
Metric Reasoning About λ-Terms: The Affine Case

Raphaëlle Crubillé, Ugo Dal Lago

To cite this version:

Raphaëlle Crubillé, Ugo Dal Lago. Metric Reasoning About λ-Terms: The Affine Case. LICS
2015, Jul 2015, Kyoto, Japan. 2015, Proceedings of LICS 2015. <10.1109/LICS.2015.64>.
<hal-01231814>

HAL Id: hal-01231814

https://hal.inria.fr/hal-01231814

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01231814

Metric Reasoning About λ-Terms:
The Affine Case

Raphaëlle Crubillé
ENS Lyon

Email: raphaelle.crubille@ens-lyon.fr

Ugo Dal Lago
Università di Bologna & INRIA

Email: ugo.dallago@unibo.it

Abstract—Terms of Church’s λ-calculus can be considered
equivalent along many different definitions, but context equiv-
alence is certainly the most direct and universally accepted
one. If the underlying calculus becomes probabilistic, however,
equivalence is too discriminating: terms which have totally
unrelated behaviours are treated the same as terms which behave
very similarly. We study the problem of evaluating the distance
between affine λ-terms. A natural generalisation of context equiv-
alence, is shown to be characterised by a notion of trace distance,
and to be bounded from above by a coinductively defined distance
based on the Kantorovich metric on distributions. A different,
again fully-abstract, tuple-based notion of trace distance is shown
to be able to handle nontrivial examples.

I. INTRODUCTION

Probabilistic models are formidable tools when abstracting
the behaviour of complicated, intractable systems by simpler
ones, at the price of introducing uncertainty. But there is more:
randomness can be seen as a way to compute; in modern cryp-
tography, as an example, having access to a source of uniform
randomness is essential to achieve security in an asymmetric
setting [14]. Other domains where probabilistic models play
a key role include machine learning [24], robotics [27], and
linguistics [21].

Probabilistic models of computation have been studied not
only directly, but also through concrete or abstract program-
ming languages, which most often are extensions of their
deterministic siblings. Among the many ways probabilistic
choice can be captured in programming, the simplest one con-
sists in endowing the language of programs with an operator
modelling the flipping of a fair coin. This renders program
evaluation a probabilistic process, and under mild assumptions
the language becomes universal for probabilistic computation.
Particularly fruitful in this sense has been the line of work on
the functional paradigm, both at a theoretical [17], [26], [23]
and at a more practical level [15].

In presence of higher-order functions, program equivalence
can be captured by so-called context equivalence: two pro-
grams M and N are considered equivalent if they behave
the same no matter how the environment interacts with them:
for every context C, it holds that Obs(C[M]) = Obs(C[N]).
However, this definition has the drawback of being based on
an universal quantification over all contexts: showing that two
programs are equivalent requires considering their interaction
with every possible context. The problem of giving handier
characterisations of context equivalence can be approached in

many different ways. As an example, coinductive methodolo-
gies for program equivalence have been studied thoroughly in
deterministic [1], [25] and non-deterministic [19] computation,
with new and exciting results appearing recently also for prob-
abilistic languages: applicative bisimilarity, a coinductively
defined notion of equivalence for functional programs, has
been shown to be sound, and sometime even fully abstract,
for probabilistic λ-calculi [6], [4].

In a probabilistic setting, however, equivalences are too
discriminating if defined as above. Indeed, two programs are
equivalent if their probabilistic behaviour is exactly the same
(in every context). The actual value of probabilities in a
probabilistic model often comes from statistical measurements,
and should be considered more as an approximation to the
actual probability law. Consequently, we would like to com-
pare programs by appropriately reflecting small variations in
them. Another scenario in which a richer, more informative
way of comparing programs is needed is cryptography, where
a central notion of equivalence, called computational indistin-
guishability [13] is indeed based on statistical distance rather
than equality: the adversary can win the game, but with a small
probability. Summing up, equivalences should be refined into
metrics, and this is the path we will follow in this paper.

In probabilistic λ-calculi, the notion of observation Obs(·)
is quantitative: it is either the probability of convergence to a
certain observable base value (e.g. the empty string), or the
probability of convergence tout court. One can then easily
define a notion of context distance as the maximal distance
contexts can achieve when separating two terms:

δctx(M,N) = sup
C
|Obs(C[M])− Obs(C[N])|.

This looks very close to computational indistinguishability,
except for the absence of a security parameter: a scheme is
secure if the advantage of any adversary in a given game
(e.g., consisting in distinguishing between the case where
the scheme is used, and the case where it is replaced by
a truly random process) is “small” (e.g., negligible). Again,
however, we find ourselves in front of a definition which
risks to be useless in proofs, given that all contexts must be
taken into account. But how difficult evaluating the distance
between concrete higher-order terms really is? Are there ways
to alleviate the burden of dealing with all contexts, like for
equivalences? These are the questions we address in this

paper, and which have to the authors’ knowledge not been
investigated before.

As we will discuss in Section II below, finding handier char-
acterisations of the context distance poses challenges which
are simply different (and often harder) than the ones encoun-
tered in context equivalence. In particular, the context distance
tends to trivialise and, perhaps worse, naively applying the
natural generalisation of techniques known for equivalence
is bound to lead to unsound methodologies. Indeed, one
immediately realises that the number of times contexts access
their argument is a crucial parameter, which must necessarily
be dealt with. This is the reason why we work with an affine
λ-calculus in this paper: this is a necessary first step, but also
points to the right way to tame the general, non-linear case,
as we hing in Section VI-C.

An extended version of this paper with more details is
available [5]. The authors are partially supported by the ANR
project 12IS02001 PACE.

Contributions

We introduce in this paper three distinct notions of distance
for terms in an untyped, probabilistic, and affine λ-calculus.
The first one is a notion of trace distance, in which terms
are faced with linear tests, i.e. sequences of arguments. The
distance between two terms is then defined as the greatest
separation any linear test achieves. The first results of this
paper are the non-expansiveness of the trace distance, which
implies (given that any linear test can easily be implemented
by an affine context) that the trace and context distances
coincide. This is the topic of Section IV below.

Section V, instead, focuses on another notion of distance,
which is coinductively defined following the well-known Kan-
torovich metric [18] for distributions of states in any labelled
Markov chain (LMC in the following), and that we dub the
bisimulation distance. This second notion of a distance is not
only at least as discriminating as the trace distance, which is
well expected, but non-expansive itself. This is proved by a
variation on the Howe’s method [16], a well-known technique
for proving that bisimilarity is a congruence in an higher-order
setting, and which has never been used for metrics before. On
the other hand, the bisimulation distance does not coincide
with the context distance, a fact that we do not only prove by
giving a counterexample, but that we justify by relying on a
test-based characterisation of the bisimulation distance known
from the literature.

For the sake of simplicity, the trace and bisimulation dis-
tances are analysed on a purely applicative λ-calculus, keeping
in mind that pairs could be very easily handled, and can
even be encoded in the applicative fragment, as discussed in
Section IV-C. The presence of pairs, however, allows us to
form very interesting examples of distance problems, one of
which will drive us throughout the paper but unfortunately
turns out hard to handle neither by the trace distance nor by
the bisimulation distance. This is the starting point for the
third notion of distance introduced in this paper, which is the
subject of Section VI, and which we call the tuple distance.

Our third notion of distance can be proved to coincide with
the trace distance, and thus with the context distance. But this
is not the end of the story: in the tuple distance, not a single
but many terms are compared, and this makes the distance
between concrete terms much easier to evaluate: interaction
is somehow internalised. In particular, our running example
can be handled quite easily. The way the tuple distance is
defined makes it adaptable to non-affine calculi, a topic which
is outside the scope of this paper, but which we briefly discuss
in Section VI-C.

Related Work

This is definitely not the first work on metrics for prob-
abilistic systems: notions of coinductively defined metrics
for LMCs, as an example, have been extensively studied
(e.g. [10], [9], [28]). There have been, to our knowledge, not
so many investigations on the meaning of metrics for concrete
programming languages [12], and almost nothing on metric
for higher-order languages.

If the key property notions of equivalences are required
to satisfy consists in being congruences, the correspond-
ing property for metrics has traditionally been taken as
non-expansiveness. Indeed, many results from the literature
(e.g. [10], [22]) have precisely the form of non-expansiveness
results for metrics defined in various forms. The underlying
language, however, invariably take the form of a process
algebra without any higher-order feature. The work by Gebler,
Tini, and co-authors shows that one could go beyond non-
expansiveness and towards uniform continuity [12] but, again,
higher-order functions remain out of scope.

Notions of equivalence for various forms of probabilistic
λ-calculi have also been extensively studied, starting from the
pioneering work by Plotkin and Jones [17], down to recent
results on probabilistic applicative bisimulation [6], [4], logical
relations [3], and probabilistic coherent spaces [7], [11]. None
of the works above, however, go beyond equivalences and
deals with notions of distance between terms.

II. THE ANATOMY OF A DISTANCE

In this section, we describe the difficulties one encounters
when trying to characterise the context distance with either
bisimulation or trace metrics.

Suppose we have two terms M and N of boolean type
written in a probabilistic λ-calculus. As such, M and N
do not evaluate to a value in the domain of booleans but
to a distribution over the same domain. M evaluates to the
distribution assigning true probability 1, while N evaluates
to the uniform distribution over booleans, (i.e. the distribution
which attributes probability 1

2 to both true and false). Figure 1
depicts the relevant fragment of a LMC, whose induced notion
of probabilistic bisimilarity has been proved to be sound for
context equivalence [4]. M and N are not bisimilar. Indeed,
t̂rue and f̂alse are trivially not bisimilar, while M and N go
to equivalent states with different probabilities. The two terms
are non-equivalent also contextually. But what should be the
distance between M and N?

M = true N = true⊕ false

t̂rue f̂alse

eval eval

1
1
2

1
2

true false

Fig. 1. M and N as States of a LMC.

For the moment, let us forget about the context distance, and
concentrate on the notions of distance for LMCs we mentioned
in Section I. In all cases we are aware of, we obtain that M
and N are at distance 1

2 . As an example, if we consider a
trace metric, we have to compare the success probability of
linear tests, starting from M and N . More precisely, the tests
of interest with respect to these two terms are:

t := eval; s := eval · true; r := eval · false.

Since neither M nor N has a non-zero divergence probability,
they both pass the test t with probability 1. The success
probability of the test s corresponds to the probability of
evaluating to true: it is 1 for M and 1

2 for N . Similarly,
the success probability of r corresponds to the probability to
obtain false after evaluation: it is 0 for M and 1

2 for N . So we
can see that the maximal separation linear tests can obtain is
1
2 . The situation is quite similar for bisimulation metrics [10],
which attribute distance 1

2 to M and N .
It is easy, however, to find a family of contexts {Cn}n∈N

such that Cn[M] evaluates to true with probability 1, and
Cn[N] evaluates to false with probability 1− 1

2n : define Cn as
a context that copies its argument n times, returning false if
at least one of the n copies evaluates to false, and otherwise
returns true. As a consequence, the context distance between
M and N is 1. In fact, this reasoning can be extended to any
pair of programs which are not equivalent but whose proba-
bility of convergence is 1: out of a context which separates
them of ε > 0, with ε very small, we can construct a context
that separates them of 1 performing some statistical reasoning.
The situation is more complicated if we take the probability
of convergence as an observable: we cannot always construct
contexts that discriminate terms based on their probability of
convergence, although something can be done if the terms’
probabilities of convergence are different but close to 1. The
context metric, in other words, risks to be not continuous and
close to trivial if contexts are too powerful. What the example
above shows, however, is something even worse: if contexts
are allowed to copy their arguments, then any metric defined
upon the usual presentation of probabilistic λ-calculus as an
LMC (a fragment of which is depicted in Figure 1) is bound
to be unsound w.r.t. the context metric.

Whether bisimulation metrics are sound, how close they are
to the context distance, and whether they are useful in relieving
the burden of evaluating it, are however open and interesting
questions even in absence of the copying capability, i.e., when
the underlying language is affine. This is the main reason why

we focus in this work on such a λ-calculus, whose expressive
power is limited (although definitely non-trivial [20]) but
which is anyway higher-order. We discover this way an elegant
and deep theory in which trace and bisimulation metrics are
indeed sound, At the end of this paper, some hints will be
given about how the case of the untyped λ-calculus can be
handled, a problem which we leave for future work.

Evaluating the context distance between affine terms is
already an interesting and nontrivial problem. Consider, as an
example, a sequence of terms {Mn}n∈N defined inductively
as follows (where Ω stands for a term with zero probability
of converging):

M0 = 〈λx.Ω, λx.Ω〉; Mn+1 = 〈λx.Mn, λx.Ω〉.

M0 is the pair whose components are both equal to λx.Ω,
and Mn+1 is defined as a pair whose first component is the
function which returns Mn whatever its argument is, and the
second component is again λx.Ω. We are now going to define
another sequence of terms {Nn}n∈N, which can be seen as a
noisy variation on {Mn}n∈N. More precisely, N0 is the same
as M0, and for each n ∈ N, Nn+1 is constructed similarly to
Mn+1, but adding some negligible noise in both components:

N0 = 〈λx.Ω, λx.Ω〉;

Nn+1 = 〈λx.Nn ⊕
1

2n+1 Ω, λx.Ω⊕
1

2n+1 I〉.

(I stands for the identity: λx.x, while the term L ⊕p K has
the same behaviour as L with probability (1 − p), and the
same behaviour as K with probability p.) We would like to
study how the distance between Mn and Nn evolves when
n tends to infinity: do the little differences we apply at each
step n accumulate, and how can we express this accumulation
quantitatively?

Intuitively, it is easy for the environment to separate Mn

and Nn of 1
2n : it is enough to consider a context C which

simply takes the second component of the pair, passes any
argument to it, and evaluates it: the convergence probability
of C[Mn] is 0, while the convergence probability of C[Nn]
is 1

2n . But the environment can also decide to take the first
component of the pair, in order to use the fact that Mn−1 and
Nn−1 can be distinguished: more precisely, let us suppose that
we have a context C which separates Mn−1 and Nn−1. Then
we can construct a context D which takes the first element of
the pair, passes any argument to it, tries to evaluate it, and if it
succeeds, gives the result as an argument to C. We would like
to express the supremum of the separation that such a context
can obtain as a function of the distance between Mn−1 and
Nn−1. Unfortunately, this is not so simple: if C is such that the
convergence probability of C[Mn−1] is ε and the convergence
probability of C[Nn−1] is ι, we can see that the convergence
probability of D[Mn] is ε, whereas the convergence probability
of D[Nn] is (ι · (1 − 1

2n)). But it is not possible to express
|ε− ι · (1− 1

2n)| as a function of |ε− ι| and n: intuitively, the
separation that the context D can achieve depends not only on
the separation that the context C can achieve, but also on how
C achieves it. And moreover, the environment may of course

decide to use the two components of the pair, and to make
them interact in an arbitrary way. Summing up, although the
mechanism of construction of these terms seems to be locally
easy to measure, it is complicated to have any idea about how
the distance between them evolves when n tends to infinity.

III. PRELIMINARIES

In this section, an affine and probabilistic λ-calculus, which
is the object of study of this paper, will be introduced formally,
together with a notion of context distance for it.

A. An Affine, Untyped, Probabilistic λ-Calculus

We endow the λ-calculus with a probabilistic choice oper-
ator ⊕, which corresponds to the possibility for the program
to choose one between two arguments, each with the same
probability. Terms are expressions generated by the following
grammar:

M ::= x | λx.M | MM | M ⊕M | Ω,

where Ω models divergence1, and x ranges over a countable
set X of variables.

The class of affine terms, which model functions using their
arguments at most once, can be isolated by way of a formal
system, whose judgements are in the form Γ `M (where Γ is
any finite set of variables) and whose rules are the following
(where Γ,∆ stands for the union of two disjoints contexts):

Γ, x ` x
Γ, x `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N Γ ` Ω

A program is a term such that ∅ ` M , and P is the set of
all such terms. We will call them closed terms. We say that
a program is a value if it is of the form λx.M , and V is the
set of all such programs. The semantics of the just defined
calculus is expressed as a binary relation ⇓ between programs
and value subdistributions (or simply value distributions), i.e.
functions from values to real numbers whose sum is smaller
or equal to 1. The relation ⇓ is inductively defined by the
following rules:

Ω ⇓ ∅
V ∈ V

V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ D N ⇓ E
{L{V/x} ⇓ FL,V }λx.L∈S(D),V ∈S(E)

MN ⇓
∑

D(λx.L) · E (V) ·FL,V

where S(D) stands for the support of the distribution D . The
divergent program Ω, as expected, evaluates to the empty value
distribution ∅ which assigns 0 to any value. The expression
{V 1} stands for the Dirac’s value distribution on V ; more
generally the expression {V p1

1 , . . . , V pnn } indicates the value
distribution assigning probability pi to each Vi (and 0 to any
other value).

1Since we only consider affine terms, we cannot encode divergence by the
usual constructions of λ-calculus.

For every program M , there exists precisely one value
distribution D such that M ⇓ D , that we note JMK. This holds
only because we restrict ourselves to affine terms. Moreover,
JMK is always a finite distribution. The rule for application
expresses the fact that the semantics is call-by-value: the
argument is evaluated before being passed to the function.
There is no special reason why we adopt call-by-value here,
and all we are going to say also holds for (weak) call-by-name
evaluation.

The way ⇓ is defined means that it is a big-step notion of
semantics. In some circumstances, we need to have a more
local view of how programs behave. We can define small-
step semantics, again as a relation ⇒ between programs and
value distributions (itself defined on top of a relation →
between programs and program distributions capturing a single
evaluation step). The definition poses no significant problems
[5]. Big-step and small-step semantics are equivalent: for every
program M , there exists a unique distribution D such that
M ⇒ D , and moreover D = JMK.

B. Context Distance

We now want to define a notion of observation for programs
which somehow measures the convergence probability of a
program. We will do that following the previous literature on
this subject. For any distribution D over a set A, its sum∑
a∈A D(a) is indicated as

∑
D and is said to be the weight

of D . The convergence probability of a term M , that we note
Pcv(M), is simply

∑
JMK, i.e., the weight of its semantics.

For instance, the convergence probability of Ω is zero.
The environment, as usual, is modelled by the notion of

a context, which is nothing more than a term with at most
one occurrence of the hole [·]. Contexts are generated by the
following grammar:

C ::= [·] | x | λx.C | CM | MC | C ⊕ C | Ω.

Affine contexts can be identified by a formal system akin to
the one for terms, that we elide due to lack of space (see [5]).
We note as C[M] the program obtained by replacing [·] by the
closed term M in C. The interaction of a program M with a
context C is the execution of the program C[M].

We now consider three different ways of comparing pro-
grams, based on their behaviour when interacting with the
environment: a preorder ≤ctx , an equivalence relation ≡ctx ,
and a map δctx:

Definition 1 (Context Equivalence, Context Distance): Let
M and N be two programs. Then we write that M ≤ctx N
if and only if for every context C, it holds that Pcv(C[M]) ≤
Pcv(C[N]). If M ≤ctx N and N ≤ctx M , then we say that
the two terms are context equivalent, and we write M ≡ctx

N . With the same hypotheses, we say the context distance
between M and N is the real number δctx(M,N) defined as
supC |Pcv(C[M])− Pcv(C[N])|.
Please observe that, following [8], we only compare programs
and not arbitrary terms. This is anyway harmless in an affine
setting.

Example 1: Let I be the identity λx.x. I and Ω are as far
as two programs can be: δctx(I,Ω) = 1. To prove that, finding
a context which always converges for one of the terms, and
always diverges for the other one, suffices. We can take C = [·],
and we have that Pcv(C[I]) = 1 and Pcv(C[Ω]) = 0. Of course,
I and Ω are not context equivalent. Throwing in probabilistic
choice can complicate matters a bit. Consider the two terms
I⊕Ω and I . One can easily prove that δctx(I⊕Ω, I) ≥ 1

2 : just
consider C = [·]. However, showing that the above inequality is
in fact an equality, requires showing that there cannot exist any
context that separates more, which is possible, but definitely
harder. This will be shown in the next section, using a trace-
based characterisation of context distance.

C. On Pseudometrics

Which properties does the context distance satisfy, and
which structure it then gives to the set of programs? This
section answers these questions, and prepares the ground for
the sequel by fixing some terminology.

Definition 2 (Pseudometrics): Let S be a set. A premetric
on S is any function µ : S → S such that 0 ≤ µ(s, t) ≤ 1
and µ(s, s) = 0. A pseudometric on S is any premetric such
that for every s, t, u ∈ S, it holds that µ(s, t) = µ(t, s) and
µ(s, t) ≤ µ(s, u) +µ(u, t). The set of all pseudometrics on S
is indicated with ∆(S).
Please observe that pseudometrics are not metrics in the usual
sense, since µ(s, t) = 0 does not necessarily imply that s = t.
If we have a pseudometric µ, we can construct an equivalence
relation by considering the kernel of µ, that is the set of those
pairs (s, t) such that µ(s, t) = 0. It is easy to prove that the
context distance is indeed a pseudometric, and that its kernel is
context equivalence. We would now want to define a preorder
≤metr on pseudometrics in such a way that if µ ≤metr ρ, then
the kernel of µ is included in the kernel of ρ. The natural
choice, then, is to take the following definition, which is the
reverse of the pointwise order on [0, 1]:

Definition 3 (Pseudometric Ordering): Let S be any set,
and let µ and ρ be two metrics in ∆(S). Then we stipulate
that µ ≤metr ρ if and only if, for every s, t ∈ S we have that
ρ(s, t) ≤ µ(s, t).
As is well-known, the relation ≤metr gives ∆(S) the structure
of a complete lattice.

But when, precisely, can a pseudometric on programs be
considered a sound notion of distance? First of all, we would
like it to put two programs at least as far as the difference
between their convergence probabilities, since this is precisely
our notion of observation:

Definition 4 (Adequacy): Let µ be a pseudometric on the
set of programs. Then µ is an adequate pseudometric if for
any programs M and N , we have that |

∑
JMK−

∑
JNK| ≤

µ(M,N).
Secondly, we are interested in how programs behave when
interacting with the environment. Especially, if we have two
terms M and N at a given distance ε, and we put them in
an environment C, we would like a pseudometric µ to give us

some information about the distance between C[M] and C[N].
This is the idea behind the following, standard, definition:

Definition 5 (Non-Expansiveness): Let µ be a pseudometric
on programs. We say µ is non-expansive if for every pair of
programs M and N and for every context C, we have that
µ(C[M], C[N]) ≤ µ(M,N).

Non-expansiveness is the natural generalisation of the notion
of a congruence. By construction, δctx is a non-expansive
pseudometric. We can also adapt the notion of soundness
to pseudometric; µ is said to be a sound pseudometric on
programs if µ ≤metr δctx. Clearly, any adequate and non-
expansive pseudometric is sound. In the rest of this paper,
we will only deal with pseudometrics, but for the sake of
simplicity we will refer to them simply as metrics.

IV. THE TRACE DISTANCE

The first notion of metric we study is based on traces, i.e.,
linear tests. This is handier than the context distance, since
contexts are replaced by objects with a simpler structure.

A. Definition

A trace s is a sequence in the form @V1 · · ·@Vn, where
V1, . . . , Vn are values, and we note T r the set of traces.
We define the probability that a program accepts a trace
inductively on the length of the trace, as follows:

Pr(λx.M, ε) = 1;

Pr(λx.M,@V · s) = Pr(M{V/x}, s);

Pr(M, s) =
∑
V

JMK(V) · Pr(V, s) if M 6∈ V.

Please observe that the probability that a term M accepts a
trace s = @V1 · · ·@Vn is the probability of convergence of
MV1 · · ·Vn. We are now going to define a metric, based on
the probability that programs accept arbitrary traces:

Definition 6: Let M,N be two programs. Then we define the
trace distance between them as δtr(M,N) = sups|Pr(M, s)−
Pr(N, s)|. One can then define trace equivalence and the trace
preorder, in the expected way [5].

Please observe that δtr is a pseudometric on programs in the
sense of Definition 2, and that it is an adequate one. The kernel
of δtr is nothing more than trace equivalence.

Example 2: The trace distance δtr(I ⊕Ω, I) between I ⊕Ω
and I is 1

2 . Showing that it is greater than 1
2 is easy: it is

sufficient to consider the empty trace. The other inequality,
requires evaluating, for any trace s, the probability of ac-
cepting it. This is however much easier than dealing with
all contexts, because we can now control the structure of the
overall program we obtain: for any trace s = @V1 · · ·@Vn,
we can see that: Pr(I ⊕ Ω, s) = 1

2 ·
∑

JV1 · · ·VnK, and
Pr(I, s) =

∑
JV1 · · ·VnK. The difference (in absolute value)

between Pr(I ⊕ Ω, s) and Pr(I, s), then, cannot be greater
than 1

2 .

The trace distance and the context distance indeed coincide,
as well as the trace and context preorder, and the trace and

context equivalence. In the rest of this section, we will give the
details of the proof for the pseudometric case, but the proof
is similar for ≡ctx and ≤ctx . It is easy to realise that the
context distance is a lower bound on the trace distance, since
any trace @V1 · · ·@Vn can be seen as the context [·]V1 · · ·Vn.
We thus focus on non-expansiveness.

B. Non-Expansiveness

Are there contexts that can separate strictly more than
traces? In order to show that it is not the case, it is enough to
show that δtr is non-expansive:

Theorem 1: Let M and N be two programs, and let C be a
context. Then δtr(C[M], C[N]) ≤ δtr(M,N).

Since δtr is adequate, we can conclude that trace metric and
context metric actually coincide:

Theorem 2: δctx = δtr.

The rest of this section is devoted to an outline of the
proof of Theorem 1 (see [5] for more details). The proof
we give here is roughly inspired by the proof of congruence
of trace equivalence for a non-deterministic λ-calculus [8].
The overall structure of the proof is the following: we first
express the capacity of a program to do a trace by means of a
labelled transition system (LTS in the following) whose states
are distributions over programs. Then we consider another
LTS, where the states are distributions over pairs of contexts
and programs, that intuitively models the execution of C[M],
but keeps the evolution of C and M apart. The first LTS,
called Ltr, has distributions over programs as states, and
traces as actions. We indicate with ·⇒ the transition relation
associated to Ltr. This LTS is itself defined on top of a labelled
transition relation, noted a→, where a ∈ {τ}

⋃
{@V | V ∈ V}.

Intuitively, a τ -step corresponds to an internal computation
step for any term in the support of the distribution, while a
@V -step corresponds to an interaction with the environment,
which provides V as an argument. The relation ·⇒ is defined
as the accumulation of several steps of ·→. Both the relations
·⇒ and ·→ are given in Figure 2. We write D u E for D + E

when we want to insist on D and E to have disjoint supports.

M → E

D u α · {M1} τ→ D + α · E

D value distribution

D
@V→

∑
M D(λx.M) · {M{V/x}1}

D value distribution

D
ε⇒ D

D
τ→ E E

t⇒ F

D
t⇒ F

D
@V→ E E

t⇒ F

D
@V ·t⇒ F

Fig. 2. Small-step Trace Relations on Program Distributions.

Please observe that these relations are not probabilistic.
The relation τ→ is non-deterministic, since at each step we
can decide which term of the distribution we want to reduce.
However, τ→ is strongly normalising and confluent. Moreover,
we can show that ·⇒ is in fact deterministic: for every program

distribution D , and every trace s, there exists a unique E such
that D

s⇒ E . The interest of the relation ·⇒ is that it gives an
alternate formulation for the probability of success in doing a
trace: Pr(M, s) = p if and only if there is a distribution D
such that p =

∑
D and {M1} s⇒ D . We can now use the

relation ·⇒ to give an equivalent formulation of Theorem 1:
if M and N are such that δtr(M,N) ≤ ε, then for every trace
s and context C, if {C[M]

1} s⇒ D and {C[N]
1} s⇒ E , then it

holds that |
∑

D−
∑

E | ≤ ε. This statement, however, cannot
be proved directly, yet, because the way C and the argument
terms interact is lost. It is then time to introduce our second
LTS, called Ltr

C×P, which will allow us to relate {C[M]
1} ·⇒ ·

to the behaviour of M : we want to talk about the evolution of
a system consisting of the program M and the environment C,
while keeping the system and the environment as separate as
possible. C×P is the set of pairs of the form (C,M), where C
is a context and M is a program. We say that (C,M) ∈ C×P
is a value if C[M] ∈ V. The states of Ltr

C×P are distributions
over C×P, while its labels are traces. We will note as ·⇒C×P
the transition relation of Ltr

C×P. Similarly to what we have
done for Ltr, we first define an auxiliary relation a→C×P. The
rules defining ·→C×P and ·⇒C×P are in Figure 3. The relation
τ→C×P is strongly normalising. As a consequence, ·⇒C×P is

deterministic.
Intuitively, if s is a trace, the transition relation s⇒C×P cor-

responds to the transition relation s⇒ starting from {C[M]
1}.

More precisely, if {C[M]
1} s⇒ D and {(C,M)

1} s⇒C×P E ,
then

∑
D =

∑
E . This allows us to give yet another

equivalent formulation of Theorem 1: if δtr(M,N) ≤ ε, then
if {(C,M)

1} s⇒C×P D and {(C, N)
1} s⇒C×P E , it holds that

|
∑

D −
∑

E | ≤ ε. We are in fact going to show a stronger
result, which uses the notion of ε-related distributions:

Definition 7: Let ε ∈ [0, 1]. We say that two distributions
D and E over C × P are ε-related, and we note D ≡par

ε E
if there exist n ∈ N, C1, . . . , Cn distinct contexts, p1, . . . , pn
positive real numbers with

∑
i pi ≤ 1, and F1, . . . ,Fn, and

G1, . . . ,Gn distributions over P, such that:
• D =

∑
1≤i≤n pi · (Ci,Fi);

• E =
∑

1≤i≤n pi · (Ci,Gi);
• ∀i, δtr(Fi,Gi) ≤ ε.

Please observe that, if δtr(M,N) ≤ ε, then for every context
C, the distributions {(C,M)

1} and {(C, N)
1} are ε-related. In

fact, the notion of ε-relatedness is a way to capture pairs of
distributions over C × P representing the same environment,
in which we put programs which are close for the trace
pseudometric. The following can be seen as a stability result:
if we start from ε-related distributions, and we do a trace s,
we end up in two distributions which are still ε-related.

Lemma 1: Let D , E be distributions over C × P, and ε ∈
[0, 1] such that D ≡par

ε E . Let s be a trace. Let F and G be
such that: D

s⇒C×P F , and E
s⇒C×P G . Then F ≡par

ε G .

We can now see Theorem 1 as a direct consequence of Lemma
1. Indeed, let M and N be two programs at distance at
most ε for the trace metric, and let D and E be such that

{(C,M)1} τ→C×P E

D u p · {(CN,M)1} τ→C×P D + p ·
∑
D,L E (D, L) · {(DN,L)1}

C[M] ∈ V N → E

D u p · {(CN,M)1} τ→C×P D + p ·
∑
L E (L) · {(CL,M)1}

N → E

D u p · {(NC,M)1} τ→C×P D + p ·
∑
L E (L) · {(LC,M)1}

{(C,M)1} τ→C×P E V ∈ V

D u p · {(V C,M)1} τ→C×P D + p ·
∑
D,L E (D, L) · {(VD, L)1}

M → E

D u p · {([·],M)1} τ→C×P D + p ·
∑
L E (L) · {([·], L)1} D u p · {([·]V, λx.N)1} τ→C×P D + p · {([·], N{V/x})1}

C[M] ∈ V

D u p · {((λx.N)C,M)1} τ→C×P D + p · {(N{C/x},M)1} D u p · {(Ω,M)1} τ→C×P D

p · {(λx.C,M)1} @V→C×P p · {(C{V/x},M)1} p · {([·], λx.M)1} @V→C×P p · {([·],M{V/x})1}
(Di

@V→C×P Ei)1≤i≤n
·∑
1≤i≤nDi

@V→C×P
∑

1≤i≤n Ei

D value distribution

D
ε⇒C×P D

D
τ→C×P E E

t⇒C×P F

D
t⇒C×P F

D
@V→C×P E E

t⇒C×P F

D
@V ·t⇒ C×P F

Fig. 3. Small-Step Trace Relations on Distributions over C× P.

{(C,M)
1} s⇒C×P D , and {(C, N)

1} s⇒C×P E . Then, as we
have already observed, {(C,M)

1} and {(C, N)
1} are ε-related.

By Lemma 1, we can deduce that D and E are ε-related. And
it is easy to see that this implies |

∑
D −

∑
E | ≤ ε.

C. Adding Pairs to the Calculus

The trace distance and the results we have just presented
about it can be extended to an affine λ-calculus with pairs,
namely a calculus whose language of terms also includes the
following two constructs:

M ::= 〈M,N〉 | let 〈x, y〉 = M in N.

We assume that terms are typed in any linear type system guar-
anteeing the absence of deadlocks (e.g., simple or recursive
types), and we generalize the operational semantics in a natural
way [5]. We would now like to extend the definition of a trace
accordingly: which action should we perform on a term in the
form 〈M,N〉? The naı̈ve solution would be to add projections
to the trace language: s ::= π1 · s | π2 · s, with trace
interpretation extended in the expected way. However, this way
the trace distance would not be sound for the context distance,
anymore. Indeed, let us consider the following example:

Example 3: We are going to compare the following terms:

M := 〈λz.(I ⊕ Ω), λz.(I ⊕ Ω)〉; N := 〈λz.I, λz.I〉.

These two terms are at context distance at least 3
4 , since we

can consider the context C := let 〈x, y〉 = [·] in (xI)(yI),
and we can see that

∑
JC[M]K = 1

4 , while
∑

JC[N]K = 1.
But we cannot find any trace that separates them more than
1
2 . The interesting case is when s = πi · t. But then:

|Pr(M, s)− Pr(N, s)| = |Pr(λz.(Ω⊕ I), t)− Pr(λz.I, t)|
≤ δtr(λz.(Ω⊕ I), λz.I).

And it is easy to see that in the calculus with pairs we still
have δtr(λz.(Ω⊕ I), λz.I) = 1

2 .

The reason why we cannot recover the context distance by
way of projections is that the let construct above allows us
to access both components of a pair, and the distances each of
them induce can add up. A way out consists in extending
the trace language to pairs really following linearity, and
considering a new action in the form ⊗L with the following
trace interpretation:

Pr(〈M,N〉,⊗L · t) =
∑
V,W

JMK(V) · JNK(W) · Pr(L{V,W/x, y}, t).

Remarkably, this is consistent with the well-known embed-
ding of pairs into the applicative fragment (see, e.g., [2], and
of course [5]).

This way of handling pairs allows the trace distance and the
context distance to coincide, again. However, the trace distance
loses its grip with respect to the context distance. Consider,
for instance, the terms M and N from Example 3. Showing
an upper bound on the distance between M and N is the same
thing as showing an upper bound on δtr(L{λz.(Ω⊕I), λz.(Ω⊕
I)/x, y}, L{λz.I, λz.I/x, y}) for all terms L such that x, y `
L, which is in fact not far away from what we should show
if we were considering the context distance directly.

V. THE BISIMULATION DISTANCE

As we realised in the last section, the trace metric can
be a way to alleviate the burden of evaluating the context
distance between terms but, in particular in presence of pairs,
its usefulness is limited. In this section, we will look at
another way to define the distance between programs which is
genuinely coinductive, being based on the Kantorovich metric
for distributions.

A. Definition

A labelled Markov chain (LMC) is a triple M =
(S,L ,P), where S is a countable set of states, L is a

countable set of labels, and P is a transition probability
matrix, that is a function: P : S×L → Distr (S). Moreover,
if the image of P only consists of distributions with finite
support, we call M an image-finite LMC. We are now going to
define, similarly to [10] (but in absence of non-determinism),
the metric analogue to bisimulation. The idea is to define a
metric on the set S of states of the LMC as the greatest fixed
point of some monotone operator on metrics. Please recall
that (∆(S),≤metr) is a complete lattice, and so any monotone
operator has indeed a greatest fixed point.

Lifting Metrics to Distributions: We are going to define a
way to turn any premetric over a set S into a metric over finite
distribution over S.

Definition 8: Let µ be a premetric on a set S. We define the
lifting of µ as the metric on the set of finite distributions over
S defined as follows: for every D , E finite distributions over
S, µ(D ,E) is the optimum solution to the following linear
program:

min
∑

(s,t)∈S(D)×S(E)

hs,t · µ(s, t) +
∑
s

ws +
∑
t

zt

subject to
∑
s∈S(D) hs,t + zt = E (t);∑
t∈S(E) hs,t + ws = D(s);

∀(s, t) ∈ S(D)× S(E), hs,t, zt, ws ≥ 0.

Please observe that this linear program has an optimal solution.
We can make use of the notion of duality from linear program-
ming, and obtain an alternative characterisation of lifting:

Theorem 3: Let µ be a premetric on S and Let D , E be
finite distributions over S. Then:

µ(D ,E) = max
∑
s

as ·D(s) + bs · E (s)

subject to ∀s ∈ S, as ≤ 1;

∀s ∈ S, bs ≤ 1;

∀s, t ∈ S, as + bt ≤ µ(s, t).

The interest of the lifting construction comes from the fact that
the lifting of a metric µ behaves coherently with the original
metric µ. In particular, if we know the lifting of µ, we are
able to recover µ by considering Dirac distributions:

Lemma 2: Let µ be a premetric on S, and s, t ∈ S. Then
µ({s1}, {t1}) = µ(s, t).
Moreover, the metric’s structure is preserved when we consider
the lifting: indeed, if a premetric on states is symmetric and
verifies the triangular inequality, the same holds for its lifting.

Metrics as Fixpoints: In a non-probabilistic setting, a rela-
tion R is a bisimulation if every pair of states s, t such that
sR t can do the same actions and end up into states which
are themselves in the relation. In order to obtain a quantitative
counterpart of the scheme above, we define an operator F on
the set of metrics over the states of a LMC: intuitively, given
a metric µ, we define a new metric F (µ) which corresponds
to the distance obtained by first doing a step of the transition

relation, and then applying the lifting of µ to the resulting
distributions.

Definition 9: Let M = (S,L ,P) be an image-finite LMC.
We define an operator F on ∆(S) as

F (µ)(s, t) = sup{µ(P(s, a),P(t, a)) | a ∈ L }.

Please observe that F is a monotone operator on the complete
lattice of metrics. We define the the bisimulation metric δb

M

on M as the greatest fixpoint of F .
Bisimulation Metric and the Affine λ-Calculus: We are now

going to consider a specific LMC M Λ, which captures the
interactive behaviour of our calculus.

Definition 10: We define the LMC M Λ = (SΛ,L Λ,PΛ)
where:
• The set of states SΛ is defined as follows: P]V. A value
V in the second component of SΛ is distinguished from
one in the first by using the notation V̂ .

• The set of labels L Λ is taken to be

L Λ = {@V | V ∈ V}
⋃
{eval}.

• The transition probability matrix PΛ is such that: for
every M ∈ P, and any value V ∈ S(JMK), it holds
that PΛ(M, eval)(V̂) = JMK(V), and that for every term
M such that λx.M ∈ P, and V ∈ V, it holds that
PΛ(λ̂x.M,@V)(M{V/x}) = 1.

The results we have proved previously in this section apply
to M Λ. In particular, one can define the bisimulation metric
on M Λ. The bisimulation distance on programs, which we
indicate as δb, is defined to be the restriction of δb

MΛ to
programs.

We can see easily that δb is an adequate metric. But there
is more, since the bisimulation metric is well-known to be a
lower bound on the trace distance: the bisimulation distance
is a sound metric. In the next section, we anyway show non-
expansiveness for it, which is stronger.

B. Non-Expansiveness

Proving the non-expansiveness of δb cannot be done di-
rectly, by a plain induction on contexts. Our strategy towards
the result is the Howe’s technique [16], a way of proving con-
gruence of coinductively-defined equivalences which has been
widely used for deterministic and non-deterministic languages,
and that we here adapt to metrics.

The idea, then, is to start from δb, construct another metric
δbH on top of δb (which turns out to be non-expansive
by construction), and show that δbH = δb. We first need
to transform our metric δb on programs into a metric on
(potentially open) terms. Any metric µ on programs can be
extended into a metric on open terms, which by abuse of
notation we continue to call µ and which is defined as follows

µ(M,N) = sup
V1,...,Vn∈V

µ(M{V1, . . . , Vn/x1, . . . , xn},

N{V1, . . . , Vn/x1, . . . , xn}),

where x1, . . . , xn are the variables occurring free in either M
or N . The Howe’s lifting of a metric µ is defined based on a
formal system for judgements in the form Γ ` µH(M,N) ≤ ε,
where ε is a real number between 0 and 1. Its rules are given
in Figure 4. Please observe that, potentially, there are several
different ε such that Γ ` µH(M,N) ≤ ε. We are finally in a

µ(x,M) ≤ ε x,Γ `M
x,Γ ` µH(x,M) ≤ ε

Γ ` µH(M,K) ≤ ε
Γ ` µH(N,T) ≤ ι

µ(K ⊕ T, L) ≤ γ
Γ ` L

Γ ` µH(M ⊕N,L) ≤ ε+ι
2

+ γ

x,Γ ` µH(M,K) ≤ ε µ(λx.K,L) ≤ ι
Γ ` L

Γ ` µH(λx.M,L) ≤ ε+ ι

Γ ` µH(M,K) ≤ ε
∆ ` µH(N,T) ≤ ι

µ(KT,L) ≤ γ
Γ,∆ ` L

Γ,∆ ` µH(MN,L) ≤ ε+ ι+ γ

Fig. 4. Howe’s Rules.

position to define the Howe’s lifting of µ:

Definition 11: Let µ be a metric on terms. We define a
premetric µH on terms by:

µH(M,N) = inf
(
{ε | ∃Γ,Γ ` µH(M,N) ≤ ε}

⋃
{1}
)
.

We can see that δbH is a premetric on open terms. Please
observe that it is not necessarily a metric, since its construction
entails neither symmetry nor the triangular inequality. The
interest of this construction is that the metric δbH is (more
or less by construction) non-expansive:

Lemma 3 (Non-expansiveness of δbH): For every context C
and for every terms M , N it holds that δbH(C[M], C[N]) ≤
δbH(M,N).

The goal now is to show that δbH ≤metr δb. Since δb is the
greatest fixed point of F for our LMC M Λ, we are going
to show that δbH can be extended into a metric on the states
of M Λ, obtaining a fixed point for the operator F . First we
extend δbH to a premetric on SΛ:

Definition 12: We define the extension of δbH to SΛ (that
we note still δbH by abuse of notation), by:

δbH(M,N) := δbH(M,N);

δbH(V̂ , Ŵ) := δbH(V,W);

δbH(M, Ŵ) := 1.

Since δbH isn’t guaranteed to be a metric, we are forced to
further refine it, by adding rules corresponding to symmetry
and to the triangular inequality: we define δbH

4 over SΛ by
the rules of Figure 5.

We can see easily that δb ≤metr δbH ≤metr δbH
4 with respect

to the preorder on terms. We want to show that δbH = δb. In

δbH(s, t) ≤ ε

` δbH
4(s, t) ≤ ε

` δbH
4(s, t) ≤ ε ` δbH

4(t, s) ≤ ι

` δbH
4(s, t) ≤ min(ε, ι)

` δbH
4(s, t) ≤ ε ` δbH

4(t, u) ≤ ι

` δbH
4(s, u) ≤ ε+ ι

Fig. 5. Symmetric and Transitive Closure of δbH .

order to have that, we will show that δbH
4 ≤metr δb. That is a

direct consequence of the following theorem:

Theorem 4: δbH
4 is a pre-fixpoint of F .

Proof. We need to show that δbH
4 ≤metr F (δbH

4). Please
remember that the preorder on metrics corresponds to the
reverse of the point-wise preorder for states. So if we read
this inequality on metrics as an inequality on the states of
M Λ, we see that it is equivalent to: for every s, t ∈ SΛ,
F (δbH

4)(s, t) ≤ δbH
4(s, t). If we unfold the definition of the

operator F on metrics, we can see that it means that for
every a ∈ L Λ, δbH

4(PΛ(s, a),PΛ(t, a)) ≤ δbH
4(s, t). Please

remember that there are two kinds of actions in our LMC:
the action eval of evaluating a program to obtain a value
distribution, and the action @V , which corresponds to passing
the value V to a distinguished value. If we consider separately
each of these actions, we see that the result we want to have
is equivalent to:
• Let M , N be closed terms. Then δbH

4(ĴMK, ĴNK) ≤
δbH
4(M,N);

• Let M , N be such that x ` M and x ` N , and let V be
a value. Then it holds that: δbH

4(M{V/x}, N{V/x}) ≤
δbH
4(λ̂x.M, λ̂x.N).

The first point is the so-called Key Lemma, while the second
one is a form of substitutivity. Both are non-trivial to prove
(see [5] for more details). Remarkably, the Key Lemma can
be proved exploiting the duality between the two presentations
of Kantorovich lifting (see Theorem 3). �

Since δbH is non-expansive by construction, we now have the
result we were aiming for:

Theorem 5: δb is non-expansive.

C. On Full-Abstraction and Pairs

The bisimulation distance is a sound approximation of the
context distance. But how about full-abstraction? Is there
any hope to prove that the two coincide? The answer is
negative: there are terms whose distance is strictly higher in
the bisimulation metric than in the context (or trace) metric.

Example 4: Consider the following terms: M corresponds
to the program that takes an argument, and then returns I with
probability 1

2 , and diverges with probability 1
2 . N corresponds

to the program which chooses first between the function which

return I whenever it is called, and the function which diverges
whenever called. Formally:

M := λx.(I ⊕ Ω); N := (λx.I)⊕ (λx.Ω).

These two terms are at distance 0 for the context distance:
since the calculus is linear, the step where the choice is done is
irrelevant. However, δb(M,N) = 1

2 : the proof, whose details
can be found in [5] use the characterisation of bisimulation
distance by testing from [9], in which not only linear tests, but
also more complicated tests (like threshold tests) are available.

But how about pairs? Indeed, for the sake of simplicity, we
have presented the metatheory of the bisimulation metric for
a purely applicative λ-calculus. Following the lines of our
discussion in Section IV-C, however, the LMC M Λ can be
extended into one handling pairs in a relatively simple way.
The difficulties we encountered when trying to evaluate the
(trace, or context) distance between pairs of terms unfor-
tunately remain: it is not clear whether coinduction could
provide any additional advantage over contextual distance.

VI. THE TUPLE DISTANCE

The two metrics we have just defined have been shown
to be non-expansive, even if the calculus is extended with
pairs. In that case, however, they do not represent so much of
an improvement with respect to the context distance. Please
recall where the problem comes from: we would like to
define actions starting from 〈M,N〉, and respecting the affine
paradigm. We have seen that taking projections as actions lead
to an unsound metric, and we have circumvented the problem
by considering an action ⊗L, following [8]. Intuitively the
action ⊗L corresponds to replacing the free variables of
L (which are supposed to be included in {x, y}) by the
components of the pair: if for instance V and W are values,
we have that 〈V,W 〉 ⊗L {L{V,W/x, y}1}. But what can any
environment L do if we give it V and W as two values
to interact with? Let us suppose that both V and W are
functions, and remember that we are in an affine setting. The
environment can (probabilistically) pass some arguments to
V , and independently some other arguments to W , and then
possibly pass to one of the two programs an argument that
contains the other one. The idea behind the construction we
present in this section, then, is to keep the information about
the two components of the pairs in the states until they really
interact with each other.

Our idea can be made concrete by introducing another
LMC, whose states are not closed terms anymore, but tu-
ples in the form [V1, . . . , Vn], where V1, . . . , Vn are val-
ues. The possible actions the environment can perform on
a tuple [V1, . . . , Vn] correspond to the choice of an index
i ∈ {1, . . . , n} and of an action to apply to the value Vi.
If Vi is a pair, the only possible action is to split it into two
components. We call this action unfoldi. If Vi is a function,
the environment can pass it an argument, which can possibly
be constructed using other Vj’s. More precisely, the argument
is built by way of an open term C, and a typing context Γ,

such that Γ ` C, and Γ is a subset of {xj | j 6= i}: the
free variables of Γ represent the places where other values Vj ,
with j 6= i, are used. Moreover, we ask that for any values
W1, . . . ,Wn, the term obtained in substituting xj by Wj is a
value: it means that C is one of the xj , or of the form λy.D.
We call a pair (Γ, C) which verifies these conditions a (n, i)-
open value. Formally, the LMC M Λ

mul = (SΛ
mul,A

Λ
mul,P

Λ
mul) is

defined in Figure 6.

A. The Metric

We are going to define a metric on closed terms which
corresponds to linear tests in M Λ

mul. First, we define tuple
traces simply as words over A Λ

mul. The probability to succeed
in doing a trace s starting from a tuple K ∈ SΛ

mul can be
naturally defined, and paves the way to defining a metric on
tuples of values:

Prmul(K, ε) = 1;

Prmul(K, a · s) =
∑
H

P(K, a)(H) · Prmul(H, s);

δmul(K,H) = sup
s
|Prmul(K, s)− Prmul(H, s)|.

What we need, however, is a metric on programs. Please
remember that states of the LMC M Λ

mul are tuples of values.
Any program M , however, can be viewed as the distribution
of values obtained by evaluating it, i.e. its semantics JMK:

δmul(M,N) = sup
s

∣∣∑JMK(V) · Prmul([V] , s)

−
∑

JNK(W) · Prmul([W] , s)
∣∣.

The just introduced metric should at least be put in relation to
the context metric for it to be useful. We know from Section
IV that the context metric coincides with the trace metric. The
following theorem relates the trace metric δtr and the metric
δmul:

Theorem 6: Let I be any finite set of variables, and {Vx}x∈I
and {Wx}x∈I any two collections of values. For any open term
C such that I ` C, it holds that:

δtr(C{Vx/x}(x∈I), C{Wx/x}(x∈I))
≤ δmul([Vx](x∈I) , [Wx](x∈I)).

Theorem 6 can be read as a non-expansiveness result: if we
have a system E , playing the role of the environment, and
which is prepared to interact with n components, and moreover
we have two tuples K and H of length n, then the tuple
distance between K and H gives us an upper bound on the
trace distance between the system composed of E interacting
with K, and the system composed of E interacting with H .

We can now see that δmul coincides with the context metric:
one inequality comes from Theorem 6, the other comes from
the fact that any trace s over A Λ

mul and designed to start from
a single value, can be simulated by a context.

Theorem 7: On programs, δmul = δctx.

SΛ
mul = {[V1, . . . , Vn] | V1, . . . , Vn closed values } ;

A Λ
mul =

{
unfoldi | i ∈ N

}
∪
{

@(Γ, C)i | i ∈ N, (Γ, C) a (n, i)-open-value
}

;

PΛ
mul([s1, . . . , 〈N,L〉, . . . , sn] , unfoldi)([s1, . . . , si−1, V,W, si+1, . . . , sn]) = JNK(V) · JLK(W);

PΛ
mul([s1, . . . , λy.N, . . . , sn] ,@(Γ, C)i)([sh1

, . . . ,W, . . . , shm
]) = JN{

(
C{sjl/xjl}(1≤l≤k)

)
/y}K(W);

with {1, . . . , n} = {i} ∪ {j1, . . . , jk} ∪ {h1, . . . , hm}, n = 1 + k +m, and Γ = x1 , . . . , xjk .

Fig. 6. The Tuple LMC.

B. Examples

The tuple distance, that we have just proved to be fully-
abstract, can be seen as yet another presentation of the context
distance. But there is much more: it allows to evaluate the
distance between concrete programs, even when the latter
contain pairs, in a relatively easy way. In this section, we will
give two examples.

1) A Simple Example: Consider the terms M and N defined
in Example 3. We can prove that δmul(M,N) = 3

4 . The proof
of the fact that δmul(M,N) ≤ 3

4 can be found in [5]. Here
we are only going to show that δmul(M,N) ≥ 3

4 . In order to
show that, we are going to present a particular trace s such
that |Prmul([M] , s)−Prmul([N] , s)| = 3

4 . More precisely, we
take s = unfold1 ·@(∅, I)

1 ·@(∅, I)
2: it corresponds to first

separating the two components of the pair, and then passing
I as an argument to the first and to the second component.
The relevant fragment of M Λ

mul can be found in Figure 7. In
particular, we can see that Pr([M] , s) = 1, and Pr([N] , s) =
1
4 .

[M] =
[〈λx.I, λx.I〉]

[N] =
[〈λx.(I ⊕ Ω), λx.(I ⊕ Ω)〉]

[λx.I, λx.I] [λx.(I ⊕ Ω), λx.(I ⊕ Ω)]

[I, λx.I] [I, λx.(I ⊕ Ω)]

[I, I] [I, I]

unfold11 unfold11

@(∅, I)11 @(∅, I)11
2

@(∅, I)21 @(∅, I)21
2

Fig. 7. A Fragment of the Tuple LMC.

2) A More Complicated Example: Please recall the example
we presented in Section II. We note {un}n∈N the sequence
defined as: un =

∏
1≤i≤n (1− 1

2i).

Theorem 8: For every n ∈ N, δmul(Mn, Nn) = 1− un.

Proof. We first show that δmul(Mn, Nn) ≥ 1− un. As in the
previous example, we do that by finding, for each n ∈ N, a
trace sn such that |Pr([Mn] , sn)− Pr([Nn] , sn)| = 1− un.
We define the sequence (sn)n∈N inductively as follows:

s0 = ε; sn+1 = unfold1 ·@(∅, I)
1 · sn.

s0 is the trace which always succeeds, whatever the starting
state is. sn+1 corresponds to separating the two components of
the pair which is in first position in the tuple, then passing the
identity as an argument to the first component of this pair, and
then executing sn. For this sequence of traces, the recursive
equations of Figure 8 are verified (the proof can be found
in [5]). We can see by solving these equations that for every

Pr([M0] , s0) = 1; Pr([N0] , s0) = 1;

Pr([Mn+1] , sn+1) = Pr([Mn] , sn);

Pr([Nn+1] , sn+1) = (1− 1

2n+1
) · Pr([Nn] , sn).

Fig. 8. Recursive Equations Verified by sn.

n ∈ N, Pr(Mn, sn) = 1 and Pr(Nn, sn) = un. As a direct
consequence, we obtain the result. We want now to show that
δmul(Mn, Nn) ≤ 1 − un. To do that, we need to establish
that there doesn’t exist a trace t such that |Pr([Mn] , t) −
Pr([Nn] , t)| > 1−un. We’re in fact going to show something
stronger: for every n ∈ N, we’re going to define a set An of
pairs of tuple, which contains the pair ([M]n, [Nn]), and such
that for every (K,H) ∈ An, for every trace t, |Pr(K, t) −
Pr(H, t)| ≤ 1− un. Intuitively, the idea behind the sequence
{An}n∈N is the following: if we start from [Mn], follow a
trace of even length, and end up in a tuple K with a non-zero
probability, and when we follow the same trace starting from
[Nn] end up in the tuple H , then the pair of tuples (K,H) is
in one of the Aj , with j smaller than n.

Definition 13: Let be n ∈ N. Let An be the set of (K,H)
such that: there exist m ∈ N, and ki ≥ n+1 (for 1 ≤ i ≤ m),
where:

K = [Mn, [λx.Ω]m] ;

H =
[
Nn, [λx.Ω⊕

1

2ki I]1≤i≤m

]
.

We want now to give an upper bound to the separation between
K and H any trace can induce, if (K,H) ∈ An.

Lemma 4: For every n ∈ N, for every (K,H) ∈ An, we
can partition the set of traces as:

T r ={s | Pr(K, s) = 0 and Pr(H, s) ≤ 1

2
}⋃

{s | Pr(K, s) = 1 and Pr(H, s) ≥ un}.

The proof of Lemma 4 can be found in [5]. The result we
want to show is a direct consequence of Lemma 4: we can
see easily that for any trace s, if (K,H) ∈ An, the separation
s can induce is smaller or equal to 1− un. �

C. On Tuples and Copying

The tuple distance naturally suggests a way to handle λ-
calculi in which copying is indeed allowed. Although the
details are clearly outside the scope of this paper, we anyway
want to give some hints about why this is the case.

What makes the trace and behavioural distances unsound in
presence of copying is their inability to capture an environment
which can access the program at hand more than once. In
our view, however, the problem does not come from the way
those distances are defined in the abstract, but rather in the
way the underlying LMC reflects the operational semantics of
the calculus at hand. In a sense, it is in the responsibility of
the LMC to guarantee that the environment can access terms
multiple times. The LMC M Λ we introduced in this paper
(which is close to the ones from the literature [4], [6], [8]), as
an example, is not adequate.

Suppose, however, to extend M Λ
mul to an LMC for a λ-

calculus in the style of Wadler’s linear λ-calculus [29]: there,
the grammar of terms includes a construct !M whose purpose
is marking those subterms which can indeed be duplicated.
The actions the environment can perform on a term in the
form !M simply reflects the above: the environment can create
a new copy of !M , but also keeps the possibility to access !M
in the future. One immediately realises that tuples are indeed
the right way to model the access to both !M and M .

VII. CONCLUSIONS

We have initiated the study of metrics in higher-order
languages, starting with the relatively easy case of affine λ-
terms, where copying capabilities are simply not available. We
showed that three different notions of distance are sound (and
sometime fully-abstract) for the context distance, the natural
generalisation of Morris’ observational equivalence. One of
them, the tuple distance, reflects the inherently monoidal
structure of the underlying calculus, this way allowing to solve
some nontrivial distance problems.

We are actively working on extending the results described
here to the non-affine case, which for various reasons turns
out to be more difficult, as discussed in Section II. We are in
particular quite optimistic about the possibility of generalising
the tuple distance to a metric reflecting copying. The real
challenge, however, consists in handling the case in which
copying is indeed available, but the number of copies of a
given term the environment can have access to is somehow
bounded, maybe polynomially in the value of a security

parameter. That would indeed be a way to get closer to
computational indistinguishability, a central notion in modern
cryptography.

REFERENCES

[1] S. Abramsky. The Lazy λ-Calculus. In D. Turner, editor, Research
Topics in Functional Programming, pages 65–117. Addison Wesley,
1990.

[2] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Trans.
Comput. Log., 3(1):137–175, 2002.

[3] A. Bizjak and L. Birkedal. Step-indexed logical relations for probability.
In FoSSaCS, pages 279–294, 2015.

[4] R. Crubillé and U. Dal Lago. On probabilistic applicative bisimulation
and call-by-value λ-calculi. In ESOP, pages 209–228, 2014.

[5] R. Crubillé and U. Dal Lago. Metric reasoning about λ-terms: the affine
case (long version). Available at http://arxiv.org/abs/1505.03638, 2015.

[6] U. Dal Lago, D. Sangiorgi, and M. Alberti. On coinductive equivalences
for higher-order probabilistic functional programs. In POPL, pages 297–
308, 2014.

[7] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model of
higher-order probabilistic computation. Inf. Comput., 209(6):966–991,
2011.

[8] Y. Deng and Y. Zhang. Program equivalence in linear contexts. To
appear in Theoretical Computer Science, 2014.

[9] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for
labeled markov systems. In CONCUR, 1999.

[10] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric
analogue of weak bisimulation for probabilistic processes. In LICS,
pages 413–422, 2002.

[11] T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces
are fully abstract for probabilistic PCF. In POPL, pages 309–320, 2014.

[12] D. Gebler and S. Tini. Fixed-point characterization of compositionality
properties of probabilistic processes combinators. In EXPRESS-SOS,
pages 63–78, 2014.

[13] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseu-
dorandomness, volume 17 of Algorithms and Combinatorics. Springer,
1998.

[14] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

[15] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In UAI 2008,
pages 220–229, 2008.

[16] D. J. Howe. Proving congruence of bisimulation in functional program-
ming languages. Inf. Comput., 124(2):103–112, 1996.

[17] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations.
In LICS, pages 186–195, 1989.

[18] L. V. Kantorovich. On the transfer of masses. In Dokl. Akad. Nauk.
SSSR, volume 37, pages 227–229, 1942.

[19] S. B. Lassen. Relational reasoning about contexts. In Higher Order Op-
erational Techniques in Semantics, Publications of the Newton Institute,
pages 91–135. Cambridge University Press, 1998.

[20] H. G. Mairson. Linear lambda calculus and ptime-completeness. J.
Funct. Program., 14(6):623–633, 2004.

[21] C. D. Manning and H. Schütze. Foundations of statistical natural
language processing, volume 999. MIT Press, 1999.

[22] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilis-
tic polynomial-time process calculus for the analysis of cryptographic
protocols. Theor. Comput. Sci., 353(1-3):118–164, 2006.

[23] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on
sampling functions. ACM Trans. Program. Lang. Syst., 31(1), 2008.

[24] J. Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[25] A. M. Pitts. Operationally-based theories of program equivalence.
In Semantics and Logics of Computation, pages 241–298. Cambridge
University Press, 1997.

[26] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, pages 154–165, 2002.

[27] S. Thrun. Robotic mapping: A survey. Exploring artificial intelligence
in the new millennium, pages 1–35, 2002.

[28] F. van Breugel and J. Worrell. A behavioural pseudometric for proba-
bilistic transition systems. Theor. Comput. Sci., 331(1):115–142, 2005.

[29] P. Wadler. A syntax for linear logic. In MFPS, pages 513–529, 1993.

