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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52296639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01277159


1

Zonal flows as statistical equilibria

F. BOUCHET, A. VENAILLE

The basic question of the theoretical part of this book is

”Why do zonal jets form so often in turbulent flows dom-

inated by geostrophic balance, and do they have universal

properties ?”. Indeed, zonal jets are striking and beautiful

examples of the propensity for geophysical turbulent flows

to spontaneously self-organize into robust, large scale co-

herent structures. Strong mid-basin eastwards jets such as

the Gulf-Stream or the Kuroshio are observed in any of the

Earth ocean in the presence of western boundaries. Several

chapters of this book propose dynamical mechanisms for

the formation of zonal jets: statistical theories (kinetic ap-

proaches, second order or larger oder closures), determinis-

tic approaches (modulational instability, β-plumes, radiat-

ing instability, zonostrophic turbulence, and so on). A strik-

ing remark is that all these different dynamical approaches,

each of them possibly relevant in some specific regimes, lead

to the same kind of final jet structures. Is it then possible

to have a more general explanation of why all these differ-

ent dynamical regimes, from fully turbulent flows to gentle

quasilinear regime, consistently lead to the same jet attrac-

tors ?

Equilibrium statistical mechanics provides an answer to

this general question. Starting from first principle, one can

build microcanonical measures which are natural invariant

measures of the inertial dynamics. Those probability mea-

sures can also be interpreted as corresponding averages over

set of vorticity field, chosen randomly with fixed energy and

other invariants, and with a uniform probability. From a

physical point of view, the most important result is that for

a wide range of external parameters such as the energy or

other invariants, most of these random vorticity fields have

a large scale structure which is very close to a well identi-

fied zonal jets. Zonal jets are then understood as the most

probable macroscopic organization of the flow. Moreover as

discussed below, many conclusions that generalize to most

of geometries and models can be deduced from this equilib-

rium statistical mechanic approach. This leads to far reach-

ing conclusions on the natural propensity of these turbulent

flow to self-organize and onto the way they should do that.

Beside these very positive aspects, the equilibrium statis-

tical mechanics approach has also his own drawbacks. The

main one is that statistical equilibria are parameterized by

all conserved quantities. Because of conservation of the po-

tential vorticity, inertial models of geostrophic turbulence

usually have a huge amount of such invariants. As a con-

sequence, there is a huge number of statistical equilibria.

In situations of weak forces and dissipation (when the spin

up or spin down time is much longer than a time scales re-

lated to the inertial dynamics), which is very common in

geophysics, the actual attractor is selected among all statis-

tical equilibria by the long term balance between forces and

dissipations. In such cases, equilibrium statistical mechanics

can predict the general structure, but a fully predictive the-

ory must rely on a dynamical approach like ones discussed

in other chapters of this book.

From these preliminary remarks, the aim of this contri-

bution will be, first to present briefly the theoretical ideas

related to equilibrium statistical mechanics. Then we will

describe the universal conclusions that can be drawn from

the properties of statistical equilibria, for the class of quasi-

geostrophic models. We also describe statistical mechanics

modeling of a few real geophysical flow and their compari-

son with observation data. Those model sometimes led to a

deeper understanding of the large scale flow structure than

the previous approaches.

We can readily summarize the general conclusions that

can be drawn from equilibrium statistical mechanics. First,

as soon as the beta-effect or the variation of the Coriolis pa-

rameter are taken into consideration, low energy statistical

equilibria are generally zonal jets. However, when the en-

ergy is increased, or the angular momentum is considered for

spherical geometries, we observe transitions to non zonal at-

tractors. This is actually often observed, as for Jupiter where

in the south hemisphere the Great Red Spot and other vor-

tices are embedded in the zonal jets. We can actually predict

such a transition, with the overall energy as a control pa-

rameter. Second, statistical equilibria lead to potential vor-

ticity homogenization consistently with the classical picture

developed independently of statistical mechanics. Statistical

mechanics allow to go further: by characterizing the statisti-

cal equilibria as the one with the PV homogenized as much

as possible given the energy constraint, it actually provide

a quantitative and predictive theory of potential vorticity

homogenization. It explains why this homogenization is not

complete, and how it should be incomplete, and also explain

why we often observe homogenization in large subdomains

of the flow but not over the whole domain. The third general

result is the tendency of the flow to barotropization, which is

actually a well observed phenomena. But again barotropiza-

tion should not be expected to be complete, as a complete

barotropization is prevented by invariants, the energy and

the different distribution of potential vorticity in different

layers. A last striking inference of equilibrium statistical me-

chanics, is that the final state of these complex dynamical
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phenomena is expected to be described by only a few control

parameters.

From an historical point of view, the first attempt to use

equilibrium statistical mechanics ideas to explain the self-

organization of 2D turbulence was performed by Onsager

[41] in the framework of the point vortex model. In order to

treat flows with continuous vorticity fields, another approach

has been proposed by Kraichnan in the framework of the

truncated Euler equations [28], which has then been applied

to quasi-geostrophic flows over topography [50, 14]. The

truncation has a drastic consequence: only the energy and

the enstrophy are conserved quantities, while any function

of the vorticity is conserved for the Euler equation. There

exists now a theory for the Euler or the quasi-geostrophic dy-

namics, the Miller–Robert–Sommeria (MRS hereafter) equi-

librium statistical mechanics, that explains the spontaneous

organization of unforced and undissipated two-dimensional

and geophysical flows [46, 38, 47, 48]. From the knowledge of

the energy and the global distribution of potential vorticity

levels provided by an initial condition, this theory predicts

the large scale flow as the most probable outcome of turbu-

lent mixing.

There already exist several presentations of the equi-

librium statistical mechanics of two-dimensional and

geostrophic turbulent flows [51, 29, 32], some emphasiz-

ing kinetic approaches of the point-vortex model [15], other

focusing on the legacy of Onsager [20] or the applications of

statistical mechanics to climate problems [33, 31]. A precise

explanation of the statistical mechanics basis of the MRS

theory, actual computations of a large class of equilibrium

macrostates and further references can be found in [11].

We present in the first section statistical mechanics theory

of the one layer quasi-geostrophic models. We summarize in

the second section existing result on the emergence of zonal

flows as equilibrium macrostates on a beta plane when the

relation between potential vorticity and streamfunction is

assumed to be linear, and show that breaking of the zonal

symmetry usually appears when increasing the energy of the

flow. We discuss in a third section the case of small Rossby

radius of deformation, which allows to describe equilibrium

macrostates presenting strong mid basin zonal jets such as

the Gulf Stream, but also non-zonal structures such as the

Jupiter’s Great Red Spot. We explain that a few parameters

such as the energy, the aspect ratio and the vorticity asym-

metry allow to predict which of these macrostates is the

equilibrium one. The equilibrium statistical mechanics has

a limited range of applicability since it neglects the effect of

forcing and dissipation, and assume that there is sufficient

mixing in phase space. The validity of these hypothesis will

be discussed in more details in the fourth section.

1.1 Statistical mechanics of quasi-geostrophic

flows

1.1.1 The quasi-geostrophic models

We introduce here the quasi-geostrophic barotropic and

equivalent barotropic (1-1/2 layer) models. There are several

books discussing these models in more details, among which

[24, 42, 49, 53]. The dynamics of the equivalent barotropic

model is the transport of the potential vorticity q by a non-

divergent velocity field:

∂q

∂t
+ v · ∇q = 0, with v = ez ×∇ψ , (1.1)

q = ∆ψ −
ψ

R2
+ ηd , (1.2)

where ηd(x, y) is an equivalent topography, which does not

vary with time, and R is the Rossby radius of deformation, a

characteristic length of the system, and ψ(x, y, t) the stream-

function.

When R → +∞, the system of equations (1.1-1.2) is the

barotropic model that describes the dynamics of an homoge-

neous layer of fluid of depth H . In that case, the term ηd =

βy + (f/H)hb represents the combined effects of the plane-

tary vorticity gradient βy and of a real bottom topography

hb. We also consider in this chapter the case of barotropic

flows on a sphere, for which ηd = 2Ω sin θ+(f/H)hb, where

θ is the latitude.

When R is of order one or smaller, the system of equa-

tions (1.1-1.2) is the equivalent barotropic model, also called

”Charney-Hasegawa-Mima” model or 1-1/2 layer model,

which describes the dynamics of an active layer above a

lower denser layer either at rest or characterized by a pre-

scribed stationary current ψd. In that case, the Rossby ra-

dius is related to the relative density difference ∆ρ/ρ be-

tween both layers, on the gravity g, on the Coriolis parame-

ter f0, and on the mean depth H of the upper layer though

R = (Hg∆ρ/ρ)1/2 /f0, and the term ηd = βy+ψd/R
2 repre-

sents the combined effects of the planetary vorticity gradient

βy and of a the streamfunction ψd of the deep layer.

For the boundary conditions, two cases will be distin-

guished, depending on the domain geometry D. In the case

of a closed domain, there is an impermeability constraint

(no flow across the boundary), which amounts to a constant

streamfunction along the boundary. To simplify the presen-

tation, the condition ψ = 0 at boundaries will be consid-

ered1. In the case of a zonal channel, the streamfunction ψ

is periodic in the x direction, and the impermeability con-

straint applies on northern and southern boundaries. In the

remaining two sections, length scales are nondimensionalized

such that the domain area |D| is equal to one.

1 The physically relevant boundary condition should be ψ =
ψfr where ψfr is determined by using the mass conservation con-

straint
∫

dr ψ = 0 (ψ is proportional to interface variations).
Taking ψ = 0 does not change quantitatively the solutions in the
domain bulk, but only the strength of boundary jets.
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1.1.2 Dynamical invariants and their consequences

According to Noether’s Theorem, each symmetry of the sys-

tem is associated with the existence of a dynamical invariant,

see e.g. [49]. These invariants are crucial quantities, because

they provide strong constraints for the flow evolution. Start-

ing from Eq. (1.1), (1.2) and the aforementioned boundary

conditions one can prove that the quasi-geostrophic equa-

tions conserve the energy:

E =
1

2

∫

D

dr

[
(∇ψ)2 +

ψ2

R2

]
= −

1

2

∫

D

dr (q − ηd)ψ, (1.3)

with r = (x, y). Additionally, the quasi-geostrophic dynam-

ics (1.1) is a transport by an incompressible flow, so that

the area γ (σ) dσ occupied by set of points with σ ≤ ω(r) ≤

σ + dσ, is a dynamical invariant. The quantity γ(σ) will

be referred to as the global distribution of potential vortic-

ity. The conservation of the distribution γ (σ) is equivalent

to the conservation of the Casimir’s functionals
∫
D
dr f(q),

where f is any sufficiently smooth function (see for instance

[44]). Two important Casimirs are the potential enstrophy

Z =
∫
D
dr q2/2 and the circulation Γ =

∫
D
dr q.

If the domain where the flow takes place has symmetries,

each of those imply the existence of an additional invariant

(for instance angular momentum for the sphere), that should

be taken into account.

Fjørtoft first showed that a striking consequence of the

Casimir conservation laws, especially enstrophy, is the fact

that energy has to remain at large scale in freely evolving

quasi-geostrophic dynamics. This contrasts with three di-

mensional turbulence, where the direct energy cascade (to-

ward small scale) would rapidly dissipate such structures.

The formation and persistence of long lived coherent struc-

tures containing most of the energy is actually observed,

in experiments, geophysical flows and numerical simula-

tions. These long lived coherent structures are often ob-

served to be very close to steady solutions of the quasi-

geostrophic equations (1.1), that act as attractors. They

satisfy v · ∇q = ∇ψ × ∇q = 0. It means that steady so-

lutions are flows for which streamlines are isolines of the

potential vorticity. For instance, any flow characterized by a

q−ψ functional relationship is a steady solution of the quasi-

geostrophic dynamics. One can understand the existence of

an infinite number of steady solutions as a consequence of

the infinite number of invariants (more details and more

consequences of the conservations laws in two-dimensional

and geophysical turbulent flows can be found in [11]). Zonal

flows are actually special examples of such steady solution.

At this point, we need a theory i) to support the idea

that the freely evolving flow dynamics will effectively self-

organize into a state which is close to a steady solution ii) to

determine the q−ψ relationship associated with this steady

solution iii) to select the dynamical equilibria that are likely

to be observed. This is the goal and the achievement of equi-

librium statistical mechanics theory, presented in the next

subsection.

1.1.3 The equilibrium statistical mechanics of

Miller–Robert–Sommeria (MRS)

The MRS equilibrium statistical theory initially developed

by [46, 38, 47, 48] is introduced on a heuristic level in the

following. There exist rigorous justifications of the theory,

see for instance [11] for detailed discussions and further ref-

erences.

The main idea of statistical mechanics is to make the

distinction between microscopic states that determine com-

pletely the state of the system, and macroscopic states that

are sets of microscopic states with the same macroscopic

properties. For the quasi-geostrophic models, the potential

vorticity field are natural microscopic states as they com-

pletely determine the state of the flow. We define a macro-

scopic state as a local probability probability ρ(σ, r)dσ to

observe a potential vorticity level σ at a point r = (x, y).

Such a local probability can be computed for any potential

vorticity field q through a coarse-graining procedure, such

that many microstates correspond to a unique macrostate.

The microcanonical measure is defined as the measure where

all microscopic states with a given value of the dynamical

invariants are equiprobable. The specific Boltzmann entropy

of a macrostate is then defined as the logarithm of the num-

ber of microstates that have a prescribed value of the dynam-

ical invariants and that correspond to the same macrostate,

divided by the number of degrees of freedom (see for instance

[44] for simple definitions and illustrations in the case of dis-

cretized two-dimensional Euler models).

We note that, because ρ is a local probability, and because

all microstates should be consistent with the fixed potential

vorticity distribution, the relevant macrostates must verify

the two constraints:
• The local normalization N [ρ] (r) ≡

∫
Σ
dσ ρ (σ, r) = 1,

• The global potential vorticity distribution Dσ [ρ] ≡∫
D
dr ρ (σ, r) = γ (σ).

For any macrostate ρ, we define the averaged potential

vorticity field, by q (r) =
∫
Σ
dσ σρ (σ, r), which is re-

lated to the macrostate streamfunction through q = ∆ψ −

ψ/R2 + ηd. We can define the macrostate energy as the

energy of its averaged potential vorticity field: E [ρ] ≡

− 1
2

∫
D
dr
∫
Σ
dσ ρ (σ − ηd)ψ = E. At this stage, the care-

ful readers would have noticed that the energies of all mi-

crostates of a macrostate ρ may not be equal between each

other, and not be equal to the macrostate energy which is the

energy of the averaged vorticity field. Identifying such quan-

tities, which are actually different quantities, is classically

referred as a mean-field hypothesis in statistical mechanics.

However, because an overwhelming number of microstates

have only only small scale fluctuations around the mean field

potential vorticity, and because energy is a large scale quan-

tity, for most microstates the contributions of these fluctu-

ations to the total energy are negligible with respect to the

mean-field energy. Then the mean-field hypothesis is actu-

ally exact for the microcanonical ensembles of the 2D-Euler

and quasi-geostrophic dynamics. The above heuristic expla-

nation, and the fact that the mean-field approximation is

valid, can indeed be made fully rigorous using large devia-

tion theory [37, 3] (see an heuristic discussion in [44]).
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The aim of statistical mechanics, and the achievement of

the MRS statistical theory for the two-dimensional Euler or

quasi-geostrophic models, is the computation of the entropy

of the macrostates ρ. The result is that the entropy of a

macrostate rho is equal to the entropy functional

S [ρ] ≡ −

∫

D

dr

∫

Σ

dσ ρ log ρ , (1.4)

if ρ satisfies the constraints associated with each dynami-

cal invariant (the normalization, the potential vorticity and

the mean-field energy constraint), or equal to −∞ other-

wise. By construction, the entropy (1.4) is a quantification of

the number of microscopic states q corresponding to a given

macroscopic state ρ. Then the most probable macrostate,

also called equilibrium macrostate, ρeq, is the maximizer of

(1.4) with the constraints corresponding to the dynamical

invariants. A crucial remark is that an overwhelming num-

ber of microstates actually correspond to the equilibrium

macrostate, such that in the limit of an infinite number of

degrees of freedom the probability to observe the equilibrium

macrostate in the microcanonical measure is actually one

[37]. This gives the meaning of the equilibrium macrostate,

and explains why the equilibrium macrostate is a natural

candidate for the prediction of the final outcome of any tur-

bulent dynamics. While the statement ”for any microcanon-

ical ensemble, an overwhelming number of microstates are

part of the same equilibrium macrostate” is actually a theo-

rem, the statement about the prediction of the final outcome

of the evolution of a turbulent dynamics requires further

that ergodicity is not broken by the dynamics.

The first step toward the computation of MRS equilibria

is to find critical points ρ of the mixing entropy (1.4) with

constraints. In order to take into account the constraints,

one needs to introduce the Lagrange multipliers ζ(r), α(σ),

and λ associated respectively with the local normalization,

the conservation of the global vorticity distribution and of

the energy. Critical points are solutions of:

∀ δρ δS − λδE −

∫

Σ

dσ αδDσ −

∫

D

dr ζδN = 0 , (1.5)

where first variations are taken with respect to ρ. This leads

to ρ = N exp (λσψ (r)− α(σ)) where N is determined by

the normalization constraint
(∫

dσ ρ = 1
)
. A first result is

that equilibrium macrostates characterized by a functional

relation between potential vorticity and streamfunction:

q̄ =

∫
Σ
dσ σeλσψ(r)−α(σ)∫

Σ
dσ eσλψ(r)−α(σ)

= g (ψ) . (1.6)

We thus conclude that equilibrium macrostates are steady

solutions of the quasi-geostrophic dynamics. This is a very

clear explanation of the reason why most freely evolving

turbulent quasi-geostrophic flows are attracted by steady

states.

It can be shown that g is a monotonic and bounded func-

tion of ψ for any global distribution γ(σ) and energy E.

These critical points can either be entropy minima, saddle

or maxima. To find statistical equilibria, one needs then to

select the entropy maxima.

When the domain has symmetries, additional invariants

must be taken into account. We will discuss in the next

section the important example of angular momentum for

flows on a sphere.

At this point, two different approaches could be followed.

The first one would be to consider a given small scale distri-

bution γ(σ) and energy E, and then to compute the statisti-

cal equilibria corresponding to these parameters. In practice,

especially in the geophysical context, one does not have em-

pirically access to the microscopic vorticity distribution, but

rather to the q−ψ relation (1.6) of the large scale flow. The

second approach, followed in the remaining of this chapter,

is to study statistical equilibria corresponding to a given

class of q − ψ relations. The precise mathematical relation

between these two approaches is discussed in [5].

1.2 Zonal structures as low energy states

The main interest of the MRS statistical mechanics ap-

proach is to build phase diagrams for the large flow struc-

ture. This allows to describes phase transition associated

with drastic changes in the flow topology when key param-

eters are changed. Depending on the problem at hand, the

parameter can be the energy, the circulation, the linear or

the angular momentum of the flow, or any other conserved

quantity. The energy plays a particular role. Indeed, when

the flow admits symmetries, there may exist for sufficiently

high energies bifurcation associated with the breaking of this

symmetry. We will present in the following an illustration of

this effect for the breaking of the zonal symmetry.

We consider in the following the quasi-geostrophic dynam-

ics on a beta plane (ηd = βy). For the sake of simplicity, we

assume a barotropic model (R = +∞), but all the results

can be generalized to arbitrary Rossby radius of deformation

R. General results on MRS equilibria are usually extremely

difficult to obtain, and complete phase diagrams can be de-

scribed only case by case, depending for instance on the

domain geometry, and on a particular q − ψ relation. The

first phase diagrams of MRS equilibria computed analyti-

cally were presented by Chavanis and Sommeria in the case

of the Euler equations in a closed domain [16]. Many other

results have been obtained in the last two decades, and a lot

remains to be done in that direction. We will focus in the

remaining of this section on MRS states associated with a

linear q − ψ relation for various geometries. The main con-

clusion is that whenever the domain geometry is invariant

by translation, low energy states on a beta plane are purely

zonal, and this zonal symmetry can be broken at higher en-

ergy. The case of a tanh-like q−ψ relation will be discussed

in section 1.3.
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1.2.1 The case of a closed domain on a beta plane

We consider first the case of a closed domain, with ψ = 0 at

the boundary. MRS equilibria characterized by a linear q−ψ

relation are solutions of the following variational problem:

Z(E,Γ) = max
q

{−Z[q] | E [q] = E, G[q] = Γ} , (1.7)

which means that we look for the state q that minimize the

macroscopic potential enstrophy Z = (1/2)
∫
dr q2 while

satisfying the energy constraint E [q] = E and the circula-

tion constraint G[q] =
∫
drq. The solutions of the varia-

tional problem (1.7) are actually statistical equilibria of the

MRS theory, as proved in [5] ; more precisely a subclass

of all possible statistical equilibria. We limit our discussion

to this subclass for simplicity (we note that perturbative

corrections of the class of equilibrium macrostates with lin-

ear potential vorticity-stream function relations have been

studied in several recent papers [30, 6]). Here we only note

that critical points of Eq. (1.7) satisfies δZ + λE + γG = 0,

which leads to q = λψ + γ. We have introduced Lagrange

multipliers λ(E,Γ) and γ(E,Γ) associated respectively with

the energy and the circulation constraints. The variational

problem can be solved analytically, because it involves the

maximization of a quadratic functional (the entropy) in the

presence of a quadratic constraint (the energy) and a lin-

ear constraint (the circulation). A complete solution of this

variational problem for any closed domain is given in [57].

Here we focus on a rectangular domain, and discuss the main

properties of the phase diagram.

We note that the variational problem Eq. (1.7) involves

only two parameters E > 0 and Γ, which can be related

to the two coefficients of the linear q − ψ relation. One can

always rescale time unit such that E = 1. Then the po-

tential circulation is transformed into Γ/E1/2. This shows

that only one parameter is needed to describe the phase di-

agram. To simplify the discussion we assume Γ/E1/2 6= 0 in

the following.

When the parameter Γ/E1/2 is sufficiently large, there is

a unique solution to the variational problem Eq. (1.7). This

corresponds to a low energy limit, in which case the flow

structure is given by the celebrated Fofonoff solution [22],

obtained by assuming λ ≫ L−2, where L is the domain

size. In this limit, the Laplacian term in (1.2) is negligible in

the domain bulk. Then ψ ≈ (βy − γ) /λ, which corresponds

to a weak westward flow, as illustrated figure 1.1. Strong

recirculating eastward jets occur at northern and southern

boundaries, where the Laplacian term is no more negligible.

We conclude that low energy states are zonal in the domain

bulk.

Let us first assume that the domain aspect ratio is suf-

ficiently stretched in the x direction, just as in Fig. 1.1.

When the parameter Γ/E1/2 is decreased below a critical

value, there is a second order phase transition that breaks

the symmetry x ↔ −x, and the variational problem ad-

mits two solutions at each point E,Γ of the phase diagram.

For sufficiently low values of Γ/E1/2 the flow has a dipolar

structure just as in figure 1.1. Remarkably, these high energy

states are no more zonal in the domain bulk.

0

0.02

0.04

0.06

−2−1012
−2

−1

0

S

Γ

E

Figure 1.1 Phase diagrams of MRS statistical equilibrium
states characterized by a linear q − ψ relationship for an
elongated rectangle. S(E,Γ) is the equilibrium entropy, E is the
energy and Γ the circulation. Low energy states are the Fofonoff
solutions. High energy states have a very different structure (a
dipole), see [57] for more details).

The phase diagram is a bit different for other domain as-

pect ratio: when the domain is sufficiently stretched in the

y-direction, there is a second order phase transition that

breaks the y ↔ −y symmetry, and high energy states have

a dipolar structure in the y direction. When the domain

aspect ratio is close to one, there is no second order phase

transition and high energy states have a monopole structure.

In any case, high energy states are not zonal in the domain

bulk. Moreover, these high energy states correspond to the

MRS equilibrium states of the Euler equation computed in

[16].

The original low energy Fofonoff solution was obtained in-

dependently from statistical mechanics considerations. The

linear q − ψ relationship was chosen as a starting point to

compute analytically the flow structure. Because both the

Salmon–Holloway–Hendershott statistical theory [50] and

the Bretherton–Haidvoguel minimum enstrophy principle

[13] did predict a linear relationship between vorticity and

streamfunction, it has been argued that statistical equilib-

rium theory predicts the emergence of the classical Fofonoff

flows, which had effectively been reported in numerical sim-

ulations of freely decaying barotropic flows on a beta plane

for some range of parameters [60]. It is shown in [5] that

all those theories are particular cases of the MRS statisti-

cal mechanics theory. It has then been actually proven in

[55, 57] that the classical Fofonoff solutions are indeed MRS

statistical equilibria in the limit of low energies, but that a

richer variety of flow structure exist.

1.2.2 The case of a channel on a beta plane

We explained in the previous section that MRS equilibria

at low energy are zonal in the domain bulk. However, the

presence of a western boundary breaks the zonal symmetry

of the solution. This motivates the study of MRS equilibria

in a zonal channel on a beta plane with periodic boundary

condition in the x-direction. For the sake of simplicity, we

choose there to impose the value of the streamfunction ψ = 0

at the northern and the southern boundary. In that case the

dynamics is fully described by Eq. (1.1-1.2), and admits the

same conservation laws as in the previous subsection. The

equilibrium states are therefore solutions of the variational

problem Eq. (1.7). Then the phase diagrams described in the
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previous subsection also apply for the channel case. Only the

structure of the flow associated with each equilibrium state

is a bit different, because of the periodicity of the domain in

the x-direction.

To simplify the discussion we assume Γ/E1/2 6= 0. For

sufficiently large values of Γ/E1/2, the flow is purely zonal,

with a weak westward flow in the interior and recirculating

eastward jets at the northern and southern boundary. This

corresponds to the Fofonoff solution in an open channel.

When the parameter Γ/E1/2 is decreased, two cases appear:
• either the domain is sufficiently stretched in the y direc-

tion so that its aspect ratio Lx/Ly is smaller than a criti-

cal value τc. In that case the flow structure remains purely

zonal, whatever the energy
• or the aspect ratio Lx/Ly is larger than the critical value

τc, in which case there exists a second order phase tran-

sition above which a dipolar state is observed, just as in

figure 1.1.

This example shows the existence of bifurcation at high en-

ergy that breaks the zonal symmetry of the MRS equilibria.

For the sake of simplicity, we made the arbitrary choice

ψ = 0 at the domain boundaries in the discussion above.

This choice breaks the translational symmetry of the prob-

lem.

In the general case, the channel geometry is a much

more complicated problem. Indeed, the value of the stream-

function at the southern boundary can always be set to zero,

but the value of the stream function at the northern bound-

ary is a constant that must be specified by an additional

equation, see e.g. [42]. This equation is given by the con-

servation of the circulation along one of the boundaries. In

addition, the system becomes in that case invariant by trans-

lation, and there is another invariant associated with this

symmetry, namely the linear momentum L ≡
∫
D
drq.

Consequently, the variational problem to solve in order to

find MRS equilibria associated with a linear q − ψ relation

is

S(E,Γ) = max
q

{
−Z[q] | E [q] = E, G±[q] = Γ±, L[q] = L

}
(1.8)

where G± is the circulation along each boundary. Since L

and G± are linear functionals, the computation of the equi-

librium state associated with a linear q−ψ relation is analo-

gous to the computation of the equilibria in a closed domain

presented in the previous section. However, there is a richer

phase diagrams in the channel case due the presence of ad-

ditional parameters. There exists to our knowledge no com-

plete computation of the phase diagrams in the literature for

this problem, except in [17] who compute equilibrium states

in the presence of a topography that breaks the translational

invariance (in which case L is not a dynamical invariant).

Indeed, the computation and the physical understanding of

phase diagrams for MRS equilibria is still an active subject,

and many progresses toward a better physical understand-

ing of this problem in various geometries or for other flow

models are expected in the coming years.

Figure 1.2 Equilibrium states on a sphere for linear q − ψ

relations. The x-axis represents the energy of the flow divided by
the minimum admissible energy for a given value of the vertical
projection of the angular momentum. See [27] for more details.

1.2.3 Zonal flows on a sphere as equilibrium

macrostates.

Computation of statistical equilibria on a sphere have first

been addressed by [23] in the context of energy-enstrophy

theories, see also [32, 29] and references therein. Recently,

complete phase diagrams of the equilibrium states have been

explicitly computed by [27] in the case of linear q − ψ re-

lations, taking into account the conservation of the vertical

projection of the angular momentum

Lz ≡

∫

D

drq cos θ, (1.9)

where θ is the latitude. More precisely, they solved the vari-

ational problem

S(E,Γ) = max
q

{−Z[q] | E [q] = E, Lz [q] = Lz} . (1.10)

Note that the circulation on a sphere necessarily vanishes.

This is why it does not appears as a parameter in the varia-

tional problem. Similarly to the case of the variational prob-

lem (1.7), as discussed below formula (1.7), the solution to

(1.10) is a simple subclass of MRS equilibrium macrostates.

Note also that time unit can be rescaled such that E = 1.

This means that the linear momentum is transformed into

Lz/E
1/2. This rescaling shows that just as in the close do-

main case of the first subsection, the phase diagrams can be

described using only one parameter.

The main conclusion of [27] concerning the structure of

the equilibrium states is summarized on Fig. 1.2. No solu-

tion exist when Lz/E
1/2 is larger than a critical value Ac.

The flow structure is purely zonal for Lz/E
1/2 = Ac, and

the zonal symmetry is broken whenever Lz/E
1/2 < Ac , in

which case the solution includes a propagating dipole that

dominates the flow structure for sufficiently small Lz/E
1/2.

The role of additional conservation laws given by the pro-

jection of the momentum in other directions has been ad-

dressed by [25], who found richer phase diagrams including

equilibrium states with a quadripolar structure.
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1.3 Zonal jets in the limit of small Rossby

radius of deformation

Another interesting and physically relevant limit that allows

for analytical description of equilibrium macrostates is the

limit of Rossby deformation radius R much smaller than the

size of the domain (R ≪ L). This limit is also relevant to

discuss potential vorticity homogenization (section 1.3.2). It

also provides a further example of a transition from zonal

to non-zonal structures at large energy (section 1.3.4 and

figure 1.7). It has also been used to explain the appearance

of strong localized jets (section 1.3.2), to model the Great

Red Spot and other Jovian vortices (section 1.3.4), and to

discuss the structure of strong eastward jets such as the

Gulf-Stream and the Kuroshio in the oceans (section 1.3.3).

In the case R ≪ L, the nonlinearity of the potential

vorticity-stream function relation becomes essential and we

show below that the variational problem of the statistical

theory is analogous to the Van-Der-Waals Cahn Hilliard

model that describes phase separation and phase coexistence

in usual thermodynamics.

In the context of quasi-geostrophic flow, this leads to inter-

faces separating phases characterized by a different value of

coarse-grained potential vorticity, and corresponds to sub-

domains in which the potential vorticity is homogenized.

The interfaces correspond to strong localized jets of typical

width R. This limit is relevant to describe equilibrium state

with strong jet structures.

We will discuss application of these results to the descrip-

tion of the large scale organization of oceanic currents in

inertial region, dominated by turbulence, such as the east-

ward jets like the Gulf Stream or the Kuroshio extension (the

analogue of the Gulf Stream in the Pacific ocean). In that

case the length L could be thought as the ocean basin scale

L ≃ 1000 km (see section 1.3.3), andR is the internal Rossby

deformation radius with R ≃ 50 km at mid-latitude. We will

also discuss how these results can be relevant for describing

some of Jupiter’s features, like for instance the Great Red

Spot of Jupiter, which is a giant anticyclone of typical size

L ≃ 20, 000 km, whith a Rossby radius R ≃ 1000 km. This

last case is particularly interesting since it allows to show

that when varying an external parameter, an equilibrium

state can switch from a zonal jet state to a non zonal, co-

herent vortex state.

1.3.1 The Van der Waals–Cahn Hilliard model of

first order phase transitions

The Van der Waals–Cahn Hilliard model is a classical model

of thermodynamics and statistical physics that describes

the coexistence of phase in usual thermodynamics. We give

in the following subsections a heuristic description of this

model based on physical arguments, but more details can be

found inst [39] and [4]. Application to the quasi-geostrophic

case will be discussed in the next subsection. The Van der

−1  −0.5 0   0.5 1   1.5 −2  
0

φ/u

f

Figure 1.3 The double well shape of the specific free energy
f (φ).

Waals–Cahn Hilliard model involves the minimization of a

free energy

F =

∫

D

dr

[
R2 (∇φ)2

2
+ f(φ)

]
, (1.11)

with a linear constraint A [φ] =
∫
D
drφ:

F = min {F [φ] | A [φ] = −B } , (1.12)

where φ is the non-dimensional order parameter (for in-

stance the non-dimensionality local density), and f (φ) is

the non-dimensional free energy per unit volume. We con-

sider the limit R ≪ L where L is a typical size of the domain.

We assume that the specific free energy f has a double well

shape (see figure 1.3), characteristic of a phase coexistence

related to a first order phase transition. For a simpler dis-

cussion, we also assume f to be even; this does not affect

the properties of the solutions discussed bellow.

1.3.1.1 First order phase transition and phase
separation

At equilibrium, in the limit of small R, the function f (φ)

plays the dominant role. In order to minimize the free energy,

the system will tend to reach one of its two minima (see

figure 1.3). These two minima correspond to the value of

the order parameters for the two coexisting phases, the two

phases have thus the same free energy.

Without the constraint A = −B in Eq. (1.12), the two

uniform solutions φ = u or φ = −u would clearly minimize

F : the system would have only one phase. Because of the

constraint A, the system has to split into sub-domains: part

of it with phase φ = u and part of it with phase φ = −u. In

a two dimensional space, the area occupied by each of the

phases are denoted A+ and A− respectively. They are fixed

by the constraint A by the relations uA+ −uA− = −B and

by A+ + A− = 1 (where 1 is the total area). A sketch of a

situation with two sub-domains each occupied by one of the

two phases is provided in figure 1.4.

Up to now, we have neglected the term R2 (∇φ)2 in the

functional (1.12). In classical thermodynamics, this term is

related to non-local contributions to the free energy. These

non-local interactions become negligible for scales larger

than R. Their contribution is therefore limited to the in-

terface between two different phases.
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u

−u

Figure 1.4 At zeroth order, φ takes the two values ±u on two
sub-domains A±. These sub-domains are separated by strong
jets.

We know from observations of the physical phenomena

of coarsening and phase separations, that the system has a

tendency to form larger and larger sub-domains. We thus

assume that such sub-domains are delimited by interfaces,

with typical radius of curvature r much larger than R. As

described in next sections, this explains the interface struc-

ture and interface shape.

1.3.1.2 The interface structure

At the interface, the value of φ changes rapidly, on a scale

of order R, with R ≪ r. What happens in the direction

along the interface can thus be neglected at leading order.

To minimize the free energy (1.12), the interface structure

φ(ζ) needs thus to minimize a one dimensional variational

problem along the normal to the interface coordinate ζ:

Fint = min

{∫
dζ

[
R2

2

(
dφ

dζ

)2

+ f(φ)

]}
. (1.13)

where Fint a the free energy per unit length of the interface.

We see that the two terms in (1.13) are of the same or-

der only if the interface has a typical width of order R. We

rescale the length by R: ζ = Rτ . The Euler-Lagrange equa-

tion of (1.13) gives d2φ/dτ2 = df/dφ. Making an analogy

with mechanics, if φ would be a particle position, τ would

be the time, this equation would describe the conservative

motion of the particle in a potential V = −f . From the

shape of f (see figure 1.3) we see that the potential has two

bumps (two unstable fixed points) and decays to −∞ for

large distances. In order to connect the two different phases

in the bulk, on each side of the interface, we are looking for

solutions with boundary conditions φ → ±u for τ → ±∞.

It exists a unique trajectory with such limit conditions: in

the particle analogy, it is the trajectory connecting the two

unstable fixed points (homoclinic orbit).

This analysis shows that the interface width scales like R.

Moreover, after rescaling the length, one clearly sees that

the free energy per length unit (1.13) is proportional to R:

Fint = eR, where e > 0 could be computed as a function of

f [10, 56].

Note that the emergence of sharp jets separating regions

of homogenised potential vorticity can also be predicted us-

ing cascade phenomenology[58] , and the spontaneous emer-

gence of such flow patterns has been reported by [1, 58] in

the framework of two-layer quasi-geostrophic flow with very

strong bottom friction.

1.3.1.3 The interface shape: an isoperimetrical

problem

In order to determine the interface shape, we come back

to the free energy variational problem (1.12). In the previ-

ous section, we have determined the transverse structure of

the interface, by maximizing the one dimensional variational

problem (1.13). The total free energy to minimize is thus

F = LFint = eRL, (1.14)

where we have implicitly neglected contributions of relative

order R/r.

In order to minimize the free energy (1.14), we thus have

to minimize the length L. We must also take into account

that the areas occupied by the two phases, A+ and A− are

fixed, as discussed in section 1.3.1.1. We thus look for the

curve with the minimal length, that bounds a surface with

area A+

min {eRL |Area = A+ } . (1.15)

The solution of the problem (1.15) leads to eR
r = α where

α is a Lagrange parameter associated with the conservation

of the area. This proves that r is constant along the inter-

face: solutions are either circles or straight lines. The law
eR
r = α is the equivalent of the Laplace law in classical

thermodynamics, relating the radius of curvature of the in-

terface to the difference of pressure inside and outside of the

bubble. In the following sections, we see how this applies to

the description of statistical equilibria for quasi-geostrophic

flows, describing vortices and jets.

1.3.2 Quasi-geostrophic statistical equilibria and

first order phase transitions

The first discussion of the analogy between statistical equi-

libria in the limit R ≪ L and phase coexistence in usual

thermodynamics, in relation with the Van-Der-Waals Cahn

Hilliard model is given in [4, 10]. This analogy has been

put on a more precise mathematical ground by proving that
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the variational problems of the MRS statistical mechanics

and the Van-Der-Waals Cahn Hilliard variational problem

are indeed related [5]. More precisely, any solution to the

variational problem:

F = min {F [φ] | A [φ] = −B } (1.16)

with A [φ] =
∫
D
drφ and

F =

∫

D

dr

[
R2 (∇φ)2

2
+ f (φ)− ηdφ

]
(1.17)

is a MRS equilibria of the quasi-geostrophic equations (1.1),

provided that where φ is interpreted as a rescaled stream-

function ψ = R2φ.

Critical points of (1.16) are solutions of δF−αδA = 0, for

all δφ, where α is the Lagrange multiplier associated with

the constraint A. Using a part integration and the relation

q = R2∆φ − φ + Rh yields δF =
∫
dr
(
f ′(φ)− φ− q

)
δφ

and δA =
∫
dr δφ. The critical points satisfy q = f ′

(
ψ
R2

)
−

ψ
R2 −α. We conclude that this equation is the same as (1.6),

provided that f ′
(
ψ
R2

)
= g(βψ) + ψ

R2 − α.

In the case of an initial distribution γ with

only two values of the potential vorticity: γ(σ) =

|D| (aδ(σ1) + (1− a)δ(σ2)), only two Lagrange multipli-

ers α1 and α2 are needed, associated with σ1 and σ2
respectively, in order to compute g, equation (1.6). In that

case, the function g is exactly tanh function. There exists in

practice a much larger class of initial conditions for which

the function g would be an increasing function with a single

inflexion point, similar to a tanh function, especially when

one considers the limit of small Rossby radius of deforma-

tion. [10, 56] give physical arguments to explain why it is

the case for Jupiter’s troposphere or oceanic rings and jets.

When g is a tanh-like function, the specific free energy f

has a double well shape, provided that the inverse temper-

ature βt is negative, with sufficiently large values.

Topography and anisotropy The topography term ηd
in (1.16) is the main difference between the Van-Der-Waals

Cahn Hilliard functional (1.12) and the quasi-geostrophic

variational problem (1.16). We recall that this term is due

to the beta plane approximation and a prescribed motion in

a lower layer of fluid (see section 1.1.1). This topographic

term provides an anisotropy in the free energy. Its effect will

be the subject of most of the theoretical discussion in the fol-

lowing sections. For that purpose we assume that this term

scale with the Rossby radius of deformation R: ηd = Rη̃d.

With this scaling, the topography term will not change the

overall structure at leading order: there will still be phase

separations in sub-domains, separated by an interface of typ-

ical width R, as discussed in section 1.3.1. We now discuss

the dynamical meaning of this overall structure for the quasi-

geostrophic model.

Potential vorticity homogenization and phase sepa-

ration In the case of the quasi-geostrophic equations, the

order parameter φ is proportional to the stream function

ψ: ψ = R2φ. At equilibrium, there is a functional relation

a) b) c)

Figure 1.5 b) and c) represent respectively a snapshot of the
streamfunction and potential vorticity (red: positive values;
blue: negative values) in the upper layer of a three layers
quasi-geostrophic model in a closed domain. Both figures are
taken from numerical simulations by P. Berloff. a)
Streamfunction predicted by statistical mechanics.

between the stream function ψ and the macroscopic poten-

tial vorticity q, given by Eq. (1.6). Then the sub-domains

of constant φ are domains where the (macroscopic) poten-

tial vorticity q is also constant. It means that the level of

mixing of the different microscopic potential vorticity lev-

els are constant in those sub-domains. We thus conclude

that the macroscopic potential vorticity is homogenized in

sub-domains that corresponds to different phases (with dif-

ferent values of potential vorticity), the equilibrium being

controlled by an equality for the associated mixing free en-

ergy.

Strong jets and interfaces In section 1.3.1.3, we have de-

scribed the interface structure. The order parameter φ varies

on a scale of order R mostly in the normal to the interface

direction, reaching constant values far from the interface.

Recalling that φ is proportional to ψ, and that v = ez×∇ψ,

we conclude that:

1. The velocity field is nearly zero far from the interface

(at distances much larger than the Rossby deformation

radius R). Non zero velocities are limited to the interface

areas.

2. The velocity is mainly directed along the interface.

These two properties characterize strong jets. In the limit

R ≪ L, the velocity field is thus mainly composed of strong

jets of width R, whose path is determined from an isoperi-

metrical variational problem.

1.3.3 Are the Gulf-Stream and the Kuroshio

currents close to statistical equilibria?

We have mentioned that statistical equilibria, starting from

the Van-Der-Waals Cahn Hilliard functional (1.16), may

model physical situations where strong jets, with a width

of order R, bound domains of nearly constant potential vor-

ticity. This is actually the case of the Gulf Stream in the

North Atlantic ocean or of the Kuroshio extension in the

North Pacific ocean. This can be inferred from observations,

or this is observed in high resolution numerical simulations

of idealized wind driven mid-latitude ocean, see for instance

figure 1.5 (see [2] for more details).

We address the following problem: is it possible to find

a class of statistical equilibria solution of the with a strong

mid-basin eastward jet similar to the Gulf Stream of the
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Figure 1.6 a) Eastward jet: the interface is zonal, with
positive potential vorticity q = u on the northern part of the
domain. b) Westward jet: the interface is zonal, with negative
potential vorticity q = −u in the northern part of the domain. c)
Perturbation of the interface for the eastward jet configuration.

Kuroshio, in a closed domain? We analyze therefore the

class of statistical equilibria of the 1-1/2 layer model which

are minima of the Van-Der-Waals Cahn Hilliard variational

problem (1.16). We ask whether it exists solutions to in a

bounded domain (let say a rectangular basin) with strong

mid-basin eastward jets. At the domain boundary, we fix

φ = 0 (which using φ = R2ψ turns out to be an imper-

meability condition). We further assume that the equivalent

topographic term can be writen on the form

ηd = Rβ̃y, (1.18)

which includes the beta effect and the effect of a deep zonal

flow (ηd = βy + ψd/R
2 with ψd = −Udy). As discussed in

chapter 1.3.1, with these hypothesis, there is phase separa-

tion in two subdomains with two different levels of poten-

tial vorticity mixing, provided that the function f (φ) has a

double well shape. These domains are bounded by interfaces

(jets) of width R. In view of the applications to mid-basin

ocean jets, we assume that the area A+ occupied by the

value φ = u is half of the total area of the domain (this

amounts to fix the total potential vorticity Γ1). The ques-

tion is to determine the position and shape of this interface.

1.3.3.1 Eastward jets are statistical equilibria of the
quasi-geostrophic model without topography

The value φ = ±u for the two coexisting phases is not com-

patible with the boundary condition φ = 0. As a conse-

quence, there exists a boundary jet (or boundary layer) in

order to match a uniform phase φ = ±u to the boundary

conditions. Just like inner jets, treated in section 1.2, these

jets contribute to the first order free energy, which gives the

jet position and shape. We now treat the effect of boundary

layer for the case h = 0 (β̃ = 0 in this case). As explained in

section 1.3.1.3, the jet free energy is the only contribution

to the total free energy.

We first quantify the unit length free energy, Fb, for the

boundary jets. Following the reasoning of section 1.3.1.3,

Fb is given my the minimum of
∫
dζ
[
R2

2
d2φ
dζ2 + f(φ)

]
. This

expression is the same as (1.13), the only difference is the

different boundary conditions: it was φ →ζ→+∞ u and

φ →ζ→−∞ −u, it is now φ →ζ→+∞ u and φ (0) = 0. Be-

cause f is even, one easily see that a boundary jet is nothing

else than half of a interior domain jet. Then Fb =
e
2R, where

e is defined in subsection 1.3.1.3. By symmetry, a boundary

jet matching the value φ = −u to φ = 0 gives the same

contribution. Finally, the first order free energy is given by

F = eR
(
L+ Lb

2

)
, where Lb is the boundary length. Because

the boundary length Lb is a fixed quantity, the free energy

minimisation amounts to the minimisation of the interior jet

length. The interior jet position and shape is thus given by

the minimisation of the interior jet length with fixed area

A+. We recall that the solutions to this variational problem

are interior jets which are either straight lines or circles (see

section 1.3.1.3).

In order to simplify the discussion, we consider the case

of a rectangular domain of aspect ratio τ = Lx/Ly. Gen-

eralisation to an arbitrary closed domain could also be dis-

cussed. We recall that the two phases occupy the same area

A+ = A− = 1
2LxLy. We consider three possible interface

configurations with straight or circular jets:

1. the zonal jet configuration (jet along the x axis) with

L = Lx,

2. the meridional jet configuration (jet along the y axis with

L = Ly,

3. and an interior circular vortex, with L = 2
√
πA+ =√

2πLxLy .

The minimisation of L for these three configurations shows

that the zonal jet is a global minimum if and only if τ < 1.

The criterion for the zonal jet to be a global MRS equilib-

rium state is then Lx < Ly. We have thus found zonal jet

as statistical equilibria in the case h = 0.

An essential point is that both the Kuroshio and the Gulf

Stream are flowing eastward (from west to east). From the

relation v = ez × ∇ψ, we see that the jet flows eastward

(vx > 0) when ∂yψ < 0. Recalling that φ = R2ψ, the previ-

ous condition means that the negative phase φ = −u has to

be on the northern part of the domain, and the phase φ = u

on the southern part. From (1.2), we see that this corre-

sponds to a phase with positive potential vorticity q = u on

the northern sub-domains and negative potential vorticity

q = −u on the southern sub-domain, as illustrated in the

panel (a) of figure (1.6).

Looking at the variational problems (1.16), it is clear that

in the case ηd = 0 and f even, the minimisation of φ is in-

variant over the symmetry φ → −φ. Then solutions with

eastward or westward jets are completely equivalent. Actu-

ally there are two equivalent solutions for each of the case 1,

2 and 3 above. However, taking into account the beta effect

will break this symmetry.

1.3.3.2 Addition of a topography

We now consider the effect of a small effective beta effect as

in Eq. (1.18) . This choice of a topography amplitude scaling

with R is considered in order to treat the case where the

contribution of the effective beta effect appears at the same

order as the jet length contribution. Following the arguments

of the previous subsections, we minimize

F = RH0 +R

(
eL− 2u

∫

A+

dr β̃y

)
, (1.19)
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with a fixed area A+. The jet position is a critical point of

this functional: e/r− 2uβ̃yjet = α, where α is the Lagrange

parameter associated with the constraint on A+ and yjet the

latitude of the jet. We conclude that zonal jets (curves with

constant yjet and r = +∞) are solutions to this equation

for α = −2uRβ̃yjet. Eastward and westward jets described

in the previous section are still critical points of entropy

maximisation.

With a negative effective beta effect, eastward jets

are statistical equilibria. We first consider the case β̃ <

0. This occurs when the zonal flow in the lower layer is east-

ward and sufficiently strong (Ud > R2β). If we compute

the first order free energy (1.19) for both the eastward and

the westward mid-latitude jet, it is easy to see that in or-

der to minimise F , the domain A+ has to be located at

the lower latitudes: taking y = 0 at the interface, the term

−2u
∫
A+

d2r β̃y = uβ̃LxLy/4 gives a negative contribution

when the phase with φ = u (and q = −u) is on the southern

part of the domain (A+ = (0, Lx) × (−
Ly

2 , 0)). This term

would give the opposite contribution if the phase φ = u

would occupy the northern part of the domain. Thus the

statistical equilibria is the one with negative streamfunction

φ (corresponding to positive potential vorticity q) on the

northern part of the domain. As discussed in the end of sec-

tion 1.3.3.1 and illustrated on figure 1.6, panel (b), this is

the case of an eastward jet.

Thus, we conclude that taking into account an effective

negative beta-effect term at first order breaks the westward-

eastward jet symmetry. When β̃ < 0, statistical equilibria

are flows with mid-basin eastward jets.

With a positive effective beta effect, westward jets

are statistical equilibria. Let us now assume that the

effective beta coefficient is positive. This is the case when

Ud < R2β, i.e. when the lower layer is either flowing west-

ward, or eastward with a sufficiently low velocity. The argu-

ment of the previous paragraph can then be used to show

that the statistical equilibrium is the solution presenting a

westward jet.

With a sufficiently small effective beta coefficient,

eastward jets are local statistical equilibria. We have

just proved that mid-basin eastward jets are not global equi-

libria in the case of positive effective beta effect. They are

however critical points of entropy maximisation. They still

could be local entropy maxima. We now consider this ques-

tion: are mid-basin strong eastward jets local equilibria for

a positive effective beta coefficient? In order to answer, we

perturb the interface between the two phases, while keeping

constant the area they occupy, and compute the free energy

perturbation.

The unperturbed interface equation is y = 0, the per-

turbed one is y = l(x), see figure 1.6. Qualitatively, the

contributions to the free energy F (1.19), of the jet on one

hand and of the topography on the other hand, are com-

peting with each other. Any perturbation increases the jet

length L =
∫
dx

√
1 +

(
dl
dx

)2
and then increases the second

term in equation (1.19) by δF1 = Re
∫
dx (dl/dx)2. Any

perturbation decreases the third term in equation (1.19) by

δF2 = −2Ruβ̃
∫
dx l2.

We suppose that l = lk sin
kπ
Lx
x where k ≥ 1 is an inte-

ger. Then δF = −2uβ̃ + e
(
kπ
Lx

)2
. Because we minimize F ,

we want to know if any perturbation leads to positive vari-

ations of the free energy. The most unfavorable case is for

the smallest value of k2, i.e. k2 = 1. Then we conclude that

eastward jets are metastable states (local entropy maxima)

when β̃ < β̃cr = 1
2
e
u
π2

L2
x
.

The critical zonal extension for metastable mid

basin eastward jets. The previous result can also be

interpreted in terms of the domain geometry, for a fixed

value of β̃. Eastward jets are local entropy maxima if Lx <

Lx,cr = π
√

e

2uβ̃cr

. Let us evaluate an order of magnitude

for Lx,cr for the ocean case, first assuming there is no deep

flow (Ud = 0). Then Rβ̃ is the real coefficient of the beta

plane approximation. Remembering that a typical velocity

of the jet is U ∼ uR, and using e ∼ u2 gives Lx,cr ≈ π
√

U
βcr

,

[56]. This length is proportional to the Rhine’s’ scale of geo-

physical fluid dynamics [53]. For jets like the Gulf Stream,

typical jet velocity is 1 m.s−1 and β ∼ 10−11 m−1.s−1

at mid-latitude. Then Lcr ∼ 300 km. This length is much

smaller than the typical zonal extension of the inertial part

of the Kuroshio or Gulf Stream currents. We thus conclude

that in a model with a quiescent lower layer and the beta

plane approximation, currents like the Gulf Stream or the

Kuroshio are not statistical equilibria, and they are not nei-

ther close to local statistical equilibria.

Taking the oceanic parameters (β = 10−11 m−1s−1, R ∼

50 km), we can estimate the critical eastward velocity in

the lower layer Ud,cr = 5 cm s−1 above which the strong

eastward jet in the upper layer is a statistical equilibria.

It is difficult to make further conclusions about real mid-

latitude jets; we conjecture that their are marginally stable.

This hypothesis of marginal stability is in agreement with

the observed instabilities of the Gulf-Stream and Kuroshio

current, but overall stability of the global structure of the

flow.

1.3.3.3 Is equilibrium statistical mechanics relevant to

describe mid-basin eastward jets ?

The early work of Fofonoff and the equilibrium statistical

mechanics of geophysical flows presented in this review are

often referred to as the inertial approach of oceanic circula-

tion, meaning that the effect of the forcing and the dissipa-

tion are neglected.

Ocean dynamics is actually much influenced by the forcing

and the dissipation. For instance the mass flux of a current

like the Gulf Stream is mainly explained by the Sverdrup

transport. Indeed in the bulk of the ocean, a balance between

wind stress forcing and beta effect (the Sverdrup balance)

lead to a meridional global mass flux (for instance toward the

south on the southern part of the Atlantic ocean. This fluxes

is then oriented westward and explain a large part of the
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Gulf Stream mass transport. This mechanism is at the base

of the classical theories for ocean dynamics, see e.g. [43]. Be-

cause it is not an conservative process, the inertial approach

does not take this essential aspect into account. Conversely,

the traditional theory explains the Sverdrup transport, the

westward intensification and boundary current, but gives no

clear explanation of the structure of the inertial part of the

current: the strongly eastward jets.

Each of the classical ocean theory or of the equilibrium

statistical mechanics point of view give an incomplete pic-

ture, and complement each other. Another interesting ap-

proach consider the dynamics from the point of view of bi-

furcation theory when the Reynolds number (or some other

controlled parameters) are increased. These three types of

approaches seem complimentary and we hope they may

be combined in the future in a more comprehensive non-

equilibrium theory.

1.3.4 From zonal jets to circular vortex:

application to Jovian vortices.

The previous subsection was focused on the possible exis-

tence of zonal jets as statistical equilibriums states. The

same statistical mechanics ideas can be used to describe var-

ious Jovian vortices, see e.g. [10, 11] and ocean rings [56].

A natural question is to be able to predict wether an ini-

tial condition will self-organize into a vortex or into a zonal

structures. Figure 1.7 shows a phase diagram for statistical

equilibria with Jupiter like topography in a channel, see [7]

for more details. This illustrates the power of statistical me-

chanics: with only few parameters characterizing statistical

equilibria, one can reproduce all the features of Jupiter’s tro-

posphere, from circular white ovals, to the Great Red Spot

and cigar shaped Brown Barges. Here, these parameters are

the energy E and a parameter B defined Eq. (1.16), related

to the asymmetry between positive and negative potential

vorticity. As seen on figure 1.7, statistical mechanics pre-

dicts a phase transition form straight jets to vortices when

increasing the asymmetry parameter B. The reduction of

the complexity of turbulent flow to only a few order param-

eters is the main interest and achievement of a statistical

mechanics theory.

1.4 Discussion and conclusion

The theoretical study of the self-organization of geostrophic

turbulent flows into zonal jets has been addressed in this

chapter based on statistical mechanics methods. The the-

ory predicts the output of the long time evolution of a class

of turbulent flows described by the quasi-geostrophic equa-

tions. We have explained in which cases zonal flow may be in-

terpreted as statistical equilibrium, and how the zonal sym-

metry may be broken when some key parameters such as

the total energy are varied. On this chapter, emphasize has

been placed on examples with available analytical treatment

in order to favor a better understanding of the physics and
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Figure 1.7 Phase diagram of the statistical equilibrium states
in a channel with quadratic topography. The parameters E and
B are respectively the energy and an asymmetry parameter for
the potential vorticity distribution. The inner solid line
corresponds to a phase transition, between vortex and straight
jet solutions. The dash line corresponds to the limit of validity
of the small deformation radius hypothesis. The dot lines are
constant vortex aspect ratio lines. See [7] for more details.

dynamics. We have described phase diagrams for closed do-

main, channel and spherical geometry in the case of linear

q−ψ relations. Note that there exist several works generalis-

ing those results to weakly non-linear q−ψ relations, see e.g.

[32, 11, 45] and references therein. We have then discussed

the limit of small Rossby radius of deformation which al-

lows to describe strong jets at the interface of homogenized

regions of potential vorticity, in which case the q − ψ rela-

tion is a tanh-like function. This has been applied to make

quantitative models ocean jets like the Gulf-Stream.

We focused in this chapter on one layer quasi-geostrophic

models, and consequently did not discuss statistical me-

chanics predictions for the vertical structure of geostrophic

flows, which may have some importance in the context of

the emergence of zonal structures on a beta plane. For in-

stance, statistical mechanics arguments were used in [59]

to interpret numerical simulations of continuously stratified

fluids showing that the beta effect favors the tendency to-

wards barotropization of the flow. Other results on statis-

tical mechanics predictions theory for the vertical structure

of geostrophic flows are presented in [36, 54, 26].

1.4.1 Observed multiple jets are not statistical

equilibrium states

Multiple eastward jets are often observed in the simulation

of quasi-geostrophic dynamics, or even in observations in

various geophysical contexts (see ?? in this book). In this

chapter, none of the equilibrium state we described pre-

sented this multiple jet structure.

To our knowledge, all the multiple jets configurations de-

scribed in the literature are characterized by a potential vor-

ticity profile increasing with y, while the streamfunction has

roughly a sawtooth shape corresponding to a change of sign

of the velocity. For instance, in the case of potential vortic-

ity staircases obtained in ([19] or [18]), the velocity field is
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eastward at the interface between regions of homogenized

potential vorticity, and there is a weaker westward recir-

culation close in the interior of the homogenized potential

vorticity regions. This means that all reported multiple jets

are characterized by a non-monotonous q − ψ relation.

One can show that the q−ψ relation of the critical point of

the MRS theory is necessarily a monotonous function. This

means that observed multiple jets can not be equilibrium

states, nor metastable states of the equilibrium theory. A

qualitative interpretation can be given: the zonal jets act as

a mixing barrier of potential vorticity in physical space, but

also (and consequently) in phase space. The ergodic hypoth-

esis underlying the statistical mechanics equilibrium theory

is therefore not satisfied.

1.4.2 The role of forcing and dissipation

Equilibrium statistical mechanics can be valid only if the

effects of forcing and dissipation can be neglected. This cor-

responds to two different kind of situation.

The first one, as discussed in the original papers [46, 38,

47, 48]. is when the flow is produced by an instability or

from a prepared initial condition, and then evolve over a

time scale which is much smaller than the typical time scales

associated to the non-inertial processes (forcing and dissi-

pation). In geophysical context, this framework is probably

the correct one for the formation of ocean mesoscale eddies,

from the instability of either the Gulf Stream (Gulf Stream

rings) or or the Agulhas current downstream of Cape Ag-

ulhas, see e.g. [56]. This is also the situation relevant to

describe freely decaying turbulent flows in numerical simu-

lations, see e.g. [12, 45] and references therein. Althought he

MRS theory can generally be used to interpret qualitatively

self-organisation phenomena in numerical simulations, two

limits can be pointed out. First, the global distribution of po-

tential vorticity generally changes before relaxation toward

equilibrium, see e.g. [12], and it is unclear wether this diffi-

culty may be overcome by increasing numerical resolution.

Second, statistical equilibrium states are only a sub-class of

stable states of the dynamics. Even in a case without small

scale dissipation, the system may therefore be trapped into

flow structures that are not predicted by the equilibrium

theory.

Most of geophysical and other natural flows are however

in another regime. Very often they have settled down from a

very long time to a statistically stationary solution, where on

average forces balance dissipation. In this case, one can still

compare the typical time scale of inertial organization (usu-

ally turnover times, or typical times for wave propagation) to

the forcing and dissipation time scale (spin up or spin down

time scale). If these two time scales are well separated, then

we still expect equilibrium statistical mechanics to describe

at leading order the flow structure, and its qualitative prop-

erties. Usefulness of equilibrium statistical mechanics in this

second framework, for instance close to a phase transition, is

illustrated in [9]. We nevertheless note a limitation of equi-

librium statistical mechanics in this second framework. It

does not predict which of the set of possible statistical equi-

libria (parameterized by the inertial invariants) is actually

selected by the long term effect of forces and dissipation.

This should be determined at next order by computing the

vanishingly small fluxes of conserved quantities.

Still most of ocean and atmosphere dynamics flows, for

instance large scale organization of the atmosphere or the

ocean, do not really fulfill these separation of time scale hy-

pothesis. Then a truly non-equilibrium statistical mechanics

approach has to be considered. This is the subject of a num-

ber of current approaches, using kinetic theory [40, 8], re-

lated approaches such as stochastic structural stability the-

ory (see [21, 52] and references therein), or cumulant expan-

sions (see [34, 35] and references therein), or instanton the-

ory. Section 6 of the review by [11] contains a more complete

discussion of such non-equilibrium approaches; whereas the

review by [33, 31] stresses the interest of statistical mechan-

ics for climate applications.
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