
Two approximation algorithms for bipartite matching on

multicore architectures

Fanny Dufossé, Kamer Kaya, Bora Uçar

To cite this version:

Fanny Dufossé, Kamer Kaya, Bora Uçar. Two approximation algorithms for bipartite matching
on multicore architectures. Journal of Parallel and Distributed Computing, Elsevier, 2015, 85,
pp.62-78. <10.1016/j.jpdc.2015.06.009>. <hal-01242516>

HAL Id: hal-01242516

https://hal.inria.fr/hal-01242516

Submitted on 12 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01242516

Two approximation algorithms for bipartite matching
on multicore architectures

Fanny Dufosséa, Kamer Kayab,∗, Bora Uçarc

aInria Lille, Nord Europe, 59650, Villeneuve d’Ascq, France
bSabancı University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey

cLIP, UMR5668 (CNRS - ENS Lyon - UCBL - Université de Lyon - INRIA), Lyon, France

Abstract

We propose two heuristics for the bipartite matching problem that are amenable
to shared-memory parallelization. The first heuristic is very intriguing from a
parallelization perspective. It has no significant algorithmic synchronization
overhead and no conflict resolution is needed across threads. We show that this
heuristic has an approximation ratio of around 0.632 under some common condi-
tions. The second heuristic is designed to obtain a larger matching by employing
the well-known Karp-Sipser heuristic on a judiciously chosen subgraph of the
original graph. We show that the Karp-Sipser heuristic always finds a maxi-
mum cardinality matching in the chosen subgraph. Although the Karp-Sipser
heuristic is hard to parallelize for general graphs, we exploit the structure of the
selected subgraphs to propose a specialized implementation which demonstrates
very good scalability. We prove that this second heuristic has an approximation
guarantee of around 0.866 under the same conditions as in the first algorithm.
We discuss parallel implementations of the proposed heuristics on a multicore
architecture. Experimental results, for demonstrating speed-ups and verifying
the theoretical results in practice, are provided.

Keywords: shared memory parallelism, matching, bipartite graphs,
approximation algorithm
2010 MSC: 05C70, 68W10, 68W25

1. Introduction

We consider the maximum cardinality bipartite matching problem. A match-
ing in a graph is a set of edges no two of which share a common vertex. The
maximum cardinality matching problem asks for a matching of maximum size.
There are a number of polynomial time algorithms to solve this problem exactly.5

∗Corresponding author
Email addresses: fanny.dufosse@inria.fr (Fanny Dufossé), kaya@sabanciuniv.edu

(Kamer Kaya), bora.ucar@ens-lyon.fr (Bora Uçar)

Preprint submitted to Journal of Parallel and Distributed Computing June 28, 2015

The lowest worst-case time complexity of the known algorithms is O(
√
nτ) for

a bipartite graph with n vertices and τ edges—the first of such algorithms is de-
scribed by Hopcroft and Karp [1]. There is considerable interest in simpler and
faster algorithms that have some approximation guarantee [2]. Such cheap algo-
rithms are used as a jump-start routine by the current state of the art matching10

algorithms [2, 3, 4]. Furthermore, there are applications [5] where approximate
cardinality matchings are used.

Most of the existing heuristics obtain good results in practice, but their
worst-case guarantee is only around 1/2. Among those, the Karp-Sipser (KS)
heuristic [6] is very well known. It finds maximum cardinality matchings in15

highly sparse (random) graphs but does not have a constant ratio approximation
for denser ones (this algorithm will be reviewed later in Section 2). KS obtains
very good results in practice. Currently, it is the suggested one to be used as
a jump-start routine [2, 4] for exact algorithms, especially for augmenting-path
based ones [7]. Algorithms that achieve an approximation ratio of 1−1/e, where20

e is the base of the natural logarithm are designed for the online case [8]. Many of
these algorithms are sequential in nature in that a sequence of greedy decisions
are made in the light of the previously made decisions. Another heuristic is
obtained by truncating the Hopcroft and Karp (HK) algorithm. HK, starting
from a given matching, augments along a maximal set of shortest disjoint paths,25

until there are no augmenting paths. If one lets HK run until the shortest
augmenting paths are of length k, then a 1 − 2/k approximate matching is
obtained for k ≥ 3. The run time of this heuristic is O(τk), for a bipartite
graph with τ edges.

We propose two matching heuristics (Section 3) for bipartite graphs. Both30

heuristics construct a subgraph of the input graph by randomly choosing some
edges. They then obtain a maximum matching in the selected subgraph and
return it as an approximate matching for the input graph. The probability
density function for choosing a given edge in both heuristics is obtained with a
sparse matrix scaling method. The first heuristic is shown to deliver a constant35

approximation guarantee of 0.632 of the maximum cardinality matching under
the condition that the scaling method has successfully scaled the input matrix.
The second one builds on top of the first one and improves the approximation
ratio to 0.866, under the same condition as in the first one. Both of the heuristics
are designed to be amenable to parallelization in modern multicore systems. The40

first heuristic does not require a conflict resolution scheme. Furthermore, it does
not have any synchronization requirements. The second heuristic employs KS
to find a matching on the selected subgraph. We show that KS becomes an
exact algorithm on those subgraphs. Further analysis of the properties of those
subgraphs is carried out to design a specialized implementation of KS for efficient45

parallelization. The approximation guarantees of the two proposed heuristics
do not deteriorate with the increased degree of parallelization, thanks to their
design, which is usually not the case for parallel matching heuristics [9].

The organization of the paper is as follows. In Section 2, we give some back-
ground on matching and matching heuristics. This section also contains a brief50

summary of a well-known doubly stochastic scaling method, and a mathemati-

2

cal identity that we will need later. In Section 3, we propose the two matching
heuristics, discuss their efficient parallelization, and analyze their approxima-
tion guarantee. During the analysis, we assume that bipartite graphs have two
properties: (i) the same number of vertices in both vertex classes; (ii) each edge55

appears in a matching that contains all vertices. Under these criteria, the scaling
algorithm summarized in Section 2 works successfully. Later on (Section 3.3),
we discuss the bipartite graphs without these properties. We then give experi-
ments in Section 4, where we observe the theoretical findings in practice (even
with general bipartite graphs), and present parallelization results.60

2. Notation and background

Let G = (VR ∪VC , E) be a bipartite graph, where VR and VC are two vertex
classes and E is the edge set. G can be represented as a sparse matrix A. Each
row (column) of A corresponds to a unique vertex in VR (in VC) so that aij = 1
if and only if (vi, vj) ∈ E. Using this correspondence, we refer to the vertices in65

the two classes as the row and column vertices. The number of edges incident on
a vertex is called its degree. A path in a graph is a sequence of vertices such that
each consecutive vertex pair share an edge. A vertex is reachable from another
one, if there is a path between them. The connected components of a graph
are the equivalence classes of vertices under the “is reachable from” relation. A70

cycle in a graph is a path whose start and end vertices are the same. A simple
cycle is a cycle with no vertex repetitions. A tree is a connected graph with no
cycles. A spanning tree of a connected graph G is a tree containing all vertices
of G.

A directed graph GD = (V,E) with vertex set V and edge set E can be75

associated with an n× n sparse matrix A. Here, |V | = n, and for each aij 6= 0
where i 6= j, we have a directed edge from vi to vj . A directed graph is strongly
connected, if every vertex is reachable from every other vertex by following the
directed edges.

2.1. Matching80

A matching M in a bipartite graph G = (VR ∪ VC , E) is a subset of edges
E where a vertex in VR ∪ VC is in at most one edge in M. Given a matching
M, a vertex v is said to be matched by M if v is in an edge of M, otherwise
v is called unmatched. If all the vertices are matched by M, then M is said to
be a perfect matching. The cardinality of a matching M, denoted by |M|, is85

the number of edges in M. The maximum cardinality matching problem asks
for a matching of maximum size. There are a number of well-known, exact,
and polynomial-time algorithms for this problem on bipartite graphs. A recent
paper [7] gives a classification of those algorithms.

Parallel (exact) matching algorithms on modern architectures have been90

recently investigated. Azad et al. [9] study the implementations of a set of
known bipartite graph matching algorithms on shared memory systems. Deveci
et al. [10, 11] investigate the implementation of some known matching algorithms

3

or their variants on GPU. There are quite good speedups reported in these
implementations, yet there are non-trivial instances where parallelism does not95

help (for any of the algorithms).
Our focus is on matching heuristics that have linear run time complexity

and good quality guarantees on the size of the matching. Recent surveys of
matching heuristics are given by Kaya et al. [4, Section 4] and Langguth et
al. [2]. Two heuristics, called the cheap matching and Karp-Sipser heuristic,100

stand out and are suggested as initialization steps in the best two exact matching
algorithms [7]. These two heuristics also attracted theoretical interest.

The cheap matching heuristic has two variants in the literature. The first
variant randomly visits the edges and matches the two endpoints of an edge if
they are both available. The theoretical performance guarantee of this heuristic105

is 1/2, i.e., the heuristic delivers matchings of size at least half of the maximum
matching cardinality. This is analyzed theoretically [12] and shown to obtain
results that are near the worst-case on certain classes of graphs. The second
variant of the cheap matching heuristic repeatedly selects a random vertex and
matches it with a random neighbor. The matched vertices, along with the ones110

which become isolated, are removed from the graph and the process continues
until the whole graph is consumed. This variant also has a 1/2 worst-case
approximation guarantee (see for example a proof by Pothen and Fan [13]), and
it is somewhat better (0.5 + ε for ε ≥ 0.0000025 [14] which has been recently
improved to ε ≥ 1/256 [15]).115

We make use of the Karp-Sipser (KS) heuristic to design one of the proposed
heuristics. We summarize KS here and refer the reader to the original paper [6].
The theoretical foundation of KS is that if there is a vertex v with exactly one
neighbor (v is called degree-one), then there is a maximum cardinality matching
in which v is matched with its neighbor. That is, matching v with its neighbor120

is an optimal decision. Using this observation, the KS heuristic runs as follows.
Check whether there is a degree-one vertex; if so then match the vertex with
its unique neighbor and delete both vertices (and the edges incident on them)
from the graph. Continue this way until the graph has no edges (in which case
we are done) or all remaining vertices have degree larger than one. In the latter125

case, pick a random edge, match the two endpoints of this edge, and delete
those vertices and the edges incident on them. Then repeat the whole process
on the remaining graph. The phase before the first random choice of edges
made by the KS algorithm is called Phase 1, and the rest is called Phase 2
(where new degree-one vertices may arise). The run time of this heuristic is130

linear. This heuristic matches all but Õ(n1/5) vertices of a random undirected
graph [16]. One disadvantage of KS is that because of the degree dependencies
of the vertices to the already matched vertices, an efficient parallelism is hard to
achieve (a list of degree-one vertices needs to be maintained). That is probably
why some inflicted forms (successful but without any known quality guarantee)135

of this heuristic were used in recent studies [9].
Recent studies focusing on approximate matching algorithms on parallel sys-

tems include heuristics for graph matching problem [17, 18, 19] and also heuris-
tics used for initializing bipartite matching algorithms [9]. Lotker et al. [20]

4

present a distributed 1 − 1/k approximate matching algorithm for bipartite140

graphs. This nice theoretical algorithm has O(k3 log ∆ + k2 log n) time steps
with a message length of O(log ∆) where ∆ is the maximum degree of a ver-
tex and n is the number vertices in the graph. Blelloch et al. [21] propose an
algorithm to compute maximal matchings (1/2 approximate) with O(τ) work
and O(log3 τ) depth with high probability on a bipartite graph with τ edges.145

This is an elaboration of the cheap matching heuristic for parallel systems.
Although the performance metrics work and depth are quite impressive, the ap-
proximation guarantee stays as in the serial variant. A striking property of this
heuristic is that it trades parallelism and reduced work while always finding the
same matching (including those found in the sequential version). Birn et al. [22]150

discuss maximal (1/2 approximate) matchings in O(log2 n) time and O(τ) work
in CREW PRAM model. Practical implementations on distributed memory and
GPU systems are discussed—a shared memory implementation is left as future
work in the cited paper.

2.2. Scaling matrices to doubly stochastic form155

An n×n matrix A 6= 0 is said to have support if there is a perfect matching
in the associated bipartite graph. An n × n matrix A is said to have total
support if each edge in its bipartite graph can be put into a perfect matching.
A square sparse matrix is called irreducible if its directed graph is strongly
connected. A square sparse matrix A is called fully indecomposable if for a160

permutation matrix Q, the matrix B = AQ has a zero free diagonal and the
directed graph associated with B is irreducible. Fully indecomposable matrices
have total support; but a matrix having total support could be a block diagonal
matrix, where each block is fully indecomposable. For more formal definitions
of support, total support, and the fully indecomposability, see for example the165

book by Brualdi and Ryser [23, Ch. 3 and Ch. 4]. Any nonnegative matrix A
with total support can be scaled with two (unique) positive diagonal matrices
DR and DC such that DRADC is doubly stochastic (that is, the sum of entries
in any row and in any column of DRADC is equal to one). If A has support but
not total support, then A can be scaled to a doubly stochastic matrix but not170

with two positive diagonal matrices [24]—this fact is also seen in more recent
treatments [25, 26, 27]).

The Sinkhorn-Knopp algorithm [24] is a well-known method for scaling ma-
trices to doubly stochastic form. This algorithm generates a sequence of matrices
(whose limit is doubly stochastic) by normalizing the columns and the rows of175

the sequence of matrices alternately. That is, the initial matrix is normalized
such that each column has sum one. Then, the resulting matrix is normalized
so that each row has sum one and so on so forth.

We use a parallel implementation of the Sinkhorn-Knopp scaling method,
shown in Algorithm 1, but other doubly stochastic scaling methods [25, 26, 27,180

28] can also be used. In Algorithm 1, Ai∗ and A∗j are the sets of column and
row indices of the nonzeros at the ith row and jth column of A, respectively.
Instead of the diagonal scaling matrices Dr and Dc, we use two arrays dr and dc
to store the (diagonal) entries of the scaling matrices. As is seen, given an error

5

Algorithm 1 ScaleSK: Parallel Sinkhorn-Knopp scaling

Input A: an n× n matrix with total support, ε: the error threshold
Output dr, dc: row/column scaling arrays
1: for i = 1 to n in parallel do
2: dr[i]← 1
3: dc[i]← 1
4: for j = 1 to n in parallel do
5: csum[j]←

∑
i∈A∗j aij

6: repeat
7: for j = 1 to n in parallel do
8: dc[j]← 1/csum[j]
9: for i = 1 to n in parallel do

10: rsum←
∑

j∈Ai∗ aij × dc[j]

11: dr[i]← 1/rsum
12: for j = 1 to n in parallel do
13: csum[j]←

∑
i∈A∗j dr[i]× aij

14: until |max{1− csum[j] : 1 ≤ j ≤ n}| ≤ ε

threshold, the method runs until convergence, where we want to stop when both185

the row sums and column sums are in the ε closure of one. At each iteration,
we first balance the columns and then the rows, at which point the row sums
are one (modulo round-off errors), but the column sums are not. The stopping
criteria for convergence is therefore to have the maximum difference between
the column sums and one as small as possible. At the end, dr[i] × aij × dc[j]190

gives the scaled entry. There are techniques to improve the parallel performance
of Algorithm 1. For example, in case of skewness in degree distributions, one
can assign multiple threads to a single row with many nonzeros. However, we
do not focus on this issues here.

2.3. A mathematical fact195

We will make use of the following identity, whose proof is given for the sake
of completeness.

Lemma 1. Let (ui)i∈S and (vi)i∈S be two sequences and S = {1, 2, . . . , |S|} be
their index set. Then we have

∏
i∈S

(ui + vi) =
∑
S′⊆S

(∏
i∈S′

ui

)
·

 ∏
i∈S\S′

vi

 .

Proof. We prove this formula by induction on the cardinality of S. The equality
is evident for |S| = 1. Assume that it holds also for all sequences with |S| < k.
Now let |S| be k and S′′ be S \ {k}. Then by the inductive hypothesis, the

6

product
∏
i∈S(ui + vi) is equal to

(uk + vk) ·
∑
S′⊆S′′

(∏
i∈S′

ui

)
·

 ∏
i∈S′′\S′

vi

= uk

∑
S′⊆S′′

(∏
i∈S′

ui

)
·

 ∏
i∈S′′\S′

vi

+ vk
∑
S′⊆S′′

(∏
i∈S′

ui

)
·

 ∏
i∈S′′\S′

vi

=

∑
S′⊆S,k∈S′

(∏
i∈S′

ui

)
·

 ∏
i∈S\S′

vi

+
∑

S′⊆S,k/∈S′

(∏
i∈S′

ui

)
·

 ∏
i∈S\S′

vi

=

∑
S′⊆S

(∏
i∈S′

ui

)
·

 ∏
i∈S\S′

vi

 .

3. Two matching heuristics

We propose two simple matching heuristics for the maximum cardinality200

bipartite matching problem that are efficiently parallelizable and have guaran-
teed approximation ratios. The first heuristic does not require synchronization
nor conflict resolution assuming that the write operations to the memory are
atomic (which is discussed in Section 4). This heuristic and its approximation
guarantee of around 0.632 are described in the following subsection. The second205

heuristic is designed to obtain larger matchings compared to those obtained by
the first one. This heuristic employs the Karp-Sipser heuristic on a judiciously
chosen subgraph of the input graph. We show that for this subgraph, the KS
heuristic is an exact algorithm, and a specialized, efficient implementation of KS
is possible to obtain matchings of size around 0.866 of the maximum cardinality.210

3.1. One-sided matching

The first matching heuristic we propose, OneSidedMatch, scales the given
adjacency matrix A (each aij is originally either 0 or 1) and uses the scaled
entries to randomly choose a column as a match for each row. The pseudocode
of the heuristic is shown in Algorithm 2.215

OneSidedMatch first obtains the scaling vectors dr and dc corresponding
to a doubly stochastic matrix S (line 1). After initializing the cmatch array, for
each row i of A, the heuristic randomly chooses a column j ∈ Ai∗ based on the
probabilities computed by using corresponding scaled entries of row i. It then
matches i and j. Clearly multiple rows can choose the same column and write220

to the same entry in cmatch. We assume that in the parallel, shared-memory
setting, one of the write operation survives, and the cmatch array defines a
valid matching, i.e., {{cmatch[j], j} : cmatch[j] 6= NIL}. We now analyze its
approximation guarantee in terms of the matching cardinality.

7

Algorithm 2 OneSidedMatch

Input A: an n× n, (0,1)-matrix with total support
Output cmatch[·]: the rows matched to columns
1: (dr,dc)← ScaleSK(A)
2: for j = 1 to n in parallel do
3: cmatch[j]← NIL
4: for i = 1 to n in parallel do
5: Pick a random column j ∈ Ai∗ by using the probability density function

sik
Σ`∈Ai∗si`

, for all k ∈ Ai∗

where sik = dr[i] × dc[k] is the corresponding entry in the scaled matrix S =
DRADC .

6: cmatch[j]← i

Theorem 1. Let A be an n×n, (0,1)-matrix with total support. Then, OneSid-225

edMatch obtains a matching of size at least n(1−1/e) ≈ 0.632n in expectation
as n→∞.

Proof. To compute the matching cardinality, we will count the columns that are
not picked by any row and subtract it from n. Since Σk∈Ai∗sik = 1 for each
row i of S, the probability that a column j is not picked by any of the rows
in A∗j is equal to

∏
i∈A∗j (1− sij). By applying the arithmetic-geometric mean

inequality, we obtain

dj

√ ∏
i∈A∗j

(1− sij) ≤
dj −

∑
i∈A∗j sij

dj
,

where dj = |A∗j | is the degree of column vertex j. Therefore,

∏
i∈A∗j

(1− sij) ≤

(
1−

∑
i∈A∗j sij

dj

)dj
.

Since S is doubly stochastic, we have
∑
i∈A∗j sij = 1 and

∏
i∈A∗j

(1− sij) ≤
(

1− 1

dj

)dj
.

The function on the right hand side above is an increasing one, and has the
limit

lim
dj→∞

(
1− 1

dj

)dj
=

1

e
,

where e is the base of the natural logarithm. By the linearity of expectation,
the expected number of unmatched columns is no larger than n

e . Hence, the
cardinality of the matching is no smaller than n (1− 1/e).230

8

In Algorithm 2, we split the rows among the threads with a parallel for
construct. For each row i, the corresponding thread chooses a random number r
from a uniform distribution with range (0,

∑
k∈Ai∗

sik]. Then, the last nonzero
column index j for which

∑
1≤k≤j sik ≤ r is found and cmatch[j] is set to i.

Since no synchronization or conflict detection is required, the heuristic promises235

significant speedups.

3.2. Two-sided matching

OneSidedMatch’s approximation guarantee and suitable structure for par-
allel architectures make it a good cheap matching heuristic. The natural ques-
tion that follows is whether a heuristic with a better guarantee exits. Of course,240

the sought heuristic should also be simple and easy to parallelize. We asked:
“what happens if we repeat the process for the other (column) side of the bi-
partite graph”? The question led us to the following algorithm. Let each row
select a column, and let each column select a row. Take all these 2n choices to
construct a bipartite graph G (a subgraph of the input) with 2n vertices and245

at most 2n edges (if i chooses j and j chooses i, we have one edge), and seek
a maximum cardinality matching in G. Since the number of edges is at most
2n, any exact matching algorithm on this graph would be fast—in particular
the worst case run time would be O(n1.5) [1]. Yet, we can do better and ob-
tain a maximum cardinality matching in linear time by running the Karp-Sipser250

heuristic on G, as we display in Algorithm 3.
The most interesting component of TwoSidedMatch is the incorporation

of the Karp-Sipser heuristic for two reasons. First, although it is only a heuris-
tic, KS computes a maximum cardinality matching on the bipartite graph G
constructed in Algorithm 3. Second, although KS has a sequential nature, we255

can obtain good speedups with a specialized parallel implementation. In gen-
eral, it is hard to parallelize (non-trivial) graph algorithms, and it is even harder
when the overall cost is O(n), which is the case for KS on G. We give a series
of lemmas below which enables us to use KS as an exact algorithm with a good
shared-memory parallel performance.260

The first lemma describes the structure ofG constructed at line 8 of TwoSid-
edMatch.

Lemma 2. Each connected component of G constructed in Algorithm 3 contains
at most one simple cycle.

Proof. A connected component M ⊆ G with n′ vertices can have at most n′265

edges. Let T be a spanning tree of M . Since T contains n′ − 1 edges, the
remaining edge in M can create at most one cycle when added to T .

Lemma 2 explains why KS is an exact algorithm on G. If a component does
not contain a cycle, KS consumes all its vertices in Phase 1. Therefore, all of
the matching decisions given by KS are optimal for this component. Assume270

a component contains a simple cycle. After Phase 1, the component is either
consumed, or due to Lemma 2, it is reduced to a simple cycle. In the former case,
the matching is a maximum cardinality one. In the latter case, an arbitrary edge

9

Algorithm 3 TwoSidedMatch

Input A: an n× n, (0,1)-matrix with total support
Output match[·]: the mate of each vertex or NIL
1: (dr,dc)← ScaleSK(A)
2: for i = 1 to n in parallel do
3: Pick a random column j ∈ Ai∗ by using the probability density function

sik
Σ`∈Ai∗si`

, for all k ∈ Ai∗

where sik = dr[i] × dc[k] is the corresponding entry in the scaled matrix S =
DRADC .

4: rchoice[i]← j
5: for j = 1 to n in parallel do
6: Pick a random row i ∈ A∗j by using the probability density function

skj
Σ`∈A∗j s`j

, for all k ∈ A∗j .

7: cchoice[j]← i
8: Construct a bipartite graph G = (VR ∪ VC , E) where

E ={{i, rchoice[i]} : i ∈ {1, . . . , n}}∪
{{cchoice[j], j} : j ∈ {1, . . . , n}}.

9: match←KarpSipser(G)

of the cycle can be used to match a pair of vertices. This decision necessarily
leads to a unique perfect matching in the remaining simple path. These two275

arguments can be repeated for all the connected components to see that the KS
heuristic finds a maximum cardinality matching in G.

Algorithm 4 describes our parallel KS implementation KarpSipserMT. The
graph is represented using a single array choice, where choice[u] is the ver-
tex randomly chosen by u ∈ VR ∪ VC . The choice array is a concatenation280

of the arrays rchoice and cchoice set in TwoSidedMatch. Hence, an ex-
plicit graph construction for G (line 8 of Algorithm 3) is not required, and
a transformation of the selected edges to a graph storage scheme is avoided.
KarpSipserMT uses three atomic operations for synchronization. The first
operation Add(memory, value) atomically adds a value to a memory location.285

It is used to compute the vertex degrees in the initial graph (line 9). The second
operation CompAndSwap(memory, value, replace) first checks whether the
memory location has the value. If so, its content is replaced. The final content
is returned. The third operation AddAndFetch(memory, value) atomically
adds a given value to a memory location and the final content is returned. We290

will describe the use of these two operations later.
KarpSipserMT has two phases which correspond to the two phases of KS.

The first phase of KarpSipserMT is similar to that of KS in that optimal
matching decisions are made about some degree-one vertices. The second phase

10

Algorithm 4 KarpSipserMT

Input G = {V, choice[·]: the chosen vertex for each u ∈ V }
Output match[·]: the match array for u ∈ V
1: for all u ∈ V in parallel do
2: mark[u]← 1
3: deg[u]← 1
4: match[u]← NIL
5: for all u ∈ V in parallel do
6: v ← choice[u]
7: mark[v]← 0
8: if choice[v] 6= u then
9: Add(deg[v], 1)

10: for each vertex u in parallel do I Phase 1: out-one vertices
11: if mark[u] = 1 then
12: curr ← u
13: while curr 6= NIL do
14: nbr ← choice[curr]
15: if CompAndSwap(match[nbr],NIL, curr) = curr then
16: match[curr]← nbr
17: curr ← NIL
18: next← choice[nbr]
19: if match[next] = NIL then
20: if AddAndFetch(deg[next],−1) = 1 then
21: curr ← next
22: else
23: curr ← NIL
24: for each column vertex u in parallel do I Phase 2: the rest
25: v ← choice[u]
26: if match[u] = NIL and match[v] = NIL then
27: match[u]← v
28: match[v]← u

11

of KarpSipserMT handles remaining vertices very efficiently, without bother-295

ing with their degrees. The following definitions are used to clarify the difference
between an original KS implementation and KarpSipserMT.

Definition 1. Given a matching and the array choice, let u be an unmatched
vertex and v = choice[u]. Then u is called:

• out-one, if v is unmatched, and no unmatched vertex w with choice[w] =300

u exists.

• in-one, if v is matched, and only a single unmatched vertex w with
choice[w] = u exists.

The first phase of KarpSipserMT (for loop of line 10) does not track and
match all degree-one vertices. Instead, only the out-one vertices are taken into305

account. For each such vertex u that is already out-one before Phase 1, we
have mark[u] = 1. KarpSipserMT visits these vertices (lines 10-11). Newly
arising out-one vertices are consumed right away without maintaining a list.
The second phase of KarpSipserMT (for loop of line 24) is much simpler
than that of KS as the degrees of the vertices are not tracked/updated. We310

now discuss how these simplifications are possible while ensuring a maximum
cardinality matching in G.

Observation 1. An out-one or an in-one vertex is a degree-one in KS.

Observation 2. A degree-one vertex in KS is either an out-one or an in-
one vertex, or it is one of the two vertices u and v in a 2-clique such that315

v = choice[u] and u = choice[v].

Lemma 3. If there exists an in-one vertex in G at any time during the execution
of KarpSipserMT, an out-one vertex also exists.

Proof. Let u be an in-one vertex and let v be the unmatched vertex such that
choice[v] = u. Let P be the longest vertex sequence w1, w2, . . . , wk, u such320

that all wis are unmatched, choice[wi] = wi+1 for 1 ≤ i < k, and v = wk. If
P has a finite length, then w1 is an out-one vertex and we are done. On the
other hand, if P has an infinite length it must contain a cycle. Furthermore, u
must be in this cycle, since each wi’s next vertex, which also needs to be in the
cycle, is uniquely defined by choice. But u is an in-one vertex and choice[u] is325

already matched. Thus P has a finite length, and an out-one vertex (w1) always
exists.

According to Observation 1, all the matching decisions given by Karp-
SipserMT in Phase 1 are optimal, since an out-one vertex is a degree-one
vertex. Observation 2 implies that among all the degree-one vertices, Karp-330

SipserMT ignores only the in-ones and 2-cliques. According to Lemma 3, an
in-one vertex cannot exist without an out-one vertex, therefore they are han-
dled in the same phase. The 2-cliques that survive Phase 1 are handled in
KarpSipserMT’s Phase 2, since they can be considered as cycles.

To analyze the second phase of KarpSipserMT, we will use the following335

lemma.

12

Lemma 4. Let G′ = (V ′R ∪ V ′C , E′) be the graph induced by the remaining
vertices after the first phase of KarpSipserMT. Then, the set

{(u, choice[u]) : u ∈ V ′R, choice[u] ∈ V ′C}

is a maximum cardinality matching in G′.

Proof. Apart from 2-cliques, no out-one or in-one (that is no degree-one) vertex
remains after Phase 1. A component of G′ can be a trivial (a singleton vertex),
a 2-clique, or a simple cycle, according to Lemma 2. Let P be a non-trivial340

component. Since the original graph is bipartite, if P is a cycle it has the edges
(u, choice[u]) and (choice[v], v) for u ∈ V ′R ∩ P and v ∈ V ′C ∩ P . The edge set
{(u, choice[u]) : u ∈ V ′R ∩ P, choice[u] ∈ V ′C} defines a maximum cardinality
matching for P . The union of these edge sets matches all the vertices except
those in the trivial components, hence it is a maximum matching in G′.345

In the light of Observations 1 and 2 and Lemmas 2–4, KarpSipserMT is
an exact algorithm on the graphs created in Algorithm 3. The worst case (se-
quential) run time of our implementation of KS is linear.

KarpSipserMT tracks and consumes only the out-one vertices. This brings
high flexibility while executing KarpSipserMT in multi-threaded environ-350

ments. Consider the example in Figure 1. Here, after matching a pair of vertices
and removing them from the graph, multiple degree-one vertices can be gener-
ated. The standard KS uses a list to store these new degree-one vertices. Such a
list is necessary to obtain larger matching, but the associated synchronizations
while updating it in parallel will be an obstacle for efficiency. The synchroniza-355

tion can be avoided up to some level if one sacrifices the approximation quality
by not making all optimal decisions (as in some existing work [9]). We con-
tinue with the following lemma to take advantage of the special structure of the
graphs in TwoSidedMatch for parallel efficiency in Phase 1.

Lemma 5. Consuming an out-one vertex creates at most one new out-one360

vertex.

Proof. Let u be the out-one vertex that is selected by KarpSipserMT, and let
v be choice[u]. Since u is a degree-one vertex, its removal will only affect v. On
the other hand, although a number of in-one vertices may appear, v’s removal
can only make the vertex w = choice[v] out-one. This happens iff w is still365

unmatched, and there is no other unmatched vertex y with choice[y] = w.

According to Lemma 5, KarpSipserMT does not need a list to store the
new out-one vertices, since the process can continue with the new out-one ver-
tex. In a shared-memory setting, there are two concerns for the first phase from
the synchronization point of view. First, multiple threads that are consuming370

different out-one vertices can try to match them with the same unmatched ver-
tex. To handle such cases, KarpSipserMT uses the atomic CompAndSwap
operation (line 15 of Algorithm 4) and ensures that only one of these matchings
will be processed. In this case, other threads, whose matching decisions are

13

Figure 1: A toy bipartite graph with 9 row (circles) and 9 column (squares) vertices. The edges
are oriented from a vertex u to the vertex choice[u]. Assuming all the vertices are currently
unmatched, matching 15-7 (or 5-13) creates two degree-one vertices. But no out-one vertex
arises after matching (15-7) and only one, vertex 6, arises after matching (5-13).

not performed, continue with the next vertex in the for loop at line 10. The375

second concern is that while consuming out-one vertices, several threads may
create the same out-one vertex (and want to continue with it). For example, in
Figure 1, when two threads consume the out-one vertices 1 and 2 at the same
time, they both will try to continue with vertex 4. To handle such cases, an
atomic AddAndFetch operation (line 20 of Algorithm 4) is used to synchro-380

nize the degree reduction operations on the potential out-one vertices. This
approach explicitly orders the vertex consumptions and guarantees that only
the thread who performs the last consumption before a new out-one vertex u
appears continues with u. The other threads which wanted to continue with the
same path stop and skip to the next unconsumed out-one vertex in the main385

for loop. One last concern that can be important on the parallel performance is
the maximum length of such paths since a very long path can yield a significant
imbalance on the work distribution to the threads. the load imbalance that may
be created by the length of such paths. We investigated the length of such paths
experimentally (see Section 4.2) and observed them to be too short to hurt the390

parallel performance.
The second phase of KarpSipserMT is efficiently parallelized by using the

idea in Lemma 4. That is, a maximum cardinality matching for the graph
remaining after the first phase of KarpSipserMT can be obtained via a simple
parallel for construct (see line 24 of Algorithm 4).395

Quality of approximation

If the initial matrix A is the n × n matrix of 1s; that is aij = 1 for all
1 ≤ i, j ≤ n, then the doubly stochastic matrix S is such that sij = 1

n for all
1 ≤ i, j ≤ n. In this case, the graph G created by Algorithm 3 is a random 1-
out bipartite graph [29]. Referring to a study by Meir and Moon [30], Karoński400

and Pittel [31] argue that the maximum cardinality of a matching in a random
1-out bipartite graph is 2(1 − Ω)n ≈ 0.866n in expectation where Ω ≈ 0.567,
also called Lambert’s W (1), is the unique solution of the equation ΩeΩ = 1. In
the remaining of this subsection, we will show that the same result holds for
any square matrix A with total support. We state this as a theorem.405

14

Theorem 2. Let A be an n× n matrix with total support. Then, TwoSided-
Match obtains a matching of size 2(1−Ω)n ≈ 0.866n in expectation as n→∞,
where Ω ≈ 0.567 is the unique solution of the equation ΩeΩ = 1.

Theorem 2 contributes to the known results about the Karp-Sipser heuristic
(recall that it is known to leave out Õ(n1/5) vertices) by showing a constant ap-410

proximation ratio with some preprocessing. The existence of total support does
not seem to be necessary for the Theorem 2 to hold (see the next subsection).

We now set the scene for the proof of Theorem 2.
Let G = (A,B,E′) be the graph constructed at line 8 of Algorithm 3. In

the following, let f(a) ∈ B be the vertex randomly selected by an a ∈ A in the415

algorithm. Similarly, let g(b) denotes the vertex in A selected by b ∈ B. We
will extend the f and g functions for sets of vertices as follows: for a set S ⊆ A,
f(S) =

⋃
a∈S{f(a)}; for a set S′ ⊆ B, g(S′) =

⋃
b∈S′{g(b)}. We will denote the

vertex set selecting a specific vertex a ∈ A by g−1(a) = {b ∈ B : g(b) = a}, and
the vertex set selecting a specific vertex b ∈ B by f−1(b) = {a ∈ A : f(a) = b}.420

Our objective is to have an upper bound on the A vertices that will not be
matched by a Karp-Sipser (KS) execution on G. Consider the vertex set A1 ⊆ A
that are not picked by any node b ∈ B. Since an a ∈ A1 is a degree-1 vertex of
G, if a is a matched vertex it is matched with its only neighbor f(a) ∈ B. Let
B1 ⊆ B be f(A1). If A1 = ∅ all the vertices of A belong to a cycle, and hence,425

to a perfect matching. Otherwise, |A1| − |B1| vertices in A1 cannot be matched
by KS and matching the B1 vertices with A1 vertices will probably create new
degree-1 vertices in G′ = (A \A1, B \B1, E

′ ∩ (A \A1)× (B \B1)).
Starting with A1, let Bk recursively be the set of B vertices picked by at least

one vertex of Ak, that is Bk = f(Ak), and let Ak be the set of vertices not picked430

by any B \ Bk−1 vertex, that is Ak = A \ g(B \ Bk−1). Note that Ak−1 ⊆ Ak
for all k > 1. Similarly, Bk−1 ⊆ Bk and Bk contains all B vertices that are
perfectly matchable to the vertices in Ak. Here, |Ak|, |Bk| and |Ak| − |Bk| are
increasing sequences of k. The analysis simulates a batched KS variant where at
each step k, all Bk \Bk−1 vertices are matched to the Ak \Ak−1 vertices at once435

leaving some of Ak\Ak−1 vertices forever unmatched, i.e., isolated, and creating
new degree-1 A vertices (which appear in Ak+1). An does not contain all the A
vertices and A \An is perfectly matchable to B \Bn. Therefore, the number of
A vertices that will remain unmatched is |An| − |Bn| and the cardinality of the
matching found by KS will be |A| − |An|+ |Bn|.440

For each batched KS execution, there is at least one non-batched KS exe-
cution which obtains the matchings in the batches in some specific order and
reaches the maximum cardinality. Hence, as all the algorithms that prioritize
degree-1 vertices, the batched KS algorithm analyzed here obtains the maximum
cardinality matching.445

Let α
(k)
i denote the probability P (ai ∈ Ak) that the vertex ai belongs to

Ak for i, k ∈ {1, 2, . . . , n}. Similarly, let β
(k)
j denote the probability P (bj ∈ Bk)

that bj belongs to Bk for j, k ∈ {1, 2, . . . , n}. Note that
∑
i α

(n)
i −

∑
j β

(n)
j =

E(|An| − |Bn|).

15

Theorem 2 will be proved by bounding the deficiency of the matching by450

upper bounding |An| − |Bn|.

Lemma 6. When the recursive process above is executed based on the values in
the scaled matrix S, the vertex bj ∈ B appears in Bk with probability

β
(k)
j ≥ 1− e−

(∑n
i=1 sij ·α

(k)
i

)
.

Proof. We write β
(k)
j = P (bj ∈ Bk) as

1−
∑
A′⊆A

P (f−1(bj) = A′) · P

(⋂
ai∈A′

ai /∈ Ak

)
(1)

where the first term of the summation is

P (f−1(bj) = A′) =

(∏
ai∈A′

sij

)
·

 ∏
ai /∈A′

(1− sij)

 . (2)

For the second term of the summation, let Ei be the event that “ai /∈ Ak”,
that is ai is selected by a vertex in B \Bk−1. We first prove by induction on |A′|
that P (

⋂
ai∈A′ Ei) ≤

∏
ai∈A′ P (Ei). For |A′| = 1, the (in)equality is evident;

assume that it is correct also for all A′ with |A′| < `. Let A′ be a subset of A of
size ` having the vertex au. Let A′′ = A′/au. By Bayes law and the induction
assumption, we have:

P

(⋂
ai∈A′

Ei

)
= P

(⋂
ai∈A′′

Ei

)
·P

(
Eu|

⋂
ai∈A′′

Ei

)
≤

∏
ai∈A′′

P (Ei)·P

(
Eu|

⋂
ai∈A′′

Ei

)
.

We now prove that P
(
Eu|

⋂
ai∈A′′ Ei

)
≤ P (Eu). Intuitively, the A vertices will

be selected by the previously decided B \ Bk−1 vertices and a condition that
restricts the event Eu to the selection of some other A vertices simply reduces
the probability of Eu. That is, if all the vertices in A′′ are already selected by
the vertices in B \ Bk−1, then fewer selection options and less chances remain
for au to be selected. More formally, P

(
Eu|

⋂
ai∈A′′ Ei

)
can be written as∑

B′⊆B/Bk−1

P (Eu|(
⋂

ai∈A′′
Ei) ∩ (B′ = g−1(A′′))) · P (B′ = g−1(A′′))

=
∑

B′⊆B/Bk−1

P (au ∈ g(B \ (B′ ∪Bk−1))) · P (B′ = g−1(A′′))

≤
∑

B′⊆B/Bk−1

P (au ∈ g(B \Bk−1)) · P (B′ = g−1(A′′))

≤ P (Eu).

16

This implies that for all A′ ⊆ A, we have P (
⋂
ai∈A′ Ei) ≤

∏
ai∈A′ P (Ei) and

therefore,

P

(⋂
ai∈A′

ai /∈ Ak

)
≤
∏
ai∈A′

P (ai /∈ Ak) . (3)

Based on these observations, β
(k)
j = P (bj ∈ Bk) can be bounded as follows:

β
(k)
j = 1−

∑
A′⊆A

P (f−1(bj) = A′) · P

(⋂
ai∈A′

ai /∈ Ak

)
by (2) and (3), we have

≥ 1−
∑
A′⊆A

(∏
ai∈A′

sij

)
·

 ∏
ai /∈A′

(1− sij)

 ·(∏
ai∈A′

P (ai /∈ Ak)

)
then by Lemma 1

= 1−
∏
ai∈A

(1− sij + sij · P (ai /∈ Ak))

= 1−
∏
ai∈A

(1− sij · P (ai ∈ Ak))

= 1−
∏
ai∈A

(
1− sij · α(k)

i

)
and by the arithmetic geometric inequality,

≥ 1−

1−

(∑
i∈A sij · α

(k)
i

)
n

n

≥ 1− e−
(∑

i∈A sij ·α
(k)
i

)
.

Lemma 7. When the recursive process above is executed based on the values in
the scaled matrix S, the vertex ai ∈ A appears in Ak with probability

α
(k)
i ≤ e−

(
1−
∑n
j=1 sij ·β

(k−1)
j

)

Proof. The proof will follow the previous one. We write α
(k)
i , the probability

that ai belongs to Ak, as

∑
B′⊆B

P (g−1(ai) = B′) · P

 ⋂
bj∈B′

bj ∈ Bk−1

17

where the first term of the summation is

P (g−1(ai) = B′) =

 ∏
bj∈B′

sij

 ·
 ∏
bj /∈B′

1− sij

 . (4)

We will obtain an upper bound on the second term of the summation to

upper bound α
(k)
i . Let Fj be the event “bj ∈ Bk−1”, that is, bj is selected by

a vertex in Ak−1. We first prove by induction on |B′| that P (
⋂
bj∈B′ Fj) ≤∏

bj∈B′ P (Fj). For |B′| = 1, the (in)equality is evident; assume that it holds

also for all B′ with |B′| < `. Let B′ be a subset of B of size ` having the vertex
bu. Let B′′ = B′/bu. By Bayes law and the induction assumption, we have:

P

 ⋂
bj∈B′

Fj

 = P

 ⋂
bj∈B′′

Fj

·P
Fu| ⋂

j∈B′′
Fj

 ≤ ∏
bj∈B′′

P (Fj)·P

Fu| ⋂
j∈B′′

Fj

 .

We now prove that P (Fu|
⋂
j∈B′′ Fj) ≤ P (Fu). Intuitively, the Bk vertices will

be selected by the previously decided Ak vertices and a condition that restricts
the event Fu to the selection of some other Bk vertices simply reduces the
probability of Fu. More formally, P (Fu|

⋂
j∈B′′ Fj) can be written as∑

A′⊆Ak

P (Fu|(
⋂

bj∈B′′
Fj) ∩ (A′ = f−1(B′′) ∩Ak)) · P (A′ = f−1(B′′) ∩Ak)

≤
∑

A′⊆Ak

P (bu ∈ f(Ak/A
′)) · P (A′ = f−1(B′′) ∩Ak)

≤
∑

A′⊆Ak

P (bu ∈ f(Ak)) · P (A′ = f−1(B′′) ∩Ak)

≤ P (Fu) .

This implies that for all B′ ⊆ B, we have P (
⋂
bj∈B′ Fj) ≤

∏
bj∈B′ P (Fj). There-

fore,

P

 ⋂
bj∈B′

bj ∈ Bk−1

 ≤ ∏
bj∈B′

P (bj ∈ Bk−1). (5)

Based on these observations, α
(k)
i = P (ai ∈ Ak) can be upper bounded as

18

follows:

α
(k)
i =

∑
B′⊆B

P (g−1(ai) = B′) · P (B′ ⊆ Bk−1)

by (4) and (5), we have

≤
∑
B′⊆B

 ∏
bj∈B′

sij

 ·
 ∏
bj /∈B′

(1− sij)

 ·
 ∏
bj∈B′

P (bj ∈ Bk−1)

then by Lemma 1

=
∏
j∈B

(1− sij + sij · P (bj ∈ Bk−1)) ,

and by the arithmetic geometric inequality

≤

1−

(∑
bj∈B sij · (1− β

(k)
j)
)

n

n

≤ e−
(

1−
∑
bj∈B

sij ·β(k)
j

)
.

Now consider the sequences α
(k)
i and β

(k)
j for fixed i and j; since these

sequences are increasing with k and the terms are always smaller than 1, they455

converge to some value. Let us denote these limits by αi and βj , respectively.
Let α and β be the vectors of αis and βjs, i.e.,

α = (α1, α2, . . . , αn) ∈ [0, 1]n

β = (β1, β2, . . . , βn) ∈ [0, 1]n

where by Theorems 6 and 7

αi ≤ e−(1−
∑

1≤j≤n sij ·βj) for all 1 ≤ i ≤ n ,
βj ≥ 1− e−

∑
1≤i≤n sij ·αi for all 1 ≤ j ≤ n .

We now prove that for 2n values respecting these properties,
∑
i αi−

∑
j βj ≤

n · (2Ω− 1), where Ω equals to W (1) of Lambert’s W function (Ω = e−Ω). Note460

that 2Ω− 1 ≈ 0.134, and therefore the expected value of the matching is about
0.866 · n.

Lemma 8. Let X = (xi)1≤i≤n ∈ [0, 1]n, Y = (yj)1≤j≤n ∈ [0, 1]n such that:

xi ≤ e−(1−
∑

1≤j≤n sij ·yj). (6)

yj ≥ 1− e−
∑

1≤i≤n sij ·xi (7)

The maximum value of
∑
i xi−

∑
j yj is n · (2Ω− 1) which is attained when

all xi = Ω and all yj = 1− Ω, where Ω is the unique solution of ΩeΩ = 1.

19

Proof. Let (XΩ, YΩ) denote the solution where xi = Ω and yj = 1 − Ω for465

all i and j. The solution (XΩ, YΩ) satisfies (6) and (7) and attains the value
n · (2Ω− 1). We now show that there cannot be a solution with a value larger
than n · (2Ω− 1).

We are going to take a solution (X,Y) 6= (XΩ, YΩ) and investigate three
cases: (i) 0 < xi, yj < 1 for all i and j, and

∑
xi−

∑
yj > n · (2Ω−1); (ii) there470

is an xi = 0 or yj = 0; (iii) there is an xi = 1 or yj = 1. In all three cases, we
are going to show that (X,Y) cannot be optimal. In the remaining case, where
0 < xi, yj < 1 for all i and j, and

∑
xi −

∑
yj ≤ n · (2Ω− 1), the solution is no

better than (XΩ, YΩ).

Case (i): Here 0 < xi, yj < 1 for all i and j, and
∑
xi −

∑
yj > n · (2Ω − 1).475

In this case, we show that (X,Y) cannot be optimal, thus achieving a
contradiction.

Let (X ′, Y ′) be defined as follows: x′i = xi−(1−p)·Ω
p and y′j =

yj−(1−p)·(1−Ω)
p

for any p ∈ R with 0 < p < 1. In other words,

xi = p · x′i + (1− p) · Ω (8)

yj = p · y′j + (1− p) · (1− Ω) . (9)

Then from (6),

xi ≤ e−(1−
∑

1≤j≤n sij ·yj)

p · x′i + (1− p) · Ω ≤ e−(1−
∑

1≤j≤n sij ·(p·y
′
j+(1−p)·(1−Ω)))

and by the convexity of the function x→ e−(1−x),

≤ p · e−(1−
∑

1≤j≤n sij ·y
′
j) + (1− p) · Ω

x′i ≤ e
−(1−

∑
1≤j≤n sij ·y

′
j) .

The same way, from (7),

yj ≥ 1− e−
∑

1≤i≤n sij ·xi

p · y′j + (1− p) · (1− Ω) ≥ 1− e−
∑

1≤i≤n sij ·(p·x
′
i+(1−p)·Ω)

and by the concavity of the function x→ 1− e−x,

≥ p ·
(

1− e−
∑

1≤i≤n sij ·x
′
i

)
+ (1− p) · (1− Ω)

y′j ≥ 1− e−
∑

1≤i≤n sij ·x
′
i .

Thus, (X ′, Y ′) satisfies (6) and (7).

We now define a p with the property that 0 < p < 1 which leads to
0 ≤ x′i, y

′
j ≤ 1. Let mx = mini{xi}, my = minj{yj}, Mx = maxi{xi}480

and My = maxj{yj}. Let p = max{Mx−Ω
1−Ω , Ω−mx

Ω ,
My−1+Ω

Ω ,
1−Ω−my

1−Ω }.
Since, 0 < xi, yj < 1, we have 0 < p < 1. We note that by definition
p · (x′i − Ω) = xi − Ω and p · (y′j − 1 + Ω) = yj − 1 + Ω. We now analyze
x′i. If x′i ≥ Ω,

20

p · (x′i − Ω) = xi − Ω
(x′i − Ω) = xi−Ω

p

x′i − Ω ≤ 1−Ω
Mx−Ω · (xi − Ω)

≤ 1− Ω
x′i ≤ 1

and the same way, if x′i ≤ Ω,

p · (x′i − Ω) = xi − Ω
x′i − Ω ≥ Ω

Ω−mx · (xi − Ω)

≥ −Ω
x′i ≥ 0 .

Hence, 0 ≤ x′i ≤ 1. The same can be shown for y′j by using the other two485

inequalities for p. Thus, (X ′, Y ′) is a feasible solution.

We now show that
∑
i x
′
i −

∑
j y
′
j >

∑
i xi −

∑
j yj , contradicting the

optimality of (X,Y). By Equations (8) and (9), we have∑
(p · x′i + (1− p) · Ω) =

∑
xi and

∑(
y′j + (1− p) · (1− Ω)

)
=
∑

yj .

Therefore,

p·
(∑

x′i −
∑

y′j − n · (2Ω− 1)
)

=
∑

xi−
∑

yj−n·(2Ω−1) > 0 . (10)

Hence,∑
i x
′
i −
∑
j y
′
j =

∑
x′i −

∑
y′j − n · (2Ω− 1) + n · (2Ω− 1)

> p ·
(∑

x′i −
∑
y′j − n · (2Ω− 1)

)
+ n · (2Ω− 1)

by using Equation (10) and its analogue for y′j
=
∑
xi −

∑
yj

Case (ii): Here xi = 0 or yj = 0 for some i and j. We will show that in
this case, unless all xi and yj are zero, we can obtain (X ′, Y ′) such that∑
x′i −

∑
y′j >

∑
xi −

∑
yj , and hence (X,Y) cannot be optimal. But if

all xi = 0 and yj = 0, then we have
∑
xi −

∑
yj = 0 < n · (2Ω− 1), and490

hence (X,Y) is not optimal.

Suppose that yj = 0. Then, from Equation (7), we have xj = 0 for all
sij > 0.

Suppose that xi = 0. Let x′′i = e−1, and x′′k = xk for all k 6= i and let

y′′j = 1−(1−yj)·(1−sij ·e−1) for all j. Note that x′′i = e−1 ≤ e−(1−
∑
i sij ·y

′′
j)

and y′′j ≥ yj . Then,

y′′j = 1− (1− yj) · (1− sij · e−1)

≥ 1− e−
∑
i sij ·xi(1− sij · e−1)

≥ 1− e−
∑
i sij ·xie−sij ·e

−1

≥ 1− e−
∑
i sij ·x

′′
i

21

and for k 6= i,

x′′k = xk
≤ e−(1−

∑
j skj ·yj)

≤ e−(1−
∑
j skj ·y

′′
j) .

Then, (X ′′, Y ′′) is a solution, and

∑
i

x′′i − y′′i =
∑
i

xi − yi + e−1

1−
∑
j

sij · (1− yj)

 .

If (X,Y) were optimum, then
∑
j sij · yj = 0, and for all j with sij > 0,495

we have yj = 0.

Since the graph of A has the strong Hall property, for any proper subset
V (A of vertices, we have |V | < |adj(V)|, and the same condition holds
for the proper subsets of B vertices. Therefore, the two properties just
shown imply that all xi = 0 and all yi = 0.500

Case (iii): Here xi = 1 or yj = 1 for some i and j. Let (X ′, Y ′) be such that
x′i = 1− yi and y′j = 1− xj . Then (X ′, Y ′) is feasible and have the same
value. This is because, 0 ≤ x′i, y

′
j ≤ 1 for all i and j, and (6) and (7)

are exchanged, if we replace xi by 1 − yi and yi by 1 − xi. Since X or
Y contains a one, X ′ or Y ′ contains a zero. Therefore, we can use Case505

(ii) above for (X ′, Y ′) and show that if (X ′, Y ′) were optimal, then xi = 1
and yj = 1 for all i and j. Therefore,

∑
xi −

∑
yj = 0 < n · (2Ω− 1).

By the cases above, (XΩ, YΩ) is optimal and hence n · (2Ω− 1) is the maximum
value.

We are now ready to give the proof of Theorem 2.510

Proof of Theorem 2. If the original matrix A is fully indecomposable, then we
have the desired result by Lemma 8. If the matrix has total support, but
decomposable (that is A is block diagonal with square diagonal blocks being
fully indecomposable), then the analysis in Lemma 8 shows that at each diagonal
block 2(1−Ω) approximation is achieved, thus yielding the same approximation515

ratio for A.

3.3. Further discussions

The Sinkhorn-Knopp scaling algorithm converges linearly (when A has total
support) where the convergence rate is equivalent to the square of the second
largest singular value of the resulting, doubly stochastic matrix [25]. If the520

matrix does not have (total) support, less is known about the Sinkhorn-Knopp
scaling algorithm, in which case, we are not able to bound the run time of the
scaling step. However, the scaling algorithms should be run only a few iterations

22

(see also below) in practice, in which case the practical run time of our heuristics
would be linear (in edges and vertices).525

We have discussed the proposed matching heuristics while assuming that
A has total support. This can be relaxed in two ways to render the overall
approach practical in any bipartite graph. The first relaxation is that we do not
need to run the scaling algorithms until convergence (as in some other uses of
similar algorithms [26]). If

∑
i∈A∗j sij ≥ α instead of

∑
i∈A∗j sij = 1 for all j ∈530

{1, . . . , n} then, limd→∞
(
1− α

d

)d
= 1

eα . In other words, if we apply the scaling
algorithms a few iterations, or until some relatively large error tolerance, we can
still derive similar results. For example, if α = 0.92, we will have a matching of
size n

(
1− 1

eα

)
≈ 0.601n (larger column sums give improved ratios; but there

are columns whose sum is less than one, when the convergence is not achieved)535

for OneSidedMatch. With the same α, TwoSidedMatch will obtain an
approximation of 0.840 (obtained by plugging in

∑
sij = α in Equation (7);

again larger column sums give improved ratios). In our experiments, the number
of iterations were always a few, where the proven approximation guarantees
were always observed. The second relaxation is that we do not need total540

support; we do not even need support nor equal number of vertices in the two
vertex classes. We note that most theoretical studies on randomized matching
heuristics concentrate on graphs with perfect matching, as this is enough to
present approximation guarantees [15, Section 2]. Since little is known about
the scaling methods on such matrices, we do not dwell into the subject (scaling545

algorithms are not our focus), but we mention some facts and observations,
and later on, present some experiments to demonstrate the practicality of the
proposed OneSidedMatch and TwoSidedMatch heuristics.

A sparse matrix (not necessarily square) can be permuted into a block up-
per triangular form using the canonical Dulmage-Mendelsohn (DM) decompo-
sition [32]

A =

 H ∗ ∗
O S ∗
O O V

 , S =

(
S1 ∗
O S2

)
where, H (horizontal) has more columns than rows and has a matching covering
all rows; S is square and has a perfect matching; and V (vertical) has more rows550

than columns and a matching covering all columns. The following facts about
the DM decomposition are well known [33, 13]. Any of these three blocks can
be void. If H is not connected, then it is block diagonal with horizontal blocks.
If V is not connected, then it is block diagonal with vertical blocks. If S does
not have total support, then it is in block upper triangular form, shown on the555

right, where S1 and S2 have the same structure recursively, until each block
Si is has total support. The entries in the blocks shown by “*” cannot be put
into a maximum cardinality matching. When the presented scaling methods
are applied to a matrix, the entries in “*” blocks will tend to zero (the case
of S is well documented [24]). Furthermore, the row sums of the blocks of H560

will be a multiple of the column sums in the same block; a similar statement
holds for V ; finally S will be doubly stochastic. That is, the scaling algorithms

23

applied to bipartite graphs without perfect matchings will zero out the entries
in the irrelevant parts and identify the entries that can be put into a maximum
cardinality matching.565

4. Experiments

We conduct experiments for two purposes. The first purpose is to observe the
theoretical findings in practice. To do so, we first run the proposed heuristics on
a set of matrices arising in various applications having support and measure the
quality of the results. We then run the heuristics on sparse random matrices to570

compare the quality of TwoSidedMatch with the original Karp-Sipser. This
will show if the approximation ratio of TwoSidedMatch is any better than
simply running KS. We also conduct experiments with matrices, both square and
rectangular, that do not have total support to highlight the cases that are not
fully supported by our theoretical analysis. The second purpose of experiments575

is to investigate the efficiency of our parallel implementations of the proposed
heuristics.

The experiments were carried out on a machine equipped with two Intel
Sandybridge-EP CPUs clocked at 2.00Ghz and 256GB of memory split across
the two NUMA domains. Each CPU has eight-cores (16 cores in total) and580

HyperThreading is enabled. Each core has its own 32kB L1 cache and 256kB L2
cache. The 8 cores on a CPU share a 20MB L3 cache. The machine runs 64-bit
Debian with Linux 2.6.39-bpo.2-amd64. All the codes are compiled with gcc

4.4.5 with the -O2 optimization flag. All algorithms are implemented using
C and OpenMP parallelism. The (dynamic,512) OpenMP scheduling policy is585

employed while running all the algorithms except KarpSipserMT for which we
used (guided). The dynamic policy is chosen to avoid a possible load imbalance
due to a non-uniform degree distribution in the bipartite graph. On the other
hand, the guided policy is a better fit for KarpSipserMT since the number of
degree-one/out-one vertices tends to decrease throughout the execution. These590

claims are also verified by a set of preliminary experiments. Parallel runs are
performed with 2, 4, 8, 16 threads.

In our first heuristic OneSidedMatch, the match array is constructed by
assuming a “last-store wins” policy which guarantees that the last write oper-
ation to the same memory location survives. In our implementation, we used:595

(i) 32-bit unsigned integers for vertex IDs which are sufficient to handle graphs
with 4 billion vertices in practice; and (ii) the malloc function for memory
allocation which returns a suitably aligned pointer for any built-in type. Our
architectural setting guarantees that when the memory is aligned, all the 32-bit
store and load operations are atomic. Such a setting is very common in practice.600

However, for architectures which do not have such a guarantee, implementations
and techniques to force atomic stores and loads might be required.

For atomic operations required by KarpSipserMT, gcc 4.5.5’s built-in
functions, which support any integral scalar up to 8 bytes in length, are used.
Specifically, we used sync fetch and add, sync bool compare and swap,605

and sync sub and fetch operations. These operations are currently being

24

supported efficiently by many multicore architectures from Intel and AMD.
Hence, the algorithms are expected to perform reasonably well on modern mul-
ticore machines as we will show in this section.

We use a fixed number of scaling iterations. This way, the scaling algorithm610

is simplified, as no convergence check is required. Furthermore, its overhead
is bounded as well. In most of the experiments, we use 0, 1, 5, or 10 scaling
iterations, where the case of 0 corresponds to applying the matching heuristics
with uniform edge selection probabilities.

4.1. Experimental verification of theoretical results615

4.1.1. Matching quality

We investigate the matching quality of the proposed heuristics on all square
matrices with support from the UFL Sparse Matrix Collection [34] having at
least 1000 non-empty rows/columns and at most 20000000 nonzeros (some of
the matrices are also in the 10th DIMACS challenge [35]). There were 742620

matrices satisfying these properties at the time of experimentation. With the
OneSidedMatch heuristic, the quality guarantee of 0.632 was surpassed with
10 iterations of the scaling method in 729 matrices. With the TwoSidedMatch
heuristic and the same number of iterations of the scaling methods, the quality
guarantee of 0.866 was surpassed in 705 matrices. Making 10 more scaling625

iterations smoothed out the remaining instances. Note that the cheap matching
heuristic (the second variant discussed in Section 2.1) obtained, on average (both
the geometric and arithmetic means), matchings of size 0.93 of the maximum
cardinality. In the worst case, 0.82 was observed.

4.1.2. Comparison of TwoSidedMatch with KarpSipser630

Next, we analyze the performance of the proposed heuristics with respect
to KS on a matrix class which we designed as a bad case for KS. Let A be an
n × n matrix, R1 be the set of A’s first n/2 rows, and R2 be the set of A’s
last n/2 rows; similarly let C1 and C2 be the set of first n/2 and the set of last
n/2 columns. As Figure 2 shows, A has a full R1 × C1 block and an empty635

R2 × C2 block. The last k � n rows and columns of R1 and C1, respectively,
are full. Each of the blocks R1×C2 and R2×C1 has a nonzero diagonal. Those
diagonals form a perfect matching when combined. In the sequel, a matrix whose
corresponding bipartite graph has a perfect matching will be called full-sprank,
and sprank-deficient otherwise.640

When k ≤ 1, the KS heuristic consumes the whole graph during Phase 1
and finds a maximum cardinality matching. When k > 1, Phase 1 immediately
ends, since there is no degree-one vertex. In Phase 2, the first edge (nonzero)
consumed by KS is selected from a uniform distribution over the nonzeros whose
corresponding rows and columns are still unmatched. Since the block R1 × C1645

is full, it is more likely that the nonzero will be chosen from this block. Thus,
a row in R1 will be matched with a column in C1, which is a bad decision
since the block R2 × C2 is completely empty. Hence, we expect a decrease on
the performance of KS as k increases. On the other hand the probability that

25

Figure 2: A generic full-sprank matrix structure that is bad for KS.

Results with different number of scaling iterations
Karp 0 1 5 10

k Sipser Qual. Err. Qual. Err. Qual. Err. Qual.
2 0.782 0.522 13.853 0.557 3.463 0.989 0.578 0.999
4 0.704 0.489 11.257 0.516 3.856 0.980 0.604 0.997
8 0.707 0.466 8.653 0.487 4.345 0.946 0.648 0.996

16 0.685 0.448 6.373 0.458 4.683 0.885 0.725 0.990
32 0.670 0.447 4.555 0.453 4.428 0.748 0.867 0.980

Table 1: Quality comparison (minimum of 10 executions for each instance) of the KS heuristic
and TwoSidedMatch on matrices described in Fig. 2 with n = 3, 200 and k ∈ {2, 4, 8, 16, 32}.

TwoSidedMatch chooses an edge from that block goes to zero, as those entries650

cannot be in a perfect matching.
The results of the experiments are in Table 1. The first column shows the k

value. Then the matching quality obtained by KS, and by TwoSidedMatch
with different number of scaling iterations (0, 1, 5, 10), as well as the scaling
error are given. The scaling error is the maximum difference between 1 and each655

row/column sum of the scaled matrix (for 0 iterations it is equal to n− 1 for all
cases). The quality of a matching is computed by dividing its cardinality to the
maximum one, which is n = 3200 for these experiments. To obtain the values
in each cell of the table, we run the programs 10 times and give the minimum
quality (as we are investigating the worst-case behavior). The highest variance660

for KS and TwoSidedMatch were (up to four significant digits) 0.0041 and
0.0001, respectively. As expected, when k increases, the KS heuristic performs
worse, and the matching quality drops to 0.67 for k = 32. TwoSidedMatch’s
performance increases with the number of scaling iterations. As the experiment
shows, only 5 scaling iterations are sufficient to make the proposed two-sided665

matching heuristic significantly better than KS. However, this number is not
enough to reach 0.866 for the matrix with k = 32. On this matrix, with 10
iterations, only 2% of the rows/columns remain unmatched.

26

One Two One Two
Sided Sided Sided Sided

d iter sprank Match Match d iter sprank Match Match
Square 100000× 100000

2 0 78,225 0.770 0.912 4 0 97,787 0.644 0.838
2 1 78,225 0.797 0.917 4 1 97,787 0.673 0.848
2 5 78,225 0.850 0.939 4 5 97,787 0.719 0.873
2 10 782,25 0.879 0.954 4 10 97,787 0.740 0.886
3 0 92,786 0.673 0.851 5 0 99,223 0.635 0.840
3 1 92,786 0.703 0.857 5 1 99,223 0.662 0.851
3 5 92,786 0.756 0.884 5 5 99,223 0.701 0.873
3 10 92,786 0.784 0.902 5 10 99,223 0.716 0.882

Rectangular 100000× 120000
2 0 87,373 0.793 0.912 4 0 99,115 0.729 0.899
2 1 87,373 0.815 0.918 4 1 99,115 0.754 0.910
2 5 87,373 0.861 0.939 4 5 99,115 0.792 0.933
2 10 87,373 0.886 0.955 4 10 99,115 0.811 0.946
3 0 96,564 0.739 0.896 5 0 99,761 0.725 0.905
3 1 96,564 0.769 0.904 5 1 99,761 0.749 0.917
3 5 96,564 0.813 0.930 5 5 99,761 0.781 0.936
3 10 96,564 0.836 0.945 5 10 99,761 0.792 0.943

Table 2: Matching qualities of the proposed heuristics on random sparse matrices with uniform
nonzero distribution. Square matrices in the top half, rectangular matrices in the bottom half.
d: average number of nonzeros per row.

4.1.3. Matching quality on bipartite graphs without perfect matchings

We analyze the proposed heuristics on a class of random sprank-deficient670

square (n = 100000) and rectangular (m = 100000 and n = 120000) matrices
with a uniform nonzero distribution (two more sprank-deficient matrices are
used in the scalability tests as well). These matrices are generated by Matlab’s
sprand command (generating Erdös-Rényi random matrices [36]). The total
nonzeros is set to be around d × 100000 for d ∈ {2, 3, 4, 5}. The top half of675

Table 2 presents the results of this experiment with square matrices, and the
bottom half presents the results with the rectangular ones.

As in the previous experiments, the matching qualities in the table is the
minimum of 10 executions for the corresponding instances. As Table 2 shows,
when the deficiency is high (correlated with small d), it is easier for our algo-680

rithms to approximate the maximum cardinality. However, when d gets larger,
the algorithms require more scaling iterations. Even in this case, 5 iterations
are sufficient to achieve the guaranteed qualities. In the square case, the mini-
mum quality achieved by OneSidedMatch and TwoSidedMatch were 0.701
and 0.873 In the rectangular case, the minimum quality achieved by OneSid-685

edMatch and TwoSidedMatch were 0.781 and 0.930, respectively, with 5
scaling iterations. In all cases, increased scaling iterations results in higher
quality matchings, in accordance with the previous results on square matrices
with perfect matchings.

27

Avg. sprank
Name n # of edges deg. stdA stdB n
atmosmodl 1,489,752 10,319,760 6.9 0.3 0.3 1.00
audikw 1 943,695 77,651,847 82.2 42.5 42.5 1.00
cage15 5,154,859 99,199,551 19.2 5.7 5.7 1.00
channel 4,802,000 85,362,744 17.8 1.0 1.0 1.00
europe osm 50,912,018 108,109,320 2.1 0.5 0.5 0.99
Hamrle3 1,447,360 5,514,242 3.8 1.6 2.1 1.00
hugebubbles 21,198,119 63,580,358 3.0 0.03 0.03 1.00
kkt power 2,063,494 12,771,361 6.2 7.45 7.45 1.00
nlpkkt240 27,993,600 760,648,352 26.7 2.22 2.22 1.00
road usa 23,947,347 57,708,624 2.4 0.93 0.93 0.95
torso1 116,158 8,516,500 73.3 419.59 245.44 1.00
venturiLevel3 4,026,819 16,108,474 4.0 0.12 0.12 1.00

Table 3: Properties of the matrices used in the experiments. In the table, sprank is the
maximum matching cardinality, Avg. deg. is the average vertex degree, stdA and stdB are
the standard deviations of A and B vertex (row and column) degrees, respectively.

4.2. OneSidedMatch and TwoSidedMatch in parallel690

To analyze the scalability of the proposed heuristics in practice, we used 12
large bipartite graphs corresponding to real-life matrices from UFL collection
arising in different application domains. The names hugebubbles and channel

refer to the matrices hugebubbles-00020 and channel-500x100x100-b050, respec-
tively. The properties of the bipartite graphs are given in Table 3 and the sequen-695

tial run times (the run time of OneSidedMatch includes that of ScaleSK,
and TwoSidedMatch includes those of ScaleSK and KarpSipserMT) along
with the scaling errors for 1, 5, and 10 iterations are given in Table 4. All the
executions in this experiment are repeated 20 times and the first five are ig-
nored. The times are computed by using the geometric mean of the remaining700

15 executions for each instance. No significant variances were observed among
the individual run times. The speedup values are computed with respect to the
execution with a single-thread.

Figures 3(a) and 3(b) show the individual speedup values for ScaleSK
and the proposed matching heuristic OneSidedMatch, respectively. When705

executed with 16 threads, ScaleSK obtains a speedup value around 8 or more
for all matrices. The maximum speedup of 10.6 is obtained for hugebubbles.
The scalability of OneSidedMatch is better. For 10 matrices, a speedup value
around 10 or more is obtained. The maximum speedup of 11.4 is obtained for
the matrix europe osm with 16 threads.710

The structure of a matrix can affect the scalability. Both for ScaleSK
and OneSidedMatch, the minimum speedups (7.7 and 8.4, respectively) are
obtained on torso1. As Table 3 shows, torso1 and audikw 1 are the two
smallest matrices with less than 106 rows and columns and a high variance on
their degree distributions. As Figure 3(b) shows, OneSidedMatch obtains its715

worst speedups on these matrices. This is not a coincidence; when the coefficient

28

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(a) ScaleSK

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(b) OneSidedMatch

Figure 3: Speedups for ScaleSK and OneSidedMatch with a single scaling iteration.

29

Exec. times with single thread (secs)
Scaling error One Karp Two

(number of iters.) Scale Sided Sipser Sided
Name 1 5 10 SK Match MT Match

atmosmodl 0.06 0.01 0.00 0.037 0.095 0.236 0.273
audikw 1 0.17 0.02 0.01 0.188 0.364 0.452 0.640
cage15 0.18 0.03 0.02 0.306 0.627 1.373 1.679
channel 0.10 0.01 0.00 0.274 0.537 0.937 1.211

europe osm 8.43 8.00 8.00 1.625 3.599 9.643 11.270
Hamrle3 0.99 0.37 0.15 0.028 0.067 0.196 0.223

hugebubbles 0.33 0.17 0.11 1.303 2.840 7.942 9.251
kkt power 13.83 1.27 1.00 0.063 0.132 0.339 0.401
nlpkkt240 2.23 0.99 0.71 1.864 3.704 6.642 8.481
road usa 6.08 6.00 6.00 0.712 1.581 4.237 4.949
torso1 0.13 0.02 0.01 0.021 0.040 0.045 0.066

venturiLevel3 0.23 0.05 0.03 0.094 0.239 0.672 0.766

Table 4: Scaling error: the maximum difference between one and column sums; Sequential
execution times of ScaleSK (per itaration), OneSidedMatch, KarpSipserMT, and TwoSid-
edMatch.

of variation (the ratio of the standard deviation to the mean) on the number
of nonzeros per row is high, the effect of the load imbalance can be significant.
Although we conducted a set of preliminary experiments on OpenMP scheduling
policies, we did not fine tune it to have the best one. We believe that the720

OpenMP dynamic policy should perform well especially for these matrices with
a high variance on the number of nonzeros per row. However, one can still
obtain a better performance with a different chunk size (other than 512) fine
tuned for each matrix.

We repeated the scalability experiment for KarpSipserMT and TwoSid-725

edMatch on the same matrix set. The results for the first set can be seen
in Figures 4(a) and 4(b), respectively. On average (geometric mean), Karp-
SipserMT obtains a speedup of 11.1 with 16 threads. The maximum speedup
of 12.6 is obtained on the matrix channel. These results show that the pro-
posed KarpSipserMT is highly scalable on the graphs generated in TwoSid-730

edMatch without any quality loss with the increasing thread counts (see [9]
for an efficient but inexact parallel KS implementation).

The parallel performance of the KarpSipserMT algorithm depends on the
distribution of the out-one vertex paths to the threads. Throughout the execu-
tion, starting from an initially out-one vertex, the threads follow these paths that735

intersect with each other. In our implementation, at the points of intersection,
one of the threads continue, and the others are assigned to the remaining paths,
if any. To analyze how balanced these paths are distributed to the threads,
we first investigated the maximum path length traversed by a thread and did
not observe a path length larger than 20 in any of the executions. We then740

counted the edges processed by each thread for the edge selection (lines 2-7 of

30

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(a) KarpSipserMT

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(b) TwoSidedMatch

Figure 4: Speedups for KarpSipserMT and TwoSidedMatch with a single scaling iteration.

31

Algorithm 3 where the rchoice and cchoice arrays are constructed) and Karp-
SipserMT phases of TwoSidedMatch and measured the imbalance. Here we
give the details of these experiments.

We counted the number of out-one paths and the maximum path length745

traversed by a thread in KarpSipserMT after 10 scaling iterations and using
16 threads. We repeated the experiment 20 times and report the averages. Fig-
ure 5(a) shows the number of such paths normalized with respect to the number
of vertices, 2n, for the 12 matrices in Table 3. As expected, the average number
of initial out-one vertices is always smaller than 0.37 which is the difference be-750

tween one and the quality guarantee of OneSidedMatch. Figure 5(b) shows
the average maximum path length for the same set of matrices. As the numbers
show, one thread does not follow a very long path before going for the next one.
Hence, we do not expect that the imbalance on the workload will have signif-
icant impact on the performance of KarpSipserMT. We repeated the same755

experiment on an R-MAT [37] graph with n = 107 vertices and m = 109 edges
generated with probabilities (0.45, 0.15, 0.15, 0.25) using GTgraph [38]. The R-
MAT graphs are well known and this experiment gives additional insight on the
length of the paths traversed by different threads. For the R-MAT matrix we
used, the standard deviations stdA and stdB are computed as 183.5 and 99.5.760

In this experiment with 20 repetitions, the average ratio of the out-one paths
to 2n is 0.31 and the average maximum path length is 16.

We computed the imbalance on the workload by counting the number of
edges processed by each thread during the edge selection and KarpSipserMT
phases of TwoSidedMatch. We performed the experiment with 8 and 16765

threads where we executed the heuristic 20 times for each case. Figures 6(a)
and 6(b) show the average imbalance where for each execution, the imbalance is
computed as the ratio of the maximum number of edges per thread to the average
minus 1. As expected, compared to 8-thread setting, the imbalance values are
generally higher for 16 threads. For KarpSipserMT, the imbalance values are770

quite nice and less than one except for Hamrle3 with 16 threads. This explains
the good scalability of KarpSipserMT in Figure 4(a). As Figure 6(a) shows,
the edge selection part of TwoSidedMatch suffers more from the workload
imbalance. However, for 8 out of 12 matrices, the imbalance values are still less
than or close to one. But for audikw 1, Hamrle3, kkt power, and torso1 the775

values can go over two with 16 threads. To analyze this behavior, in Figure 7, we
sorted the matrices with respect to their coefficients of variation (CV) and plot
the values along with the corresponding imbalances for 16 threads. We chose to
use CV instead of standard deviation since the deviation alone (without mean)
is not very useful to analyze the dispersion. In contrast, both CV and imbalance780

are dimensionless numbers. As the figure shows, although the correlation is not
exact, the imbalance values tend to increase and for higher CVs, we have higher
imbalance values.

We repeated the scalability experiment with all the matrices in UFL having
more than billion nonzeros (at the time of writing there were three of them)785

to test the proposed heuristics with large memory requirements. We measured
the speedup values with 16 threads. Originally, these matrices had empty rows

32

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

0.45#

0.50#

atm
os
mo
dl#

au
dik
w_
1#

ca
ge
15
#

ch
an
ne
l#

eu
rop
e_
os
m#

Ha
mr
le3
#

hu
ge
bu
bb
les
#

kk
t_p
ow
er#

nlp
kk
t24
0#

roa
d_
us
a#

tor
so
1#

ve
ntu
riL
ev
el3
#

(a) Number of out-one paths normalized to 2n for an n× n matrix

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hu
ge
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

(b) Maximum out-one path length

Figure 5: Normalized number of out-one vertex paths and the maximum path length followed
by the threads. For this experiment, 10 scaling iterations and 16 threads have been used. The
numbers are the averages of 20 independent executions.

Degree Speedup
Name n # of edges Min Max Avg SK 1SD 2SD
it-2004 41,291,594 1,177,010,503 1 9,965 28.5 9.9 12.6 12.1
webbase-2001 118,142,155 1,110,987,046 1 3,842 9.4 10.3 12.8 12.6
sk-2005 50,636,154 1,980,929,102 1 12,870 39.1 9.4 12.4 11.0

Table 5: The speedup values for ScaleSK (SK), OneSidedMatch (1SD), and TwoSided-
Match (2SD) with 16 threads for the billion-scale graphs from UFL.

33

0.00#

1.00#

2.00#

3.00#

4.00#

atm
os
mo
dl#

au
dik
w_
1#

ca
ge
15
#

ch
an
ne
l#

eu
rop
e_
os
m#

Ha
mr
le3
#

hu
ge
bu
bb
les
#

kk
t_p
ow
er#

nlp
kk
t24
0#

roa
d_
us
a#

tor
so
1#

ve
ntu
riL
ev
el3
#

8#threads# 16#threads#

(a) The imbalance on the number of edges processed by each thread
during the edge selection.

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

atm
os
mo
dl#

au
dik
w_
1#

ca
ge
15
#

ch
an
ne
l#

eu
rop
e_
os
m#

Ha
mr
le3
#

hu
ge
bu
bb
les
#

kk
t_p
ow
er#

nlp
kk
t24
0#

roa
d_
us
a#

tor
so
1#

ve
ntu
riL
ev
el3
#

8#threads# 16#threads#

(b) The imbalance on the the number of edges processed by each thread
during KarpSipserMT.

Figure 6: The imbalances on the number of processed edges for (a) the edge selection and (b)
KarpSipserMT within TwoSidedMatch for 8 and 16 threads. The values are the averages
of 20 executions.

34

0.0
0.5"
1.0

1.5"
2.0"
2.5"
3.0
3.5"
4.0

4.5"
5.0"

hu
ge
bu
bb
les
"

ve
ntu
riL
ev
el3
"

atm
os
mo
dl"

ch
an
ne
l"

nlp
kk
t24
0"

eu
rop
e_
os
m"

ca
ge
15
"

roa
d_
us
a"

Ha
mr
le3
"

au
dik
w_
1"

kk
t_p
ow
er"

tor
so
1"

Coefficient"of"variaCon"

Imbalance"on"neighbor"selecCon""(16"threads)"

Figure 7: Imbalance vs. coefficient of the variation: the matrices are sorted along wide the
x-axis with respect to their coefficients of variation that is the ratio of the overall standard
deviation of their degree distribution to the average degree. The imbalance values are the
averages of 20 executions with 16 threads.

and columns: to avoid complications, we added one additional nonzero to the
diagonal of each empty row/column. The properties of the matrices and the
speedup values for ScaleSK, OneSidedMatch, and TwoSidedMatch are790

in Table 5. As seen in this table, the speed up values obtained for these large
matrices are slightly better than the averages reported before.

With 16 threads, TwoSidedMatch obtains a speedup value of 10.6 on the
average. Compared to the average of OneSidedMatch (10.1), it is slightly
better. However, in a sequential setting, TwoSidedMatch is 2.6 times slower.795

To further compare these two heuristics, we present Figures 8(a) and 8(b) that
show the qualities on our test matrices. In the figures, the first columns represent
the case that the neighbors are picked from a uniform distribution over the
adjacency lists, i.e., the case with no scaling, hence no guarantee. The quality
guarantees are achieved with only 5 iterations for almost all the cases except800

TwoSidedMatch on nlpkkt240 which required 15 scaling iterations. Even
with a single iteration, the quality of TwoSidedMatch is more than 0.86 for
all matrices. Only for two among them, the quality is between 0.863 and 0.866.
The results are similar for OneSidedMatch. However, even with 10 scaling
iterations, OneSidedMatch cannot achieve a quality of 0.80 on any of the805

matrices. We conclude that OneSidedMatch is faster, TwoSidedMatch
has a better quality guarantee, and both demonstrate good speedups.

4.3. Further results with existing codes

We run Azad et al.’s [9] variant of Karp-Sipser (ksV), the two greedy match-
ing heuristics of Blelloch et al. [21] (inc and nd which are referred to as “in-810

cremental” and “non-deterministic reservation” in the original paper), and the
proposed OneSidedMatch and TwoSidedMatch heuristics with one and
16 threads on the matrices given in Table 3. We also add one more matrix
wc 50K 64 from the family shown in Fig. 2 with n = 50000 and k = 64. The

35

0.55$

0.60$

0.65$

0.70$

0.75$

0.80$

atm
os
mo
dl$

au
dik
w_
1$

ca
ge
15
$

ch
an
ne
l$

eu
rop
e_
os
m$

Ha
mr
le3
$

hg
bu
bb
les
$

kk
t_p
ow
er$

nlp
kk
t24
0$

roa
d_
us
a$

tor
so
1$

ve
ntu
riL
ev
el3
$

M
at
ch
in
g)
Q
ua

lit
y)

0$ 1$ 5$

(a) OneSidedMatch

0.80$

0.82$

0.84$

0.86$

0.88$

0.90$

atm
os
mo
dl$

au
dik
w_
1$

ca
ge
15
$

ch
an
ne
l$

eu
rop
e_
os
m$

Ha
mr
le3
$

hg
bu
bb
les
$

kk
t_p
ow
er$

nlp
kk
t24
0$

roa
d_
us
a$

tor
so
1$

ve
ntu
riL
ev
el3
$

M
at
ch
in
g)
Q
ua

lit
y)

)

0$ 1$ 5$

(b) TwoSidedMatch

Figure 8: Matching qualities of OneSidedMatch and TwoSidedMatch. The horizontal
lines are at 0.866 and 0.632, respectively, which are the approximation guarantees for the
heuristics (conjectured for TwoSidedMatch). Legend contains iteration numbers.

36

Run time in seconds
One thread 16 threads

Name ksV inc nd 1SD 2SD ksV inc nd 1SD 2SD
atmosmodl 0.20 14.80 0.07 0.12 0.30 0.03 1.63 0.01 0.01 0.03
audikw 1 0.98 206.00 0.22 0.55 0.82 0.10 16.90 0.02 0.06 0.09
cage15 1.54 9.96 0.39 0.92 1.95 0.29 1.10 0.04 0.09 0.19
channel 1.29 105.00 0.30 0.82 1.46 0.14 9.07 0.03 0.08 0.13
europe osm 12.03 51.80 2.06 4.89 11.97 1.20 7.12 0.21 0.46 1.05
Hamrle3 0.15 0.12 0.04 0.09 0.25 0.02 0.02 0.01 0.01 0.02
hugebubbles 8.36 4.65 1.28 3.92 10.04 0.95 0.53 0.18 0.37 0.94
kkt power 0.55 0.68 0.09 0.19 0.45 0.08 0.16 0.01 0.02 0.05
nlpkkt240 10.88 1900.00 2.56 5.56 10.11 1.15 237.00 0.23 0.58 1.06
road usa 6.23 3.57 0.96 2.16 5.42 0.70 0.38 0.09 0.22 0.50
torso1 0.11 7.28 0.02 0.06 0.09 0.02 1.20 0.00 0.01 0.01
venturiLevel3 0.45 2.72 0.13 0.32 0.84 0.08 0.29 0.01 0.04 0.09
wc 50K 64 7.21 3200.00 1.46 4.39 5.80 1.17 402.00 0.12 0.55 0.59

Quality of the obtained matching
Name ksV inc nd 1SD 2SD ksV inc nd 1SD 2SD
atmosmodl 1.00 1.00 1.00 0.66 0.87 0.98 1.00 0.97 0.66 0.87
audikw 1 1.00 1.00 1.00 0.64 0.87 0.95 1.00 0.97 0.64 0.87
cage15 1.00 1.00 1.00 0.64 0.87 0.95 1.00 0.91 0.64 0.87
channel 1.00 1.00 1.00 0.64 0.87 0.99 1.00 0.99 0.64 0.87
europe osm 0.98 0.95 0.95 0.75 0.89 0.98 0.95 0.94 0.75 0.89
Hamrle3 1.00 0.84 0.84 0.75 0.90 0.97 0.84 0.86 0.75 0.90
hugebubbles 0.99 0.96 0.96 0.70 0.89 0.96 0.96 0.90 0.70 0.89
kkt power 0.85 0.79 0.79 0.78 0.89 0.87 0.79 0.86 0.78 0.89
nlpkkt240 0.99 0.99 0.99 0.64 0.86 0.99 0.99 0.99 0.64 0.86
road usa 0.94 0.81 0.81 0.76 0.88 0.94 0.81 0.81 0.76 0.88
torso1 1.00 1.00 1.00 0.65 0.88 0.98 1.00 0.98 0.65 0.87
venturiLevel3 1.00 1.00 1.00 0.68 0.88 0.97 1.00 0.96 0.68 0.88
wc 50K 64 0.50 0.50 0.50 0.81 0.98 0.70 0.50 0.51 0.81 0.98

Table 6: Run time and quality of different heuristics. OneSidedMatch and TwoSidedMatch
are labelled with 1SD and 2SD, respectively. The heuristic ksV is from Azad et al. [9], and
the heuristics inc and nd are from Blelloch et al. [21].

OneSidedMatch and TwoSidedMatch heuristics are run with two scaling815

iterations, and the reported run time includes all components of the heuristics.
The inc and nd heuristics are compiled with g++ 4.4.5 and ksV is compiled
with gcc 4.4.5. For all the heuristics, we used -O2 optimization and the appro-
priate OpenMP flag for compilation. The run time of all heuristics (in seconds)
and their matching qualities are given in Table 6.820

As seen in Table 6, nd is the fastest of the tested heuristics with both one
thread and 16 threads on this data set. The second fastest heuristic is OneSid-
edMatch. The heuristic ksV is faster than TwoSidedMatch on six instances
with one thread. With 16 threads, TwoSidedMatch is almost always faster
than ksV—the absolute difference is small as both heuristics are quite efficient825

and have a maximum run time of 1.17 seconds. The heuristic inc was observed
to have large run time on some matrices with relatively high nonzeros per row.
All the existing heuristics are always very efficient, except inc which had difficul-
ties on some matrices in the data set. In the original reference [21], inc is quite

37

efficient in some other matrices (where the codes are compiled with Cilk). We do830

not see run time with nd elsewhere, but in our data set it was always better than
inc. The proposed OneSidedMatch heuristic’s quality is almost always close
to its theoretical limit. TwoSidedMatch also obtains quality results close to
its theoretical limit. Looking at the quality of the matching with one thread,
we see that ksV obtains (almost always) the best score, except on kkt power835

and wc 50K 64, where TwoSidedMatch obtains the best score. The heuristics
inc and nd obtain the same score with one thread, but with 16 threads inc

obtains better quality than nd almost always. OneSidedMatch never obtains
the best score (TwoSidedMatch is always better), yet it is better than ksV,
inc and nd on the synthetic wc 50K 64 matrix. The TwoSidedMatch heuris-840

tic obtains better results than inc and nd on Hamrle3, kkt power, road usa,
and wc 50K 64 with both one thread and 16 threads. Also on hugebubbles with
16 threads, the difference between TwoSidedMatch and nd is 1% (in favor of
nd).

5. Conclusion845

We proposed two heuristics for the bipartite maximum cardinality matching
problem. The first one, OneSidedMatch, is shown to have an approximation
guarantee of 1−1/e ≈ 0.632. The second heuristic, TwoSidedMatch, is shown
to have an approximation guarantee of 0.866. Both algorithms use well-known
methods to scale the sparse matrix associated with the given bipartite graph850

to a doubly stochastic form whose entries are used as the probability density
functions to randomly select a subset of the edges of the input graph. OneSid-
edMatch selects exactly n edges to construct a subgraph in which a matching
of the guaranteed cardinality is identified with virtually no overhead, both in
sequential and parallel execution. TwoSidedMatch selects around 2n edges855

and then runs the Karp-Sipser (KS) heuristic as an exact algorithm on the se-
lected subgraph to obtain a matching of conjectured cardinality. The subgraphs
are analyzed to develop a specialized KS algorithm for efficient parallelization.
All theoretical investigations are first performed assuming bipartite graphs with
perfect matchings, and the scaling algorithms have converged. Then, theoreti-860

cal arguments and experimental evidence are provided to extend the results to
cover other cases and validate the applicability and practicality of the proposed
heuristics in general settings. Parallel performance is analyzed on a shared
memory parallel computer with up to 16 threads and speedups beyond 10 fold
are demonstrated.865

To avoid race conditions with multiple threads, the second heuristic TwoSid-
edMatch depends on atomic operations which are efficiently supported by
many modern multicore architectures. As for manycore devices such as GPU’s,
recent architectures also have support for atomic operations. For example,
NVIDIA Kepler GK110 has a support for 32-bit and 64-bit atomicCAS (com-870

pare and swap), atomicAdd, and atomicExch (exchange) operations which can
be used to implement various constructs. However, their performance is re-
ported to vary and not as good as the atomicity performance of CPUs. It would

38

be an interesting experiment to implement the proposed heuristics on such ar-
chitectures allergic to atomicity or on the ones without a support by using other875

techniques for locking and synchronization.

Acknowledgements

Bora Uçar was supported by ANR project SOLHAR (ANR-13-MONU-0007).
We thank Mahantesh Halappanavar for providing us with the codes from his
earlier work [9].880

References

[1] J. E. Hopcroft, R. M. Karp, An n5/2 algorithm for maximum matchings in
bipartite graphs, SIAM J. Comput. 2 (4) (1973) 225–231.

[2] J. Langguth, F. Manne, P. Sanders, Heuristic initialization for bipartite
matching problems, J. Exp. Algorithmics 15 (2010) 1.1–1.22.885

[3] J. Magun, Greedy matching algorithms, an experimental study, J. Exp.
Algorithmics 3 (1998) 6.

[4] I. S. Duff, K. Kaya, B. Uçar, Design, implementation, and analysis of max-
imum transversal algorithms, ACM T. Math. Software 38 (2) (2011) 13:1–
13:31.890

[5] N. McKeown, The iSLIP scheduling algorithm for input-queued switches,
IEEE/ACM Trans. Netw. 7 (2) (1999) 188–201.

[6] R. M. Karp, M. Sipser, Maximum matching in sparse random graphs,
in: 22nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Nashville, TN, USA, 1981, pp. 364–375.895

[7] K. Kaya, J. Langguth, F. Manne, B. Uçar, Push-relabel based algorithms
for the maximum transversal problem, Comput. Oper. Res. 40 (5) (2013)
1266–1275.

[8] R. M. Karp, U. V. Vazirani, V. V. Vazirani, An optimal algorithm for on-
line bipartite matching, in: 22nd annual ACM symposium on Theory of900

computing (STOC), Baltimore, MD, USA, 1990, pp. 352–358.

[9] A. Azad, M. Halappanavar, S. Rajamanickam, E. G. Boman, A. Khan,
A. Pothen, Multithreaded algorithms for maximum matching in bipartite
graphs, in: IEEE 26th International Parallel Distributed Processing Sym-
posium (IPDPS), Shanghai, China, 2012, pp. 860–872.905

[10] M. Deveci, K. Kaya, B. Uçar, Ü. V. Çatalyürek, GPU accelerated maximum
cardinality matching algorithms for bipartite graphs, in: F. Wolf, B. Mohr,
D. an Mey (Eds.), Euro-Par 2013 Parallel Processing, Vol. 8097 of LNCS,
Springer Berlin Heidelberg, 2013, pp. 850–861.

39

[11] M. Deveci, K. Kaya, Ü. V. Çatalyürek, B. Uçar, A push-relabel-based910

maximum cardinality matching algorithm on GPUs, in: 42nd International
Conference on Parallel Processing, Lyon, France, 2013, pp. 21–29.

[12] M. E. Dyer, A. M. Frieze, Randomized greedy matching, Random Struct.
Algor. 2 (1) (1991) 29–45.

[13] A. Pothen, C.-J. Fan, Computing the block triangular form of a sparse915

matrix, ACM T. Math. Software 16 (4) (1990) 303–324.

[14] J. Aronson, M. Dyer, A. Frieze, S. Suen, Randomized greedy matching II,
Random Struct. Algor. 6 (1) (1995) 55–73.

[15] M. Poloczek, M. Szegedy, Randomized greedy algorithms for the maximum
matching problem with new analysis, in: IEEE 53rd Annual Sym. on Foun-920

dations of Computer Science (FOCS), New Brunswick, NJ, USA, 2012, pp.
708–717.

[16] J. Aronson, A. Frieze, B. G. Pittel, Maximum matchings in sparse random
graphs: Karp-Sipser revisited, Random Struct. Algor. 12 (2) (1998) 111–
177.925

[17] Ü. V. Çatalyürek, M. Deveci, K. Kaya, B. Uçar, Multithreaded clustering
for multi-level hypergraph partitioning, in: 26th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), Shanghai, China,
2012, pp. 848–859.

[18] B. Fagginger Auer, R. Bisseling, A GPU algorithm for greedy graph match-930

ing, in: Facing the Multicore Challenge II, Vol. 7174 of LNCS, Springer-
Verlag Berlin, 2012, pp. 108–119.

[19] M. Halappanavar, J. Feo, O. Villa, A. Tumeo, A. Pothen, Approximate
weighted matching on emerging manycore and multithreaded architectures,
Int. J. High Perform. C. 26 (4) (2012) 413–430.935

[20] Z. Lotker, B. Patt-Shamir, S. Pettie, Improved distributed approximate
matching, in: Proceedings of the Twentieth Annual Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), ACM, Munich, Germany,
2008, pp. 129–136.

[21] G. E. Blelloch, J. T. Fineman, J. Shun, Greedy sequential maximal inde-940

pendent set and matching are parallel on average, in: Proceedings of the
Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), ACM, 2012, pp. 308–317.

[22] M. Birn, V. Osipov, P. Sanders, C. Schulz, N. Sitchinava, Efficient parallel
and external matching, in: F. Wolf, B. Mohr, D. an Mey (Eds.), Euro-Par945

2013 Parallel Processing, Vol. 8097 of LNCS, Springer Berlin Heidelberg,
2013, pp. 659–670.

40

[23] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Vol. 39 of Ency-
clopedia of Mathematics and its Applications, Cambridge University Press,
Cambridge, UK; New York, USA; Melbourne, Australia, 1991.950

[24] R. Sinkhorn, P. Knopp, Concerning nonnegative matrices and doubly
stochastic matrices, Pacific J. Math. 21 (1967) 343–348.

[25] P. A. Knight, The Sinkhorn–Knopp algorithm: Convergence and applica-
tions, SIAM J. Matrix Anal. A. 30 (1) (2008) 261–275.

[26] P. A. Knight, D. Ruiz, B. Uçar, A symmetry preserving algorithm for955

matrix scaling, SIAM J. Matrix Anal. A. 35 (3) (2014) 931–955.

[27] D. Ruiz, A scaling algorithm to equilibrate both row and column norms in
matrices, Tech. Rep. TR-2001-034, RAL (2001).

[28] P. A. Knight, D. Ruiz, A fast algorithm for matrix balancing, IMA Journal
of Numerical Analysis 33 (3) (2013) 1029–1047.960

[29] D. W. Walkup, Matchings in random regular bipartite digraphs, Discrete
Math. 31 (1) (1980) 59–64.

[30] A. Meir, J. W. Moon, The expected node-independence number of random
trees, Indagationes Mathematicae 76 (1973) 335–341.

[31] M. Karoński, B. Pittel, Existence of a perfect matching in a random (1 +965

e−1)–out bipartite graph, J. Comb. Theory Ser. B 88 (2003) 1–16.

[32] A. L. Dulmage, N. S. Mendelsohn, Coverings of bipartite graphs, Can. J.
Math. 10 (1958) 517–534.

[33] A. Pothen, Sparse null bases and marriage theorems, Ph.D. thesis, Dept.
Computer Science, Cornell Univ., Ithaca, New York (1984).970

[34] T. A. Davis, Y. Hu, The University of Florida sparse matrix collection,
ACM T. Math. Software 38 (1) (2011) 1:1–1:25.

[35] D. A. Bader, H. Meyerhenke, P. Sanders, D. Wagner (Eds.), Graph Parti-
tioning and Graph Clustering - 10th DIMACS Implementation Challenge
Workshop, Georgia Institute of Technology, Atlanta, GA, USA, February975

13-14, 2012. Proceedings, Vol. 588 of Contemporary Mathematics, Ameri-
can Mathematical Society, 2013.

[36] P. Erdös, A. Rényi, On random matrices, Publications of the Mathematical
Institute of the Hungarian Academy of Sciences 8 (3) (1964) 455–461.

[37] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-MAT: A recursive model for980

graph mining, in: Proceedings of the SIAM International Conference on
Data Mining, 2004, pp. 442–446.

[38] D. A. Bader, K. Madduri, GTgraph: A synthetic graph generator suite
(Feb. 2006).
URL http://www.cse.psu.edu/~madduri/software/GTgraph/gen.pdf985

41

http://www.cse.psu.edu/~madduri/software/GTgraph/gen.pdf
http://www.cse.psu.edu/~madduri/software/GTgraph/gen.pdf

	Introduction
	Notation and background
	Matching
	Scaling matrices to doubly stochastic form
	A mathematical fact

	Two matching heuristics
	One-sided matching
	Two-sided matching
	Further discussions

	Experiments
	Experimental verification of theoretical results
	Matching quality
	Comparison of TwoSidedMatch with KarpSipser
	Matching quality on bipartite graphs without perfect matchings

	OneSidedMatch and TwoSidedMatch in parallel
	Further results with existing codes

	Conclusion

