−(z)|
≤ C

dist(z, Cj)1/2
,

and this estimate is sharp if P̃ (1) = P (1, 0) 6= 0, because in that case Q̃(w, z) does not vanish near
w = 1 if z ∈ B. Summarizing, we have reached the following important conclusion: Near a regular
point z̄ ∈ Cj of the critical set ΣA of a generic matrix A ∈ Mn(C), the derivatives of order n−2 of the
numerical density fA are smooth on the convex side of the curve Cj, and blow up like dist(z, Cj)

−1/2

on the concave side. If n = 2, this is in full agreement with the explicit formula (27) obtained in
Section 4.1. If n ≥ 3, we deduce after integration that the numerical density fA is of class Cn−5/2 in
a neighborhood of such a point z̄.

Using the same techniques, it is also possible to study the regularity of the numerical density near
more singular points z̄ ∈ ΣA. On the typical example represented in Fig. 2, we see that the following
two cases have to be analyzed:
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i) Crossings, which occur when two critical curves Cj and Cp intersect transversally at z̄, or when a
curve Cj has a self-intersection at z̄. This situation can be treated exactly as before, except that one
has to consider four distinct regions near z̄, instead of two.

ii) Cusps, which arise whenever one of the functions λj(θ) + λ′′
j (θ) has a simple zero. Here we can

repeat the analysis above, assuming that λj(θ) = α
3 θ

3 + O(θ4) near θ = 0. In a neighborhood of
z̄ = 0, we find that fj(θ, z) has either three real roots (for z inside a cuspidal domain with tip at z̄),
or one real and two complex conjugate roots (outside the cusp). Using the same argument as before,
we conclude that PfA is smooth inside the cusp, but blows up on the other side of the critical curve
Cj. Altogether, the numerical density fA is of class Cn−8/3 near the cusp, see [27, Section 4.3] for a
similar analysis of the singularities of the fundamental solution of (4).

Under generic assumptions on the matrix A, all intersections are transversal and all cusps are
non degenerate, so that the singular set CA is a generic curve in the sense of real algebraic geometry,
and the singularities of the numerical density fA can be completely analyzed using the techniques
described bove. In particular, the derivatives of order n − 2 of the numerical density fA are locally
integrable, and since we know from Proposition 6.4 that fA ∈ Cn−3 we conclude that the relation (41)
holds everywhere (in the sense of distributions), and not only on the complement of ΣA.

6.3 Connexion with the fundamental solution

As was explained in the introduction, the numerical measure of a matrix A ∈ Mn(C) is related to the
fundamental solution of the hyperbolic system (4). This connexion can be established rigorously by
comparing the expression (41) for the derivatives of the numerical density fA with the representation
formulas for the fundamental solution E(t, x) of (4), which can be found e.g. in [4, 27].

In what follows, we identify C with R
2, and we denote by x = (x1, x2) the points of the Euclidean

plane. With a slight abuse of notation, we write fA(x) instead of fA(z), and we consider as subsets
of R2 the various regions associated with A, such as W (A) or ΣA. To derive a representation formula
for the fundamental solution E(t, x), we take the Radon transform of (5) with respect to x ∈ R

2, and
obtain the one-dimensional hyperbolic system

∂tẼ(t, s, θ) +H(θ)∂sẼ(t, s, θ) = In δt=0 ⊗ δs=0 ,

where H(θ) is given by (2) and Ẽ(t, s, θ) denotes the Radon transform of E(t, x). Using the method
of characteristics, we easily find

Ẽ(t, s, θ) =
n
∑

j=1

δ(s − tλj(θ))Pj(θ) , t ≥ 0,

where λ1(θ), . . . , λn(θ) are the eigenvalues of H(θ) and P1(θ), . . . , Pn(θ) the corresponding spectral
projections. Now, if we invert the Radon transform as in (22) and use the identity

n
∑

j=1

1

s− tλj(θ)
Pj(θ) = (sIn − tH(θ))−1 ,

we arrive at the representation formula

E(t, x) = − 1

4π2
f.p.

∫

S1

(

(x1 cos θ + x2 sin θ)In − tH(θ)
)−2

dθ , t ≥ 0 , (50)
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which coincides with Eq. (4.4a) in [4]. Arguing as in Section 6.1, one can show that equation (50) is
rigorously satisfied for all (t, x) ∈ (0,∞) × R

2 with x
t ∈ R

2 \ ΣA, and that E(t, x) is smooth in that
region of space-time.

To compare the numerical density with the fundamental solution, it is natural to extend fA to a
homogeneous function of space and time by setting

FA(t, x) = tn−3fA

(x

t

)

, t > 0 , x ∈ R
2 . (51)

We then have the following result:

Proposition 6.5 For any A ∈ Mn(C), there exists a matrix-valued homogeneous polynomial Q of
degree n− 1 such that

E(t, x) = Q(∂t, ∂x1
, ∂x2

)FA(t, x) , (52)

for all (t, x) ∈ (0,∞)× R2 with x
t ∈ R2 \ΣA.

In particular, if Ω is a connected component of the region ΠA ⊂ R
2 defined by (46), we know from

Corollary 6.2 that fA(x) is polynomial of degree at most n−3 in Ω, and (51) then shows that FA(t, x)
is also polynomial of degree at most n− 3 in the half-cone C+(Ω) = {(t, x) ∈ (0,∞)×R

2 | xt ∈ Ω}. By
Proposition 6.5, we conclude that E(t, x) = 0 in C+(Ω). We thus have

Corollary 6.6 The fundamental solution E(t, x) of a matrix A ∈ Mn(C) vanishes for all (t, x) ∈
(0,∞)× R

2 such that x
t belongs to the region ΠA ⊂ R

2 defined by (46).

In the language of partial differential equations, the domain of influence of the origin for system
(4) is the half-cone C+(D) = {(t, x) ∈ (0,∞) × R

2 | xt ∈ D}, where D ⊂ R
2 is the complement of

the largest connected open region on which E∗ = E(1, ·) vanishes. If in addition E∗ = 0 in some
open region L ⊂ D, we say that L is a lacuna of the hyperbolic system (4). With this terminology,
Corollary 6.6 asserts that each connected component of ΠA either lies outside the domain of influence
of the origin, or is a lacuna. This important geometric characterization of lacunas is originally due to
Petrowsky [22], and was thoroughly discussed in [4, 27] and from a more algebraic point of view in
[2, 3]. Strictly speaking, it gives only a sufficient condition for the occurence of lacunas, but further
work allows to show that all stable lacunas satisfy this criterion. In other words, in generic situations,
the converse of Corollary 6.6 also holds: each open region on which E∗ vanishes (in particular, any
lacuna) belongs to ΠA.

As a typical example, consider the matrix A ∈ M3(C) defined by (55), whose numerical density
is represented in Fig. 1. The polynomial region ΠA has just two components here: the exterior of
D = W (A), where both fA and E∗ vanish, and the interior of the cuspidal triangle, where E∗ = 0 and
fA is identically constant, which is therefore a lacuna. A more complicated situation is depicted in
Fig. 2, where the polynomial region ΠA has six connected components, among which five correspond
to lacunas. In a different spirit, it is also interesting to consider the nongeneric matrix (57) whose
numerical density is studied in Section 7. The domain of influence of the origin is the union of the
closed unit disk and a single point {a}, so the numerical range W (A) = conv(D) is substantially larger
than D if |a| > 1, see Fig. 5. In that case, the region ΠA has again two components, none of which is a
lacuna: the exterior of W (A), and the interior of the triangular region W (A)\D where fA is identically
constant. We see on these examples that the numerical density allows to distinguish between various
regions where the fundamental solution vanishes identically, and which are nevertheless of rather
different nature.
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Before proving Proposition 6.5, we briefly verify its conclusion on a simple example. If A ∈ M2(C)
is defined by (31), system (4) reduces to

∂tu1 + ∂x1
u2 − i∂x2

u2 = 0 , ∂tu2 + ∂x1
u1 + i∂x2

u1 = 0 .

Combining both equations, one verifies that ∂2
t uj = ∆uj for j = 1, 2, hence the fundamental solution

E(t, x) can easily be computed using Poisson’s formula for the solution of the wave equation in two
dimensions. In agreement with Proposition 6.5, the result is:

E(t, x) =

(

∂t −∂x1
+ i∂x2

−∂x1
− i∂x2

∂t

)

FA(t, x) , |x| < t ,

where according to (32), (51)

FA(t, x) =
1

t
fA

(x

t

)

=
1

2π

1
√

t2 − |x|2
1{|x|<t} .

Proof of Proposition 6.5. If n = 1 the conclusion is trivial, because both E∗ and fA vanish
identically outside ΣA (which is reduced to a single point), so we assume henceforth that n ≥ 2.
If P = P (∂t, ∂x1

, ∂x2
) is a homogeneous differential operator of degree n − 2, then using (51) it is

straightforward to verify that

(PFA)(t, x) =
1

t

[

P
(

−x

t
· ∇ξ, ∂ξ1 , ∂ξ2

)

fA

] ∣

∣

∣

ξ=x
t

, (53)

whenever x
t ∈ R

2 \ΣA. Here ξ ∈ R
2 denotes the argument of the function fA, which has to be replaced

by x
t after differentiation. We warn the reader that equality (53) holds only if P is of degree n − 2.

Applying Proposition 6.1, we deduce that

P (∂t, ∂x1
, ∂x2

)FA(t, x) = −(n−1)!

4π2t
f.p.

∫

S1

P (−x
t · eθ, cos θ, sin θ)

det(H(θ)− x
t · eθ In)

dθ , (54)

where eθ = (cos θ, sin θ). On the other hand, starting from (50), we observe that

−
(x

t
· eθ In −H(θ)

)−2
=

∂

∂s

(

(s+
x

t
· eθ)In −H(θ)

)−1 ∣
∣

∣

s=0
.

By Cramer’s rule, the inverse of the matrix SIn−H(θ) = SIn−A1 cos θ−A2 sin θ, with S = s+ x
t ·eθ,

has the following form

(

SIn −H(θ)
)−1

=
1

∆̄(θ, S)

(

S P0(S, cos θ, sin θ) + cos θ P1(S, cos θ, sin θ) + sin θ P2(S, cos θ, sin θ)
)

,

where ∆̄(θ, S) = det(H(θ)−SIn) and P0, P1, P2 are matrix-valued homogeneous polynomials of degree
n − 2. The idea is now to insert this expansion into the right-hand side of (50) and to use (54) to
express the result as a derivative of order n− 1 of the numerical density FA.

We begin with the term involving P1, and remark that

cos θ
∂

∂s

(

P1(s+
x
t · eθ, cos θ, sin θ)

∆̄(θ, s+ x
t · eθ)

)

∣

∣

∣

s=0
= t

∂

∂x1

(

P1(
x
t · eθ, cos θ, sin θ)
∆̄(θ, xt · eθ)

)

.
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The corresponding contribution to (50) is thus

E1(t, x) =
1

4π2t

∂

∂x1
f.p.

∫

S1

P1(
x
t · eθ, cos θ, sin θ)
∆̄(θ, xt · eθ)

dθ = − 1

(n−1)!

∂

∂x1
P1(−∂t, ∂x1

, ∂x2
)FA(t, x) .

Similarly, the term involving P2 gives the contribution

E2(t, x) = − 1

(n−1)!

∂

∂x2
P2(−∂t, ∂x1

, ∂x2
)FA(t, x) .

Finally, to treat the expression containing P0, we observe that

∂

∂s

(

(s+ x
t · eθ)P0(s+

x
t · eθ, cos θ, sin θ)

∆̄(θ, s+ x
t · eθ)

)

∣

∣

∣

s=0
= (1 + x · ∇x)

(

P0(
x
t · eθ, cos θ, sin θ)
∆̄(θ, xt · eθ)

)

,

and using (53), (54) we obtain the contribution

E0(t, x) = − 1

(n−1)! t
(1 + x · ∇x)P0(−∂t, ∂x1

, ∂x2
)FA(t, x) =

1

(n−1)!

∂

∂t
P0(−∂t, ∂x1

, ∂x2
)FA(t, x) .

Recalling that E(t, x) = E0(t, x) + E1(t, x) + E2(t, x), we arrive at (52).

7 Three-dimensional examples

To illustrate the results of the previous sections, we consider here four concrete examples which,
according to [19, Section I.7], give a complete picture of what can happen for three-dimensional
matrices. The two-dimensional case, which is much simpler, was already treated in Section 4.1, and
the references [3, 4, 16] include a detailed study of the singular set ΣA for a few higher-dimensional
examples.

Example 1. We first consider the 3× 3 matrix

A =





−1.5 1 0
−1 1 1
0 −1 0.5



 , (55)

which is generic in the sense that hypotheses H1, H2 in Section 6.2 are fulfilled. The eigenvalues of the
associated Hermitian matrix H(θ) satisfy λ1(θ) < λ2(θ) < λ3(θ) for all θ ∈ [0, π], as can be seen from
Fig. 3 (right). The critical set ΣA = CA = C1 ∪ C2 is an algebraic curve of degree 6 consisting of a
smooth ovate curve C1 enclosing a cuspidal triangle C2 (Fig. 3, left). The component C1 corresponds to
the eigenvalues λ1(θ), λ3(θ) while C2 is associated with λ2(θ). All multiplicities are equal to one, and
the number N(z) defined by (39) is equal to 3 outside C1 and inside C2, and to 1 in the intermediate
region. The numerical density fA is continuous, identically constant inside C2, and vanishes outside
C1. Moreover fA is Hölder continuous with exponent 1/2 across C1 and C2, except at the cusps. The
level lines of fA are represented in Fig. 1.

Example 2. We next consider a nongeneric matrix

A =





0 1 1
0 0 1
0 0 0



 , (56)

31



−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 3: The critical set ΣA (left) and the eigenvalues λj(θ) (right) are represented for the matrix (55).

for which the critical set ΣA can be computed exactly. Indeed, if H(θ) is the Hermitian matrix (2), it
is easy to verify that det(λI3 −H(θ)) = λ3 − 3

4λ− 1
4 cos θ, hence

λ1(θ) = cos
(θ + 2π

3

)

, λ2(θ) = cos
(θ − 2π

3

)

, λ3(θ) = cos
(θ

3

)

.

Thus the permutation (35) is just a cycle τ = (1 2 3), and applying (37) we easily find that the critical
curve CA is the cardioid defined by CA = {1

3 (2e
iφ+ e2iφ) |φ ∈ S1}. Since λ1(0) = λ2(0), the bitangent

set C ′
A is not empty and consists of the line segment joining the points −1/2 ± i/(2

√
3), see Fig. 4

(left). Altogether we have ΣA = CA ∪ C ′
A, and we observe that ΣA encloses a convex region of the

complex plane which is of course the numerical range W (A). The index N(z) defined by (39) is equal
to 3 outside CA and to 1 inside. The numerical density fA vanishes outside W (A) and is equal to a
nonzero constant inside the cuspidal region, in agreement with Propositions 2.6 and 6.1. In particular,
fA is discontinuous along the line segment C ′

A.
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0.0
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Figure 4: The critical set ΣA (left) and the eigenvalues λj(θ) (right) are represented for the matrix (56).

Example 3. The matrices considered so far were unitarily irreducible. In contrast, the matrix

A =





0 2 0
0 0 0
0 0 a



 , where a ∈ C , (57)
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is the direct orthogonal sum of the two-dimensional Jordan block (31) and the one-dimensional matrix
(a). The numerical density fA can therefore be computed using Proposition 2.7, and without loss of
generality we can assume that a ≥ 0. However, we have to distinguish between three cases:

i) If 0 ≤ a < 1, the numerical range W (A) is the closed unit disk, and the numerical density has the
following expression:

fA(z) =
1

π
√
1− a2

argch

(

1− az1
√

(1− az1)2 − (1− |z|2)(1 − a2)

)

, |z| < 1 ,

which reduces to (34) when a = 0. In particular fA vanishes on the unit circle, has a logarithmic
singularity at the point {a}, and is otherwise smooth. The singular set ΣA is the union of the unit
circle and the point {a}.
ii) In the limiting case a = 1, the numerical range is still the closed unit disk, but the formula

fA(z) =
1

π

√

1− |z|2
1− z1

, |z| < 1 ,

shows that the numerical density has now an algebraic singularity at the boundary point z = 1.

iii) When a > 1, the numerical range W (A) is the convex hull of the union of the unit disk and the
exterior point {a}. Within this region, the numerical density satisfies

fA(z) =
1

π
√
a2 − 1

arccos

(

1− az1
√

(1− az1)2 + (1− |z|2)(a2 − 1)

)

, when |z| < 1 ,

and fA(z) = 1/
√
a2 − 1 when |z| > 1. As is easily verified, the eigenvalues of the Hermitian matrix

H(θ) are λ1(θ) = −1, λ2(θ) = 1, and λ3(θ) = a cos θ, see Fig. 5 (right). The algebraic curve CA

consists of the unit circle (associated with λ1, λ2) and the point {a} (corresponding to λ3), but the
bitangent set C ′

A is not empty and consists of two line segments, see Fig. 5 (left).
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Figure 5: The critical set ΣA (left) and the eigenvalues λj(θ) (right) are represented for the matrix (57) with
a = 2.

Example 4. As a final example, we consider the case of a normal matrix A ∈ M3(C) whose eigenvalues
λ1, λ2, λ3 are not colinear. Then the numerical range is the triangle with vertices {λ1, λ2, λ3} and the
numerical density is a multiple of the characteristic function of W (A). In that situation ΣA = CA∪C ′

A,
where CA is the set of all vertices and C ′

A the set of all edges of the triangle.

33



8 Statistical properties of the numerical measure

In this section, we study the numerical measure from a statistical point of view, and we establish various
convergence results which show that the measure µA of a large matrix A ∈ Mn(C) is concentrated in
a neighborhood of the barycenter of the spectrum σ(A).

8.1 Concentration phenomena

Proposition 8.1 For any A ∈ Mn(C), the first moment of the probability measure µA is the normal-
ized trace of A:

µA =

∫

C

z dµA(z) =
1

n
Tr(A) ,

and the variance of µA is given by

Var(µA) =

∫

C

|z − µA|2 dµA(z) =
1

n+ 1

( 1

n
Tr(A∗A)−

∣

∣

∣

1

n
Tr(A)

∣

∣

∣

2)

. (58)

Proof. Let ajk denote the entries of A. Applying definition (1) with φ(z) = z, we have to compute
the average of

∑

jk ajkxjxk over the unit sphere. By symmetry, the average of xjxk is equal to zero if
j 6= k and to 1/n if j = k. Thus

µA =
1

n
(a11 + · · · + ann) =

1

n
Tr(A) .

To compute the second moment, we take φ(z) = |z|2 and proceed in exactly the same way. By
symmetry, the average of xjxkxℓxm is zero unless j = k and ℓ = m, or j = m and ℓ = k. Moreover, it
is easy to verify that the average of |xj |2|xℓ|2 is equal to rn if j = ℓ and to sn if j 6= ℓ, where

rn =

∫

∂Bn

|x1|4 dσ̄(x) =
2

n(n+ 1)
, sn =

∫

∂Bn

|x1|2|x2|2 dσ̄(x) =
1

n(n+ 1)
.

Thus
∫

C

|z|2 dµA(z) =

∫

∂Bn

|〈Ax, x〉|2 dσ̄(x) =
∑

j,k,ℓ,m

akjaℓm

∫

∂Bn

xjxkxℓxm dσ̄(x)

= sn
∑

j 6=ℓ

(ajjaℓℓ + |aℓj |2) + rn

n
∑

j=1

|ajj |2

= sn

n
∑

j,ℓ=1

(ajjaℓℓ + |aℓj|2) = sn(|TrA|2 +Tr(A∗A)) .

This gives the desired result, since Var(µA) =
∫

C
|z|2 dµA(z)− |µA|2.

Now we consider a sequence of matrices {An}n≥1 such that An ∈ Mn(C) for each n ≥ 1. As is
well known, we have

1

n
Tr(A∗

nAn) ≤ ‖An‖2 ≤ Tr(A∗
nAn) ,

where ‖An‖ = sup{‖Anx‖ |x ∈ ∂Bn}. As a consequence, if we suppose that ‖An‖2 = o(n) as n → ∞,
it follows from (58) that the variance of µAn converges to zero as n → ∞. This gives:
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Corollary 8.2 Assume that An ∈ Mn(C) and that ‖An‖2/n → 0 as n → ∞. Then the measure
µAn − δµAn

converges weakly to zero as n → ∞.

We recall that the numerical radius of a matrix A ∈ Mn(C) is defined by

R(A) = sup{|z| | z ∈ W (A)} = sup{|〈Ax, x〉| |x ∈ ∂Bn} ,

and satisfies R(A) ≤ ‖A‖ ≤ 2R(A) [15, 23]. Thus, a sequence of matrices An ∈ Mn(C) is uniformly
bounded (in the operator norm) if and only if the numerical ranges W (An) are all contained in a
bounded region of the complex plane. Under this assumption, Proposition 8.1 shows that the variance
of µAn is O(1/n) as n → ∞, so that the numerical measure is asymptotically concentrated in a disk
of radius O(1/

√
n) around the mean µAn

.

In the introduction, we have observed that the numerical measure µAn is the distribution of the
random variable 〈AnXn,Xn〉 ∈ C when the vector Xn is uniformly distributed on the unit sphere ∂Bn.
With this interpretation, Corollary 8.2 is reminiscent of the weak law of large numbers in probability
theory. Under slightly stronger assumptions, it is also possible to obtain a pointwise convergence result
in the spirit of the strong law of large numbers. Without loss of generality, we assume from now on
that Tr(An) = 0 for all n ≥ 1, so that the measure µAn is centered at the origin.

Proposition 8.3 Assume that the matrices An ∈ Mn(C) satisfy Tr(An) = 0 for all n ≥ 1 and

sup
n≥1

(log n) ‖An‖
n1/2

< ∞ . (59)

If for each n ≥ 1 the random variable Xn is uniformy distributed on the unit sphere ∂Bn, then
〈AnXn,Xn〉 converges almost surely to zero as n → ∞.

Proof. It is clearly sufficient to prove the result for Hermitian matrices An, because the general
case then follows by considering the real and imaginary parts of 〈AnXn,Xn〉. We thus assume that
An = A∗

n for all n ≥ 1, and we denote by λn,1, . . . , λn,n the eigenvalues of An. For each n ≥ 1,
let Yn,1, . . . , Yn,n be independent and identically distributed complex random variables with density

function fY (z) = π−1e−|z|2 , z ∈ C. In particular, we have E(|Yn,m|2k) = k! for each k ∈ N. Since the
Euclidean measure on ∂Bn is the projection on the unit sphere of the standard Gaussian measure in
C
n, we obtain a uniformly distributed random variable on ∂Bn by setting Xn = UnYn/‖Yn‖, where

Yn = (Yn,1, . . . , Yn,n)
⊤ and Un ∈ Un(C) is a unitary matrix such that U∗

nAnUn = diag(λn,1, . . . , λn,n).
Thus

〈AnXn,Xn〉 =
λn,1|Yn,1|2 + · · ·+ λn,n|Yn,n|2

|Yn,1|2 + · · ·+ |Yn,n|2
=

Pn

Qn
,

where

Pn =
1

n

n
∑

m=1

λn,m|Yn,m|2 =
1

n

n
∑

m=1

λn,m(|Yn,m|2 − 1) , Qn =
1

n

n
∑

m=1

|Yn,m|2 .

By the strong law of large numbers, the denominator Qn converges almost surely to 1 as n → ∞,
hence it remains to show that the numerator Pn converges almost surely to zero. But this follows from
classical theorems on the limiting behavior of weighted sums of independent random variables, see
[5, 24]. Since for each n ≥ 1 the random variables Xn,m = |Yn,m|2 − 1 (1 ≤ m ≤ n) are independent,
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have zero mean and finite second order moment, and since by (59) the coefficients an,m = n−1λn,m

satisfy

max
1≤m≤n

|an,m| ≤ C

n1/2 log n
,

the results of [24, Section 3] imply that Pn =
∑n

m=1 an,mXn,m converges almost surely to zero as
n → ∞.

8.2 Central limit theorems

The results established so far show that, for a sequence of traceless matrices An ∈ Mn(C), the
numerical measure µAn tends to concentrate on the origin as n → ∞. Under stronger assumptions, we
now prove that the rescaled measure µ√

nAn
converges to a Gaussian distribution, as in the classical

central limit theorem. We first consider the Hermitian case, which is somewhat simpler.

Proposition 8.4 Let {An}n≥1 be a sequence of Hermitian matrices such that An ∈ Mn(C) and
Tr(An) = 0. We assume that

(log n) ‖An‖
n1/2

−−−→
n→∞

0 , and
1

n
Tr(A2

n) −−−→
n→∞

σ2 > 0 . (60)

Then the rescaled numerical measure µ√
nAn

converges weakly to the normal distribution N (0, σ2) as
n → ∞.

Proof. We use the same notations as in the proof of Proposition 8.3. For each n ≥ 1, the numerical
measure µAn is the distribution of the random variable

Zn =
λn,1|Yn,1|2 + · · ·+ λn,n|Yn,n|2

|Yn,1|2 + · · ·+ |Yn,n|2
=

Pn

Qn
,

where λn,1, . . . , λn,n denote the eigenvalues of An and Yn,1, . . . , Yn,n are independent complex random

variables with density function fY (z) = π−1e−|z|2 . Since Qn converges almost surely to 1 as n → ∞,
we have to show that n1/2Pn converges in law to N (0, σ2).

To do that, we use the Lindeberg-Feller theorem for triangular arrays of random variables [8,
Section 2.4.b]. Let

Xn,m =
1√
n
λn,m (|Yn,m|2 − 1) , 1 ≤ m ≤ n ,

so that n1/2Pn = Xn,1 + · · ·+Xn,n. For each fixed n ≥ 1, the random variables Xn,m are independent
and satisfy E(Xn,m) = 0 for m = 1, . . . , n. Moreover,

n
∑

m=1

E(|Xn,m|2) =
1

n

n
∑

m=1

λ2
n,m =

1

n
Tr(A2

n) −−−→
n→∞

σ2 > 0 .

Finally, for any ǫ > 0, we have

E(|Xn,m|2 ; |Xn,m| ≥ ǫ) =
λ2
n,m

πn

∫

Dn,m,ǫ

(|z|2 − 1)2 e−|z|2 dz ,
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where Dn,m,ǫ = {z ∈ C |λ2
n,m(|z|2−1)2 ≥ nǫ2}. Thus, using the first assumption in (60), we obtain by

a direct calculation

n
∑

m=1

E(|Xn,m|2 ; |Xn,m| ≥ ǫ) ≤ n sup
1≤m≤n

E(|Xn,m|2 ; |Xn,m| ≥ ǫ) −−−→
n→∞

0 .

Invoking the Lindeberg-Feller theorem, we conclude that n1/2Pn = Xn,1 + · · ·+Xn,n converges in law
to N (0, σ2), which is the desired result.

Remark. Since the numerical density of a Hermitian matrix is a B-spline, Proposition 8.4 shows
under very general assumptions that B-splines of degree n satisfy a central limit theorem in the limit
n → ∞. In the particular case of uniform B-splines, this result was obtained by Unser et. al. in [26].

Before considering more general matrices, we would like to mention an alternative proof of Propo-
sition 8.4 which has its own interest. The starting point is a very nice formula for the moments of the
numerical measure of a Hermitian matrix A ∈ Mn(C). Fix k ∈ N and let λ1, . . . , λn ∈ R denote the
eigenvalues of A. Using (17) or (18) with φ(x) = xk, we find

∫

R

xk dµA(x) = (n− 1)!

∫

Dn−1

(t1λ1 + · · ·+ tnλn)
k dt1 . . . dtn−1 ,

where Dn−1 is the (n−1)-dimensional simplex defined in (12) and tn = 1−(t1+· · ·+tn−1). To evaluate
the right-hand side, we apply the multinomial formula

(X1 + · · ·+Xn)
k =

∑

|α|=k

k!

α!
Xα ,

where the sum runs over all multi-indices α ∈ N
n of order |α| = α1 + · · · + αn = k. Here we use the

standard notations Xα = Xα1

1 · · ·Xαn
n and α! = (α1!) · · · (αn!). Now, it is not difficult to verify that

∫

Dn−1

tα dt1 . . . dtn−1 =
α!

(n+ k − 1)!
,

for any α ∈ N
n with |α| = k. We thus obtain the following identity

∫

R

xk dµA(x) =
k! (n − 1)!

(n+ k − 1)!

∑

|α|=k

λα , (61)

which shows that the k-th moment of the numerical measure µA is the complete symmetric homoge-
neous polynomial of degree k in the variables λ1, . . . , λn, divided by the combinatorial factor

(n+k−1
k

)

which is just the number of terms in the sum.
Using the Newton identities, the right-hand side of (61) can be decomposed into as a sum of

products of elementary symmetric polynomials of the form pℓ = λℓ
1 + · · ·+ λℓ

n, see [21, Eq. (2.14’)]. If
we assume that Tr(A) = 0, then p1 = 0 and the number of nonzero terms in the sum is considerably
reduced. Using these remarks, it is not difficult to show that, under the assumptions of Proposition 8.3,
the k-th moment of the rescaled numerical measure µ√

nAn
satisfies

∫

R

xk dµ√
nAn

(x) −−−→
n→∞

{

0 if k is odd ,

2−k/2σk k!
(k/2)! if k is even .
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Since the moments in the right-hand side are those of the normal law, we conclude that µ√
nAn

converges weakly to N (0, σ2) as n → ∞.

We now consider general matrices An ∈ Mn(C), and obtain a central limit theorem by applying
Proposition 8.4 to the Radon transform of An.

Proposition 8.5 Let {An}n≥1 be a sequence of matrices satisfying An ∈ Mn(C), Tr(An) = 0, and
(log n)‖An‖/n1/2 → 0 as n → ∞. We assume that

1

n
Tr(A∗

nAn) −−−→
n→∞

a > 0 ,
1

n
Tr(A2

n) −−−→
n→∞

b ∈ [0, a) . (62)

Then the rescaled numerical measure µ√
nAn

converges weakly to the Gaussian measure f∞(z) dz as
n → ∞, where

f∞(x+ iy) =
1

π
√
a2 − b2

e−
x2

a+b
− y2

a−b . (63)

Proof. For each θ ∈ S1, the Hermitian matrices Hn(θ) =
1
2 (e

−iθAn + eiθA∗
n) satisfy the assumptions

of Proposition 8.4, with

σ2 = σ(θ)2 = lim
n→∞

1

2n

(

Tr(A∗
nAn) + Re(Tr(A2

n)e
−2iθ)

)

=
1

2
(a+ b cos(2θ)) .

Let us denote by µn and µn,θ the numerical measures of
√
nAn and

√
nHn(θ), respectively. Since µn,θ

is the Radon transform of µn, the two-dimensional Fourier transform µ̂n(ξ) for ξ = reiθ is precisely
the one-dimensional Fourier transform of µn,θ evaluated at r [12]. Thus, applying Proposition 8.4, we
find

µ̂n(re
iθ) =

∫

R

e−ixr dµn,θ(x) −−−→
n→∞

1

σ(θ)
√
2π

∫

R

e−ixre−x2/(2σ(θ)2) dx = e−σ(θ)2r2/2 ,

for any r ≥ 0, θ ∈ S1. This shows that µn converges weakly as n → ∞ to the measure µ∞ on C

defined by

µ̂∞(ξ) = e−
1

2
|ξ|2σ(θ)2 = e−

a+b
4

Re(ξ)2e−
a−b
4

Im(ξ)2 , ξ ∈ C .

Inverting the Fourier transform, this gives dµ∞ = f∞(z) dz with f∞ as in (63).

Remarks.
1. If we assume for simplicity that ‖An‖ is uniformly bounded, we can suppose (up to extracting a
subsequence) that 1

n Tr(A∗
nAn) converges as n → ∞ to some a ≥ 0. However, we have to assume in

(62) that a > 0 in order to get a universal Gaussian limit.

2. Similarly, the first assumption in (62) implies that 1
n Tr(A2

n) converges, after extracting a subse-
quence, to some b ∈ C with |b| ≤ a. Multiplying An by a unit complex number, we can assume that
0 ≤ b ≤ a, but in the borderline case where b = a the limiting measure f∞(z) dz should be replaced
(2πa)−1/2e−x2/(2a) dx⊗ δy=0.

Example. Let us consider the Jordan block of size n:

An =



















0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · · · · 0



















.

38



Since Tr(A∗
nAn) = n − 1 and Tr(A2

n) = 0, the assumptions of Proposition 8.5 are satisfied with
a = 1 and b = 0. Thus the numerical measure of

√
nAn converges weakly to the normal distribution

π−1e−|z|2 dz as n → ∞. In this example, the measure µAn has in fact a radially symmetric density for
all n ≥ 1, see Section 4.2.

9 Perspectives

As a conclusion, we briefly mention a natural extension of our work, which is left for future investi-
gation. Recall that a homogeneous polynomial P ∈ R[X0,X1, . . . ,Xd] of total degree n is hyperbolic
in the direction e0 = (1, 0, . . . , 0) if, on the one hand, it has partial degree n with respect to the first
variable X0, and on the other hand the n roots of the univariate polynomial t 7→ P (t, y) are real for
every vector y ∈ R

d. Hyperbolic polynomials arise as principal symbols of hyperbolic differential op-
erators of order n in d space variables, see [11]. As an example, if A1, . . . , Ad ∈ Mn(C) are Hermitian
matrices, the polynomial

P (X0,X1, . . . ,Xd) = det(X0In −X1A1 − · · · −XdAd) (64)

is hyperbolic. In the particular case where d = 2, it has been conjectured in [20], and proved in [14],
that all monic hyperbolic polynomials are of the form (64). This is no longer true if d ≥ 3.

It might be argued that a large part of our work is not really about matrices, but rather concerns
hyperbolic polynomials in 2 + 1 variables. Indeed, if A ∈ Mn(C) and A1, A2 are as in (2), the
eigenvalues λ1(θ), . . . , λn(θ) of the Hermitian matrix H(θ) are the solutions of the equation

PA(λ, cos θ, sin θ) = 0 , θ ∈ S1 ,

where PA(X0,X1,X2) = det(X0In−X1A1−X2A2) is the hyperbolic polynomial associated with A1, A2.
As was shown in Section 4, the numerical measure µA is entirely determined by the eigenvalues λj(θ),
hence by the polynomial PA.

This in turn suggests a natural way to associate with any hyperbolic polynomial P of degree n in
d+1 variables a probability measure µP on R

d, which coincides with the numerical measure µA when
d = 2 and P = PA. Given a unit vector ω ∈ Sd−1 ⊂ R

d, let λ1(ω), . . . , λn(ω) ∈ R be the roots of the
polynomial equation P (λ, ω) = 0, and let Bω(s) = B[λ1(ω), . . . , λn(ω)](s) be the normalized B-spline
with knots λ1(ω), . . . , λn(ω). The “numerical measure” of P is then the unique probability measure
µP on R

d whose Radon transform satisfies

(RµP )(ω, ds) = Bω(s) ds ,

where, by definition, (RµP )(ω, I) = µP ({x ∈ R
d |x · ω ∈ I}) for any interval I ⊂ R.

In this generalized setting, the counterpart of normal matrices is the case where the polynomial P
split into linear factors

P (X) =

n
∏

k=1

(X0 − vk · (X1, . . . ,Xd)) , with vk ∈ R
d .

When n ≥ d + 1 and the vectors vk span the affine space R
d, the density of µP with respect to the

Lebesgue measure is the multivariate B-spline in d variables, whose nodes are the vk’s. It is piecewise
polynomial of degree n − d − 1. In the generic situation where any (d + 1)-uplet of vectors vk is an
affine basis, it is of class Cn−d−2, see [6]. Again the density is log-concave in this case.
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As in the two-dimensional case, the measure µP can be expressed in terms of Bω using the back-
projection method. The example above suggests that, as the space dimension increases, the measure
µP becomes more singular. Then, the inversion formula has to be understood in the sense of distri-
butions. In the three-dimensional case d = 3, we arrive at the simple expression

µP = − 1

8π2
∆x

∫

S2

Bω(x · ω) dσ(ω) , (65)

where dσ denotes the Euclidean measure on the unit sphere S2. As an example, in the particular
situation where P = X2

0 −X2
1 −X2

2 −X2
3 , which corresponds to the differential operator ∂2

t −∆ of the
wave equation, we obtain µP = 1

4π dσ(x). This shows that, when d ≥ 3, the support of µP does not
need to be convex. Because the wave equation satisfies the Huyghens Principle, this example suggests
that the link between polynomial regions of the density and lacunas of differential operators persists
in higher dimensions.

References

[1] V. M. Atiyah. Hyperbolic differential equations and algebraic geometry (after Petrowsky),
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