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ABSTRACT
So far considered as noise in neuroscience, irregular arrhyth-
mic field potential activity accounts for the majority of the
signal power recorded in EEG or MEG [1, 2]. This brain ac-
tivity follows a power law spectrum P (f) ∼ 1/fβ in the limit
of low frequencies, which is a hallmark of scale invariance.
Recently, several studies [1, 3–6] have shown that the slope
β (or equivalently Hurst exponent H) tends to be modulated
by task performance or cognitive state (eg, sleep vs awake).
These observations were confirmed in fMRI [7–9] although
the short length of fMRI time series makes these findings less
reliable. In this paper, to compensate for the slower sampling
rate in fMRI, we extend univariate wavelet-based Hurst expo-
nent estimator to a multivariate setting using spatial regular-
ization. Next, we demonstrate the relevance of the proposed
tools on resting-state fMRI data recorded in three groups of
individuals once they were specifically trained to a visual dis-
crimination task during a MEG experiment [10]. In a su-
pervised classification framework, our multivariate approach
permits to better predict the type of training the participants
received as compared to their univariate counterpart.

Index Terms— fMRI, scale-free brain activity, Total vari-
ation regularization, multisensory learning.

1. INTRODUCTION

Scale-free brain activity is the prominent part of brain signals
recorded in eletro and magneto-encephalography (EEG/MEG),
which can be easily captured by measuring the linear slope β
of the log-log plot of the power spectrum P (f) ∼ 1/fβ . In
contrast to some oscillatory regimes which are only observed
in response to external stimulations (eg γ oscillations beyond
30 Hz), scale-free activity is a persistent brain dynamics in the
limit of low frequencies (0.1 Hz up to 3 Hz), observed both
at rest and during task performance as well as in various cog-
nitive states (eg, sleep) [1, 3, 5, 6, 11]. It has been shown that
scale-free brain activity is functionally associated with neural
excitability [2], hence supporting the observation that the β
parameter decreases (or the slope becomes flatter) when an

individual is engaged in a task as compared to rest. The func-
tional relevance of scale-free brain dynamics has also been
illustrated in fMRI even though this imaging technique is less
rich temporally. Several fMRI studies [7–9, 12] have actu-
ally shown modulations in scale-free brain activity between
rest and task and between healthy subjects and Alzheimer’s
diseased patients [13].

To date, the most commonly used approaches for estimat-
ing the slope β or equivalently the Hurst exponent H are
threefold: (i) linear regression performed in the frequency
domain on the log-scale Welch periodogram; (ii) Detrended
Fluctuation Analysis that performs linear regression in the
temporal domain [7] and (iii) linear regression from the log-
scale diagram in the wavelet domain [14]. The statistical
performances of these estimators have been thoroughly com-
pared in [15] where it has been shown that wavelet-based
analysis is more efficient (no bias, smaller variance). Also,
these approaches are univariate: they perform scale-free anal-
ysis voxelwise (fMRI) or sensorwise (M/EEG) whereas the
neuroimaging data are multivariate. Here, our goal is to de-
velop a multivariate wavelet-based Hurst exponent estimator
that accounts for spatial correlation. Our approach is specif-
ically dedicated to fMRI where the signals are short in time
and where spatial correlation does exist. As illustrated on syn-
thetic signals in Fig. 1, Hurst exponent estimates become less
accurate when the signals are shorter. Hence, by taking lo-
cal information into account, we hope counterbalancing the
shortness of fMRI time series and recovering more accurate
Hurst exponents. Our approach will be compared to the uni-
variate wavelet-based estimator in a supervised classification
setting. Of note, the proposed methodology cannot enter in
a classical GLM analysis since, in contrast to functional con-
nectivity, no seed-based time series can serve as specific re-
gressor for whole brain analysis.

The paper is organized as follows. In Sec. 2, we summa-
rize our learning MEG experiment [10] where three groups
of individuals (V/AV/AVn) were engaged in different types
of training to a complex visual task. These participants were
then scanned in resting-state fMRI to test whether intrinsic



(a) (b)

Fig. 1. Univariate estimation of Hurst exponents from spa-
tially correlated synthetic signals as illustrated by the smiley.
(a) The signal length is 4096 samples in each pixel. (b) The
same signals are considered but truncated to the first 514 time
points. Shorter signals yield less accurate estimates.

brain dynamics captures differences between training types.
In Sec. 3, the multivariate wavelet-based Hurst exponent es-
timator is presented. In Sec. 4, we assess the performance
of our approach on rs-fMRI data by computing the prediction
accuracy of supervised classifiers that perform binary classi-
fication (eg, V-AV) from Hurst exponents as input features.

2. MULTI-SENSORY LEARNING PARADIGM

In a recent study [10, 16], we tested whether scale-free brain
dynamics measuring in MEG was modulated by perceptual
learning. For doing so, 36 participants were submitted to a
difficult visual discrimination task which consisted of identi-
fying between two random dot kinematograms (one red, one
green) which one was moving coherently for about 1 s. The
coherence level corresponded to the rate of dots moving in the
same direction: it was varied from 15 % to 95 % to make the
task more or less difficult. The experiment lasted about 1h30
along which rest and task blocks alternated. A pre-training
block was used to calibrate each individual’s performance,
namely to assess his perceptual threshold corresponding to
the coherence level associated with 75 % of correct responses.
An individual training period (4 task and rest blocks) was then
performed at coherence levels around each individual’s per-
ceptual threshold (±10 %, ±20 %).

The 36 individuals were split in three groups of equal size.
Each group was submitted to a specific training type: either
purely visual (V), or auditory-visual (AV) where congruent
acoustic textures were delivered over headphones to make the
learning process easier, or finally visual with acoustic white
noise (AVn) to serve as control with respect to AV. Finally, a
post-training block identical to the pre-training one was used
to measure the improvement in behavioral performance in
each individual. In [16], we have shown that the Hurst expo-
nents were decreased after training and that the this decrease
was negatively correlated with improvements in behavorial
performance in the left inferior temporal cortex, visual mo-
tion area (MT) and right inferior parietal cortex. Rs-fMRI
data were then acquired on the same individuals.

3. SCALE-FREE PARAMETER ESTIMATION

3.1. Scale-free modeling

Expanding on the classical modeling of scale-free dynamics
by a power-law decrease of the sole power spectrum, quanti-
fying self-similarity amounts to modeling signals with scale-
free dynamics as fractional Gaussian noises (fGn), that is sta-
tionary Gaussian stochastic processes consisting of the frac-
tional integration (of parameter H − 1/2) of a white (i.e.,
delta-correlated) Gaussian process. The sole parameter H
governs the entire covariance structure and thus, with Gaus-
sianity, completely defines fGn. More precisely, self-similar
parameter H quantifies the algebraic decrease of the correla-
tion function: H = 1/2 indicates the absence of correlation,
H < 1/2 betrays negative correlation and H > 1/2 marks
long range positive correlation. Parameters H and β can be
related as β = 2H − 1. While the classical definition of
fGn implies 0 < H < 1, it can be theoretically extended to
≥ 1 [17], while preserving the original intuition beyond fGn:
the larger H , the longer term the covariance and the more
structured the fGn.

3.2. Scale-free analysis

Exponent β was classically estimated by linear regressions in
a log of the power spectrum versus log of frequency plots. Al-
ternatively, time domain approaches such as detrended fluc-
tuation analysis [18] rely on linear regressions. It is now
well-accepted that multiscale representations such as wavelet
transforms are well-suited for the analysis of scale-free dy-
namics [14, 19].

Let ψ0(t) denote a reference pattern referred to as the
mother wavelet, the discrete wavelet coefficients dX(j, k) are
defined on a dyadic grid (scale a = 2j and time t = k2j)
as: dX(j, k) =

∫
X(t)2−jψ0(2−jt − k)dt. In practice, we

used Daubechies wavelets for ψ0 with a number of vanishing
moment Nψ = 2. It can be shown that for self-similar pro-
cesses: SdX(j, q) ≡ 1

nj

∑nj

k=1 |dX(j, k)|q ' Kq2
jqH , where

nj is the number of dX(j, k) available at scale j. This thus
permits a robust and efficient estimation of H , often using
q = 2 in analogy to Fourier spectrum [14], by performing
weighted linear regression in a log scale diagram (log2 S

d
X vs

log2 2j = j). This amounts to finding the minimizer of

f(H) =

j2∑
j=j1

nj‖ log2 S
d
X(j, 2)− (2jH + c)‖22 . (1)

where c is an intercept. Scales are linked to frequencies by
f = 2−j Fc

δ where f is the frequency, j is the scale, δ is the
sampling period, Fc is the center frequency of the wavelet in
Hz (equal to 3

4 for Daubechies wavelets). The scaling range
(j1, j2) comprises the set of scales over which scale invari-
ance is statistically valid.



3.3. Multivariate Hurst exponent estimation

Let us denote I the number of voxels in the brain mask Ω
computed from fMRI data preprocessings (I ∼ 5 104). Start-
ing from Eq. (1), the data consistency cost function thus reads:

F (H) =
∑
i∈Ω

j2∑
j=j1

nj‖ log2 S
d
Xi

(j, 2)− (2jHi + ci)‖22 (2)

To incorporate spatial correlation information in Hurst expo-
nent estimation and thus retrieve closer parameter values in
neighboring voxels, we consider the regularized criterion

Jλ(H) = F (H) + λG(H) (3)

where F is given in Eq. (2) and G is a spatial regularization
term. λ is the regularization parameter making the trade-off
between data consistency and confidence in prior knowledge.
Hereafter, we consider an isotropic total variation penalty term:
G(H) =

∑
i∈Ω ‖∇Hi‖2 so as to preserve discontinuities be-

tween smooth regions of Hurst exponents. This choice makes
Jλ convex but non-smooth. The minimization of Eq. (3) thus
relies on a proximal gradient descent algorithm [20]. The cal-
ibration of λ was done on a discrete grid of parameter val-
ues as explained in the next section. Our implementation was
done in Python and is available in Github1. It relies on the
nilearn for convex optimization [20].

4. RESULTS IN FMRI DATA ANALYSIS

We performed univariate and multivariate wavelet-based Hurst
exponents estimation on 36 individuals. The scaling range
(j1, j2) was set to (3, 7) which correspond to a frequencies
ranging from 0.005 Hz up to 0.1 Hz, the typical interval where
scale-free dynamics have been reported in [7–9]. The group-
level median map of Hurst exponents (univariate estimator) is
shown in Fig. 2 and reflects the gray-white matter contrast:
Hurst exponents are above 0.5 mostly in the cortical regions.
Conversely, the Hurst exponents associated with voxels lo-
cated in the white matter the are significantly lower than 0.5.
Given the existing spatial correlation on this map, we hypoth-
esize that our multivariate wavelet-based estimator might de-
liver enhanced maps of Hurst exponents.

To compare multivariate and univariate Hurst exponent
estimators, we pursued two objectives: (i) try to distinguish V,
AV and AVn groups on the basis of of their rs-fMRI scale-free
properties (H maps) and see how the performances of the su-
pervised classifier are impacted by the estimator choice (see
subsection 4.1); (ii) assess how the estimator choice affects
the statistical significance when computing group-level dif-
ferences using two-sample t-tests (see subsection 4.2).

1https://github.com/JFBazille/ICode.

Fig. 2. Median value of Hurst exponents estimated on real rs-fMRI
data from the 36 individuals using the univariate wavelet-based esti-
mator.

4.1. Supervised classification

The supervised classifier we used relies on logistic regression
as loss function to predict binary outcomes and makes group
comparisons such as (AV -V) or any other pair. We thus split
the group pair of 24 individuals (taken out of 36) in train-
ing and test sets. The training set was composed of subjects
randomly chosen in both groups with the same occurrence
proportions. The input features entered in the classifier were
the individual brain maps of Hurst exponents computed either
using the univariate or multivariate wavelet-based estimator.
Regarding the univariate approach, we performed the analy-
sis either on spatially unsmoothed fMRI images or on their
spatially smoothed version with a Gaussian filter (FWHM =
6 mm). Next, we tested the accuracy of the classifier on
unseen subjects to predict the training type they underwent.
The evaluation of the classifiers was done by cross-validation,
which consists of a stratified-shuffle split loop with 100 itera-
tions and a test fold size of 30% of the whole dataset. Our im-
plementation was based on the scikit-learn package [21].

So far, parameter λ has been set by hand to the value (λ =
3) providing the best average classification accuracy across
all group comparisons. This might induce slight overfitting.
However, cross validation cannot be helpful in the present
context since λ is not involved in the classification algorithm
but instead in the multivariate estimation (3).

Fig. 3 shows the prediction accuracies2 for the 3 investi-
gated comparisons. We observed similar trends: the AV train-
ing type is easier to discriminate from others and the discrimi-
nation between V and AVn groups remains at the chance level.
In contrast, we achieved up to 83 % of right classification for
discriminating V from AV. This result was obtained using ei-
ther multivariate inference or univariate inference on filtered
data. We then tested the statistical significance of such pre-
diction accuracy differences between methods using paired
t-tests. The p-values are reported in Tab. 1. Regarding the
AV-V comparison, we only found a significant difference be-
tween univariate approaches which is due to the smoothing
effect. In contrast, for the AV-AVn comparison, we demon-
strated that our multivariate estimation scheme provided sig-
nificantly better predictions.

2Box plots show the median and quartiles over 100 stratifications.



(a) Univariate Hurst exponent estimation from raw fMRI images.

(b) Univariate Hurst exponent estimation from smoothed fMRI
images.

(c) Multivariate Hurst exponent estimation from raw fMRI images.
TV regularization was performed using λ = 3.

Fig. 3. Performance of the classifiers taking wavelet-based Hurst
exponent estimates as input features to discriminate groups (AV-V,
AV-AVn and V-AVn comparisons).

Table 1. Statistical comparisons between estimation methods re-
garding their prediction accuracy when performing classifications.
Significant p-values for paired Student-t tests appear in bold font.

p-val. AV -V AV - AVn V -AVn
Multiv. vs Univ. raw 0.37 10−4 0.7

Multiv. vs Univ. smoothed 0.1 0.006 0.32
Univ. raw vs Univ. smoothed 0.006 0.22 0.53

4.2. Statistical comparisons: two-sample Student t-tests

We noticed that the best prediction was achieved for the (AV
- V) comparison. Hence, individuals in the AV group are sus-
pected to reflect very specific Hurst exponent behavior. To
further investigate this issue, we computed the group-level
differences (V-AV) and (AVn-AV) of averaged Hurst expo-
nents and reported these parameter differences over the sta-
tistically significant voxels in Fig. 4. Clearly, the Hurst ex-
ponents in AV group are significantly lower than those in V
and AVn groups, especially in the visual and parietal cortices.
This indicates that neural excitability (decrease in H) was en-
hanced by multisensory training. This result is consistent with
our previous observation [16] that after training the decrease
in H computed from source reconstructed MEG time series
was more significant in parieto-occipital cortices.

V-AV

AVn-AV

Fig. 4. Map of the mean group-level differences of univariate Hurst
exponent estimates computed from smoothed fMRI images. Only
significant voxels are reported (as in Fig. 5(b)).

Last, Fig. 5 shows different maps of (− log10 pval) from
two sample Student t-tests associated with the AV-V compar-
ison. The multivariate Hurst exponent estimator computed
with TV regularization (λ = 3) provided slightly more sig-
nificant peaks as compared to the univariate ones. Next, ir-
respective of the the estimation procedure, most of the sig-
nificant voxels are located in the occipito-parietal and motor
areas, the latter being not specifically expected to bring dis-
criminative information between the V and AV groups.

(a) Univariate Hurst exponent estimation (smoothed fMRI images).

(b) Multivariate Hurst exponent estimation (λ = 3).
Fig. 5. Maps of − log10 pval from two-sample Student t-tests per-
forming the comparison of Hurst exponent estimates between AV
and V groups.

5. CONCLUSION

In this paper, we proposed a multivariate wavelet-based Hurst
exponent estimator specifically dedicated to fMRI data to com-
pensate for the shortness of these time series. We demonstrate
its relevance on resting-state fMRI data acquired after a learn-
ing experiment. We showed that this estimator outperformed
its univariate competitors in a supervised classification task
for predicting the training type the individuals underwent, es-
pecially for the (AV-AVn) comparison.
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