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Algorithmes à plusieurs étages optimaux pour le

calcul d’adjoints en ligne et hors-ligne

Résumé : Dans cet article, nous améliorons le travail de Aupy et al. sur
les algorithmes à plusieurs étages optimaux pour le calcul d’adjoints, avec deux
niveaux de mémoire disponibles. L’algorithme optimal précédent avait un temps
d’exécution quadratique. Ici, avec une analyse de la solution optimale, nous
proposons un algorithme optimal en temps constant, avec précalculs. Nous
proposons également un algorithme asymptotiquement optimal pour la version
en ligne du problème, lorsque la taille du graphe adjoint n’est pas connue à
l’avance. Ces algorithmes reposent sur la preuve que les solutions optimales pour
le calcul d’adjoint sont périodiques. Nous conjecturons la formule close de cette
période. Enfin, nous évaluons la vitesse de convergence du ratio d’approximation
pour le problème en ligne, à travers une campagne de simulations.

Mots-clés : Algorithmes optimaux; out-of-core; calcul d’adjoints; retourne-
ment de programmes; différentiation automatique; calcul d’adjoints en ligne;
périodicité.
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1 Introduction

The need to efficiently compute the gradient to a cost function arises frequently
in many areas of scientific computing, including mathematical optimization, un-
certainty quantification, and nonlinear systems of equations. In gradient based
optimization, discrete adjoint methods are widely used for the gradient com-
putation when the problem possesses an extensive amount of design variables.
The initial differential equation is discretised, and the discrete adjoint equations
immediately follow. The derivative computation applies the chain rule of dif-
ferential calculus starting with the dependent variables and propagating back
to the independent variables. Thus, it reverses the flow of the original function
evaluation. In the case of linear governing equations, only the final solution data
from the forward solve is required, however, in the case of nonlinear governing
equations the solution data must be stored at every time step which can become
restrictive for large problems. In general, intermediate function values must be
stored or recomputed [2].

A popular storage or recomputation strategy for functions that have some
sort of natural “time step” is to save (checkpoint) the state at each time step
during the function computation (forward sweep) and use this saved state in
the derivative computation (reverse sweep). If the storage is inadequate for all
states, one can checkpoint only some states and recompute the unsaved states
as needed. If the number of time step is know a priori, Griewank and Walther
proved that, given a fixed number of checkpoints, the schedule that minimize the
amount of recomputation is a binomial checkpointing strategy [3, 4]. They also
gave a closed formula to compute the indices of the forward step to store in the
memory [10]. The problem model they used implicitly assumes that reading and
writing checkpoints are free, but the number of available checkpoint is limited
(one memory framework). In [8], Stumm and Walther consider the case where
another type of storage is available. The checkpoints can be written onto a disk
with an unlimited storage capacity but whose time to read or write a checkpoint
can no longer be ignored (multi-stage framework). They designed a multi-stage
heuristic using a binomial checkpointing strategy based on the optimal algorithm
for the case without disk. More recently, Aupy et al. [1] provided a polynomial
time algorithm for determining the optimal schedule using both memory and
disk, if the number of time step is know a priori (offline framework).

However, in the context of flow control, the partial differential equations
to be solved are usually stiff, and the solution process relies therefore on some
adaptive time stepping procedure. Hence, the number of time steps performed
is known only after the complete integration (online framework). One has to
decide on the fly during the forward sweep where to place the checkpoints with-
out knowing how many time steps are left to perform. In [5], Heuveline and
Walter provided an algorithm that computes the time-minimal schedule for
an unknown number of time steps as long as this number does not exceed a
given upper bound. This heuristic is designed for the one memory framework
and relies on a dynamic rearrangement of the checkpoints. Later, Stumm and
Walther [9] designed a new algorithm to compute almost optimal online check-
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pointing schedules as long as the number of time steps does not exceed a larger
than before upper bound. For larger adjoint computations, Wang and al. [11]
provided a dynamic online algorithm that minimizes the maximum number of
recomputation for a single forward step, matching the optimal offline repeti-
tion number and ensuring that the overall computational cost has a theoretical
upper bound. To the best of our knowledge, there is no previous study on on-
line multi-stage adjoint computations, since no optimal algorithm for the offline
multi-stage framework were known before [1] bridged that gap. This paper aims
to extend their results to the online framework.

In this paper, we provide a theoretical analysis of the optimal offline multi-
stage algorithm proposed in [1], which allows us to reduced significantly its
computation time. This optimization relies on the proof that for any adjoint
graph size, there exists an optimal disk checkpointing strategy that is weakly
periodic, which means that all the intervals between two consecutive disk check-
points are of the same size except for a bounded number of them. This bound
and the optimal interval only depend on the architecture parameters, namely
the number of available memory checkpoints and the time to read or write
a checkpoint on the disk. This observations allow us to provide two valuable
contributions. First, we can design an optimal algorithm in constant time (inde-
pendent of the adjoint graph size) for the offline multi-stage framework, with an
appropriate pre-processing depending on the architecture parameters. Second,
we can design an asymptotically optimal algorithm for the online multi-stage
framework.

The rest of this paper is organized as follows. Section 2 lays the grounds
of multi-stage adjoint computation and recalls important results from [1]. Sec-
tion 3 introduces notations that will be used during the paper. In Section 4
we introduce the main results of this paper. Section 5 constitutes the hearth of
this paper and provide many structural arguments on the optimal multi-stage
schedules. This results are used in Section 6 to design the asymptotically op-
timal algorithm for the online multi-stage framework. Finally, Section 7 access
the performance of the asymptotically optimal online algorithm compared to
the actual optimal algorithm that can be computed when the actual size of the
adjoint graph is known beforehand.

2 Framework

2.1 The AC problem

Definition 1 (Adjoint Computation (AC) [4, 8]). An adjoint computation (AC)
with l time steps can be described by the following set of equations:

Fi(xi) = xi+1 for 1 ≤ i < l (1)

F̄i(xi, x̄i+1) = x̄i for 1 ≤ i ≤ l (2)

RR n° 8822
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F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl

Figure 1: The AC dependence graph.

The dependencies between these operations1 are represented by the graph G =
(V,E) depicted in Figure 1.

The F computations are called forward steps. They have an execution cost
of uf . The F̄ computations are called backward steps, they have an execution
cost of ub. If x̄l is initialized appropriately, then at the conclusion of the adjoint
computation, x̄0 will contain the gradient with respect to the initial state (x0).

Definition 2 (Platform). We consider a platform with three storage locations:

• Buffers: there are two buffers, the top buffer and the bottom buffer. The
top buffer is used to store a value xi for some i, while the bottom buffer
is used to store a value x̄i for some i. For a computation (F or F̄) to be
executed, its input values have to be stored in the buffers. Let B⊤ and
B⊥ denote the content of the top and bottom buffers. In order to start
the execution of the graph, x0 must be stored in the top buffer, and x̄l+1

in the bottom buffer. Hence without loss of generality, we assume that at
the beginning of the execution, B⊤ = {x0} and B⊥ = {x̄l+1}.

• Memory: there are cm slots of memory where the content of a buffer can
be stored. The time to write from buffer to memory is wm. The time
to read from memory to buffer is rm. Let M be the set of xi and x̄i

values stored in the memory. The memory is empty at the beginning of
the execution (M = ∅).

• Disks: there are cd slots of disks where the content of a buffer can be
stored.. The time to write from buffer to disk is wd. The time to read
from disk to buffer is rd. Let D be the set of xi and x̄i values stored in
the disk. The disk is empty at the beginning of the execution (D = ∅).

Memory and disk are generic terms for a two-level storage system, model-
ing any platform with a dual memory system, including (i) a cheap-to-access
first-level memory, of limited size; and (ii) and a costly-to-access second-level
memory, whose size is very large in comparison of the first-level memory. The
pair (memory, disk) can be replaced by (cache, memory) or (disk, tape) or any
relevant hardware combination.

1In the original approach by Griewank [3], an extra Fl operation was included. It is not
difficult to take this extra operation into account.

RR n° 8822
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Intuitively, the core of the AC problem is the following: after the execution
of a forward step, its output is kept in the top buffer only. If it is not saved
in memory or disk before the next forward step, it is lost and will have to be
recomputed when needed for the corresponding backward step. When no disk
storage is available, the problem is to minimize the number of re-computations
in the presence of limited (but free-to-access) memory slots. When disk storage
is added, the problem becomes even more challenging: saving data on disk can
save some recompilation, and a trade-off must be found between the cost of disk
accesses and that of recomputations.

Here, we consider the problem with an unlimited number of disk storage,
where, while reading and writing from/to memory is still free, reading and writ-
ing from/to disk has a cost. We assume that at the beginning of the execution,
both the memory and the disk are empty:

Problem 1 (Prob∞(l, cm, wd, rd)). We want to minimize the makespan of the
AC problem with the following parameters:

Initial state:
AC graph: size l

Steps: uf , ub

Memory: cm, wm = rm = 0 Mini = ∅
Disks: cd = +∞, wd, rd Dini = ∅

Buffers: B⊤, B⊥ B⊤
ini = {x0}, B⊥

ini = {x̄l+1}

Definition 3 (Opt∞(l, cm, wd, rd)).
Given l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R, Opt∞(l, cm, wd, rd) is the execution
time of an optimal solution to Prob∞(l, cm, wd, rd).

2.2 Summary of our previous work

In our previous work [1], we were able to compute in polynomial time an optimal
solution to Prob∞(l, cm, wd, rd): Disk-Revolve. A solution to Prob∞(l, cm, wd, rd)
is a sequence of operations from Table 1 that executes an AC graph of size l in
minimal time.

In our previous work [1], we solved Prob∞(l, cm, wd, rd) by reducing it to an-

other problem: Prob
(d)

1 (l, cm, rd) (see Problem 2). We defined Opt
(d)
1 (l, cm, rd)

as the execution time of a solution to Prob
(d)

1 (l, cm, rd).

Problem 2 (Prob
(d)

1 (l, cm, rd)). We want to minimize the makespan of the AC
problem with the following parameters.

Initial state:
AC graph: size l

Steps: uf , ub

Memory: cm, wm = rm = 0 Mini = ∅
Disks: cd = 1, wd = +∞, rd Dini = {x0}

Buffers: B⊤, B⊥ B⊤
ini = {x0}, B⊥

ini = {x̄l+1}

2Assuming |M| < cm, or xi ∈ M.

RR n° 8822



Periodicity is Optimal for Offline and Online Multi-Stage Adjoint Computations8

Operation Input Action

Fi Executes one forward computation Fi (for i ∈ {0, . . . , l−1}).
This operation takes a time cost(Fi) = uf .

B⊤ = {xi} B⊤ ← {xi+1}

Fi→i′ Denotes the sequence Fi · Fi+1 · . . . · Fi′ . B⊤ = {xi} B⊤ ← {xi′}

F̄i Executes the backward computation F̄i (i ∈ {0, . . . , l}). This
operation takes a time cost(F̄i) = ub.

B⊤ = {xi},
B⊥ = {x̄i+1}

B⊥ ← {x̄i}

Wm
i Writes the value xi of the top buffer into the memory. This

operation takes time cost(Wm
i ) = wm.

B⊤ = {xi} M←M∪{xi}
2

Rm
i Reads the value xi in the memory, and puts it into the top

buffer. This operation takes a time cost(Rm
i ) = rm.

xi ∈ M B⊤ ← {xi}

W d
i Writes the value xi of the top buffer into the disk. This

operation takes a time cost(W d
i ) = wd.

B⊤ = {xi} D ← D ∪ {xi}

Rd
i Reads the value xi in the disk and puts it into the top buffer.

This operation takes a time cost(Rd
i ) = rd.

xi ∈ D B⊤ ← {xi}

Table 1: Operations performed by a schedule.

Because details of this instance are unimportant for this paper and would
complicate the reading process, we refer the interested reader to our previous
work (Definition 3.13, [1]) for those details. The main result of [1] is the dynamic

programs to compute the value of Opt
(d)
1 (l, cm, rd) and Opt∞(l, cm, wd, rd) (see

Theorem 1).

Theorem 1 (Theorems 1 and 3, [1]). Let l ∈ N, cm ∈ N, wd ∈ R and rd ∈ R:

Opt∞(l, cm, wd, rd) = min

{

Opt0(l, cm)

wd +min1≤j≤l−1{juf+Opt∞(l − j, cm, wd, rd)+rd+Opt
(d)
1 (j − 1, cm, rd)}

Opt
(d)
1 (l, cm, rd) = min

{

Opt0(l, cm)

min1≤j≤l−1{juf +Opt0(l − j, cm) + rd +Opt
(d)
1 (j − 1, cm, rd)}

Based on these dynamic programs, we designed a polynomial algorithm
1D-Revolve that, given the values l, cm and rd returns 1D-Revolve (l, cm, rd),

an optimal sequence for Prob
(d)

1 (l, cm, rd). This algorithm uses the binomial
checkpointing algorithm Revolve, designed by Griewank and Walther [4], that
solves the problem with only memory and no disk (Problem 3: Prob(l, cm)
below). We note Opt0(l, cm) the execution time of Revolve. We also defined
Shift, the routine that takes a sequence S and an index ind and returns S
shifted by ind (meaning for all i ≤ l, s ∈ {m, d}, W s

i are replaced by W s
i+ind,

Rs
i are replaced by Rs

i+ind, Fi by Fi+ind, and F̄i by F̄i+ind). Note that sequence
Shift (S, ind) has the same execution time as sequence S.

RR n° 8822
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Problem 3 (Prob(l, cm)). We want to minimize the makespan of the AC
problem with the following parameters:

Initial state:
AC graph: size l

Steps: uf , ub

Memory: cm, wm = rm = 0 Mini = ∅
Disks: cd = 0

Buffers: B⊤, B⊥ B⊤
ini = {x0}, B⊥

ini = {x̄l+1}

Algorithm 1 Disk-Revolve

1: procedure Disk-Revolve(l, cm, wd, rd)
2: S ← ∅
3: if Opt∞(l, cm, wd, rd) = Opt0(l, cm) then
4: S ← Revolve(l, cm)
5: else

6: Let j such that

Opt∞(l, cm, wd, rd) = wd+juf +Opt∞(l−j, cm, wd, rd)+rd+Opt
(d)
1 (j−1, cm, rd)

7: S ←W d
0 · F0→(j−1)

8: S ← S · Shift (Disk-Revolve(l − j, cm, wd, rd), j)
9: S ← S ·Rd

ind · 1D-Revolve (j − 1, cm, rd)
10: end if

11: return S
12: end procedure

Finally, we designed algorithm Disk-Revolve (Algorithm 1) that, given an
adjoint computation graph of size l ∈ N, cm ∈ N memory slots, a cost wd ≥ 0 to
write to disk and a cost rd ≥ 0 to read from disk, returnsDisk-Revolve(l, cm, wd, rd)
an optimal schedule for Prob∞(l, cm, wd, rd). The time complexity of this al-
gorithm is O(l2).

3 Dominant Sequences and Dominant Optimal

Sequences

In this paper, we propose a different algorithm to compute solutions to Prob∞(l, cm, wd, rd).
We introduce a family of sequences that we call Dominant Sequences (DS). A
Dominant Sequence is a sequence that can be returned by algorithm Algo-

Dom (Algorithm 2). We call these sequences dominant, because we show in
Section 5.3 that for every values l, cm, rd and wd, there is a Dominant Sequence
that is optimal for Prob∞(l, cm, wd, rd). Such a sequence is called a Dominant
Optimal Sequence (DOS).

To begin, we show that the sequence obtained using AlgoDom indeed re-
turns a solution to Prob∞(l, cm, wd, rd).

RR n° 8822
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Algorithm 2 AlgoDom

1: procedure AlgoDom(m1, · · · ,mnl
; res)

2: S ← ∅
3: ind← 0
4: for i = 1 to nl do

5: S ← S ·W d
ind · Find→(ind+mi−1)

6: ind← ind +mi

7: end for

8: S ← S · Shift (Revolve(res− 1, cm), ind)
9: for i = nl downto 1 do

10: S ← S ·Rd
ind · Shift (1D-Revolve (mi − 1, cm, rd) , ind)

11: ind← ind−mi

12: end for

13: return S
14: end procedure

Definition 4 (Valid schedule). A valid schedule is a sequence of operations
from Table 1 such that all operations of the schedule are valid (they respect the
input constraints).

Lemma 1. Let (m1, · · · ,mnl
, res) ∈ N

nl+1 such that l =
∑nl

i=1 mi + res, then
AlgoDom (m1, · · · ,mnl

; res) is a valid schedule for Prob∞(l, cm, wd, rd).

Proof. In order to do this we need to show that each operation done is autho-
rized.

• The “for loop” on line 4 is correct as each F-operation is consecutive
(so the needed information is in the top-buffer), and the W d operations
immediately follow the corresponding F-operation that puts the correct
input in the top buffer.

• Applying Shift ◦Revolve on line 8 is correct as at the beginning of this
execution, (i) xind = xl−res is in the top buffer, (ii) x̄l+1 is in the bottom
buffer and ind = l − res, and Revolve(res, cm) takes (i) x0 in the top
buffer and (ii) x̄res+1 in the bottom buffer. This sequence of operations
returns x̄l−res in the bottom buffer.

• The “for loop” on line 9 is correct. We show by induction H(i): at the

beginning of the ith iteration, x̄∑i+1
j=1 mj

is in the bottom buffer

and simultaneously we show H ′(i): iteration i is correct.

We have already shown that H(nl) was true. Assume it is true until the ith

iteration. Then at the beginning of the ith iteration, ind =
∑i

j=1 mj and

xind was indeed written on disk during the ith iteration of the “for loop”

on line 4. 1D-Revolve is possible because Opt
(d)
1 (mi−1, cm, rd) takes as

input x0 in the top buffer and stored on disk, and x̄mi
in the top buffer.

Hence showing H ′(i). Furthermore, the result is then: x̄ind = x̄∑

i
j=1 mj

in

the bottom buffer, which shows H(i− 1).

RR n° 8822
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The result of the last iteration of the “for loop” on line 9 is then exactly x̄0,
which shows the correctness of AlgoDom.

We now formally define notations that are used throughout this paper.

Definition 5. Let l ≥ 0, nl ≥ 0, and m1, · · · ,mnl
, res such that l =

∑nl

i=1 mi+
res, then

• We shorten the sequence of operation returned byAlgoDom(m1, · · · ,mnl
; res)

by S = (m1, · · · ,mnl
; res) (S = (; l) if nl = 0). S is called a Dominant

Sequence (DS) for Prob∞(l, cm, wd, rd).
• Exec(S) is the cost (or the execution time) of the sequence S, that is to
say the sum of all the operations cost in S.

• S = (m1, · · · ,mnl
; res) is aDominant Optimal Sequence (DOS) forProb∞(l, cm, wd, rd)

if the sequence S is an optimal solution to Prob∞(l, cm, wd, rd), that is
to say Exec(S) = Opt∞(l, cm, wd, rd)

• Let S = (m1, · · · ,mnl
; res) a DS, the m1, · · · ,mnl

are called the periods
of S, res is called the residual and nl is the number of periods of S.

4 Main contributions

In this work, we consider a platform with cm memory slots, a writing cost to
disk wd and a reading cost from disk rd. Throughout the rest of the paper, we
note all these platform parameters X = (cm, rd, wd).

The main contribution of this paper is the following theorem:

Theorem 2 (Weak periodicity). There exists lX , iX and mX such that: for
all l ≥ lX , there exists nl ≥ iX , and (m1, · · · ,mnl

, res) ∈ N
nl+1 (with l =

∑nl

i=1 mi+res) such that AlgoDom(m1, · · · ,mnl
; res) is optimal for Prob∞(l, cm, wd, rd)

and

∀i < nl − iX ,mi = mX (3)
nl
∑

i=nl−iX

mi + res < lX (4)

This result says that for every problem size, there exists a Dominant Optimal
Sequence such that all the periods mi’s are equal to mX , except for a bounded
number of them.

This bound, iX , only depends on the parameters X of the architecture.
Stronger results would be to give values for iX and for mX . We derive the value
for mX experimentally in Section 7.

A consequence of this result is:

Corollary 1 (Online algorithm). There exists an asymptotically optimal algo-
rithm for the online version (that is when the size of the graph is not known
before-hand) of Problem 1.

RR n° 8822
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5 Showing the periodicity

In this section we prove the main contributions of the paper. In order to do
so, we first start by giving structural arguments on the two core algorithms
of the optimal solution: Revolve and 1D-Revolve in Section 5.1. Then we
introduce some properties on the execution time of Dominant Sequences (DS),
before showing that for all size l of Adjoint Computation graph, there exists a
Dominant Sequence that is optimal (Theorem 6).

In order to prove Theorem 2:

1. We first construct a set of admissible periods M
(Adm)
X in Section 5.4.

2. Then we show that the admissible periods have a maximum size in Sec-

tion 5.5, hence showing that the set M
(Adm)
X is finite.

3. We then construct MX ⊂ M
(Adm)
X such that for all AC graph, there exists

a DOS with periods solely in MX in Section 5.6.

4. Finally, we show the result by contructing mX , a period that is dominant
over all other periods of MX .

5.1 Properties of a period

In this Section we give structural arguments on 1D-Revolve. In particular we
are interested by the number of forward steps done by 1D-Revolve before the
first memory write.

By definition 1D-Revolve can either behave as Revolve (and not use the
disk checkpoint at hand), or do a certain number of disk reads. We discuss
properties of the execution times of Revolve (Opt0(l, cm)) in Section 5.1.1 and

of 1D-Revolve in general (Opt
(d)
1 (l, cm, rd)) in Section 5.1.2.

5.1.1 Properties of Opt0(l, cm)

For Opt0(l, cm), along with new results, we report existing results from Griewank
and Walther [4] that we are using in this work. Note that most results from
Griewank and Walther are adapted to the context here: in their work they only
considered the number of re-execution of forward steps, while here we count the
total execution time. In general this simply adds a cost of luf +(l+1)ub to the
execution time.

Definition 6 (β). We call β the function

β : x, y 7→

(

x+ y

x

)

(5)

Note that β is a critical parameter for all results from Griewank andWalther [4].

Lemma 2 (Griewank and Walther [4]). Let cm ∈ N, then x ∈ N 7→ Opt0(x, cm)
is convex.
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Theorem 3 (Griewank and Walther [4] (Proposition 1, Equation 3)). Let l ∈ N

and cm ∈ N. The explicit form for Opt0(l, cm) is:

Opt0(l, cm) = l · (t+ 1)uf − β(cm + 1, t− 1)uf + (l + 1)ub,

where t is the unique integer satisfying β(cm, t− 1) ≤ l < β(cm, t).

Theorem 4 (Griewank and Walther [4] (Proposition 1, Equation 4)). Let l ∈ N

and cm ∈ N. Let t be the unique integer satisfying β(cm, t − 1) ≤ l < β(cm, t).
Denote j such that

Opt0(l, cm) = juf +Opt0(l − j, cm − 1) +Opt0(j − 1, cm),

then
β(cm, t− 2) ≤ j ≤ β(cm, t− 1). (6)

Lemma 3. Let l ∈ N, cm ∈ N and t the unique integer satisfying β(cm, t− 1) <
l ≤ β(cm, t). Then:

Opt0(l + 1, cm)−Opt0(l, cm) = (t+ 1) · uf + ub (if l < β(cm, t))

Opt0(l + 1, cm)−Opt0(l, cm) = (t+ 2) · uf + ub (if l = β(cm, t))

Proof. Let l ∈ N, cm ∈ N and t the unique integer satisfying β(cm, t− 1) < l ≤
β(cm, t).

• If l < β(cm, t), then t is also the unique integer satisfying β(cm, t − 1) <
l+1 ≤ β(cm, t). The explicit form for Opt0(l+1, cm) (see Theorem 3) is:

Opt0(l + 1, cm) = (l + 1) · (t+ 1) · uf − β(cm + 1, t− 1) · uf + (l + 2) · ub

Thus:
Opt0(l + 1, cm)−Opt0(l, cm) = (t+ 1) · uf + ub

• If l = β(cm, t), then t satisfies β(cm, t) < l+1 ≤ β(cm, t+1). The explicit
form for Opt0(l + 1, cm) (see Theorem 3) is:

Opt0(l + 1, cm) = (l + 1) · (t+ 2) · uf − β(cm + 1, t) · uf + (l + 2) · ub

Thus:

Opt0(l + 1, cm)−Opt0(l, cm) = (l + t+ 2 + β(cm + 1, t− 1)− β(cm + 1, t)) · uf + ub

= (l + t+ 2− β(cm, t)) · uf + ub

= (t+ 2) · uf + ub
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Corollary 2. Let cm ∈ N and t ∈ N.
Then for all l ≥ β(cm, t):

Opt0(l + 1, cm)−Opt0(l, cm) ≥ (t+ 2) · uf + ub

Also, for all l < β(cm, t):

Opt0(l + 1, cm)−Opt0(l, cm) ≤ (t+ 1) · uf + ub

Proof. Obviously t is the unique integer satisfying β(cm, t − 1) < β(cm, t) ≤
β(cm, t). Thus for all t ∈ N:

Opt0(β(cm, t) + 1, cm)−Opt0(β(cm, t), cm) = (t+ 2) · uf + ub

• Let l ≥ β(cm, t). By convexity of function x 7→ Opt0(x, cm) (Lemma 2):

Opt0(l + 1, cm)−Opt0(l, cm) ≥ Opt0(β(cm, t) + 1, cm)−Opt0(β(cm, t), cm)

≥ (t+ 2) · uf + ub

• Let l < β(cm, t). If l > β(cm, t− 1) then t is the unique integer satisfying
β(cm, t− 1) < l ≤ β(cm, t) and:

Opt0(l + 1, cm)−Opt0(l, cm) = (t+ 1) · uf + ub

If l ≤ β(cm, t− 1), By convexity of function x 7→ Opt0(x, cm):

Opt0(l + 1, cm)−Opt0(l, cm) ≥ Opt0(β(cm, t− 1) + 1, cm)−Opt0(β(cm, t− 1), cm)

≥ (t+ 1) · uf + ub

5.1.2 Properties of Opt
(d)
1 (l, cm, rd)

Contrarily to Opt0(l, cm), Opt
(d)
1 (l, cm, rd) is not convex. This is mainly due to

the fact that depending on the length of a period the number of disk reads can be
different. However, we can extract some convexity from generalized functions
where the number of disk reads is constant. This is the idea of function gn
presented in Definition 7 which is the execution time of a period if we were to
do exactly n disk reads.

Definition 7. In the following, for a fixed cm ∈ N, wd ∈ R and rd ∈ R, let us
denote:

g0(l) = Opt0(l, cm) (7)

∀n > 0, gn(l) = min
0<j<l

{gn−1(j − 1) + juf +Opt0(l − j, cm) + rd} (8)

We can show formally that Opt
(d)
1 (l, cm, rd) is the optimum execution time

among the solutions that do exactly n ≥ 0 disk reads.
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Lemma 4. For all l,

Opt
(d)
1 (l, cm, rd) = min

n≥0
gn(l)

Proof. We show the result by induction on l. For l = 1, then Opt
(d)
1 (1, cm, rd) =

Opt0(1, cm) = g0(1) and for all n > 0, gn(1) = +∞. Assume that for all
j < l, g(j) = minn≥0 gn(j) and let us prove the result for l. By definition of

Opt
(d)
1 (l, cm, rd) (Theorem 1),

Opt
(d)
1 (l, cm, rd) = min

0<j<l

{

Opt0(l, cm)

juf +Opt0(l − j, cm) + rd +Opt
(d)
1 (j − 1, cm, rd)

= min
0<j<l

{

g0(l)

juf +Opt0(l − j, cm) + rd +minn≥0 gn(j − 1)

= min
n≥0

{

g0(l)

min0<j<l{juf +Opt0(l − j, cm) + rd + gn(j − 1)}

= min
n≥0

(g0(l), gn+1(l))

= min
n≥0

gn(l)

Lemma 5. Let cm ∈ N and rd ∈ R. For all l ∈ N and n > 0, the function

hn,l : j 7→ juf +Opt0(l − j, cm) + rd + gn−1(j − 1) (9)

is convex.

Proof. We first show that gn is convex. Clearly g0 is convex (Lemma 2). We then
show the result by induction on n. Assume for n > 0 that gn−1 is convex. By
definition, gn is the infimal convolution3 of function x 7→ gn−1(x)+(x+1)uf +rd
and l 7→ Opt0(l, cm) which are both convex. Hence for all n, gn is convex [6].
So is hn,l as sum of convex functions.

Finally, we can give an estimate of the number of forward steps done by
1D-Revolve when it does not behave as Revolve:

Lemma 6. Given l, such that Opt
(d)
1 (l, cm, rd) < Opt0(l, cm). Consider n⋆ > 0

and the largest j⋆ such that

Opt
(d)
1 (l, cm, rd) = hn⋆,l(j

⋆),

where hn⋆,l is defined by Equation (9). Then:

j⋆ ≥ β(cm, t− 1),

3The infimal convolution of two functions f and g is defined as f�g(l) = min{f(l − x) +
g(x)|x ∈ {0, . . . l}}
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where t is the unique integer satisfying β(cm, t− 1) < l
2 ≤ β(cm, t).

Proof. Since function hn⋆,l is convex (Lemma 5), its minimum is reached on a
segment. Thus, we just have to prove that hn⋆,l(β(cm, t−1)−1) ≥ hn⋆,l(β(cm, t−
1)) to prove that the largest element of this segment (namely j⋆) is larger than
β(cm, t− 1). For simplicity let us note y = β(cm, t− 1).

Assume first that n⋆ = 1.

h1,l(y − 1)− h1,l(y) =

− uf +Opt0(l − y + 1, cm)−Opt0(l − y, cm) + Opt0(y − 2, cm)−Opt0(y − 1, cm)

Because y < l
2 , then l− y > l

2 > β(cm, t− 1). By Corollary 2:

Opt0(l − y + 1, cm)−Opt0(l − y, cm) ≥ (t+ 1)uf + ub.

Besides since y = β(cm, t− 1), then y − 2 < β(cm, t− 1). By Corollary 2:

Opt0(y − 1, cm)−Opt0(y − 2, cm) ≤ t · uf + ub.

Finally, we get:

h1,l(y − 1)− h1,l(y) ≥ −uf + (t+ 1)uf + ub − (t · uf + ub)

≥ 0,

which proves that j⋆ ≥ β(cm, t− 1).
Let us now assume that n⋆ ≥ 2.

h1,l(y − 1)− h1,l(y) =

− uf +Opt0(l − y + 1, cm)−Opt0(l − y, cm) + gn−1(y − 2)− gn−1(y − 1)

Let j ∈ {1, ..., y − 3} such that:

gn−1(y − 2) = gn−2(j − 1) + juf +Opt0(y − 2− j, cm) + rd

Clearly, since j ∈ {1, ..., y − 2}:

gn−1(y − 1) ≤ gn−2(j − 1) + juf +Opt0(y − 1− j, cm) + rd

Thus:

h1,l(y − 1)− h1,l(y) =

− uf +Opt0(l − y + 1, cm)−Opt0(l − y, cm) + Opt0(y − 2− j, cm)−Opt0(y − 1− j, cm)
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Because y < l
2 , then l− y > l

2 > β(cm, t− 1). By Corollary 2:

Opt0(l − y + 1, cm)−Opt0(l − y, cm) ≥ (t+ 1)uf + ub.

Besides since y = β(cm, t− 1), then y − 2− j < β(cm, t− 1). By Corollary 2:

Opt0(y − 1− j, cm)−Opt0(y − 2− j, cm) ≤ t · uf + ub.

Finally, we get:

h1,l(y − 1)− h1,l(y) ≥ −uf + (t+ 1)uf + ub − (t · uf + ub)

≥ 0,

which proves that j⋆ ≥ β(cm, t− 1).

Finally, we present another useful result: if 1D-Revolve behave asRevolve

for a given l, then it will also do the same for all l′ < l:

Lemma 7. For all l, if Opt
(d)
1 (l, cm, rd) = Opt0(l, cm), then for all l′ < l,

Opt
(d)
1 (l′, cm, rd) = Opt0(l

′, cm).

Proof. We show the result by contradiction. Assume there exists l′ < l such

that Opt
(d)
1 (l′, cm, rd) < Opt0(l

′, cm). Then by Theorem 1, there exists j < l′

and

Opt
(d)
1 (l′, cm, rd) = juf+Opt0(l

′−j, cm)+rd+Opt
(d)
1 (j−1, cm, rd) < Opt0(l

′, cm)
(10)

Because Opt
(d)
1 (l, cm, rd) = Opt0(l, cm), then by Theorem 1

Opt0(l, cm) ≤ juf +Opt0(l − j, cm) + rd +Opt
(d)
1 (j − 1, cm, rd). (11)

Finally, combining Eq. (10) and (11) we get:

Opt0(l, cm)−Opt0(l
′, cm) < Opt0(l − j, cm)−Opt0(l

′ − j, cm)

which is absurd by convexity of l 7→ Opt0(l, cm) (Lemma 2).

5.2 Execution time of a DS

In this section, we provide several basic results on the execution times of the
Dominant Sequences that will be useful in the rest of the paper. We remind that
given S = (m1, · · · ,mnl

; res) a DS, we denote by Exec(S) or Exec(m1, · · · ,mnl
; res)

its execution time.

Theorem 5. Let S = (m1, · · · ,mnl
; res) a DS and l =

∑nl

i=1 mi + res. Its
execution time is:

Exec (S) =(l − res)uf +Opt0(res, cm) +

nl
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

(12)
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Proof. By definition of Algorithm 2, the execution time of S is:

Exec(S) =
nl
∑

i=1

(wd +miuf) + Opt0(res, cm) +

nl
∑

i=1

(

rd +Opt
(d)
1 (mi − 1, cm, rd)

)

=(l − res)uf +Opt0(res, cm) +

nl
∑

i=1

(

rd + wd +Opt
(d)
1 (mi − 1, cm, rd)

)

Corollary 3. Given nl ≥ 1 and S = (m1, · · · ,mnl
; res) a DS. Then:

Exec (S) = m1uf + wd + rd +Opt
(d)
1 (m1 − 1, cm, rd) + Exec (m2, · · · ,mnl

; res) (13)

Proof. Note first that by definition, (m2, · · · ,mnl
; res) is a DS for Prob∞(l −

m1, cm, wd, rd). Then we have:

Exec (S) =(l − res)uf +Opt0(res, cm) +

nl
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

=(l −m1 − res)uf +m1uf +Opt0(res, cm) +

nl
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

=m1uf +
(

wd + rd +Opt
(d)
1 (m1 − 1, cm, rd)

)

+ (l −m1 − res)uf +Opt0(res, cm)

+

nl
∑

i=2

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

=m1uf + wd + rd +Opt
(d)
1 (m1 − 1, cm, rd) + Exec (m2, · · · ,mnl

; res)

Corollary 4. Let l ∈ N, S = (m1, · · · ,mnl
; res) a DS for Prob∞(l, cm, wd, rd),

and S+1 = (m1, · · · ,mnl
; res+ 1), then

Exec(S+1)− Exec(S) = Opt0(res+ 1, cm)− Opt0(res, cm) (14)

Proof. This is a direct consequence of Equation (12):

Exec (S) = (l − res)uf +Opt0(res, cm) +

nl
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

Exec (S+1) = ((l + 1)− (res + 1))uf +Opt0(res + 1, cm) +

nl
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)
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5.3 Existence of a DOS

In this section, we prove that for every values l, cm, rd and wd there is a Domi-
nant Sequence returned by AlgoDom that is optimal for Prob∞(l, cm, wd, rd).
These sequences are called Dominant Optimal Sequences (DOS).

Theorem 6. Given an adjoint computation graph of size l ∈ N, cm ∈ N memory
slots, a cost wd ≥ 0 to write to disk and a cost rd ≥ 0 to read from disk, then
there exists nl ∈ N and (m1, · · · ,mnl

, res) ∈ N
nl+1, such that:

• l =
∑nl

i=1 mi + res;

• Sequence AlgoDom(m1, · · · ,mnl
; res) is optimal for Prob∞(l, cm, wd, rd).

Proof. We now show the existence of nl ∈ N and (m1, · · · ,mnl
, res) ∈ N

nl+1

such that l =
∑nl

i=1 mi + res and Exec(m1, · · · ,mnl
; res) = Opt∞(l, cm, wd, rd).

First let us remind the optimal execution time for Prob∞(l, cm, wd, rd)
(Theorem 1):

Opt∞(l, cm, wd, rd) =

min

{

Opt0(l, cm)

wd +min1≤j≤l−1{juf+Opt∞(l − j, cm, wd, rd)+rd+Opt
(d)
1 (j − 1, cm, rd)}

Opt
(d)
1 (l, cm, rd) =

min

{

Opt0(l, cm)

min1≤j≤l−1{juf +Opt0(l − j, cm) + rd +Opt
(d)
1 (j − 1, cm, rd)}

We now show the main result by induction on l. For l = 1, then Opt∞(l, cm, wd, rd) =
Opt0(l, cm) and nl = 0, and (; l) is optimal for Prob∞(l, cm, wd, rd). Assume
the result is true for all l′ < l. Let us show the result for l.

• If Opt∞(l, cm, wd, rd) = Opt0(l, cm) then we choose nl = 0 and (; l) is
optimal for Prob∞(l, cm, wd, rd).

• Otherwise, then there exists m1, such that

Opt∞(l, cm, wd, rd) = wd+m1uf+Opt∞(l−m1, cm, wd, rd)+rd+Opt
(d)
1 (m1−1, cm, rd).

By induction hypothesis, there exists (m2, · · · ,mnl−m1
+1, res) such that

–
∑nl−m1

+1

i=2 mi + res = l −m1

– (m2, · · · ,mnl−m1
+1; res) is optimal for Prob∞(l −m1, cm, wd, rd).

In particular, we have:

Opt∞(l, cm, wd, rd) = wd +m1uf +Opt∞(l −m1, cm, wd, rd) + rd +Opt
(d)
1 (m1 − 1, cm, rd)

= wd +m1uf + Exec
(

m2, · · · ,mnl−m1
+1; res

)

+ rd +Opt
(d)
1 (m1 − 1, cm, rd)

= Exec(m1, · · · ,mnl
; res)

RR n° 8822



Periodicity is Optimal for Offline and Online Multi-Stage Adjoint Computations20

The last equality is a consequence of Corollary 3. Finally, this shows
that nl, (m1,m2, · · · ,mnl−m1

+1, res) are such that (m1, · · · ,mnl
; res) is

optimal for Prob∞(l, cm, wd, rd), hence showing the result.

Corollary 5. Let nl ≥ 1 and S = (m1, · · · ,mnl
; res) a DOS for Prob∞(l, cm, wd, rd)

with l =
∑nl

i=1 mi + res. Then:

1. For all permutation σ ∈ Snl
, the dominant sequence Sσ = (mσ(1), · · · ,mσ(nl); res)

is a DOS for Prob∞(l, cm, wd, rd).

2. The dominant sequence S−m1 = (m2, · · · ,mnl
; res) is a DOS for Prob∞(l−

m1, cm, wd, rd).

3. Given nl−m1 and S ′ = (m′
1, · · · ,m

′
nl−m1

; res′) a DOS for Prob∞(l −

m1, cm, wd, rd), then S̃ = (m1,m
′
1, · · · ,m

′
nl−m1

; res′) is a DOS for Prob∞(l, cm, wd, rd).

Proof. Based on Equation (12), Sσ and S have the same execution time. Thus,
if S is an optimal solution to Prob∞(l, cm, wd, rd), so is Sσ.

We prove the two next points together. First, by definition S−m1 is a DS for
Prob∞(l−m1, cm, wd, rd). Because S ′ is a DOS for Prob∞(l−m1, cm, wd, rd),
then by optimality,

Exec(S ′)− Exec(S−m1) ≤ 0.

Furthermore, by definition, S̃ is a DS for Prob∞(l, cm, wd, rd), hence

Exec(S) − Exec(S̃) ≤ 0.

According to Corollary 3,

Exec(S̃) = m1uf + wd + rd +Opt
(d)
1 (m1 − 1, cm, rd) + Exec(S

′)

Exec(S) = m1uf + wd + rd +Opt
(d)
1 (m1 − 1, cm, rd) + Exec(S−m1)

Hence, 0 ≤ Exec(S̃)−Exec(S) = Exec(S ′)−Exec(S−m1) ≤ 0, and finally we
obtain Exec(S̃) = Exec(S) and Exec(S ′) = Exec(S−m1). Hence, S̃ is a DOS for
Prob∞(l, cm, wd, rd), and S−m1 is a DOS for Prob∞(l −m1, cm, wd, rd).

5.4 Admissible periods M(Adm)
X

Definition 8 (Admissible periods, M
(Adm)
X ). We call the set of admissible

periods M
(Adm)
X :

M
(Adm)
X = {m ∈ N| there exists l and S a DOS for Prob∞(l, cm, wd, rd) s.t. m is a period of S}

In this Section, we want to show properties on the set of admissible periods,
in particular our goal is to show that it is bounded independently of the size of
the adjoint computation.
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Definition 9 (Decomposition). We say that m can be decomposed into [[m1 :
m2]] if, m = m1 +m2 and

Opt
(d)
1 (m−1, cm, rd) > Opt

(d)
1 (m1−1, cm, rd)+wd+ rd+Opt

(d)
1 (m2−1, cm, rd)

(15)

Intuitively, this means that there will be no DOS with a period of size m,
two periods of size m1,m2 will be preferred. Let us write formally this result.

Theorem 7 (Decomposition). If m can be decomposed into [[m1 : m2]], then

there are no DOS with a period of size m (i.e., m /∈ M
(Adm)
X ).

Proof. We show the result by contradiction. Let m that can be decomposed
into [[m1 : m2]]. Assume there exists l that admits a DOS with a period equal
to m. Without loss of generality, let us denote S = (m,m3, · · · ,mnl

; res) this
DOS.

Clearly, S̃ = (m1, · · · ,mnl
; res) is a DS for Prob∞(l, cm, wd, rd). Let us

show that Exec(S) > Exec(S̃) which would contradict the optimality of S.

Exec
(

S̃
)

=(l − res)uf +Opt0(res, cm) +

nl
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

<(l − res)uf +Opt0(res, cm) +

nl
∑

i=3

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

+
(

wd + rd +Opt
(d)
1 (m− 1, cm, rd)

)

<Exec (S)

Hence the result.

This decomposition allows us to caracterize periods that are not admissible.

Corollary 6. Given m ∈ M
(Adm)
X . If

Opt
(d)
1 (m− 1, cm, rd)=juf+Opt0(m−1−j, cm)+Opt0(j−1, cm), then j ≤

wd + rd
uf

.

(16)

Opt
(d)
1 (m− 1, cm, rd)=juf+Opt0(m−1−j, cm)+rd+Opt

(d)
1 (j−1, cm, rd), then j ≤

wd

uf

.

(17)

Proof. We show the results by contradiction.

Let us consider Equation (16), i.e. Opt
(d)
1 (m− 1, cm, rd) = Opt0(m− 1, cm).

Assume j > wd+rd
uf

. Because we have Opt
(d)
1 (m− 1, cm, rd) = Opt0(m− 1, cm),

by Lemma 7,

Opt
(d)
1 (m− 1− j, cm, rd) = Opt0(m− 1− j, cm) and

Opt
(d)
1 (j − 1, cm, rd) = Opt0(j − 1, cm).
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Consequently,

Opt
(d)
1 (m−1, cm, rd) > wd+rd+Opt

(d)
1 (m−1− j, cm, rd)+Opt

(d)
1 (j−1, cm, rd)

andm can be decomposed into [[j : m−j]] and the result follows from Theorem 7.

Let us now consider Equation (17), i.e. Opt
(d)
1 (m − 1, cm, rd) < Opt0(m −

1, cm). Assume j > wd

uf
, then similarly it suffices to see that m can be decom-

posed into [[j : m− j]] (because Opt0(m−1− j, cm) ≥ Opt
(d)
1 (m−1− j, cm, rd))

and the result follows from Theorem 7.

Corollary 7. Let m ∈ M
(Adm)
X , then:

Opt
(d)
1 (m−1, cm, rd) = min

1≤j≤min
(

wd
uf

,l−1
)

{

Opt0(m− 1, cm)

juf +Opt0(m− 1− j, cm) + rd +Opt
(d)
1 (j − 1, cm, rd)

Proof. This is a direct corollary from Corollary 6

Note that while Corollary 7 is not directly involved in the proof of Theorem 2,

it provides a faster execution of Opt
(d)
1 (l, cm, rd).

5.5 Bounding the size of a period

The main result of this section is that, for a given platform (defined by its
parameters cm, wd, and rd) the set of admissible periods is actually bounded.
We prove this result by showing that admissible periods admit an upper bound
on their size.

5.5.1 Maximum period size

Lemma 8. Let t1d and t2d be the only integers such that:

β(cm, t1d) ≥
wd + rd

uf

> β(cm, t1d − 1),

β(cm, t2d) ≥
wd

uf

> β(cm, t2d − 1),

then there are no admissible periods in M
(Adm)
X greater than

mmax = max(β(cm, t1d + 1), 2β(cm, t2d) + 1) (18)

Proof. Let m ≥ mmax.

Assume first that Opt
(d)
1 (m−1, cm, rd) = Opt0(m−1, cm). Then Opt

(d)
1 (m−

1, cm, rd) = jmuf + Opt0(m − jm − 1, cm) + Opt0(j − 1, cm), where jm ≥

β(cm, t1d) ≥
wd+rd

uf
(Theorem 4). Then, by Corollary 6, m /∈ M

(Adm)
X .
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Otherwise, assume Opt
(d)
1 (m − 1, cm, rd) < Opt0(m − 1, cm). According to

Lemma 6 there exists jm ≥ β(cm, t2d) ≥
wd

uf
and nm such that:

Opt
(d)
1 (m− 1, cm, rd) = jmuf +Opt0(m− jm − 1, cm) + rd + gnm−1(jm − 1)

In particular, by Definition 7, we know that gnm−1(jm − 1) = minn gn(jm − 1).

And by Lemma 4, gnm−1(jm − 1) = Opt
(d)
1 (jm − 1, cm, rd). Thus:

Opt
(d)
1 (m−1, cm, rd) = jmuf+Opt0(m−jm−1, cm)+rd+Opt

(d)
1 (jm−1, cm, rd).

Then, by Corollary 6, m /∈ M
(Adm)
X .

Theorem 8. The number of admissible periods |M
(Adm)
X | is bounded.

Proof. This theorem is a corollary of Lemma 8: there are at most mmax periods

in M
(Adm)
X and M

(Adm)
X ∩ {mmax + 1, ...} = ∅.

Corollary 8. Let l, then:

Opt∞(l, cm, rd, wd) =

min
1≤j≤mmax

{

Opt0(m− 1, cm)

wd + juf +Opt∞(m− 1− j, cm, rd, wd) + rd +Opt
(d)
1 (j − 1, cm, rd)

Proof. This is a direct corollary from Lemma 8

Note that as for Corollary 7, Corollary 8 is not directly involved in the proof
of Theorem 2, but provides a faster execution of Opt∞(l, cm, wd, rd).

5.6 Construction of MX and periodicity

In the previous section, we proved that, for a given platform (defined by its
parameters cm, wd, and rd) the set of admissible period that can be used by a
DOS is finite. But this set can be quite large in practice. In this section, we

define a sufficient subset MX of M
(Adm)
X and highlight its element mX such

that for any adjoint computation graph of any size, there is an optimal solution
with only periods of size mX , except for a bounded number of them. We also
provide, in this section, an algorithm to compute MX and mX .

5.6.1 Bounding the number of solutions with less than one period

Definition 10 (NX(l),l
(1)
X , l

(2)
X ). Let NX(l) the largest (by inclusion) set such

that for all nl ∈ NX(l), there exists a DOS for Prob∞(l, cm, wd, rd) with nl

periods.

Let l
(1)
X be the smallest integer such that for all l ≥ l

(1)
X , NX(l) 6⊂ {0}, that

is, the smallest integer such that for all graph size greater than l
(1)
X , there exists

a DOS with at least one period.
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Let l
(2)
X be the smallest integer such that for all l ≥ l

(2)
X , NX(l) 6⊂ {0, 1},

that is, the smallest integer such that for all graph size greater than l
(2)
X , there

exists a DOS with at least two periods.

Lemma 9. Let l ∈ N, nl ∈ NX(l), then

nl ≥ 1 =⇒ 0 /∈ NX(l + 1).

Proof. Consider l ∈ N, nl ∈ NX(l) such that nl ≥ 1. Let Sl = (m1, · · · ,mnl
; res)

be a DOS for Prob∞(l, cm, wd, rd). S ′
l = (; l) is a DS for Prob∞(l, cm, wd, rd).

Thus by definition,
Exec(Sl) ≤ Exec(S ′

l).

Let S ′
l+1 = (; l + 1) and S ′

l+1 = (m1, · · · ,mnXn (l); res + 1). They are both
DS for Prob∞(l + 1, cm, wd, rd).Then we have:

Exec(Sl+1)− Exec(S ′
l+1) (19a)

≤ Exec(Sl+1)− Exec(S ′
l+1) + (Exec(S ′

l)− Exec(Sl)) (19b)

= (Exec(Sl+1)− Exec(Sl))−
(

Exec(S ′
l+1)− Exec(S ′

l )
)

= (Opt0(res + 1, cm)−Opt0(res, cm))− (Opt0(l + 1, cm)−Opt0(l, cm))
(19c)

< 0 (19d)

Equation (19b) is because Exec(Sl) ≤ Exec(S ′
l ). Then we obtain Equation (19c)

through Equation (14). Finally, Equation (19d) is because l 7→ Opt0(l, cm) is
convex (Lemma 2).

Finally, S ′ cannot be a DOS because another DS has a better execution
time. Hence, 0 /∈ NX(l + 1).

Corollary 9. For all l ∈ N:

l < l
(1)
X =⇒ NX(l) = {0}

l > l
(1)
X =⇒ 0 /∈ NX(l)

Proof. This is a corollary of Lemma 9.

Lemma 10 (Existence of l
(1)
X ). There exists l > 0, such that 0 /∈ NX(l). Fur-

thermore,

l
(1)
X ≤ β(cm, td + 3)−

β(cm, td + 2)

2
, (20)

where td is the unique integer satisfying β(cm, td − 1) < 2(wd+rd)
uf

≤ β(cm, td).
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Proof. Given j ≥ β(cm, td + 1), let us show that

Opt0(j, cm) > min
k<j

(

wd + rd + Opt
(d)
1 (k − 1, cm, rd) + wd + rd +Opt

(d)
1 (j − k, cm, rd)

)

(21)
According to Theorem 4, there exist j̃ such that: (i) β(cm, td) ≤ j̃, and (ii)

Opt0(j, cm) = j̃uf +Opt0(j̃ − 1, cm) + Opt0(j − j̃, cm). Then,

Opt0(j, cm) = j̃uf +Opt0(j̃ − 1, cm) + Opt0(j − j̃, cm − 1)

≥ β(cm, td)uf +Opt0(j̃ − 1, cm) + Opt0(j − j̃, cm)

> 2(wd + rd) + Opt
(d)
1 (j̃ − 1, cm, rd) + Opt

(d)
1 (j − j̃, cm, rd)

Showing the correctness of Equation (21).
Let us now consider l ≥ β(cm, td + 3), then according to Theorem 4, there

exist j such that: (i) β(cm, td + 2) ≤ j, and (ii) Opt0(l, cm) = juf + Opt0(j −
1, cm) + Opt0(l − j, cm − 1).

Let m1,m2 such that m1 +m2 = j and

Opt
(d)
1 (m1 − 1, cm, rd) + Opt

(d)
1 (m2 − 1, cm, rd)

= min
k<j−1

Opt
(d)
1 (k − 1, cm, rd) + Opt

(d)
1 (j − 1− k, cm, rd).

Clearly, (m1,m2; l − j) is a DS for Prob∞(l, cm, wd, rd). Let us now show
that Exec (m1,m2; l − j) < Exec (; l) which shows the result.

Exec (m1,m2; l − j) = juf +Opt0(l − j, cm) +

2
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

≤ juf +Opt0(l − j, cm − 1) +

2
∑

i=1

(

wd + rd +Opt
(d)
1 (mi − 1, cm, rd)

)

(22a)

< juf +Opt0(l − j, cm − 1) + Opt0(j − 1, cm) (22b)

< Exec (; l)

Equation (22a) is due to the fact that adding memory checkpoints can only
improve the execution time, Equation (22b) is because of Equation (21).

Hence the result: for l ≥ β(cm, td + 3), 0 /∈ NX(l). Clearly we have: l
(1)
X ≤

β(cm, td+3). We can improve this result by saying that (m1; l−j) (resp. (m2; l−
j)) is a DOS for Prob∞(l−m2, cm, wd, rd) (resp. Prob∞(l−m1, cm, wd, rd)) by
Corollary 5. Furthermore, by Lemma 9, this implies that for all l ≥ β(cm, td +

3) −max(m1 +m2), 0 /∈ NX(l). Hence, l
(1)
X ≤ β(cm, td + 3) −max(m1 +m2).

Furthermore, we have seen that m1 + m2 ≥ β(cm, td + 2) and in particular,

max(m1 +m2) ≥
β(cm,td+2)

2 .
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Finally, we have the result,

l
(1)
X ≤ β(cm, td + 3)−

β(cm, td + 2)

2
.

Based on Corollary 9 and Lemma 10, we can construct an algorithm to

compute l
(1)
X . Corollary 9 says that Algorithm 3 returns the value of l

(1)
X , while

Lemma 10 ensures that the algorithm terminates in less than β(cm, td + 3) −
β(cm,td+2)

2 iterations of the “while” loop.

Algorithm 3 Algorithm to compute l
(1)
X

1: procedure AlgoL1X(cm, wd, rd)

2: l
(1)
X ← 1

3: while for all j ≤ l
(1)
X ,Opt0(l

(1)
X , cm) < wd+juf +Opt∞(l

(1)
X −1−j, cm, wd, rd)+

rd +Opt
(d)
1 (j − 1, cm, rd) do

4: l
(1)
X ← l

(1)
X + 1

5: end while

6: return l
(1)
X

7: end procedure

Lemma 11 (Existence of l
(2)
X ).

l
(2)
X ≤ l

(1)
X +mmax, (23)

where mmax is defined by Equation (18).

Proof. Furthermore, let us show that for all l ≥ l
(1)
X + 2β(cm, td), 1 /∈ NX(l).

Let l such that 1 ∈ NX(l). Let (m; l−m) be a DOS for Prob∞(l, cm, wd, rd).
According to Lemma 8, m ≤ mmax. Furthermore, according to Corollary 5,
(; l−m) is a DOS for Prob∞(l−m, cm, wd, rd). Hence, according to Lemma 9,

l −m ≤ l
(1)
X . Finally, we have: l ≤ l

(1)
X +mmax.

5.6.2 M-DOS and periodicity

In order to show the periodicity, we define a set MX such that for all l, there
exists a DOS for Prob∞(l, cm, wd, rd) such that all its periods are in MX . We
call such DOS: M-DOS.

Definition 11 (MX , mX). For this section we use the following definitions:
• Let LX the set of adjoint graphs that only admits DOS with one period:

LX =
{

l
∣

∣

∣
NX(l) = {1}

}

(24)
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• We define the relative cost of a period4 RelCostX :

RelCostX : m 7→
wd + rd +Opt

(d)
1 (m− 1, cm, rd)

m
. (25)

• For l ∈ LX , we define ml
1 to be the minimum element of

{m|(m; l−m) is a DOS for Prob∞(l, cm, wd, rd)}

with regard to RelCostX .
• We define a subset of the set of admissible periods MX :

MX =
{

ml
1

∣

∣

∣
l ∈ LX

}

. (26)

• Denote mX the largest element of MX that is minimum with regard to
RelCostX .

Note that according to Corollary 9, LX ⊂ {l
(1)
X , · · · ,∞}, and by Defini-

tion 10, LX ⊂ {1, · · · , l
(2)
X − 1}. Hence

|MX | < l
(2)
X − l

(1)
X .

Corollary 9 provides an efficient way to check whether l ∈ LX :

Proposition 1. l ∈ LX if and only if

Opt∞(l, cm, wd, rd) < min
j≤l−l

(1)
X

{

Opt0(l, cm)

wd + juf +Opt∞(l − 1− j, cm, rd, wd) + rd +Opt
(d)
1 (j − 1, cm, rd)

(27)

Proof. If l ∈ LX then Opt∞(l, cm, rd, wd) < Opt0(l, cm) (0 /∈ NX(l)). Further-
more, by Corollary 9, if a DOS for Prob∞(l, cm, wd, rd) admits a period m such

that l−m ≥ l
(1)
X , then NX(l −m) 6= {0} and l /∈ LX .

Finally, if Opt0(l, cm) satisfies Equation (27), then Opt∞(l, cm, wd, rd) =

wd+ juf +Opt∞(l− 1− j, cm, rd, wd)+ rd+Opt
(d)
1 (j− 1, cm, rd) only for j such

that l− j < l
(1)
X , and by Corollary 9, NX(l) = {1}.

Proposition 1 in turn provides an efficient way to compute mX :

Definition 12 (M-DOS). For all l, S = (m1, · · · ,mnl
; res) is a M-DOS for

Prob∞(l, cm, wd, rd) if (i) S is a DOS and (ii), for all i, mi ∈ MX .

Theorem 9 (Existence of M-DOS). Given X = (cm, rd, wd). For all l ≥ l
(1)
X ,

there exists a M-DOS.

4Intuitively, for a period of size m we pay wd to be able to execute it later, and then

rd +Opt
(d)
1 (m− 1, cm, wd, rd) to actually execute it.
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Algorithm 4 Algorithm to compute mX

1: procedure AlgomX(cm, wd, rd)

2: l
(1)
X = AlgoL1X(cm, wd, rd)

3: MX ← {}

4: for l = l
(1)
X · · · l

(1)
X +mmax do

5: if l ∈ LX thenMX ←MX ∪ {m
l
1}

6: end if

7: end for

8: mX ← minimum ofMX with regard to RelCostX
9: return mX

10: end procedure

Proof. We show the result by contradiction.

Let us call l0 ≥ l
(1)
X the minimum length that does not admit a M-DOS,

i.e., such that for all DOS for Prob∞(l0, cm, wd, rd) there exists a period not in
MX .

Amongst the DOS for Prob∞(l0, cm, wd, rd) such that the number of periods

is greater than 2 (by definition l0 ≥ l
(1)
X , and l0 /∈ LX hence there exists at least

one), we choose S = (m1, · · · ,mnl0
; res) a DOS that is minimum with regard

to the number of periods not in MX .
By Corollary 5 (item 1) we can further assume w.l.o.g thatmnl0

/∈ MX . Iter-
ating Corollary 5 (item 2), (mnl0

; res) is a DOS for Opt∞(mnl0
+res, cm, wd, rd).

Clearly, mnl0
+ res < l0 (there are more than two periods, hence l0 ≥ m1 +

mnl0
+ res > mnl0

+ res), and because 1 ∈ NX(mnl0
+ res), by Lemma 9,

mnl0
+ res ≥ l

(1)
X . By minimality of l0, there exists S ′ a DOS for Opt∞(mnl0

+
res, cm, wd, rd) such that all periods of S ′ are in MX and such that there is at
least one period.

Finally, by Corollary 5 (item 3), we can replace (mnl0
; res) in S by S ′, then

(i) it will still be an optimal algorithm for l0, and (ii) it will have more than 2
periods.

Finally, we have a DOS for Prob∞(l0, cm, wd, rd) with more than two pe-
riods and one less period than S not in MX contradicting the existence of
S.

Definition 13 (MS
−mX

). Let S = (m1, · · · ,mnl
; res) a M-DOS for Prob∞(l, cm, wd, rd),

we define
MS

−mX
=

∑

i∈{i|mi 6=mX}

mi.

Less formally, MS
−mX

is the sum of the length of the periods of S that are
not mX .

Lemma 12. For all l ∈ N, there exists S a M-DOS for Prob∞(l, cm, wd, rd)
such that, for all m ∈ MX \ {mX}, there are less than mX periods of size m.
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Proof. We show the result by contradiction. Let l such that for any given
M-DOS for Prob∞(l, cm, wd, rd), there exists m ∈ MX \ {mX} and there are
not less than mX periods of size m. Let S = (m1, · · · ,mnl

; res) a M-DOS
for Prob∞(l, cm, wd, rd) that is minimum with regards to MS

−mX
. Let m ∈

MX \ {mX} such that there are not less than mX periods of size m in S.
Without loss of generality, we can assume that for i ≤ mX , mi = m (Corollary 5
(item 1), the mX first periods have a size m).

According to Corollary 3 (and by induction on the mX first elements),

Exec (S) = mX

(

muf + wd + rd +Opt
(d)
1 (m− 1, cm, rd)

)

+ Exec (mmX+1, . . . ,mnl
; res)

Denote S ′ = (m′
1, · · · ,m

′
m,mmX+1, · · · ,mnl

; res), where for i ≤ m, m′
i = mX .

Then clearly,
∑m

i=1 mX =
∑mX

i=1 m, and then S ′ is a DS for Prob∞(l, cm, wd, rd).
Furthermore,

Exec (S ′) = m
(

mXuf + wd + rd +Opt
(d)
1 (mX − 1, cm, rd)

)

+ Exec (mmX+1, . . . ,mnl
; res)

Then,

Exec (S)− Exec (S ′) =

mX

(

wd + rd +Opt
(d)
1 (m− 1, cm, rd)

)

−m
(

wd + rd +Opt
(d)
1 (mX − 1, cm, rd)

)

Hence, becausemX is minimal with regards to the function RelCostX , RelCostX(m) ≥
RelCostX(mX) and Exec (S)− Exec (S ′) ≥ 0.

By optimality of S, we have: Exec (S) = Exec (S ′). However

MS′

−mX
= MS

−mX
−mX ·m,

which contradicts the minimality of S, proving the result.

Proof of Theorem 2. Let:

iubX = (mX − 1) · (|MX | − 1)

lubX = l
(1)
X + iubX mmax.

Let l ≥ lubX , then according to Theorem 9 and Lemma 12, we can construct
S = (m1, · · · ,mnl

; res) a M-DOS for Prob∞(l, cm, wd, rd) such that for any
m ∈ MX \ {mX}, at most mX − 1 periods of size m. Hence, there are at most
iubX periods not equal to mX , and nl − iubX periods of size mX .

According to Corollary 5 (item 1), we can assume that the first nl − iubX
periods are the periods of size mX (hence showing Equation (3)).

Furthermore, according to Corollary 5 (item 2),

• (mnl−iub
X
, · · · ,mnl

; res) is a M-DOS with iubX periods all smaller thanmmax;

• (; res) is a DOS hence res < l
(1)
X .
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Figure 2: Heat maps of the values of iX according to the three different platform
parameters: cm, wd, rd (white = 0 occurence). Most of the time, iX ≤ 10.

Finally,
∑nl

i=nl−iub
X

mi + res < lubX (hence showing Equation (4)).

This shows the existence of iX and lX .

In this proof, we have not given the smallest value possible for iX and lX ,
we have only given upper bounds to show their existence.

5.7 Experimental evaluation of iX and mX

Theorem 2 only gives a weak periodicity argument. In this Section we try to
develop questions that can arise from Theorem 2.

5.7.1 Can we get a better bound for iX?

However, one might expect that by improving the bounds obtained in the various
results of the previous sections, one may be able to show periodicity or be able
to give a bound on iX that does not depend on X . Unfortunately, there is
little chance of this result being true. We studied for all triplet (cm, wd, rd) ∈
{1, . . . , 9}×{1, . . . , 22}×{1, . . . , 24} the value of iX (by computing most optimal
solutions of every value l ∈ {1, . . . , lX}) and reported it in Figure 2.

An important observation from Figure 2 is that (i) most of the time iX is
very small (0 or 1), and (ii) iX is highly influenced by cm, for instance when
cm ≥ 2, we have never obtained values for iX greater than 10. On the contrary,
when cm = 1 and wd is large, then iX can take large values (we have observed
up to 82). In general, 60% of the time iX is equal to 0, 93% of the time iX is
less than 3.

5.7.2 Can we compute mX?

The second question that can be raised is about the value of mX . Unfortunately
we have been unable to prove an analytical formula for mX , this remains an
open question. However by studying values ofmX for small values of cm, wd and
rd, we have conjectured an analytical formula for mX . We have then verified
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it on a larger set ((cm, wd, rd) ∈ {1, ..., 10} × {1, ..., 50} × {1, ..., 50}) without
finding any counter-examples.

Conjecture 1. We define f a function that takes two integers x, y and cm as
follow:

f : (x, y, cm) 7→ β(cm + 1, x+ y − 1)−

y−1
∑

k=0

β(cm, k).

Let ir(rd, cm) = x or x+ 1, where x is the only integer that satisfies

β(cm + 1, x− 1) ≤ rd < β(cm + 1, x).

Let iw(wd, rd, cm) = y, where y is the only integer that satisfies

y−1
∑

j=1

f(j, ir(rd, cm), cm) < wd ≤
iw
∑

j=1

f(j, ir(rd, cm), cm).

We conjecture that

mX = f(ir(rd, cm), iw(wd, rd, cm), cm).

Note that we have not been able to conjecture the exact value of ir(rd, cm),
hence leaving the possibility of two distinct periods mX .

We give the example below that we used along with the online encyclopedia
of integer sequences (OEIS) [7] to be able to do the conjecture.

cm = 2
rd mX

1 3 9 19 34 55 83
4 6 16 31 52 80 116
10 10 25 46 74
20 15 36 64 100

cm = 3
rd mX

1 4 14 34 69 125
5 10 30 65 121
15 55 111

Table 2: Periods when cm = 2 (left) and cm = 3 (right) when wd increases, for
given rd. When rd is between two values (for instance for rd = 3), then mX will
vary with wd between the values from the adjoint sequences (rd = 1 and rd = 4
(resp. 5) for cm = 2 (resp. 3)).

6 Asymptotically optimal online algorithm

We now present an asymptotically optimal online algorithm Disk-A-Revolve

to prove Corollary 1. Intuitively, this algorithm writes disk checkpoints period-
ically with a period of mX .

Theorem 10. Disk-A-Revolve is asymptotically optimal for Prob∞(l, cm, wd, rd).
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Algorithm 5 Disk-A-Revolve

1: procedure Disk-A-Revolve(stream)
2: ind← 0
3: no

l ← −1
4: while stream is not finished do

5: if ind ≡ 0 mod mX then

6: Execute: Dm
ind−mX

W d
ind · W

m
ind /*Dm

ind−mX
discards the previous

checkpoint from memory so that at all time we only store at most one

checkpoint in memory.*/

7: no
l ++

8: end if

9: Execute: Find

10: ind + +
11: end while

12: l ← ind
13: res← l − no

lmX

14: Execute: F̄l

15: Execute: Rm
l−resShift (Revolve(res− 1, cm), no

l ·mX)
16: for i = no

l downto 1 do

17: Execute: Rd
i·mX

· Shift (1D-Revolve(mX − 1, cm, rd), i ·mX)
18: end for

19: return S
20: end procedure

Proof. At the end of the while loop (line 4), no
l = ⌊l/mX⌋ − 1 (indeed, the

“if” test (line 5) is executed ⌊l/mX⌋ times). The execution time of Disk-A-

Revolve is:

• The while loop (line 4) does no
l + 1 write to disks and l forward steps.

• We then execute one backward operation, F̄l.

• The execution of Revolve then has a cost of Opt0(res− 1, cm)

• Then the for loop (line 16) has a cost of no
l ·
(

rd +Opt
(d)
1 (mX − 1, cm, rd)

)

The total execution time is then:

Exec (Disk-A-Revolve(stream of size l)) =

luf + (no
l + 1)wd + ub +Opt0(res− 1, cm) + no

l ·
(

rd +Opt
(d)
1 (mX − 1, cm, rd)

)

Then, asymptotically,

Exec (Disk-A-Revolve(stream of size l)) ∼ luf + no
l

(

wd + rd +Opt
(d)
1 (mX − 1, cm, rd)

)

∼ luf + (⌊l/mX⌋ − 1)
(

wd + rd +Opt
(d)
1 (mX − 1, cm, rd)

)
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According to Theorems 2 and 5, the optimal execution time is greater than

(l − lX)uf +

⌊

l − lX
mX

⌋

·
(

wd + rd +Opt
(d)
1 (mX − 1, cm, rd)

)

,

which, in turn is equivalent to luf (⌊l/mX⌋ − 1)
(

wd + rd +Opt
(d)
1 (mX − 1, cm, rd)

)

asymptotically. Hence showing that Disk-A-Revolve is asymptotically opti-
mal.

Remark. Note that the execution time of Disk-A-Revolve can still be im-
proved by using efficiently the memory checkpoints and waiting until the last
minute before storing data on disks. For instance, since mX is small, we can use
in practice the optimal online algorithm designed by Heuveline and Walter [5]
for the memory checkpoints between disk checkpoints. However for readability
reasons we chose not to present it here as it would not have changed the final
result.

7 Evaluation of a periodic schedule

Using Theorem 2, we can easily compute a DOS for Prob∞(l, cm, wd, rd). We
need first to pre-compute a DOS for every adjoint graph of size smaller than lX .
Then, we can give in constant time a DOS for any l using the following simple
algorithm:

1. Let n1 =
⌈

l−lX
mX

⌉

. Intuitively, n1 is the number of periods that we are sure

will be equal to mX .

2. Let l′ = l−n1 ·mX . Intuitively, l′ is the remainder of the work to be done.
A DOS for l′ has already been pre-computed: (m1, · · · ,mn2 ; res).

3. Then (mX , . . . ,mX ,m1, · · · ,mn2 ; res) (with n1 iterations of mX initially)
is a DOS for l

This gives us a constant time algorithm for Prob∞(l, cm, wd, rd). However,
the pre-computation part of this algorithm can be costly (in time and space)
depending on the parameter of the platform.

7.1 Periodic Dominant Schedules

Based on the observation made in Section 5.7.1, that, in general, iX is small,
we might be interested in only considering the Periodic Dominant Sequence,
defined as follows:

Definition 14 (PDS(l, cm, wd, rd)). Given values of l, cm, wd and rd, the
Periodic Dominant Sequence PDS(l, cm, wd, rd) is the Dominant Sequence

PDS(l, cm, wd, rd) = (mX ,mX , · · · ,mX ; res)

where res =

⌈

l−l
(1)
X

mX

⌉

.
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The PDS(l, cm, wd, rd) is not always optimal but it has the advantage of

not requiring a costly pre-computation. It only needs the value of mX , l
(1)
X and

the schedule 1D-Revolve (mX , cm, rd).

7.2 Experimental Results

In this Section, we assess the time overhead of the Periodic Dominant Sequence
and of Disk-A-Revolve compared with the optimal sequence that computes
an AC graph of size l. In the experiments, we normalize every time values by
setting uf = 1. Because the backward steps are computed exactly once in any
solution, their cost has no impact on the algorithms: we set ub = 0 so that we
can assess the performance of the algorithms on the forward sweep. Here we
present results for cm ∈ {5, 10} and wd = rd ∈ {1, 2, 5, 10}.
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Figure 3: Ratio of the Makespan of PDS(l, cm, wd, rd)/Disk-Revolve (l, cm, wd, rd)
as a function of l.

Figure 3a and 3b depict the time overhead of PDS(l, cm, wd, rd) compared
with Disk-Revolve (l, cm, wd, rd) as a function of l. We observe that the ratio
increases with wd and rd but for large instances of the problem (l greater than
1000), the time overhead is always less than 1%.

Figure 4a and 4b depicts the time overhead of Disk-A-Revolve over the
optimal sequenceDisk-Revolve as a function of l. One can see that the asymp-
totical optimality is attained very quickly (for Adjoint Computation graphs of
length 1000). As in the offline case, the ratio increases with wd and rd. Note
that as it is, the online algorithm is not suited for small instances of the problem
(small values of l), indeed, we focused on an asymptotically optimal algorithm.
However we expect that mixing our asymptotical algorithm with existing online
algorithms [9, 11] could improve those cases.

Overall, both PDS(l, cm, wd, rd) and Disk-A-Revolve offer good and ef-
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Figure 4: Ratio of the Makespan of Disk-A-Revolve/ Disk-Revolve as a
function of l.

ficient algorithms to compute the solution to large Adjoint Computation prob-
lems.

8 Conclusion

In this paper, we have designed optimal algorithms for the multi-stage adjoint
computation, with two types of storage location: a limited one with no reading
and writing costs and an unlimited one with non-zero access times. We im-
proved the time complexity of the optimal dynamic program introduced in our
previous work [1]: by showing that the optimal solution is weakly periodic, we
were able to construct an algorithm that returns an optimal schedule for the
problem with constant overhead (compared to the quadratic time-complexity
of the optimal algorithm presented in [1]). Furthermore, we also developed
asymptotic optimal algorithms that need almost no precomputation. Finally,
we provided an asymptotical optimal algorithm for the online problem (when
the graph size is not known before-hand).

Modern large-scale cluster are subject to failures that can occur at any time
during the computation and lead to a memory flush. The algorithm introduced
in this paper establishes a solid foundation to study the impact of memory
failures on the performance of multi-stage adjoint computation.
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