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Abstract

We study the scheduling of computational workflows on compute resources
that experience exponentially distributed failures. When a failure occurs, roll-
back and recovery is used to resume the execution from the last checkpointed
state. The scheduling problem is to minimize the expected execution time by
deciding in which order to execute the tasks in the workflow and whether to
checkpoint or not checkpoint a task after it completes. We give a polynomial-
time algorithm for fork graphs and show that the problem is NP-complete
with join graphs. Our main result is a polynomial-time algorithm to compute
the execution time of a workflow with specified to-be-checkpointed tasks.
Using this algorithm as a basis, we propose efficient heuristics for solving the
scheduling problem. We evaluate these heuristics for representative workflow
configurations.

1. Introduction

Resilience has become a key concern when computing at
large scales [1]. Enrolling more processors in an application
execution leads to more frequent application failures. (In this
work we use the term “processor” in a broad sense to mean a
processing elements of the platform on which one can run a
portion of a parallel application, e.g., a multi-socket multi-
core blade server.) First, making each individual processor
reliable, for instance via redundant hardware components, is
costly. Since costs are highly constrained when designing
a parallel platform, one must use commercial-off-the-shelf
(COTS) processors, the reliability of which is driven by
the market. Consequently, each processor has a Mean Time
Between Failure (MTBF), say µ, that varies from a few years
to a century. Second, when enrolling p processors to execute
a tightly-coupled parallel application, a failure on any of the
processor will cause an application failure. The overall MTBF
of this set of processors is µ/p, which can be low (a few hours
or less) when p is large. As a result, no matter how reliable
the individual processors, there is a value of p above which
failures become common rather than exceptional events.

The above considerations have prompted decades of re-
search in the area of fault-tolerant computing. The most well-
known approach is checkpoint-rollback-recovery, by which
application state is saved to persistent storage at different
points, e.g., periodically, throughout execution [2], [3]. When
a failure occurs, the application execution can be resumed
from the most recently saved such state, or checkpoint. A
well-studied question is that of the optimal checkpointing

strategy [2], [3], [4]. Too infrequent checkpoints lead to
wasteful re-computation when a failure occurs, but too fre-
quent checkpoints lead to overhead during failure-free periods
of the application execution. Checkpointing can happen in
a coordinated or uncoordinated manner, and the advantages
and drawbacks of both approaches are well-documented [5].
Checkpointing can be implemented in a way that is agnostic
to the application, in which case full address space images are
saved as checkpoints [6], [7]. Alternately, checkpointing can
be application-aware so that only the application data truly
needed to resume execution is saved. This latter approach is
more efficient because less data needs to be saved, but requires
modifying the implementation of the application [8].

In this work, we study the execution of workflow applica-
tions on large-scale platforms, i.e., subject to processor failures
during application execution. An application is structured as
Directed Acyclic Graph (DAG) in which each vertex repre-
sents a tightly-coupled parallel task and each edge represents
a data dependency between tasks. This general model is
relevant for many scientific workflows [9]. The difficulty
of scheduling graphs of parallel tasks, or applications with
“mixed parallelism”, without considering processor failures,
has long been recognized [10]. The difficulty comes from
the need to not only decide on a traversal of the task graph,
as in classical scheduling problems, but also to decide how
many processors should be assigned to each task. In addition,
complex data redistributions must take place so that output
data from one task can serve as input data to another task
when both tasks do not necessarily use the same number of
processors. It is not clear how to model redistribution costs
in practice and thus how to make judicious scheduling and
processor allocation decisions [11], [12]. Because we consider
processor failures, which makes the scheduling problem even
more difficult, in this work we opt for a simplified scenario
in which each task uses all the available processors. In other
words, the workflow DAG is linearized and the tasks execute
in sequence, using the whole fraction of the platform that is
dedicated to the application. This scenario is representative
of a large class of compute-intensive scientific applications
whose workflow is partitioned into (typically large) tightly-
coupled parallel computational kernels. Each parallel task is
executed across all available processors, and produces output
data that is kept in memory while executing its immediate



successors in the DAG. Executing each task on all processors
makes it possible to avoid complex data redistributions among
tasks that use different numbers of processors [12]. While it
would be possible to use checkpoint-roll-back recovery within
each task, it would require either saving large checkpoints
(application-agnostic) or to modify the implementation of the
task (application-aware). Given that both approaches have
drawbacks, we assume non-modified, and thus non-fault-
tolerant, implementations for the tasks. Fault-tolerance must
then be achieved by checkpointing the output data generated
by each task once it completes. If there is a failure during
a task execution, one must recover from the most recently
saved checkpoints on all paths from the failed task upward
to an entry task of the DAG, re-execute non-checkpointed
predecessors of the task if necessary, and then re-execute
the task itself. This is repeated until the task is successfully
executed and its output possibly checkpointed.

We study the following problem. We are given a DAG of
tasks and for each task we know how long it takes to compute
its output, how long it takes to checkpoint its output, and how
long it takes to recover its checkpointed output. We are given
a platform with a given failure rate on which we want to
execute the application. In which order should the tasks be
executed? Which tasks should be checkpointed? We call an
answer to these two questions a schedule. The objective is to
find a schedule that minimizes expected application execution
time, or expected makespan. We call this problem DAG-
CHKPTSCHED.

To the best of our knowledge, DAG-CHKPTSCHED has only
been answered for the very specific case in which the DAG is
a linear chain [13]. For general DAGs, the problem is more
difficult. In fact, even computing the expected makespan of
a given schedule is difficult. This is surprising, because the
ordering of the tasks is given by the schedule, as well as the
location of all checkpoints. But when computing the expected
execution time of a task, one has to account for the states of all
its predecessors, which depend upon when the last failure has
occurred. In this context, we make the following contributions:

• We provide a polynomial-time algorithm for computing
the expected makespan of a schedule. This algorithm
is the fundamental basis for designing and comparing
heuristics that find efficient schedules for arbitrary DAGs.

• We propose a set of heuristics for solving DAG-
CHKPTSCHED for general DAGs. To the best of our
knowledge, these heuristics are unique in the literature,
since previous work lacked an algorithm to estimate the
makespan of a schedule (except when the DAG is a linear
chain [13]).

• We show that although DAG-CHKPTSCHED can be
solved in polynomial time for fork DAGs, its associ-
ated decision problem is NP-complete for join DAGs.
This result shows the intrinsic complexity of DAG-
CHKPTSCHED, but is largely expected, as both the lin-
earization of the DAG and the location of the checkpoints
must be determined.

The rest of this paper is organized as follows. Section 2
provides an overview of related work. Section 3 is devoted
to formally defining the framework and all model parameters.
Section 4 gives our main theoretical contributions. Section 5
presents a set of heuristics for solving the problem with DAGs.
These heuristics are evaluated experimentally in Section 6.
Finally, Section 7 outlines our main findings and discusses
directions for future work.

2. Related work

Resilience to faults is one of the major issues for cur-
rent and upcoming large-scale parallel platforms. The most
common fault-tolerance technique used in high performance
computing is checkpoint and rollback recovery [6], [7], [5],
[2]. A large body of work has studied periodic coordinated
checkpointing for a single divisible application. Given the
simplicity of the divisible model, a wide range of results are
available including first order formulas for the checkpointing
period that minimizes execution time [2], [3] or more accurate
formulas for Weibull failure distributions [14], [15], [16]. The
optimal checkpointing period is known only for exponential
failure distributions [17]. Dynamic programming heuristics for
arbitrary distributions have been proposed [13], [17]. Gelenbe
and Derochette [4] give a first-order approximation of the
optimal period to minimize average response time. They
compare it to the period obtained by Young [2] in a model
where they do not consider one single long application and a
fully-loaded system, but instead multiple small independent
applications that arrive in the system following a Poisson
process. Finally, Gelenbe and Hernández [18] compute the
optimal checkpointing period that minimizes computational
waste in the case of age-dependent failures: they assume that
the failure rate follows a Weibull distribution and that each
checkpoint is a renewal point.

Few authors have studied the resilience problem with work-
flows when the checkpoints can only take place at the end
of each task. Bouguerra et al. [19] have studied a restricted
version of DAG-CHKPTSCHED when the workflow is a linear
chain. They propose a greedy heuristic to minimize the total
execution time in case of arbitrary failures. As already men-
tioned, Toueg and Babaoglu [13] have computed the optimal
execution time for a linear chain of tasks using a dynamic
programming algorithm to decide which tasks to checkpoint.

Our work is not restricted to linear chains and, as seen
in upcoming sections, removing this restriction makes the
problem fundamentally more difficult. In fact, even when a
schedule is given (hence both a linearization of the DAG and
a list of tasks to checkpoint), it is hard to determine which
tasks to re-execute and which tasks to recover from after one
or more failures have occurred during the execution.

3. Framework

We consider a (subset of a) parallel platform with p pro-
cessors, where each processor is a processing element that is
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Figure 1: Example DAG. Tasks whose output is checkpointed
(T3 and T4) are shadowed.

subject to its own individual failures. When a failure occurs
at a processor, this processor experiences a downtime before
it can be used again. In a production system, this downtime
corresponds to replacing the processor by a logical spare.
Like most works in the literature, we simply assume that a
downtime lasts D seconds, where D is a constant. We assume
that failures are i.i.d. (independent and identically distributed)
across the processors and that the failure inter-arrival time at
each processor is exponentially distributed with Mean Time
Between Failures (MTBF) µproc = 1/λproc.

On the set of processors we want to execute a task-parallel
application that is structured as a DAG G = (V,E) where V is
a set of vertices and E a set of edges. Each vertex is a tightly
coupled data-parallel task that is executed on all p available
processors. Consequently, in all that follows, we can view the
set of processors as a single macro-processor that experiences
exponentially distributed failures with parameter λ = pλproc,
i.e., with MTBF µ = µproc/p. Each edge corresponds to a
data dependencies between two tasks. Since no two tasks run
simultaneously, the sequence of executed tasks corresponds to
one of the many linearizations of the DAG, i.e., task sequences
that respect data dependencies. The DAG has n vertices, and
the task corresponding to the i-th vertex is denoted by Ti.
A failure-free execution of task Ti on the p processors takes
wi seconds (the task’s computational weight). This execution
produces an output that can be checkpointed in ci seconds, and
can be recovered from a checkpoint in ri seconds. If task Ti
executes successfully, then its successor tasks in the DAG can
begin execution immediately since Ti’s output data is available
in memory (distributed over the p processors). If the output
of a task is saved to a checkpoint, we say that the task is
checkpointed.

If a failure happens during the execution of Ti, then Ti must
be re-executed. This re-execution requires that the input data
to Ti be available in memory. For each reverse path in the
DAG from Ti back to an entry task, one must find the most
recently executed checkpointed task. One must then recover
from that checkpoint, and re-execute all the tasks that were
executed after that checkpointed task, i.e., all tasks whose
output was lost and that are ancestors of Ti along the reverse
path. It may be that on such a path from Ti to an entry task,
no checkpointed task is found, in which case one must begin
by re-executing the entry task. An example DAG is shown

in Figure 1, for which tasks whose output is checkpointed are
shadowed (T3 and T4). Consider the following linearization of
the DAG: T0T3T1T2T4T5T6T7. Let us assume that the first and
only failure occurs during the execution of T5. To re-execute
T5, one needs to recover the checkpointed output of T3. To
execute T6, one then needs to recover the checkpointed output
of T4 and use the output of T5 that is now available in memory.
This sequence of recoveries and re-executions must be re-
attempted until T6 executes successfully. Finally, the output
of T2 was lost due to the failure, and no task is checkpointed
on the reverse path from T7 to T1. One must therefore re-
execute T1, T2, and then finally T7. This example is for a
single failure occurrence and yet is not straightforward. This
hints at the complexity of the problem in the general case.

As seen in the example, the DAG can have multiple entry
tasks. The entry tasks (sources), when restarted, do not have to
recover any output from predecessors. In practice each entry
task would read the application’s input data from disk, the
overhead of which is included in the task’s weight. The DAG
can also have multiple exit tasks (sinks). As soon as an exit
task completes, it is removed from the DAG as well as any of
its ancestors that have no remaining exit tasks as descendants.
In practice, each exit task would write the application’s output
data to disk, and here again this overhead is accounted for in
the exit task’s weight.

Executing the DAG in a fault-tolerant manner boils down
to re-executing all the work that has been lost due to a failure,
restarting from the most recent checkpoints if found and re-
executing entry tasks otherwise. We enforce that the most
recent checkpoint be used when recovering from a failure.
It would be conceivable to ignore the checkpoints and, for
instance, always re-execute the path completely from each
entry task. This is only useful when the wi values are small
and the ri values are large. Such situations are of dubious
practical interest. It makes little sense to checkpoint a task if
the time to recover the checkpoint is known to be longer than
the time to re-execute that task. If this were the case, then the
task could be fused with some of its predecessors for instance.
So in this work, when recovering from a failure, we enforce
the use of the most recent checkpoints whenever possible.

Formally, let E[t(w; c; r)] denote the expected time to
execute a computation that would take w seconds in a fault-
free execution and c seconds to checkpoint the output of this
computation, with a recovery time of r seconds if a failure
occurs during computation or checkpointing. If failures are
exponentially distributed with mean 1/λ, and the processor
downtime is D, it is shown in [17], [20] that:

E[t(w; c; r)] = eλr
(
1

λ
+D

)(
eλ(w+c) − 1

)
. (1)

We make extensive use of this notation in this work. It is
crucial to note that the above formula is valid even if failures
occur during checkpointing or recovery. Many works in the
literature assume that checkpointing and recovery are failure-
free, an assumption that is not realistic for large numbers of
processors.



We define a schedule as a linearization of the DAG in which,
for each task, it is specified whether the task’s output should
be checkpointed. The objective is to find the schedule that has
the minimum expected makespan. Note that if λ = 0, i.e., if
there are no failures, then one should do no checkpointing and
all the linearizations of the DAG are equivalent. However, in
the presence of failures there is the usual trade-off between
spending too much time checkpointing or spending too much
time recovering and re-executing.

4. Theoretical results

In this section, we present several theoretical results. First,
in Section 4.1, we establish the NP-hardness of the decision
problem associated to DAG-CHKPTSCHED and we exhibit
particular cases that can be solved in polynomial time. Then,
Section 4.2 provides our key result that DAG-CHKPTSCHED
for general DAGs belongs in NP: we give a polynomial-
time algorithm to compute the expected makespan of a given
schedule.

4.1. Complexity

Fork DAGs are simple DAGs made of a source task with
independent children. Formally G = (V,E) where V =
{T0, T1, . . . , Tn} and E = {(T0, Ti), 1 ≤ i ≤ n}. Join DAGs
are fork DAGs where edges are reversed, hence they are made
of independent source tasks and a common sink task.

Theorem 1.
• DAG-CHKPTSCHED for fork DAGs can be solved in

linear time.
• The decision problem associated to DAG-CHKPTSCHED

for join DAGs is NP-complete.

The proof for fork DAGs is simple, because we can show
that the ordering of the sink tasks does not matter. The only
decision to make is whether to checkpoint the source task. One
can compute the expected makespan of both cases and simply
pick the case that achieves the lowest expected makespan.

The proof for join DAGs is much more elaborate and
involves technical derivations. Due to lack of space, we give
here a sketch of the proof, and we refer the reader to the
companion research report [21] for the full proof.

To prove the result for join DAGs, we start by denoting
by ICKPT, resp. INCKPT, the subset of {T1, . . . , Tn} composed
of the tasks that are checkpointed, resp. not checkpointed.
We then prove that in the optimal solution, the tasks from
ICKPT should be executed before the tasks from INCKPT. Fur-
thermore, while the execution order of the tasks from INCKPT

does not matter the tasks from ICKPT must be executed in a
specific order (namely in non-increasing values of g(i), where
g(i) = e−λ(wi+ci+ri) + e−λri − e−λ(wi+ci)). Given the two
sets (ICKPT, INCKPT), we can construct the optimal solution in
polynomial time, hence the problem belongs to NP. Finally,
we reduce the problem of finding the sets (ICKPT, INCKPT) for

a given upper bound on the expected makespan to finding a
solution to the SUBSET-SUM problem [22].

While this problem is hard in general for join DAGs, there
are instances in which it can be solved in polynomial time.

Proposition 1. DAG-CHKPTSCHED for a join DAG where
ci = c and ri = r for all i can be solved in quadratic time.

This result is a corollary from the optimal scheduling orders
for ICKPT and INCKPT. We can show that if there are two tasks
Ti and Tj such that wi > wj and Tj is checkpointed in the
optimal solution, then Ti should be checkpointed. This gives us
only n possible sets ICKPT. Evaluating the expected execution
time for each set gives us the optimal solution.

4.2. Evaluating a schedule for a general DAG

In this section, we consider a general DAG and a given
schedule that specifies a linearization of the DAG and which
tasks are checkpointed. For simplicity, we renumber the tasks
so that task Ti is the ith task executed in the linearization.

Theorem 2. Given a DAG, and a schedule for this DAG, it is
possible to compute the expected execution time in polynomial
time.

Proof: Let Xi be the random variable that corresponds
to the execution time between the end of the first successful
execution of task Ti−1 and the end of the first successful
execution of task Ti. The expected execution time of the DAG
is E[

∑n
i=1Xi]. Let F (Xi) be the event “There was a fault

during Xi.” Let Zik be the event “There was a fault during
Xk and no fault during Xk+1 to Xi−1, given that Ti−1 was
successfully executed.” We have:

Zik =

i−1⋂
j=k+1

F (Xj)
⋂
F (Xk) (2)

(for the limit cases, Zii−1 = F (Xi−1) and Zi0 =⋂i−1
j=1 F (Xj)). The set of events Zik for 0 ≤ k ≤ i−1 partitions

the set of possibilities for Xi. Hence we can write

E[Xi] =

i−1∑
k=0

P(Zik)E[Xi|Zik]. (3)

We now need to show how to compute the P(Zik) and
E[Xi|Zik].

Definition 1 (T ↓ki ). Given a schedule, let j < k ≤ i, then we
say that Tj ∈ T ↓ki , if for all k ≤ l < i, Tj /∈ T ↓kl , and

(i) either Tj is a direct predecessor of Ti,
(ii) or there exists Tl ∈ T ↓ki such that Tl is not checkpointed

and Tj is a direct predecessor of Tl.

Less formally, the set T ↓ki corresponds to all the predeces-
sors of Ti (in the DAG), whose output is lost if the event Zik
occurs, and is needed for the computation of Ti. For instance, it
is not lost if it has been recomputed for another task executed
after the last fault (that occurred during the computation of



Tk) but still before Ti. Furthermore, it is not needed if for
all paths between Tj and Ti, there is a task whose output is
not lost. If Tj ∈ T ↓ki was not checkpointed, then we need to
execute its work wj again, otherwise we need to execute the
recovery rj . Computing all sets T ↓ki is the key to evaluating
the schedule makespan.

Let W i
k be the sum of the wj such that (i) Tj is a non-

checkpointed task and (ii) Tj ∈ T ↓ki . Similarly, let Rik be the
sum of the rj such that (i) Tj is a checkpointed task and (ii)
Tj ∈ T ↓ki . We now show the following three properties:

A. ∀k, 0 ≤ k < i− 1,

P(Zik) = e−λ
∑i−1

j=k+1(W
j
k+R

j
k+wj+δjcj) · P(Zk+1

k ),

where δj is 0 if Tj is not checkpointed, 1 otherwise.
B. ∀i ≥ 1,P(Zii−1) = 1−

∑i−2
k=0 P(Zik) .

C. ∀k, 0 ≤ k < i,

E[Xi|Zik]=E[t
(
W i
k+R

i
k+wi; δici;W

i
i +R

i
i−
(
W i
k+R

i
k

))
]

where δi is 0 if Ti is not checkpointed, 1 otherwise.
[A] Let us compute P(Zik) for 0 ≤ k < i − 1. Let Y ik be

the event “There is no fault during Xk+1 to Xi−1 given that
there was a fault during Xk.” We have:

Y ik = {
i−1⋂

j=k+1

F (Xj)|F (Xk)}.

Then by definition, P(Zik) = P(Y ik ) ·
P(F (Xk)|Ti−1 is successfully executed). Then we derive
P(Y ik ) = e−λ

∑i−1
j=k+1(W

j
k+R

j
k+wj+δjcj). This is because we

need to execute
∑i−1
j=k+1

(
W j
k +Rjk + wj + δjcj

)
consecu-

tive units of work without fault by definition of the W i
k and Rik.

Also, P(F (Xk)|Ti−1 is successfully executed) = P(F (Xk)),
indeed, the probability of a fault during Xk is independent of
the execution of Ti−1 since i − 1 > k. Finally, one can see
that P(F (Xk)) = P(Zk+1

k ) by definition of Zk+1
k .

[B] Let us compute P(Zii−1) for i ≥ 1. We have seen that
the Zik for 0 ≤ k ≤ i − 1 partition the set of possibilities.
Hence, by definition,

∑i−1
k=0 P(Zik) = 1. We derive the value

of P(Zii−1) from the i− 2 other values.
[C] Let us compute E[Xi|Zik] for 0 ≤ k < i. To compute

E[Xi|Zik], it suffices to see that we need to execute a work
of W i

k + Rik + wi with a checkpoint δici. Then, if there is a
fault, the recovery cost is W i

i +R
i
i for a work of wi, which is

identical to having a recovery cost of W i
i +Rii −

(
W i
k +Rik

)
for a work of W i

k + Rik + wi. Hence, using the notation of
Equation (1), we obtain that:

E[Xi|Zik] =
E[t
(
W i
k+R

i
k+wi ; δici ; W

i
i +R

i
i−
(
W i
k+R

i
k

))
].

To conclude the proof, we need to show that we can
compute the W i

k and Rik values.

Lemma 1. FINDWIKRIK (Algorithm 1) computes W i
k and Rik

in polynomial time for all i ≥ k.

Proof: We consider the following invariant Hi
k for FIND-

WIKRIK:
(Hi

k): At the end of the iteration i of the “for” loop (line 4),
for all (j, i′) such that j < k ≤ i′ < i+ 1, then
• if Tj ∈ T ↓ki′ , then

– tabk.(i
′).(j) ∈ {1, 2} (1 if Tj is not checkpointed,

2 otherwise),
– for i′′ > i′, tabk.(i

′′).(j) = 0 (0 means Tj /∈ T ↓ki′′
because Tj ∈ T ↓ki′ ),

• else,
– if there exists l < i′, and Tj ∈ T ↓kl , then
tabk.(i

′).(j) = 0,
– else tabk.(i′).(j) = −1.

For all (j, l) such that l > i > j, and Tj ∈ T ↓kl , then
tabk.(l).(j) = −1.

To establish the invariant, we first introduce the following
definition:

Definition 2 (path of Tj in T ↓ki ). Let Tj ∈ T ↓ki , then Tj =

Tp0 , Tp1 , . . . , Tpl = Ti is a path of Tj in T ↓ki of length l, if
(i) l = 1, or

(ii) Tp1 ∈ T
↓k
i , Tp1 is not checkpointed and Tp1 , . . . , Tpl =

Ti is a path of Tp1 in T ↓ki of length l − 1.
We define the distance l

(i,k)
j of Tj in T ↓ki as the minimal

length of a path of Tj in T ↓ki .

Here are some preliminary remarks before starting the
proof:
• Once a value of tabk is set, it is never modified by

TRAVERSE (the switch on line 19).
• If tabk.(i

′).(j) ∈ {1, 2}, then for all i′′ >
i′, tabk.(i

′′).(j) = 0. Indeed, tabk.(i′).(j) is only set to
1 or 2 in the switch line 19, and when it is the first step
of this switch (line 25) is to set tabk.(i′′).(j) to 0 for all
i′′ > i′.

• The only calls TRAVERSE (j, i, k, tabk) are for j = i or
Tj ∈ T ↓ki and Tj not checkpointed. Hence for Tj′ ∈PRED

(Tj), either Tj′ ∈ T ↓ki or ∃l < i, Tj′ ∈ T ↓kl . This shows
that for all (j, l) such that l > i > j, and Tj ∈ T ↓kl , then
tabk.(l).(j) = −1 since we will never visit such a node
during iteration i of the “for” loop.

We are now ready to prove the invariant by induction. Let
us show that Hi

k holds for i ≥ k.
Let us show Hk

k . At the beginning of the “for” iteration
(line 4), for i = k, tabk.(k).(j) = −1. We show that Hk

k

holds for all tasks in T ↓kk (the case for tasks not in T ↓kk is
trivial), and do this by induction on their distance (as defined
in Definition 2) in T ↓kk .

First, we verify that for all predecessors Tj of Tk whose
distance is 1 in T ↓kk , the call TRAVERSE (k, k, k, tabk) checks
whether Tj ∈ T ↓kk (answer, yes) and has not been studied
(the switch on line 19). If it is the case, then it assigns 1 or 2
to tabk.(k).(j), and then calls TRAVERSE (j, k, k, tabk) if and
only if Tj is not checkpointed. Then there is a call TRAVERSE

(j, k, k, tabk) for all not-checkpointed elements of T ↓kk whose
distance is 1 in T ↓kk .



Let us now assume Hk
k holds for all Tj ∈ T ↓kk such that

l
(i,k)
j = l. Let us show the result for all Tj′ ∈ T ↓kk such that
l
(i,k)
j′ = l + 1. Let Tj′ , Tp1 , . . . , Tpl = Tk path of Tj′ in T ↓kk

of length l + 1. Then when Tp1 was studied, by hypothesis
because it is not checkpointed, there was a call TRAVERSE
(p1, k, k, tabk). Because Tj′ is a direct predecessor of Tp1 ,
then either its value in tabk was already set to 1 or 2 through
another path or it was set to -1 and this call has set it up to 1
or 2. By induction we obtain Hk

k .
Assuming ∀k ≤ i′ < i,Hi′

k , let us show Hi
k. First note

that Hi−1
k gives us (i) if there exists l < i′, and Tj ∈ T ↓kl ,

then tabk.(i
′).(j) = 0, and (ii) ∀j, Tj ∈ T ↓ki , then at the

beginning of iteration i, tabk.(i).(j) = −1. Furthermore, with
the preliminary remark, to show Hi

k, we simply need to show
that for all j < k,
• if Tj ∈ T ↓ki , then tabk.(i).(j) ∈ {1, 2} (1 if Tj is not

checkpointed, 2 otherwise),
• else, if for all l < i, Tj /∈ T ↓kl , then tabk.(i).(j) = −1.

The proof can be done by induction and is similar to Hk
k . The

first call TRAVERSE (i, i, k, tabk) makes sure that this is true
for all predecessors Tj of Ti whose distance is 1 in T ↓ki (the
only reason why a predecessor Tj of Ti would not be in T ↓ki is
if ∃l < i, Tj ∈ T ↓kl , and in that case by induction hypothesis,
tabk.(i).(j) = 0). Then there is a call to TRAVERSE only for
the predecessor tasks Tj ∈ T ↓ki that are not checkpointed.

Finally, Hn
k gives the correctness of Algorithm 1, whose

complexity is O(n3).
Altogether, Algorithm 1 is called for each task, and the

complexity of the whole evaluation method is O(n4).
Because we can compute the expected makespan of a

schedule, a schedule of a DAG is a sufficient certificate to
verify whether the expected makespan is below a certain
threshold. Hence we have derived the following result:

Corollary 1. The decision problem associated to DAG-
CHKPTSCHED is in NP for general DAGs (and is NP-complete
from Theorem 1).

5. Heuristics for general DAGs

In this section, we develop polynomial-time heuristics in the
case of general DAGs. A heuristic that computes a schedule
for a given instance of DAG-CHKPTSCHED must answer
two questions: (i) how should the DAG be linearized? and
(ii) which tasks should be checkpointed? To answer the first
question, we consider three possible linearization strategies:
Depth First (DF), Breadth First (BF), and Random First (RF).
For DF and BF, we prioritize the tasks by decreasing out-
weight (i.e., the sum of the weights of the task’s successors).
The rationale is that tasks that have “heavy” subtrees should
be executed first.

To answer the second question, we propose four check-
pointing strategies. The first and second strategies are baseline
comparators, and correspond to either never checkpointing
(CKPTNVR) or always checkpointing (CKPTALWS). For both

Algorithm 1 FINDWIKRIK

1: procedure FINDWIKRIK(k)
2: tabk: n× n array initialized with -1
3: Wk, Rk: n arrays initialized with 0
4: for i = k . . . n do
5: tabk =TRAVERSE (i, i, k, tabk)
6: for j = 1 . . . k − 1 do
7: switch tabk.(i).(j) do
8: case 1
9: Wk.(i)←Wk.(i) + wj

10: case 2
11: Rk.(i)← Rk.(i) + rj

12: end for
13: end for
14: Return Wk,Rk
15: end procedure
16:
17: procedure TRAVERSE(l, i, k, tabk)
18: for Tj ∈ PRED(Tl) do
19: switch tabk.(i).(j) do
20: case 0 . ∃i′ < i, Tj ∈ T ↓ki′
21: Do nothing
22: case 1,2 . Tj ∈ T ↓ki , already studied
23: Do nothing
24: case -1 . Tj ∈ T ↓ki , not yet studied
25: for r = i+ 1 . . . n do
26: tabk.(r).(j)←0 . Tj ∈T ↓ki =⇒Tj /∈T ↓kr
27: end for
28: if j < k then
29: if Tj ckpted then
30: tabk.(i).(j)← 2
31: else
32: tabk.(i).(j)← 1
33: tabk =TRAVERSE (j, i, k, tabk)
34: end if
35: else
36: tabk.(i).(j)← 0
37: end if
38: end for
39: Return tabk
40: end procedure

these strategies, we only consider the DF linearization. A
DF linearization makes sense when no checkpoints are taken
because one should make progress toward sink tasks aggres-
sively rather than pursuing multiple sink tasks simultaneously
(which is risky in the presence of failures). The choice of
the DAG linearization is inconsequential when all tasks are
checkpointed.

The third and fourth strategies fix the total number of
checkpoints taken throughout application execution, say N ,
and checkpoint N tasks based on some criteria. Then they
do an exhaustive search for the N value, N = 1, . . . , n − 1



(recall that n is the number of tasks), that achieves the lowest
expected makespan, which is computed in polynomial time as
explained in Section 4.2.

In the third strategy, tasks are sorted by decreasing wi
(checkpoint first the tasks whose computations are the longest),
by increasing ci (checkpoint first the tasks whose checkpoint-
ing overheads are the shortest), or by decreasing di, the sum of
the weights of the successors (checkpoint first the tasks whose
successors are more likely to fail). The top N tasks taken in
these orders are checkpointed. We name the three versions of
this strategy CKPTW, CKPTC, CKPTD.

The fourth strategy, CKPTPER, relies on the idea of periodic
checkpointing [2], [3]. Given a linearization of the DAG, con-
sider a failure-free execution. If W is the sum of the wi values
over all tasks, CKPTPER checkpoints the task that completes
the earliest after time x×W/N for x = 1, . . . , N − 1. While
periodic checkpointing is a typical approach for data-parallel
computation, it does not account for the structure of the DAG.

Heuristic names are concatenations of the name of the
linearization strategy and of the checkpointing strategy (e.g.,
RF-CKPTC). Combining the three linearization strategies (DF,
BF, RF) and the checkpointing strategies, we have a total
of 14 heuristics. Unfortunately, there are no heuristics in the
literature to which we can compare the above heuristics. This
is because no method to evaluate the expected makespan of
a schedule was available before this work, thus precluding
the design (and the straightforward evaluation) of reasonable
heuristics.

6. Experimental evaluation

In this section, we present experimental results that quantify
the performance of the heuristics in Section 5. The source-
code (implemented in OCaml) and all input and output data
are publicly available at [23].

6.1. Experimental methodology

To evaluate our heuristics with representative DAGs, we use
the Pegasus Workflow Generator (PWG) [9], [24]. PWG uses
the information gathered from actual executions of scientific
workflows as well as domain-specific knowledge of these
workflows to generate representative and realistic synthetic
workflows. We consider four different workflows generated by
PWG (information on the corresponding scientific applications
is available in [24], [25]):
• MONTAGE: The NASA/IPAC Montage application

stitches together multiple input images to create custom
mosaics of the sky. The average weight of a MONTAGE
task is 10s.

• LIGO: LIGO’s Inspiral Analysis workflow is used to
generate and analyze gravitational waveforms from data
collected during the coalescing of compact binary sys-
tems. The average weight of a LIGO task is 220s.

• CYBERSHAKE: The CyberShake workflow is used by
the Southern California Earthquake Center to characterize

regional earthquake hazards. The average weight of a
CYBERSHAKE task is 25s.

• GENOME: The epigenomics workflow created by the
USC Epigenome Center and the Pegasus team automates
various operations in genome sequence processing. The
average weight of a GENOME task depends on the number
of tasks and is greater than 1000s.

In all experiments, ci = ri (checkpoint and recovery costs
are identical for a task) and D = 0 (downtime is zero
seconds). We present results for the different workflows in
the particular case where ci = wi/10, and for a MTBF of
103s (except for GENOME where the average weight of each
task is significantly longer than for other graphs, in which case
we consider a MTBF of 104s). These results are very similar
to the results that we obtained for MTBF values between 102

and 107 seconds, and for ci = wi/100 or ci = c (constant for
all i). See [21] for all results. We vary the number of tasks in
each workflow from 50 to 700. All figures in the next section
show the number of tasks on the horizontal axis and the ratio
of the expected execution time (T ) over the execution time of
a failure-free, checkpoint-free execution (Tinf ) on the vertical
axis (lower values are better). The expected execution time T
is computed using the method described in Section 4.2.

6.2. Results

We find that our results strongly depend on the structure of
the DAG, meaning that the relative performance of heuristics
vary between each workflow type. Consequently, we do not
show results aggregated over all workflows. The goal of our
experiments is to determine for each workflow (i) which DAG
linearization strategy is best and (ii) which checkpointing
strategy is best, hoping to identify strategies that are good
across different workflows.
Linearization strategies – Figure 2 shows results for the CY-
BERSHAKE, LIGO, and GENOME workflows for two check-
pointing strategies, CKPTW and CKPTC, and for all three
linearization strategies. CKPTW and CKPTC are the best
checkpointing strategies in our results (see the discussion of
the results in Figure 3 hereafter). Figure 2 does not show
results for the MONTAGE workflow. For this workload, the
choice of the linearization strategy has almost no impact on
the results (at most a 1% relative difference). Overall, the DF
linearization is almost always the best. This makes sense as
this strategy stipulates that if some work can be done that
depends on the most recently completed work then it should
be done. Otherwise, by following a different branch of the
workflow, one risks losing that recent work and having to do
it again (or recover it). The only case where DF is not the
best linearization approach is for the MONTAGE graph and the
CKPTPER heuristic (see Figure 3a). We have no explanation
but since CKPTPER is the worst checkpointing strategy for that
workflow, this result is not particularly relevant. It is interesting
to see in Figure 2b that, for the LIGO workflow, RF performs
better than BF. This is because RF sometimes corresponds to
a DF-like strategy.
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Figure 2: Impact of the linearization strategy.

Checkpointing strategies – Figure 3 shows results for all four
workflows. For each checkpointing strategy, we only show
results for the linearization strategy that leads to the best re-
sults (the line symbols indicate which linearization strategy is
used). First, we note that our checkpointing heuristics always

perform better than the two baseline comparators, CKPTNVR
and CKPTALWS. Second, an interesting (but expected) result
is that CKPTPER does not behave well, and sometimes even
worse than CKPTNVR or CKPTALWS. The CKPTPER ap-
proach was specifically designed in the literature for divisible
applications. As such, it does not account for the structure of
the DAG. This causes it to make poor checkpointing choices.
For instance, consider the example workload in Figure 1
with the linearization T0, T3, T1, T2, etc. It makes sense to
checkpoint T3 before executing T1, which is a source task. But
CKPTPER may checkpoint T1 instead because w0 +w3 +w1

happens to correspond to the chosen checkpointing period.
The main result from Figure 3 is that two checkpointing
strategies outperform the other strategies: CKPTW (for MON-
TAGE, LIGO and GENOME) and CKPTC (for CYBERSHAKE).
These two heuristics behave very differently because we have
ci = wi/10. CKPTW checkpoints the tasks by decreasing
weight (hence by decreasing checkpointing time since it
is proportional to the weight of the tasks) while CKPTC
checkpoints the tasks by increasing checkpointing time (hence
increasing weight). The good performance of both heuristics in
different scenarios can be explained intuitively. After finishing
a long/large task it is useful to checkpoint it as quickly as
possible in case a failure occurs soon (which is what CKPTW
does). Conversely, checkpointing a short/small task (which
may be the successor of a long task) is also useful because its
checkpointing time is low (which is what CKPTC does).
Constant checkpoint overhead – To better assess the impact
of checkpointing costs, we discuss results with a constant
checkpoint cost, independent of task weights. First, when
CKPTW performs better with a proportional checkpoint, it also
perform better in this case. Indeed, the ratio of the amount
of computation that risks being lost over the checkpointing
time will be even more beneficial to large tasks. However,
for workflows where CKPTC performs better, the question
is interesting. Figure 4 shows results for CYBERSHAKE that
allow a comparison of CKPTW and CKPTC when the check-
pointing cost is constant (using ci = 10). This plot can be
compared to Figure 2a where the checkpoint is proportional
to the computation. We can see that when the checkpointing
cost is constant, CKPTW tends to behave as well as CKPTC
on CYBERSHAKE workflows.
Summary – We have compared our heuristics in different
experimental scenarios. In general, DF-CKPTW leads to the
best results, which in practice would translate to shorter
makespans. DF-CKPTC performs well in some cases. These
performance differences depend on the structure of the DAG,
and can likely only be discovered empirically as done in
this section. Overall our best heuristics, which rely on the
computation of the expected makespan given in Section 4.2,
lead to significantly better results than the baseline CKPTALWS
and CKPTNVR approaches. Taking into account the structure
of the DAG is important, which is highlighted by the poor
results of the CKPTPER heuristic. Finally, the execution time
of all heuristics on a low-end laptop is only a few seconds
for graphs with n = 200 tasks: this shows that their high
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Figure 3: Impact of the checkpointing strategy. For each checkpointing strategy, we plot the best linearization strategy.

complexity O(n4) does not limit their applicability in practice.

7. Conclusion

In this work, we have studied the problem of scheduling
computational workflows on a failure-prone platform. We
have used a framework where applications are scheduled
on the full platform, and where processors are subject to
i.i.d. exponentially distributed failures. Checkpoint-rollback-
recovery is used to tolerate failures. Our main contribution
over previous work [13], [19] is that we consider general task
graphs instead of linear chains. Our theoretical results include
polynomial-time algorithms for fork DAGs and for some join
DAGs (when the checkpoint and recovery costs are constant),
and the intractability of the problem for join DAGs in general.
Our main theoretical result is a polynomial-time algorithm
to evaluate the expected makespan of a schedule for general
DAGs. This is a key result as it makes it possible to design

heuristics for general DAGs, i.e., heuristics that can construct
a schedule with a known objective. Without this result, the
only way to attempt to find a good schedule would be to run
numerous and likely prohibitively time-consuming stochastic
experiments with a fault generator (either in simulation or
on a real platform). We have proposed several heuristics,
and have evaluated them for four representative scientific
workflow configurations. Overall, we find that DAGs should
be traversed depth-first (DF) and that checkpointing should
be done by prioritizing tasks based on weight (CKPTW) or
checkpointing cost (CKPTC). The two resulting heuristics,
DF-CKPTW and DF-CKPTC perform differently on different
workflows depending of their DAG structure. We found that
a periodic checkpointing approach, although widely used for
divisible applications, is not effective, precisely because it does
not account for the structure of the DAG.

A future direction for this work is to consider non-blocking
checkpointing operations, i.e., a processor can compute a task,
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Figure 4: Impact of the linearization strategy for a constant
checkpoint.

perhaps at a reduced speed, while checkpointing a previously
executed task. Overlapping of computation and checkpointing
can improve performance, but changes the problem. In partic-
ular, it would be interesting to see how our theoretical results
are impacted when considering non-blocking checkpointing. A
broader future direction would be to remove the assumption
that the DAG is linearized, i.e., that each task executes on the
entire platform. The scheduling problem then becomes much
more complex since one must decide how many processors
are allocated to each task, and possibly account for data
redistribution costs.
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