-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL-ENS-LYON

archives-ouvertes

On Applicative Similarity, Sequentiality, and Full
Abstraction

Raphaglle Crubillé, Ugo Dal Lago, Davide Sangiorgi, Valeria Vignudelli

» To cite this version:

Raphagélle Crubillé, Ugo Dal Lago, Davide Sangiorgi, Valeria Vignudelli. On Applicative Sim-
ilarity, Sequentiality, and Full Abstraction. Correct System Design. Symposium in Honor of
Ernst-Ridiger Olderog on the Occasion of His 60th Birthday, Sep 2015, Oldenburg, Germany.
2015, <10.1007/978-3-319-23506-6_7>. <hal-01229398>

HAL Id: hal-01229398
https://hal.inria.fr /hal-01229398
Submitted on 16 Nov 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/52298139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01229398

On Applicative Similarity, Sequentiality,
and Full Abstraction*

Raphaélle Crubillé!, Ugo Dal Lago?, Davide Sangiorgi?, and Valeria Vignudelli?

! ENS-Lyon, raphaelle.crubille@ens-lyon.fr
2 Universita di Bologna & INRIA,
{ugo.dallago,davide.sangiorgi2,valeria.vignudelli2}@unibo.it

Abstract. We study how applicative bisimilarity behaves when instan-
tiated on a call-by-value probabilistic A-calculus, endowed with Plotkin’s
parallel disjunction operator. We prove that congruence and coincidence
with the corresponding context relation hold for both bisimilarity and
similarity, the latter known to be impossible in sequential languages.

Keywords: probabilistic lambda calculus, bisimulation, coinduction, sequen-
tiality

1 Introduction

The work in this paper is part of a general effort in trying to transport techniques
and concepts for program correctness and verification that have been introduced
and successfully applied to ordinary (first-order) concurrency (CCS, CSP, Petri
Nets), following pioneering work by Bergstra, Hoare, Milner, Olderog, and others,
onto formalisms with higher-order features, in which the values exchanged or
manipulated may include pieces of code. Specifically, we focus on the prototypical
higher-order language, the A-calculus, enriched with a probabilistic choice, and
use coinductive methods and logics to understand and characterise behavioural
equivalences.

Probabilistic models are more and more pervasive. Examples of application
areas in which they have proved to be useful include natural language process-
ing [16], robotics [23], computer vision [3], and machine learning [19]. Sometimes,
being able to “flip a fair coin” while computing is a necessity rather than an alter-
native, like in cryptography (where, e.g., secure public key encryption schemes
are bound to be probabilistic [10]): randomness is not only a modeling tool, but
a capability algorithms can exploit.

The specification of probabilistic models and algorithms can be made eas-
ier by the design of programming languages. And indeed, various probabilistic
programming languages have been introduced in the last years, from abstract
ones [12,22,18] to more concrete ones [20,11]. A common scheme consists in

* The authors are partially supported by the ANR project 121502001 PACE.

endowing deterministic languages with one or more primitives for probabilis-
tic choice, like binary probabilistic choice or primitives for distributions. Many
of them, as a matter of fact, are designed around the A-calculus or one of its
incarnations, like Scheme. This, in turn, has stimulated foundational research
about probabilistic A-calculi, and in particular about the nature of program
equivalence in a probabilistic setting. This has already started to produce some
interesting results in the realm of denotational semantics, where adequacy and
full-abstraction results have recently appeared [7,9].

Operational techniques for program equivalence, and in particular coinduc-
tive methodologies, have the advantage of not requiring a too complicated math-
ematical machinery. Various notions of bisimilarity have been proved adequate
and, in some cases, fully abstract, for deterministic and nondeterministic compu-
tation [1,17,15]. A recent paper [5] generalizes Abramsky’s applicative bisimu-
lation [1] to a call-by-name, untyped A-calculus endowed with binary, fair, prob-
abilistic choice [6]. Probabilistic applicative bisimulation is shown to be a con-
gruence, thus included in context equivalence. Completeness, however, fails, but
can be recovered if call-by-value evaluation is considered, as shown in [4]. This
can appear surprising, given that in nondeterministic A-calculi, both when call-
by-name and call-by-value evaluation are considered, applicative bisimilarity is
a congruence, but finer than context equivalence [15]. But there is another, even
less expected result: the aforementioned correspondence does not hold anymore
if we consider applicative simulation and the contextual preorder.

The reason why this happens can be understood if one looks at the testing-
based characterization of similarity and bisimilarity from the literature [8,24]:
the class of tests characterizing bisimilarity is simple enough to allow any test to
be implementable by a program context. This is impossible for tests characteriz-
ing similarity, which include not only conjunction (which can be implemented as
copying) but also disjunction, an operator that seems to require the underlying
language to be parallel.

In this paper, we show that, indeed, the presence of Plotkin’s disjunction [21,
2] turns applicative similarity into a relation which coincides with the context
preorder. This is done by checking that the proof of precongruence for applicative
bisimilarity [5, 4] continues to hold, and by showing how tests involving conjunc-
tion and disjunction can be implemented by contexts. This somehow completes
the picture about how applicative (bi)similarity behaves in a probabilistic sce-
nario.

2 Programs and Their Operational Semantics

In this section, we present the syntax and operational semantics of Ag,, the lan-
guage on which we define applicative bisimulation. Ag,, is a A-calculus endowed
with probabilistic choice and parallel disjunction operators.

The terms of Ag,, are built up from variables, using the usual constructs
of A-calculus, binary choice and parallel disjunction. In the following, Var =
{z,y,...} is a countable set of variables

Definition 1. The terms of Agor are expressions generated by the following
grammar:

M,N,L := z | \a.M | MeN | MN | [M||N]—L
where x € Var.

In what follows, we consider terms of Ag,, as a-equivalence classes of syntax
trees. We let FV (M) denote the set of free variables of the term M. A term M
is closed if FV(M) =). Given a set T of variables, Ag,,(T) is the set of terms
M such that FV (M) C z. We write Agor for Ager(0). The (capture-avoiding)
substitution of N for the free occurrences of z in M is denoted by M[N/z].

The constructs of the A-calculus have their usual meanings. The construct
M @& N is a binary choice operator, to be interpreted probabilistically, as in
Ag [6]. The construct [M || N] — L corresponds to the so-called parallel
disjunction operator: if the evaluation of M or N terminates, then the behaviour
of [M || N] — L is the same as the behaviour of L, otherwise this term does not
terminate. Since we are in a probabilistic calculus, this means that [M || N] — L
converges to L with a probability that is equal to the probability that either M or
N converge. (This formulation of parallel disjunction is equivalent to the binary
one, without the third term.)

Ezample 1. Relevant examples of terms are 2 = (Ar.zz) (Av.zz), and [= Az.a:
the first one always diverges, while the second always converges (to itself). In
between, one can find terms such as I & £2, and I @ (I & (2), converging with
probability one half and three quarters, respectively.

2.1 Operational Semantics

Because of the probabilistic nature of choice in Ag,,, a program doesn’t evaluate
to a value, but to a probability distribution on values. Therefore, we need the
following notions to define an evaluation relation.

Definition 2. Values are terms of the form V. = lx.M. We will call Vgor
the set of values. A value distribution is a function 2 : Vgor— [0,1], such that
ZVGV@M 2(V) < 1. Given a value distribution 9, we let S(Z) denote the set of
those values V' such that 2(V) > 0. Given a set X of values, 2(X) is the sum
of the probabilities assigned to every element of X, i.e., 2(X) = ycx 2(V).
Moreover, we define > 2 = >, 2(V), which corresponds to the total weight
of the distribution 2. A value distribution 2 is finite whenever S(2) has finite
cardinality. If V is a value, we write {V'} for the value distribution 2 such
that (W) =1 if W =V and (V) = 0 otherwise. We’ll note 9 < & for the

pointwise preorder on value distributions.

We first define an approximation semantics, which attributes finite probability
distributions to terms, and only later define the actual semantics, which is the
least upper bound of all distributions obtained through the approximation se-
mantics. Big-step semantics is given by means of a binary relation | between

b __y, MUZ Nys |
MU0 Vi{v'} MoN{ylg+le

M N ZF {PV/z] 4 Epy bre.Pes(x), ves(#)
MN | ZVES(J’J’) FV)- (ZA:CAPES(L%’) H (A\z.P) - Epv) ¢
M2 N & L|Z
MIIN]-LI(C2+>X6-0322-226))F

bo'r

Fig. 1. Evaluation

closed terms and value distributions, which is defined by the set of rules from Fig-
ure 1. This evaluation relation is the natural extension to Ag,, of the evaluation
relation given in [6] for the untyped probabilistic A-calculus. Since the calculus
has a call-by-value evaluation strategy, function arguments are evaluated before
being passed to functions.

Lemma 1. For every term M, if M | 2, and M | &, then there exists a
distribution % such that M || & with 9 < %, and & < .

Proof. The proof is by induction on the structure of derivations for M || 2. We
only consider two cases, since the others are the same as in [6]:
e If the derivation for M | Zis: “pr g be . Then it is enough to take .Z = &,
and since) < & and & < &, the result holds.
e If the derivation for M || Z is of the form:

Py9Y Ny# Lis)
M=[P[N—LI2=(9+> x4~ 9->x)-5

Since M = [P || N] — L, there are only two possible structures for the
derivation of M || &: either & = () and the result holds by .# = 2, or the
structure of M |} & is the following:

Pl % N | 4 L % b
M=[P|[N—=LIE&=0C%+>6b— 3% -S5B) S

By applying the induction hypothesis, we obtain that there exist ¢#,. %7, £
value distributions such that P | ¢, N | 2, L | £, and, more-
over, 4,%, < ¢, K, < KX, and S, 5 < ZL. We define F =
L+ = 7Y K)) £, and we have that M || .#. We must
show that 2 < % and & < .%. Let f :[0,1] x [0,1] — [0,1] be the function
defined by f(z,y) = « +y — x - y. The result follows from the fact that f
is an increasing function, which holds since its two partial derivatives are
positive. a

Definition 3. For any closed term M, we define the big-steps semantics [M])
of M as supyyq 7.

Since distributions form an w-complete partial order, and for every M the set of
those distributions 2 such that M | Z is a countable directed set (by Lemma
1), this definition is well-posed, and associates a unique value distribution to
every term.

2.2 The Contextual Preorder

The general idea of the contextual preorder is the following: a term M is smaller
than a term N if the probability of convergence of any program L where M occurs
is less than or equal to the probability of convergence of the program obtained
by replacing M by N in L. The notion of context allows us to formalize this
idea.

Definition 4. A context C' of Ago, is a syntaz tree with a unique hole:
Cu=[] | \e.c | M | MC | CoM | MaC
| [CIM]—N | [M]C]—N|[M|N—C.
We let € denote the set of all contexts.

Definition 5. Terms M, N € Ago-(T) are put in relation by the contextual
preorder (M < N) if for every context C' of Agor such that C[M] and C[N]
are closed terms, it holds that > [C[M]] < > [C[N]]. M,N are contextually
equivalent (M =N) if M < N, and N < M.

Note that the contextual preorder is directly defined on open terms, by requiring
contexts to bind the free variables of terms. It is easy to verify that the contextual
preorder is indeed a preorder, and analogously for equivalence.

Ezample 2. To see how things differ when we consider the contextual preorder
in Ag and in Ag,,, consider the following terms of Ag;:

M=)Xy.(2a1I) N=(y.2)® (\y.I).

where (2 and I are defined as in Example 1. We let <gq and =g respectively
denote the contextual preorder and equivalence for the language Ag, i.e., the
relations restricted to terms and contexts without the parallel disjunction con-
struct. In [4] it is proved that M <4 N. The converse does not hold, since if we
take the Ag context

C = (Aa.(zl)(«))[]

we have that in C[M] the term Ay.({2 @ I) is copied with probability one, while in
C[N] both term \y.{2 and term Ay.I are copied with probability one half. Hence,
C[M] converges with probability one quarter (i.e., the probability that 2 @ I
converges two times in a row) while C[N] has probability one half of diverging
(i.e., one half times the probability that 2 diverges two times in a row) and
one half of converging (i.e., one half times the probability that I converges two

times in a row). In Ag,, we still have that N £ M, since the contexts of Ag are
contexts of Ag,r as well, but we also have that M £ N. Consider the context

C = (. [(zI) || (zI)] — I)[]

If we put term M in context C then Ay.(£2 @ I) is copied, which has probability
one half of converging when applied to I. Hence, by summing the probabilities of
convergence of the two copies of (Ay.(£2 @ I))I and subtracting the probability
that they both converge, we obtain that [C[M]] = 2 . {I'}. Term C[N] only
converges with probability one half, since with one half probability we have
the parallel disjunction of two terms that never converge and with one half
probability we have the parallel disjunction of two terms that always converge.
Hence, both in Ag and in Ag,, terms M, N are not contextually equivalent,
but it is only in Ag,, that neither M is below N nor N is below M in the
contextual preorder. We will see in the following section that this corresponds
to what happens when we consider the simulation preorder.

3 Applicative Simulation

In this section we introduce the notions of probabilistic applicative simulation
and bisimulation for Ag,.. Then we define probabilistic simulation and bisimu-
lation on labelled Markov chains (LMCs, which also appear as Reactive Proba-
bilistic Labelled Transition Systems in the literature). Bisimilarity on this class
of structures was defined in [14]. We show how to define a labelled Markov
chain representing terms of Ag,, and their evaluation. Two states in the labelled
Markov chain corresponding to terms M, N are in the simulation preorder (re-
spectively, bisimilar) if and only if terms M, N are in the applicative simula-
tion preorder (respectively: applicative bisimilar). Recall that, given a relation
RCX xY andaset ZC X, R(Z) = {y|3x € Z such that 2Ry}.

Definition 6. A relation R C Agor X Agor is a probabilistic applicative simu-
lation if MRN implies:

o for all X C Vgor, [M](X) < [N](R(X))

e if M =Xx.L and N = \x.P then L[V/x]RP[V/x] for all V € Vgor.
A relation R is a probabilistic applicative bisimulation if both R and R~ are
probabilistic applicative simulations. We say that M is simulated by N (M 24 N)
if there exists a probabilistic applicative simulation R such that MRN. Terms
M, N are bisimilar (M ~, N) if there exists a probabilistic applicative bisimu-
lation R such that M'RN.

Definition 7. A labelled Markov chain (LMC) is a triple M = (S, L, P), where
S is a countable set of states, L is a set of labels, and P is a transition proba-
bility matrix, i.e., a function P : S X L xS — R such that for every state s € S
and for every labell € L, Y~ s P(s,l,u) < 1.

Definition 8. Let (S, L, P) be a labelled Markov chain. A probabilistic simula-
tion is a relation R on S such that (s,t) € R implies that for every X C S and

for every l € L, P(s,1,X) < P(t,l,R(X)). A probabilistic bisimulation is a
relation R on S such that both R and R~ are probabilistic simulation relations.
We say that s is simulated by t (s 3 t) if there exists a probabilistic simulation
R such that sRt. States s,t are bisimilar (s ~ t) if there exists a probabilistic
bisimulation R such that sRt.

Labelled Markov chains allow for external nondeterminism (every state can reach
different probability distributions, depending on the chosen label) but they do
not allow for internal nondeterminism (given a state and a label there is only one
associated probability distribution). This is the reason why bisimilarity coincides
with simulation equivalence on labelled Markov chains, i.e., ~== N 371,

Lemma 2. For any labelled Markov chain (S, L, P):

1. relations = and ~ are the largest simulation and the largest bisimulation on
S, respectively;

2. relation 3 is a preorder and relation ~ is an equivalence.

Proof. Let us examine the two points separately:

1. Simulations and bisimulations are closed under union, hence the results fol-
lows.

2. The identity relation is a simulation, hence = is reflexive. Given two simu-
lation relations Ri, Ro, relation R1;Re = {(s,t)|sR1uRsat for some u} is a
simulation. Hence, = is transitive as well. By definition, relation ~ is sym-
metric, which implies that it is an equivalence. a

We will now define a labelled Markov chain that has among its states all terms
of Agor and that models the evaluation of these terms.

Definition 9. The labelled Markov chain Mgor = (Swor, Laor, Paor) S given
by:

o A set of states Spor = {Agor} W {Vaor}, where terms and values are taken
modulo a-equivalence and]A/@OT = {V|V € Vaor} i a set containing copies of
the values in Agor decorated with”. We call these values distinguished values.

o A set of labels Lgor = Vgpor W {eval}, where, again, terms are taken modulo
a-equivalence.

o A transition probability matriz Pgor such that:

o for every M € Agy, and for every V € Vaor, Poor(M, eval, V) = [M](V)
and Pgor(M, eval, M) = 0 for all M' € Agor.

o for every \e.M € Vaor and for every V € Vaor, Poor(Az.M,V, M[V/z]) =
1 and Pgor(Ae. M, V,M') = 0 for all M’ € Agop such that M’ # M[V/z].

Please observe that if V' € Vg,,, then both V' and V are states of the Markov
chain Mg, A similar labelled Markov chain is defined in [13] for a call-by-name
untyped probabilistic A-calculus Ag, and for a call-by-value typed probabilistic
version of PCF in [4]. Actions in Vg, and action eval respectively represent the
application of a term to a value and the evaluation of a term.

Following [8], given a state and an action we allow the sum of the probabili-
ties of reaching other states in the labelled Markov chain to be smaller than 1,

modelling divergence this way. The definition of simulation implies that when-
ever M is simulated by N we have that Y [M] < > [N]. Analogously, if M is
bisimilar to N, then Y [M] = > [N].

An applicative simulation R on terms of Ag,, can be easily seen as a simu-
lation relation R’ on states of Mg, obtained by adding to relation R the pairs
{(V,W)|[VRW}. Analogously, a simulation relation on Mg, corresponds to an
applicative simulation for Age,.

Theorem 1. On terms of Agor, Sa=23 and ~g=r.

In what follows, we will mainly use the definitions of simulation and bisim-
ulation for the labelled Markov chain Mg,-. By Lemma 2, 3 coincides with
the simulation preorder defined in [4], which requires simulations to be pre-
orders themselves. For instance, I and IT are (applicative) bisimilar since R =

My.(2 1) (Ay.2) & (Ay.I)

eval

AGED)

Fig. 2. LMC for M, N.

{(I, IT)}YUIDU{(V, V)|V € Vgor}, where ID is the identity relation on Agqp,
is a bisimulation on Mg,,-. Consider now the terms M and N defined in Exam-
ple 2 and represented in Figure 2 as states in Mg,,. Term M is not simulated
by N: if a simulation R relates them, then it must also relate term (2@ I) to
both term (2 and term I. However, (£2@® I) can perform eval and reach I with
probability one half, while {2 has zero probability of becoming a value, which
means that R cannot be a simulation relation. In the other direction, we have
that N cannot be simulated by M either. If R is simulation such that NRM
then it must relate term I to term ({2 @ I), but the former has probability one
of convergence and the latter has probability one half of convergence.

4 The Simulation Preorder is a Precongruence

The extension 3, of the applicative simulation preorder to open terms is defined
by considering all closing substitutions, i.e., for all M, N € Agor(x1,...,%,), we
have M2, N if

MWV, .o Vi /xr, oo 2n) 3o N[V, ooy Vi Jan, ooy x], for all Vi, o0, Ve € Vaor.

Here we show that =, is a precongruence, i.e., closed with respect to the opera-
tors of Agop-

It is here convenient to work with generalizations of relations called Ag,-
relations, i.e. sets of triples in the form (T, M, N), where M, N € Ag,,(Z). Given
a relation R on open terms, if MRN and M,N € Ag,-(T) then the triple
(T, M, N) is in the corresponding Ag,.-relation. We denote this by T - MRN.
We extend the usual notions of symmetry, reflexivity and transitivity to Age--
relations as expected.

Definition 10. A Ag,,-relation R is compatible if and only if the following

conditions hold:

(Coml1) VT, Nx €T, THaxRx ;

(Com2) Yz, Nx € T,VM,N, TU{a}F MRN = T+ Xx. M R z.N;

(Com3) VE,VNM,N,P,Q, T+F MRNAZFPRQ — TF MPRNQ;

(Com4) VE,NM,N,P,Q, T+F MRNAZFPRQ — T-FMOPRN DQ;

(Com5) YVZ,NM,N,P,Q, T, 7+ MRNAZ+F PRQ = T+ [M | P] —
TRIN|Q—T;

It follows from these properties that a compatible relation is reflexive, since this
holds by (Coml1) on variables, and it is preserved by the other operators by
(Com?2)-(Coms):

Proposition 1. If a relation is compatible, then it is reflexive.

4.1 Howe’s Method

The main idea of Howe’s method consists in defining an auxiliary relation <7

~vO

such that it is easy to see that it is compatible, and then prove that <, ==,

o T ~o

Definition 11. Let R be a relation. We define inductively the relation R¥ by
the rules in Figure 3.

We are now going to show that if the relation R we start from satisfies minimal
requirements, namely that it is reflexive and transitive, then R is guaranteed
to be compatible and to contain R. This is a direct consequence of the following
results, whose proofs are standard inductions:

e Let R be a reflexive relation. Then R is compatible.

e Let R be transitive. Then:

@ZFMRIN)A@HFNRL)= (z-MR" L) (1)

ZU{z}F2R M ZU{z}FMRYN ZFX.NRL
zU{z}Fa R M TFAMR?L

zFMREN zHLREP Z+HNPRR
T MLRYR

TFMREN ZHLREP ZTHNO®PRR
Z-FMaLRER

ZFMRYN THLRYP T+ [N|P—TRR
ZF M| L) —TRYR

Fig. 3. Howe’s Construction

o If R is reflexive, then T+ M R N implies T+ M R¥ N.
We can now apply Howe’s construction to 3., since it is clearly reflexive and

~0

transitive. The properties above then tell us that <X is compatible and that

~vO

<o C3H . What we are left with, then, is proving that < is also a simulation.?

Lemma 3. =X is value-substitutive: for all terms M, N and values V,W such

~/0

that x = M 32 N and 0=V ZH W, it holds that 0 = M[V/x] 32 N[W/z]
Proof. By induction on the derivation of z - M 37 N.

We also need an auxiliary, technical, lemma about probability assignments:

Definition 12. P = ({Pihgigm {ﬁ}[g{l,...,n}) 1s said to be a probability as-
signment if for every I C {1,..,n}, it holds that > ;.1 pi <3 jn1497-

Lemma 4 (Disentangling Sets). Let P = ({pi}1<i<n:{r1}ic(i,...n}) be a
probability assignment. Then for every non-empty I C {1,...,n}, and for every
k € I, there is an sk, € [0,1] satisfying the following conditions:

e for every I, it holds that 3, ; sk < 1;

o foreveryk € 1,...,n, it holds that p, < kael} Sk, 1" TI-

The proof is an application of the Max-Flow Min-Cut Theorem, see e.g., [5,4].
Given a set of set of open terms X, let Az. X = {\z.M|M € X}.

Lemma 5 (Key Lemma). For all terms M,N, if) = M =ZH N, then for
every Az.X C Vgor it holds that [M] (Az.X) < [N] (2o (Az. 35 (X))).

Proof. We show that the inequality holds for every approximation of the seman-
tics of M, which implies the result since the semantics is the supremum of the

3 In the proof of congruence for the probabilistic call-by-value A-calculus presented
in [4], the transitive closure of 3 is considered, since the definition of simulation
required the relation to be preorder, which implies that the transitivity of <F is
needed. Since we relaxed the definition of simulation, this is not anymore necessary.

approximations. In particular, we prove by induction on the structure of the
derivation of M | 2 that, for any M, N, if M || 2 and) - M <H N, then
for every Az.X C Vgor it holds that 7 (Az.X) < [N] (2. (Az. Z¥ (X))). We
consider separately every possible rule which can be applied at the bottom of
the derivation:

o If the rule is Wb” then 2 = 0, and for all set of values A\z.X,
2(Ax.X) =0, and it concludes the proof.

o If M isavalue V = Az.L and the last rule of the derivation is W b
then 2 = {V1} is the Dirac distribution for V and, by the definition of Howe’s
lifting, ((Z) Fax.L 38 N) was derived by the following rule:

cFL=H P 0k Az.PZN

0 Xe.L N
It follows from the definition of simulation and from (§ - Az.P S, N) that 1 =
INNZo {Az.P}). Let Ax.X C Vgor. If Az.L & Az.X then 2(Az.X) = 0 and
the thesis holds. Otherwise, Z(M\z.X) = Z2(A\x.L) = 1 = [N](Z. {\z.P}).
It follows from L 3 P and from A\z.L € A\z.X that A\z.P € \z.(3 X);
hence, [N](Zo {Az.P}) < [N)(Z0 Aa.(3H X)).

e If the derivation of M || Z is of the following form:
My o My || F {P[V/x] | EPv }ra.Pes(n),ves(#)

MiMs 4 Yy esz) F(V) (zmpes(x) %(Am.P).é”p,v)
Then M = M; M, and we have that the last rule used in the derivation of
DM 22 Nis:
0+ M, 22 My 0+ My 22 M 0= M{M,3.N
@ H MlMg jH N

Let S(#) = {\o.Py,..., \x.P,} and K; = Z.{\v.L |z + P, 3 L} and,
symmetrically, S(#) = {V1,...,V;} and Xk = Zo{X2.L |V, = Az. M’ and
x M’ 22 L}. Then by the inductive hypothesis on M; || # and My || .
we have that J# (U, {\z.P;}) < [M{](U,e; Ki) for every I € {1,..,n} and
F (Uer{iVi}) < IM3] (Upes Xi) for every I C{1,..,1}.

Lemma 4 allows us to derive that for all U € |J,,<,, K; there exist prob-
,7Y and for all W € U1< k<1 Xk there exist probability

values 5}”, ..,s]” such that:

M) = Y.V gl > > sy e | Kawe | X

ability values 7V, ...

1<i<n 1<k<l 1<i<n 1<k<I
HNxP)< Y ol FW)< > s VI<i<nl<k<I
UeK; WweXy

Hence, for every value Z € Vg,,, we have that:

22) =Y FVi): > H(P)-Ep v, (Z)

1<k<I 1<i<n

<2 2 w2 Y (2

1<k<l WEX} 1<i<nUEK;

If U = \z.U’ € K; then there exists S such that:

(2) OF S22 U (3) z-P 2H S
y (2), 0 F S[W/z] 2 U’[W/x] y (3) and by Lemma 3, for W € X, we
have that 0 + P;[Vi/x] 35 S[W/z]. It follows from (1) that 0§ - P;[V}/x] ZH
U'[W/x]. Hence, by the mductlon hypothesis applied to P;[Vj/z] we have
Ep, v, (M. X) < [[U’[W/x]]](jo)\z(jf X)). Therefore,

P(Mx.X) Z Z sy Z ZT - &p, v, (M. X)

1<k<iIWeXy 1<i<nUE€eK;
<Y Y (Y)T e R x)
we U XxUe U K; {k|WeXi} {ilUeK;}
1<k<l 1<i<n

< D Y)W) M) - Luw](Zee (38 X))

We U XpUe U K;
1<k<l 1<i<n

< [MIM3](ZoAa. (3 X))

where Ly w = U’'[W/x] for any U such that U = Az.U’.
If M |} 2 is derived by:
M, U5 Mz Do
My, @ Mz | %91 + %@2
then 0 - M I N is derived by:
DM ZH N O+ M, Nz OF N1® N2 3o N
OFMioM I N
By the inductive hypothesis, for ¢ € {1,2} we have that for any \e.X C Vgor,

Z:(A2.X) < [Ni] (ZoAz.(3 X))

Hence, the result follows from:
1 1 1 I 1 I
S PO X) 45D X) < S IN RN (3 X))+ INa (B (3E X))

If the last rule applied in the derivation of M |} Z is of the following form:
My | 9 Mz || 92
Mi | o) =T 4+ 22— D1 -3, Do) - {T"}
then M = [M; || M) — T and) = M =X N is derived by:
O M 35 N O+ M, <H N, Ok [N1|| No] — T 30N
OF [My || Ma) —»T 3N

By inductive hypothesis on M; || 27 we have that for any A\z.X C Vg,
D1 (M2 X) < [N1](ZoAz.(ZH X)). Hence, for \z.X = S(2;) we have that:

> % = 2w X) < [M](Zoe. (35 X)) < [MDS(IN]) =D [Ni]

and, symmetrically, by the inductive hypothesis on My || P, we have > 25 <
>[Nz2]. Therefore,

2914-2@2—2.@1'2@2SZ[[N1H+Z[[N2]]_Z[[N1H'Z[[N2H

Let Az.X C Vgor. T & Ax.X then 2 = 0 and the result follows. Otherwise,
it follows from T' = \z.T’ € Z A z.(ZH {T'}) (since both X, and 3 are
reflexive) that

I\ X)=9NaT)V=> D+Y Do—> D> P
<Y I+ D IN2] = D> IV [V

= [N](A2.T") = [N](Zeda (32 X))
O

A consequence of the Key Lemma, then, is that relation < on closed terms is
an applicative simulation, thus included in the largest one, namely <. Hence, if
M, N are open terms and z1,...,2, - M ZH N then it follows from Lemma
3 that for all Vi,...,V,,Wy,...,W, such that @ - V; 2 W, we have that
0= M[Vi,...,V)or, .o 2] 32 NWy, ..., W, /21, ..., 2], which implies (by
the reflexivity of 22 and by S5 C =<, on closed terms) that for all Vi, ..., V,, we
have that 0 - M[V1,..., Vi /21, ..., 0] SoN[VA, oo o Vi /21, .o 2], 1, M 3N
Since =, is itself included in <X, we obtain that <, == . Hence, it follows from

~O ~0 T ~vo

the transitivity of <, and from the fact that <¥ is compatible that:

~0 ~0
Theorem 2 (Congruence). 3, is a precongruence .

The congruence of =, allows us to prove that it is a sound with respect to the
contextual preorder.

Theorem 3 (Soundness). If M3,N then M < N.

Proof. Let M Z,N. Using Theorem 2, it can be easily proved by induction on
C that for any context C it holds that C[M]Z.C[N]. If C[M]Z.C[N] then
SICIM]] < >T[C[M]], which implies the result. O

5 Full Abstraction

In [24], both bisimilarity and similarity on labelled Markov chains are charac-
terised by a language of test, refining the testing characterization of bisimilarity
presented in [14]. This characterisation is used in [4] to show that the bisimilar-
ity relation on terms is fully abstract with respect to the contextual equivalence.
The language of tests used to characterize bisimulation is the following:

Definition 13. Let M = (S,L,P) be a LMC. The test language JH(M) is
given by the grammar t ::= w ’ a-t | (t,t), where a € L.

This language represents tests in the following sense: for any ¢ in the test language
J5(M), and for any s state of M, we can define the probability Pr(s,t) that the
test ¢ succeeds when executed on s.

The full-abstraction result in [4] is based on the fact that, when we consider
the particular Markov chain used to define a bisimulation relation on terms, any
of these tests can actually be simulated by a context. However, the characteri-
sation of the simulation preorder requires to add disjunctive tests:

Definition 14. Let M = (S,L,P) be a LMC. The test language 7 (M) is
given by the grammart 1= w ‘ a-t | (t,t) ‘ tVt, wherea € L.

We are now going to define the success probability of a test. The success
probability of w is 1 no matter what state we are starting from. The success
probability of a disjunctive test corresponds to the probability that at least one
of the two tests is successful.

Definition 15. Let M = (S,L,P) be a LMC. For all s € S, and t € (M),
we define:

Pr(s,w) =1; Pr(s,t Vu) = Pr(s,t) + Pr(s,u) — Pr(s,t) - Pr(s,u)
Pr(s, (t,u)) = Pr(s,t) - Pr(s,u); Pr(s,a-t) =3 ,csP(s,a,s) Pr(s,t).

The following theorem characterises bisimilarity and the simulation preorder on
labelled Markov chains by means of sets of tests.

Theorem 4 ([24]). Let M = (S, L, P) be a LMC and let s,s’ € S. Then:
o s~ s if and only if for every t € Fo(M) it holds that: Pr(s,t) = Pr(s',t)
o s 35 if and only if for every t € F1(M) it holds that Pr(s,t) < Pr(s',t)

Ezample 3. Consider the two terms M = Az.(I & 2) and N = (Az.I) ® (A\z.12)
from Example 2. We already know that, since they do not verify M =< N, there
exists a test t € 71 (Mgor) whose success probability when executed on M is
strictly greater that its success probability when executed on N. We can actually
explicitly give such a test: let ¢ = eval - (I - eval - w V I - eval - w) Then it holds

that:
3

Pr(dz.(I& 2),t) = T Pr((Az.D) @ (A\x.02),t) = %

5.1 From Tests to Contexts

It is shown in [4] that simulation is not fully abstract for PCFLg with respect
to the contextual preorder: a direct consequence is that disjunctive tests cannot
be simulated by contexts. In other terms, it is not possible to write a program
that has access to two sub-programs, and terminates with a probability equal to
the probability that at least one of its sub-programs terminates. The proof of [4]
is based on an encoding from %)(Mg) to the set of contexts. We are going to
extend it into two encodings from 7] (Mgor) to the set of contexts of Agor: one
encoding expresses the action of tests on states of the form M, and the other

one on states of the form V. The intuitive idea behind ©** and O™ is the
following: if we take a test ¢, its success probability starting from the state M
is the same as the convergence probability of the context @™ (t) filled by M,
and similarly, its success probability starting from the state V is the same as the
convergence probability of the context @™ () filled by V.

Definition 16. Let OV : 7 (Mgor) — € and O™ : F(Mgor) — € be
defined by:

6™ (w) = Aa.L; €' (w) = Aa.[;
e (V1) = ["LV 1) = O ()[([]V)];
O'°"™ (eval - t) = Ar.(6"(1)la] & (eval -1) = 0L,
O (1 v u) = g€ (1), (W) €™tV u) = g(6" (1), 6™ (u));
O ({1,u)) = F(O™(1), 0 (w); €™ ({t,u)) = F(6° (1), 0" (u));

where f,g:%F X € — € are defined by:

F(C, D) = (Ae.(hy, 2.D)(Cla])(D[2I])) (Az.[-]);
9(C, D) = (A\a.([Clad] || DlaIl] — I)(Az.[]).

The apparently complicated structure of f and g comes from the fact that we
cannot construct contexts with several holes. However, since our language has
copying capability, we can emulate contexts with several holes by means of con-
texts with only one hole. Intuitively, we could say that g(C, D) would correspond
to a multihole context [C' || D] — I. Please observe that the encoding of the
fragment of 71 (Mgor) corresponding to Jp(Mger) does not use parallel dis-
junction, i.e., the image of Jh(Mgor) by the encoding is a subset of Ag. We can
now apply this encoding to the test we defined in Example 3.

Ezample 4. Recall the test t = eval-(I - eval - w V I - eval - w) defined in Example
3. We can apply the embedding to this particular test:

6™ (t) = (Ax. (Az. [(My.Qw.y))2IT || (Ay.w.y))zI1] — I) (\y.x))[].

We can see that if we consider the terms M = Az.(I @ 2) and N = (Az.]) @ (A\z.{2)
defined in Example 2, the context @' (¢) simulates the test ¢ with respect to
M and N:

=Y [e* ™ ()M]]; Pr(N,t) =) [0 (t)[N

Theorem 5. Let t be a test in T3 (Mgor). Then for every M closed term and
every V closed value it holds that:

=Y [e'm)M]]; Pr(V,t) =Y [0 (t)[V]]

Proof. We are going to show the thesis by induction on the structure of ¢.

e Ift = w, then for every closed term M, and every closed value V', Pr(M,w) =
Pr(V,w) = 1, and we have defined O (w) = 0" (w) = Az.[:]. Since
Oterm(w)[M] and O (w)[V] are values, the weight of their semantics is 1,
and so the result holds.

o If t = (uy, us), we can directly adapt the construction proposed in [4] to the
untyped case. By the inductive hypothesis, for all 1 < i < 2 it holds that for
every closed term M and every closed value V,

Pr(M,ui) =) [0 (ui) IM][; Pr(V,ui) =) [0 (w) [V]]-

The overall effect of f is to copy the content of the hole into the holes of the
two contexts C' and D. For any closed term M, we can express the conver-
gence probability of f(C, D)[M] as a function of the convergence probability
of C[M] and D[M]:

S I£(C, D)[M]] = (Z[[C’ [(\z.M)I) (Z[[D [(\z.M)]]])
= (>1emv) - (Yopiv)
Please recall that we have defined:

@term(<u17u2>) _ f(@term()76term(u2))
0 ((ur, uz)) = f(0"" (u1), 0" (uz))

We have that, for any closed term M, and any closed value V:
D 6™ ((ur, ue))[M]] = Pr(M,wy) - Pr(M, us) = Pr(M, (uy, uz))
> 107 ((wr, us))[VI] = Pr(V,ua) - Pr(V, uz) = Pr(V, (us, us))

e Now the case t = uy V us. By the inductive hypothesis, for all 1 < ¢ < 2 it
holds that for every closed term M and every closed value V,

r(M,u;) = [0 (u;)[M]] r(V,u) =Y [0 (u;
The definition of g allows us to show:
> lo(C,D)[M]] =Y [CM]] +) _[D[M]] - Y [C[M]]-) _[D[M]]
and now it is straightforward to see that:
> [0 ™ (ur V ua)[M]] = Pr(M, uy V us);
D167 (ur V) [V]] = Pr(V,us V up).

e If t = a - u, there are two different kinds of actions:

e when a = eval, we first consider OV (t): since the eval action is relevant
only for states of Mg, which are terms (and not distinguished values),
we want that ©v4(¢)[V] always diverges. Since ©v%(¢) = 2[-] and since
[£2] = 0, we have that for any closed value V, [©*%(t)[V]] = 0.

Now, we consider @™ (t). By the inductive hypothesis, we know that:

Pr(V,u) =) [6°(u)[V]]-

Please recall that we have defined: @™ (a - u) = A\z.(0"% (u)[z])[-]. Let
be M a closed term. Then it holds that:

E Het”’”(wu)[MH]:E [[M]](V)~§ [6" (u)[V]]
1%

= § :[[M]](V) - Pr(V,u)
-

Z Poor(M, eval, e) - Pr(e,u) = Pr(M,u)
GES@OT

e When a =V, with V' € Vg,,, we consider first "™ (V - u). It has been
designed to be a context which diverges whatever its argument is, and so
we indeed have: Pr(M, V-u) = 0 = >_[0'"™(V -u)[M]]. Then we consider
©6v(t). Recall that we have defined: OV(V - u) = O™ (u)[[]V]. Let
W = Ax.M be a closed value:

Yoo (Ve wWwil =} [0 () WV]]
=Pr(WV,u)
=Pr(Mz/V],u) since [WV] = [M[x/V]]
=Pr(W,V -u).
O

Theorem 6. = is fully abstract with respect to the contextual preorder.

Proof. We already know that = is sound, that is 3C<. Hence, what is left
to show is that <C=, which follows from Theorem 5. Let M and N be two
closed terms such that M < N. We want to show that M = N. The testing
characterisation of simulation allows us to say that it is sufficient to show that,
for every test t € F1(Mgor), Pr(M,t) < Pr(N,t), which in turn is a consequence
of Theorem 5, since every test t of F1(Mgor) can be simulated by a context of

Agor-

References

1. S. Abramsky. The Lazy A-Calculus. In D. Turner, editor, Research Topics in
Functional Programming, pages 65-117. Addison Wesley, 1990.

2. S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. Inf.
Comput., 105(2):159-267, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Trans. on Pattern Analysis and Machine Intelligence,, 25(5):564-577, 2003.

R. Crubillé and U. D. Lago. On probabilistic applicative bisimulation and call-by-
value A-calculi (long version). CoRR, abs/1401.3766, 2014.

U. Dal Lago, D. Sangiorgi, and M. Alberti. On coinductive equivalences for higher-
order probabilistic functional programs. In POPL, pages 297-308, 2014.

U. Dal Lago and M. Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theor. Inf. and Applic., 46(3):413-450, 2012.

V. Danos and R. Harmer. Probabilistic game semantics. ACM Trans. Comput.
Log., 3(3):359-382, 2002.

J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled markov
processes. Inf. Comput., 179(2):163-193, 2002.

T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In POPL, pages 309-320, 2014.

S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270-299, 1984.

N. D. Goodman. The principles and practice of probabilistic programming. In
POPL, pages 399-402, 2013.

C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In LICS,
pages 186-195, 1989.

U. D. Lago, D. Sangiorgi, and M. Alberti. On coinductive equivalences for higher-
order probabilistic functional programs (long version). CoRR, abs/1311.1722, 2013.
K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Com-
put., 94(1):1-28, 1991.

S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, University of Aarhus, 1998.

C. D. Manning and H. Schiitze. Foundations of statistical natural language pro-
cessing, volume 999. MIT Press, 1999.

C.-H. L. Ong. Non-determinism in a functional setting. In LICS, pages 275-286,
1993.

S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on sampling
functions. ACM Trans. Program. Lang. Syst., 31(1), 2008.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann, 1988.

A. Pfeffer. IBAL: A probabilistic rational programming language. In IJCAI pages
733-740. Morgan Kaufmann, 2001.

G. D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci.,
5(3):223-255, 1977.

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In POPL, pages 154-165, 2002.

S. Thrun. Robotic mapping: A survey. Ezxploring artificial intelligence in the new
millennium, pages 1-35, 2002.

F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain theory,
testing and simulation for labelled markov processes. Theor. Comput. Sci., 333(1-
2):171-197, 2005.

