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Subdivisions of oriented cycles in digraphs with large

chromatic number

Abstract: An oriented cycle is an orientation of a undirected cycle. We first show that for
any oriented cycle C, there are digraphs containing no subdivision of C (as a subdigraph) and
arbitrarily large chromatic number. In contrast, we show that for any C is a cycle with two
blocks, every strongly connected digraph with sufficiently large chromatic number contains a
subdivision of C. We prove a similar result for the antidirected cycle on four vertices (in which
two vertices have out-degree 2 and two vertices have in-degree 2).

Key-words: Subdivisions, digraphs, chromatic number
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1 Introduction

What can we say about the subgraphs of a graph G with large chromatic number ? Of course,
one way for a graph to have large chromatic number is to contain a large complete subgraph.
However, if we consider graphs with large chromatic number and small clique number, then we
can ask what other subgraphs must occur. We can avoid any graph H that contains a cycle
because, as proved by Erdős [8], there are graphs with arbitrarily high girth and chromatic
number. Reciprocally, one can easily show that every n-chromatic graph contains every tree of
order n as a subgraph.

The following more general question attracted lots of attention.

Problem 1. Which are the graph classes G such that every graph with sufficiently large chro-
matic number contains an element of G ?

If such a class is finite, then it must contain a tree, by the above-mentioned result of Erdős. If it
is infinite however, it does not necessary contains a tree. For example, every graph with chromatic
number at least 3 contains an odd cycle. This was strengthened by Erdős and Hajnal [9] who
proved that every graph with chromatic number at least k contains an odd cycle of length at least
k. A counterpart of this theorem for even length was settled by Mihók and Schiermeyer [17] :
every graph with chromatic number at least k contains an even cycle of length at least k. Further
results on graphs with prescribed lengths of cycles have been obtained [12, 17, 21, 16, 15].

In this paper, we consider the analogous problem for directed graphs, which is in fact a
generalization of the undirected one. The chromatic number χ(D) of a digraph D is the chromatic
number of its underlying graph. The chromatic number of a class of digraphs D, denoted by χ(D),
is the smallest k such that χ(D) 6 k for all D ∈ D, or +∞ if no such k exists. By convention, if
D = ∅, then χ(D) = 0. If χ(D) 6= +∞, we say that D has bounded chromatic number.

We are interested in the following question : which are the digraph classes D such that every
digraph with sufficiently large chromatic number contains an element of D ? Let us denote by
Forb(H) (resp. Forb(H)) the class of digraphs that do not contain H (resp. any element of H)
as a subdigraph. The above question can be restated as follows :

Problem 2. Which are the classes of digraphs D such that χ(Forb(D)) < +∞ ?

This is a generalization of Problem 1. Indeed, let us denote by Dig(G) the set of digraphs
whose underlying digraph is in G ; Clearly, χ(G) = χ(Dig(G)).

An oriented graph is an orientation of a (simple) graph ; equivalently it is a digraph with
no directed cycles of length 2. Similarly, an oriented path (resp. oriented cycle, oriented tree) is
an orientation of a path (resp. cycle, tree). An oriented path (resp., an oriented cycle) is said
directed if all nodes have in-degree and out-degree at most 1.

Observe that if D is an orientation of a graph G and Forb(D) has bounded chromatic number,
then Forb(G) has also bounded chromatic number, so G must be a tree. Burr proved that every
(k − 1)2-chromatic digraph contains every oriented tree of order k. This was slightly improved
by Addario-Berry et al. [2] who proved the following.

Theorem 3 (Addario-Berry et al. [2]). Every (k2/2−k/2+1)-chromatic oriented graph contains
every oriented tree of order k. In other words, for every oriented tree T of order k, χ(Forb(T )) 6
k2/2− k/2.

Conjecture 4 (Burr [6]). Every (2k − 2)-chromatic digraph D contains a copy of any oriented
tree T of order k.

RR n° 8865



4 N. Cohen , F. Havet , W. Lochet , N. Nisse

For special oriented trees T , better bounds on the chromatic number of Forb(T ) are known.
The most famous one, known as Gallai-Roy Theorem, deals with directed paths (a directed path
is an oriented path in which all arcs are in the same direction) and can be restated as follows,
denoting by P+(k) the directed path of length k.

Theorem 5 (Gallai [11], Hasse [13], Roy [18], Vitaver [20]). χ(Forb(P+(k))) = k.

The chromatic number of the class of digraphs not containing a prescribed oriented path
with two blocks (blocks are maximal directed subpaths) has been determined by Addario-Berry
et al. [1].

Theorem 6 (Addario-Berry et al. [1]). Let P be an oriented path with two blocks on n vertices.

— If n = 3, then χ(Forb(P )) = 3.

— If n > 4, then χ(Forb(P )) = n− 1.

In this paper, we are interested in the chromatic number of Forb(H) when H is an infinite
family of oriented cycles. Let us denote by S-Forb(D) (resp. S-Forb(D)) the class of digraphs
that contain no subdivision of D (resp. any element of D) as a subdigraph. We are particularly
interested in the chromatic number of S-Forb(C), where C is a family of oriented cycles.

Let us denote by ~Ck the directed cycle of length k. For all k, χ(S-Forb(~Ck)) = +∞ because
transitive tournaments have no directed cycle. Let us denote by C(k, ℓ) the oriented cycle with
two blocks, one of length k and the other of length ℓ. Observe that the oriented cycles with
two blocks are the subdivisions of C(1, 1). As pointed Gyárfás and Thomassen (see [1]), there
are acyclic oriented graphs with arbitrarily large chromatic number and no oriented cycles with
two blocks. Therefore χ(S-Forb(C(k, ℓ))) = +∞. We first generalize these two results to every
oriented cycle.

Theorem 7. For any oriented cycle C,

χ(S-Forb(C)) = +∞.

In fact, we show a stronger theorem (Theorem 20) : for any positive integer b, there are
digraphs of arbitrarily high chromatic number that contains no oriented cycles with less than b
blocks. It directly implies the following generalization of the previous theorem.

Theorem 8. For any finite family C of oriented cycles,

χ(S-Forb(C)) = +∞.

In contrast, if C is an infinite family of oriented cycles, S-Forb(C) may have bounded chromatic
number. By the above argument, such a family must contain a cycle with at least b blocks for
every positive integer b. A cycle C is antidirected if any vertex of C has either in-degree 2 or
out-degree 2 in C. In other words, it is an oriented cycle in which all blocks have length 1. Let us
denote by A>2k the family of antidirected cycles of length at least 2k. In Theorem 13, we prove
that χ(Forb(A>2k)) 6 8k − 8. Hence we are left with the following problem.

Problem 9. What are the infinite families of oriented cycles C such that Forb(C) < +∞ ?
What are the infinite families of oriented cycles C such that S-Forb(C) < +∞ ?

On the other hand, considering strongly connected (strong for short) digraphs may lead to
dramatically different result. An example is provided by the following celebrated result due to
Bondy [4] : every strong digraph of chromatic number at least k contains a directed cycle of length
at least k. Denoting the class of strong digraphs by S, this result can be rephrased as follows.

Inria
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Theorem 10 (Bondy [4]). χ(S-Forb(~Ck) ∩ S) = k − 1.

Inspired by this theorem, Addario-Berry et al. [1] posed the following problem.

Problem 11. Let k and ℓ be two positive integers. Does S-Forb(C(k, ℓ) ∩ S) have bounded
chromatic number ?

In Subsection 5.2, we answer to this problem in the affirmative. In Theorem 23 we prove

χ(S-Forb(C(k, ℓ) ∩ S) 6 (k + ℓ− 2)(k + ℓ− 3)(2ℓ+ 2)(k + ℓ+ 1), for all k > ℓ > 2, k > 3.

Note that since χ(S-Forb(C(k′, ℓ′) ∩ S) 6 χ(S-Forb(C(k, ℓ) ∩ S) if k′ 6 k and ℓ′ 6 ℓ, this
gives also an upper bound when k or ℓ are small. However, in those cases, we prove better upper
bounds. In Corollary 32, we prove

χ(S-Forb(C(k, 1)) ∩ S) 6 max{k + 1, 2k − 4} for all k.

We also give in Subsection 5.2 the exact value of S-Forb(C(k, ℓ)∩S) for (k, ℓ) ∈ {(1, 2), (1, 3), (2, 3)}.

More generally, one may wonder what happens for other oriented cycles.

Problem 12. Let C be an oriented cycle with at least four blocks. Is χ(S-Forb(C)∩S) bounded ?

In Section 7, we show that χ(S-Forb(Ĉ4)∩S) 6 24 where Ĉ4 is the antidirected cycle of order
4.

2 Definitions

We follow [5] for basic notions and notations. Let D be a digraph. V (D) denotes its vertex-set
and A(D) its arc-set.

If uv ∈ A(D) is an arc, we sometimes write u→ v or v ← u.
For any v ∈ V (D), d+(v) (resp. d−(v)) denotes the out-degree (resp. in-degree) of v. δ+(D)

(resp. δ−(D)) denotes the minimum out-degree (resp. in-degree) of D.
An oriented path is any orientation of a path. The length of a path is the number of its

arcs. Let P = (v1, . . . , vn) be an oriented path. If vivi+1 ∈ A(D), then vivi+1 is a forward arc ;
otherwise, vi+1vi is a backward arc. P is a directed path if all of its arcs are either forward or
backward ones. For convenience, a directed path with forward arcs only is called a dipath. A
block of P is a maximal directed subpath of P . A path is entirely determined by the sequence
(b1, . . . , bp) of the lengths of its blocks and the sign + or − indicating if the first arc is forward or
backward respectively. Therefore we denote by P+(b1, . . . , bp) (resp. P−(b1, . . . , bp)) an oriented
path whose first arc is forward (resp. backward) with p blocks, such that the ith block along it
has length bi.

Let P = (x1, x2, . . . , xn) be an oriented path. We say that P is an (x1, xn)-path. For every
1 6 i 6 j 6 n, we note P [xi, xj ] (resp. P ]xi, xj [, P [xi, xj [, P ]xi, xj ]) the oriented subpath
(xi, . . . , xj) (resp. (xi+1, . . . , xj−1), (xi, . . . , xj−1), (xi+1, . . . , xj)).

The vertex x1 is the initial vertex of P and xn its terminal vertex. Let P1 be an (x1, x2)-
dipath and P2 an (x2, x3)-dipath which are disjoint except in x2. Then P1 ⊙ P2 denotes the
(x1, x3)-dipath obtained from the concatenation of these dipaths.

The above definitions and notations can also be used for oriented cycles. Since a cycle has
no initial and terminal vertex, we have to choose one as well as a direction to run through the
cycle.Therefore if C = (x1, x2, . . . , xn, x1) is an oriented cycle, we always assume that x1x2 is an
arc, and if C is not directed that x1xn is also an arc.

RR n° 8865



6 N. Cohen , F. Havet , W. Lochet , N. Nisse

A path or a cycle (not necessarily directed) is Hamiltonian in a digraph if it goes through all
vertices of D.

The digraph D is connected (resp. k-connected) if its underlying graph is connected (resp. k-
connected). It is strongly connected, or strong, if for any two vertices u, v, there is a (u, v)-dipath
in D. It is k-strongly connected or k-strong, if for any set S of k − 1 vertices D − S is strong.
A strong component of a digraph is an inclusionwise maximal strong subdigraph. Similarly, a
k-connected component of a digraph is an inclusionwise maximal k-connected subdigraph.

3 Antidirected cycles

The aim of this section is to prove the following theorem, that establish that χ(Forb(A>2k)) 6
8k − 8.

Theorem 13. Let D be an oriented graph and k an integer greater than 1.
If χ(D) > 8k − 7, then D contains an antidirected cycle of length at least 2k.

A graph G is k-critical if χ(G) = k and χ(H) < k for any proper subgraph H of G. Every
graph with chromatic number k contains a k-critical graph. We denote by δ(G) the minimum
degree of the graph G. The following easy result is well-known.

Proposition 14. If G is a k-critical graph, then δ(G) > k − 1.

Let (A,B) be a bipartition of the vertex set of a digraph D. We denote by E(A,B) the set
of arcs with tail in A and head in B and by e(A,B) its cardinality.

Lemma 15 (Burr [7]). Every digraph D contains a partition (A,B) such that e(A,B) >

|E(D)|/4.

Lemma 16 (Burr [7]). Let G be a bipartite graph and p be an integer. If |E(G)| > p|V (G)|, then
G has a subgraph with minimum degree at least p+ 1.

Lemma 17. Let k > 1 be an integer. Every bipartite graph with minimum degree k contains a
cycle of order at least 2k.

Démonstration. Let G be a bipartite graph with bipartition (A,B). Consider a longest path P
in G. Without loss of generality, we may assume that one of its ends a is in A. All neighbours of
a are in P (otherwise P can be lengthened). Let b be the furthest neighbour of a in B along P .
Then C = P [a, b] ∪ ab is a cycle containing at least k vertices in B, namely the neighbours of a.
Hence C has length at least 2k, since G is bipartite.

Proof of Theorem 13. It suffices to prove that every (8k − 7)-critical oriented graph contains an
antidirected cycle of length at least 2k.

Let D be a (8k − 7)-critical oriented graph. By Proposition 14, it has minimum degree at
least 8k − 8, so |E(D)| > (4k − 4)|V (D)|. By Lemma 15, D contains a partition such that
e(A,B) > |E(D)|/4 > (k − 1)|V (D)|. Consequently, by Lemma 16, there are two sets A′ ⊆ A
and B′ ⊆ B such that every vertex in A′ (resp. B′) has at least k out-neighbours in B′ (resp. k
in-neighbours in A′). Therefore, by Lemma 17, the bipartite oriented graph induced by E(A′, B′)
contains a cycle of length at least 2k, which is necessarily antidirected.

Problem 18. Let ℓ be an even integer. What the minimum integer a(ℓ) such that every oriented
graph with chromatic number at least a(ℓ) contains an antidirected cycle of length at least ℓ ?

Inria
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4 Acyclic digraphs without cycles with few blocks

The aim of this section is to establish Theorems 7 and 8. To do so we will use a result on
hypergraph colouring.

A cycle of length k > 2 in a hypergraph H is an alternating cyclic sequence e0, v0, e1, v1, . . .
ek−1, vk−1, e0 of distinct hyperedges and vertices in H such that vi ∈ ei ∩ ei+1 for all i modulo
k. The girth of a hypergraph is the length of a shortest cycle.

A hypergraph H on a ground set X is said to be weakly c-colourable if there exists a colouring
of the elements of X with c colours such that no hyperedge of H is monochromatic. The weak
chromatic number of H is the least c such that H is weakly c-colourable. Erdős and Lovász [10]
(and more recently Alon et al.[3]) proved the following result :

Theorem 19. [10, Theorem 1’], [3] For k, g, c ∈ N, there exists a k-uniform hypergraph with
girth larger than g and weak chromatic number larger than c.

Our construction relies on the hypergraphs whose existence is established by Theorem 19.

Theorem 20. For any positive integers b, c, there exists an acyclic digraph D with χ(D) > c in
which all oriented cycles have more than b blocks.

Démonstration. We shall prove the result by induction on c, the result holding trivially for c = 2
with D the directed path on two vertices. We thus assume our claim to hold for a graph Dc with
χ(Dc) = c, and show how extend it to c+ 1.

Let p be the number of proper c-colourings of Dc, and let those colourings be denoted by
col1c , ..., col

p
c . By Theorem 19 there exists a c × p-uniform hypergraph H with weak chromatic

number > p and girth > b/2. Let X = {x1, . . . , xn} be the ground set of H.
We construct Dc+1 from n disjoint copies D1

c , ..., D
n
c of Dc as follows. For each hyperedge

S ∈ H, we do the following (see Figure 1) :

— We partition S into p sets S1, . . . , Sp of cardinality c.
— For each set Si = {xk1

, . . . , xkc
}, we choose vertices vk1

∈ Dk1
c , . . . , vkc

∈ Dkc

c such
that colic(vk1

) = 1, . . . , colic(vkc
) = c, and add a new vertex wS,i with vk1

, . . . , vkc
as in-

neighbours.

Let us denote by W the set of vertices of Dc+1 that do not belong to any of the copies of Dc

(i.e. the wS,i). We now prove that the resulting digraph Dc+1 is our desired digraph.

· · · · · ·

S1 Si Sp

S ∈ H

wS,1 wS,pwS,i

Figure 1 – Construction of Dc+1

Firstly it is acyclic, as we only add sinks (the wS,i) to disjoint copies of Dc, which are acyclic
by the induction hypothesis.

Secondly, every oriented cycle C in Dc+1 has more than b blocks. If C is in a copy of Dc, then
we have the result by the induction hypothesis. Henceforth we may assume that S contains some
vertices in W , say w1, ..., wb′ in cyclic order around C. As the vertices of W are all sinks, the
number of blocks of C is at least 2b′. Let us denote by Swi

the hyperedge of H which triggered

RR n° 8865



8 N. Cohen , F. Havet , W. Lochet , N. Nisse

the creation of wi. Then two consecutive Swi
, Swi+1

(indices are modulo b′) have a vertex xi of X
in common (indeed, the vertices between wi and wi+1 in C belong to some copy Di

c). Therefore
the sequence xb′ , Sw1

, x1, Sw2
, x2, . . . , Sw

b′
, xb′ contains a cycle in H. Hence by our choice of H,

b′ > b/2, so C has more than b blocks.
Finally, let us prove that χ(Dc+1) = c + 1. We added a stable set to the disjoint union of

copies of Dc, so χ(Dc+1) 6 χ(Dc) + 1 = c+ 1.
Now suppose for a contradiction that Dc+1 admits a proper c-colouring φ. It induces on H the
p-colouring ψ where ψ(xk) is the index of the colouring of Dc on Dk

c , i.e. the restriction of φ on

Dk
c is the colouring col

ψ(xk)
c . Now since H is (p + 1)-chromatic, there exists an hyperedge S of

H which is monochromatic. Let i be the integer such that ψ(x) = i for all x ∈ S. Consider Si =
{xk1

, . . . , xkc
} and let vk1

∈ Dk1
c , . . . , vkc

∈ Dkc

c be the in-neighbours of wS,i. By construction,
colic(vk1

) = 1, . . . , colic(vkc
) = c, so φ(vk1

) = 1, . . . , φ(vkc
) = c. Consequently wS,i has the same

colour (by φ) as one of its in-neighbours. This contradicts the fact that φ is proper. Hence
χ(Dc+1) > c+ 1.

Theorems 7 and 8 directly follow from Theorem 20, since a cycle and its subdivision have the
same number of blocks.

5 Cycles with two blocks in strong digraphs

In this section we first prove that S-Forb(C(k, ℓ)) ∩ S has bounded chromatic number for
every k, ℓ. We need some preliminaries.

5.1 Definitions and tools

5.1.1 Levelling

In a digraph D, the distance from a vertex x to another y, denoted by distD(x, y) or simply
dist(x, y) when D is clear from the context, is the minimum length of an (x, y)-dipath or +∞
if no such dipath exists. For a set X ⊆ V (D) and vertex y ∈ V (D), we define dist(X, y) =
min{dist(x, y) | x ∈ X} and dist(y,X) = min{dist(y, x) | x ∈ X}, and for two sets X,Y ⊆ V (D),
dist(X,Y ) = min{dist(x, y) | x ∈ X, y ∈ Y }.

An out-generator in a digraph D is a vertex u such that for any x ∈ V (D), there is an
(u, x)-dipath. Observe that in a strong digraph every vertex is an out-generator.

Let u be an out-generator of D. For every nonnegative integer i, the ith level from u in D is
Lui = {v | distD(u, v) = i}. Because u is an out-generator,

⋃
i L

u
i = V (D). Let v be a vertex of

D, we set lvlu(v) = distD(u, v), hence v ∈ Lulvl(v). In the following, the vertex u is always clear
from the context. Therefore, for sake of clarity, we drop the superscript u.

The definition immediately implies the following.

Proposition 21. Let D be a digraph having an out-generator u. If x and y are two vertices of
D with lvl(y) > lvl(x), then every (x, y)-dipath has length at least lvl(y)− lvl(x).

Let D be a digraph and u be an out-generator of D. A Breadth-First-Search Tree or BFS-tree
T with root u, is a sub-digraph of D spanning V (D) such that T is an oriented tree and, for any
v ∈ V (D), distT (u, v) = distD(u, v). It is well-known that if u is an out-generator of D, then
there exist BFS-trees with root u.

Let T be a BFS-tree with root u. For any vertex x of D, there is an unique (u, x)-dipath in
T . The ancestors of x are the vertices on this dipath. For an ancestor y of x, we note y >T x. If
y is an ancestor of x, we denote by T [y, x] the unique (y, x)-dipath in T . For any two vertices v1

Inria



Subidvisions de cycles orientés dans les graphes dirigés de fort nombre chromatique 9

and v2, the least common ancestor of v1 and v2 is the common ancestor x of v1 and v2 for which
lvl(x) is maximal. (This is well-defined since u is an ancestor of all vertices.)

5.1.2 Decomposing a digraph

The union of two digraphs D1 and D2 is the digraph D1∪D2 with vertex set V (D1)∪V (D2)
and arc set A(D1) ∪A(D2). Note that V (D1) and V (D2) are not necessarily disjoint.

The following lemma is well-known.

Lemma 22. Let D1 and D2 be two digraphs. χ(D1 ∪D2) 6 χ(D1)× χ(D2).

Démonstration. Let D = D1 ∪ D2. For i ∈ {1, 2}, let ci be a proper colouring of Di with
{1, . . . , χ(Di)}. Extend ci to (V (D), A(Di)) by assigning the colour 1 to all vertices in V3−i. Now
the function c defined by c(v) = (c1(v), c2(v)) for all v ∈ V (D) is a proper colouring of D with
colour set {1, . . . , χ(D1)} × {1, . . . , χ(D2)}.

5.2 General upper bound

Theorem 23. Let k and ℓ be two positive integers such that k > max{ℓ, 3}, and let D be a
digraph in S-Forb(C(k, ℓ)) ∩ S. Then, χ(D) 6 (k + ℓ− 2)(k + ℓ− 3)(2ℓ+ 2)(k + ℓ+ 1).

Démonstration. Since D is strongly connected, it has an out-generator u. Let T be a BFS-tree
with root u. We define the following sets of arcs.

A0 = {xy ∈ A(D) | lvl(x) = lvl(y)};

A1 = {xy ∈ A(D) | 0 < | lvl(x) − lvl(y)| < k + ℓ− 3;

A′ = {xy ∈ A(D) | lvl(x)− lvl(y) > k + ℓ− 3}.

Since k+ ℓ− 3 > 0 and there is no arc xy with lvl(y) > lvl(x) + 1, (A0, A1, A
′) is a partition

of A(D). Observe moreover that A(T ) ⊆ A1. We further partition A′ into two sets A2 and A3,
where A2 = {xy ∈ A′ | y is an ancestor of x in T } and A3 = A′ \ A2. Then (A0, A1, A2, A3) is a
partition of A(D). Let Dj = (V (D), Aj) for all j ∈ {0, 1, 2, 3}.

Claim 23.1. χ(D0) 6 k + ℓ− 2.

Subproof. Observe that D0 is the disjoint union of the D[Li] where Li = {v | distD(u, v) = i}.
Therefore it suffices to prove that χ(D[Li]) 6 k + ℓ − 2 for all non-negative integer i.

L0 = {u} so the result holds trivially for i = 0.
Assume now i > 1. Suppose for a contradiction χ(D[Li]) > k + ℓ − 1. Since k > 3, by

Theorem 6, D[Li] contains a copy Q of P+(k−1, ℓ−1). Let v1 and v2 be the initial and terminal
vertices of Q, and let x be the least common ancestor of v1 and v2. By definition, for j ∈ {1, 2},
there exists a (x, vj)-dipath Pj in T . By definition of least common ancestor, V (P1)∩V (P2) = {x},
V (Pj)∩Li = {vj}, j = 1, 2, and both P1 and P2 have length at least 1. Consequently, P1∪P2∪Q
is a subdivision of C(k, ℓ), a contradiction. ♦

Claim 23.2. χ(D1) 6 k + ℓ− 3.

Subproof. Let φ1 be the colouring of D1 defined by φ1(x) = lvl(x) (mod k+ ℓ−3). By definition
of D1, this is clearly a proper colouring of D1. ♦
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Claim 23.3. χ(D2) 6 2ℓ+ 2.

Subproof. Suppose for a contradiction that χ(D2) > 2ℓ+ 3. By Theorem 6, D2 contains a copy
Q of P−(ℓ+1, ℓ+1), which is the union of two disjoint dipaths which are disjoint except in there
initial vertex y, say Q1 = (y0, y1, y2, . . . , yℓ+1) and Q2 = (z0, z1, z2, . . . , zℓ+1) with y0 = z0 = y.
Since Q is in D2, all vertices of Q belong to T [u, y]. Without loss of generality, we can assume
z1 >T y1.

If zℓ+1 >T yℓ+1, then let j be the smallest integer such that zj >T yℓ+1. Then the union of
T [y1, y]⊙Q2[y, zj ]⊙ T [zj, yℓ+1] and Q1[y1, yℓ+1] is a subdivision of C(k, ℓ), because T [y1, y] has
length at least k − 2 as lvl(y) > lvl(y1) + k + ℓ− 3. This is a contradiction.

Henceforth yℓ+1 >T zℓ+1. Observe that all the zj , 1 6 j 6 ℓ + 1 are in T [yℓ+1, y1]. This, by
the Pigeonhole principle, there exists i, j > 1 such that yi+1 >T zj+1 >T zj >T yi >T zj−1.

If lvl(zj−1) > lvl(yi) + ℓ − 1, then T [yi, zj−1] ⊙ (zj−1, zj) has length at least ℓ. Hence its
union with (yi, yi+1)⊙ T [yi+1, zj ], which has length greater than k, is a subdivision of C(k, ℓ), a
contradiction.

Thus lvl(zj−1) < lvl(yi) + ℓ − 1 (in particular, in this case, j > 1 and i > 2). Therefore,
by definition of A′, lvl(yi) > lvl(zj) + k − 1 and lvl(yi−1) > lvl(zj−1) + k − 1. Hence both
T [zj−1, yi−1] and T [zj, yi] have length at least k − 1. So the union of T [zj−1, yi−1] ⊙ (yi−1, yi)
and (zj−1, zj)⊙ T [zj , yi] is a subdivision of C(k, k) (and thus of C(k, ℓ)), a contradiction. ♦

Claim 23.4. χ(D3) 6 k + ℓ+ 1.

Subproof. In this claim, it is important to note that k+ ℓ− 3 > k− 1 because ℓ > 2. We use the
fact that lvl(x)− lvl(y) > k − 1 if xy is an edge in A3.

Suppose for a contradiction that χ(D3) > k + ℓ + 1. By Theorem 6, D3 contains a copy Q
of P−(k, ℓ) which is the union of two disjoint dipaths which are disjoint except in there initial
vertex y, say Q1 = (y0, y1, y2, . . . , yk) and Q2 = (z0, z1, z2, . . . , zℓ) with y0 = z0 = y.

Assume that a vertex of Q1− y is an ancestor of y. Let i be the smallest index such that yi is
an ancestor of y. If it exists, by definition of A3, i > 2. Let x be the common ancestor of yi and
yi−1 in T . By definition of A3, yi is not an ancestor of yi−1, so x is different from yi and yi−1.
Moreover by definition of A′, lvl(y) − k > lvl(yi−1) − k > lvl(yi) − 1 > lvl(x). Hence T [x, yi−1]
and T [x, y] have length at least k. Moreover these two dipaths are disjoint except in x. Therefore,
the union of T [x, yi−1] and T [x, y]⊙Q1[y, yi−1] is a subdivision of C(k, k) (and thus of C(k, ℓ)),
a contradiction.

Similarly, we get a contradiction if a vertex of Q2 − y is an ancestor of y. Henceforth, no
vertex of V (Q1) ∪ V (Q2) \ {y} is an ancestor of y.

Let x1 be the least common ancestor of y and y1. Note that |T [x1, y]| > k so |T [x1, y1]| < k,
for otherwise G would contain a subdivision of C(k, k). Therefore lvl(y1)− lvl(x1) < k. We define
inductively x2, . . . , xk as follows : xi+1 is the least common ancestor of xi and yi. As above
|T [xi, yi−1]| > k so lvl(yi)− lvl(xi) < k. Symmetrically, let t1 be the least common ancestor of y
and z1 and for 1 6 i 6 ℓ − 1, let ti+1 be the least common ancestor of ti and zi. For 1 6 i 6 ℓ,
we have lvl(zi)− lvl(ti) < k. Moreover, by definition all xi and tj are ancestors of y, so they all
are on T [u, y].

Let Py (resp. Pz) be a shortest dipath in D from yk (resp. zℓ) to T [u, y] ∪ Q1[y1, yk−1] ∪
Q2[z1, zℓ−1]. Note that Py and Pz exist since D is strongly connected. Let y′ (resp. z′) be the
terminal vertex of Py (resp. Pz). Let wy be the last vertex of T [xk, yk] in Py (possibly, wy = yk.)
Similarly, let wz be the last vertex of T [tℓ, zℓ] in Pz (possibly, wz = zℓ.) Note that Py[wy , y

′] is
a shortest dipath from wy to y′ and Pz[wz , z

′] is a shortest dipath from wz to z′.
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If y′ = yj for 0 6 j 6 k − 1, consider R = T [xk, wy ] ⊙ Py[wy , yj] is an (xk, yj)-dipath. By
Proposition 21, R has length at least k because lvl(yj) − lvl(xk) > lvl(yj) − lvl(yk) + 1 > k.
Therefore the union of R and T [xk, y] ∪Q1[y, yj ] is a subdivision of C(k, k), a contradiction.

Similarly, we get a contradiction if z′ is in {z1, . . . , zℓ−1}. Consequently, Py is disjoint from
Q1[y, yk−1] and Pz is disjoint from Q2[y, zℓ−1].

If Py and Pz intersect in a vertex s. By the above statement, s /∈ V (Q)\{yk, zℓ}. Therefore the
union of Q1⊙Py[yk, s] and Q2⊙Pz [zℓ, s] is a subdivision of C(k, ℓ), a contradiction. Henceforth
Py and Pz are disjoint.

Assume both y′ and z′ are in T [u, y]. If y′ >T z′, then the union of Q1 ⊙ Py ⊙ T [y′, z′]
and Q2 ⊙ Pz form a subdivision of C(k, ℓ) ; and if z′ >T y′, then the union of Q1 ⊙ Py and
Q2 ⊙ Pz ⊙ T [z′, y′] form a subdivision of C(k, ℓ). This is a contradiction.

Henceforth a vertex among y′ and z′ is not in T [u, y]. Let us assume that y′ is not in T [u, y]
(the case z′ 6∈ T [u, y] is similar), and so y′ = zi for some 1 6 i 6 ℓ−1. If lvl(y′) > lvl(xk)+k, then
both T [xk, wy]⊙Py[wy , y

′] and T [xk, y]⊙Q2[y, zi] have length at least k by Proposition 21, so their
union is a subdivision of C(k, k), a contradiction. Hence lvl(xk) > lvl(zi)−k+1 > lvl(zℓ) > lvl(tℓ).

If z′ = yj for some j, then necessarily lvl(z′) > lvl(xk) + k > lvl(tℓ) + k and both T [tℓ, wz ]⊙
Pz [wz , z

′] and T [tℓ, y]⊙Q1[y, yj ] have length at least k, so their union is a subdivision of C(k, k),
a contradiction.

Therefore z′ ∈ T [u, y]. The union of T [tℓ, z
′] and T [tℓ, wz ]⊙ Pz [wz , z′] is not a subdivision of

C(k, k) so by Proposition 21, lvl(z′) 6 lvl(tℓ) + k − 1 6 lvl(zℓ) + k − 1 6 lvl(zℓ−1).
If lvl(z′) 6 lvl(xk), then the union of Q1 and Q2 ⊙ Pz ⊙ T [z′, yk] is a subdivision of C(k, ℓ),

a contradiction. Hence lvl(z′) > lvl(xk). Therefore lvl(y′) = lvl(zi) 6 lvl(xk) + k − 1 6 lvl(z′) +
k − 2 6 lvl(zℓ) + 2k − 3, which implies that i = ℓ − 1 that is y′ = zi = zℓ−1. Now the union of
[T [x1, y1]]⊙Q1[y1, yk]⊙Py and T [x1, y]⊙Q2[y, zℓ−1] is a subdivision of C(k, ℓ), a contradiction.
♦

Claims 23.1, 23.2, 23.3, and 23.4, together with Lemma 22 yield the result.

5.3 Better bound for Hamiltonian digraphs

We now improve on the bound of Theorem 23 in case of digraphs having a Hamiltonian
directed cycle. Therefore we define

φ(k, ℓ) = max{χ(D) | D ∈ S-Forb(C(k, ℓ)) and D has a Hamiltonian directed cycle}.

This section aims at proving that φ(k, k) 6 6k − 6.
Let D be a digraph and let C = (v1, . . . , vn, v1) be a Hamiltonian cycle in D (C may be

directed or not).
For any i, j 6 n, let dC(vi, vj) be the distance between vi and vj in the undirected cycle C.

That is, dC(vi, vj) = min{j− i, n− j+ i} if j > i and dC(vi, vj) = min{i− j, n− i+ j} otherwise.
A chord is an arc of A(D) \A(C). The span spanC(a) of a chord a = vivj ∈ F is dC(i, j). We

denote by spanC(D) be the maximum span of a chord in D.

Lemma 24. If D is a digraph with a Hamiltonian cycle C and at least one chord, then χ(D) <
2 · spanC(D).

Démonstration. Set C = (v1, . . . , vn, v1) and set ℓ = spanC(D). If n < 2ℓ, then the result trivially
holds. Let us assume that n = kℓ + r with k > 2 and r < ℓ. Consider the following colouring.
For any 1 6 i 6 kℓ, let us colour vi with colour i− ⌊i/ℓ⌋ ℓ. For any 1 < t 6 r, let us colour vkℓ+t
with ℓ+ t− 1. This colouring uses the ℓ+ r colours of {0, . . . , ℓ+ r − 1}.
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Moreover, for any 1 6 i 6 n, all neighbours (in-neighbours and out-neighbours) of vi belong
to {vi−ℓ, . . . , vi−1} ∪ {vi+1, . . . , vi+ℓ} (all indices must be taken moduo n), for otherwise there
would be a chord with span strictly larger than ℓ. Hence, the colouring is proper.

Let A ⊆ V (D), let N(A) ⊆ V (D) \ A be the set of vertices not in A that are adjacent to
some vertex in A.

Lemma 25. Let D be a digraph and let (A,B) be a partition of V (D). Then

χ(D) = max{χ(D[A]) + |N(A)|, χ(D[B])}.

Démonstration. Let us consider a proper colouring of D[B] with colour set {1, . . . , χ(D[B])}.
W.l.o.g., vertices in N(A) have received colours in {1, . . . , |N(A)|}. Let us colour D[A] using co-
lours in {|N(A)|+1, . . . , |N(A)|+χ(D[A])}. We obtain a proper colouring ofD using max{χ(D[A])+
|N(A)|, χ(D[B])} colours.

Lemma 26. Let D be a digraph containing no subdivision of C(k, k) and having a Hamiltonian
directed cycle C = (v1, . . . , vn, v1). Assume that D contains a chord vivj with span at least 2k−2
and let A = {vi+1, . . . , vj−1} and B = {vj+1, . . . , vi−1} (indices are taken modulo n). Then
|N(A)| 6 2k + 1 and |N(B)| 6 2k + 1.

Démonstration. W.l.o.g., assume that D has a chord v1vj with 2k − 1 6 j 6 n− 2k + 3.
Assume first that vavb is an arc from A to B.

(1) we cannot have a 6 j − k and b 6 n − k + 1, for otherwise the two dipaths C[va, vj ] and
(va, vb) ⊙ C[vb, v1] ⊙ (v1, vj) have length at least k and so their union is a subdivision of
C(k, k), a contradiction.

(2) we cannot have a > k and b > j + k − 1, for otherwise the two dipaths C[v1, va]⊙ (va, vb)
and (v1, vj)⊙C[vj , vb] have length at least k and so their union is a subdivision of C(k, k),
a contradiction.

Since j > 2k−1, either a 6 j−k or a > k, so vb ∈ {vj+1, . . . , vj+k−2}∪{vn−k+2, . . . , vn}. Similarly,
since j 6 n−2k+3, either b 6 n−k+1 or b > j+k−1, so va ∈ {v2, . . . , vk−1}∪{vj−k+1, . . . , vj−1}.

Analogously, if vbva is an arc fromB toA, we obtain that va ∈ {v2, . . . , vk}∪{vj−k+2, . . . , vj−1}
and vb ∈ {vj+1, . . . , vj+k−2} ∪ {vn−k+3, . . . , vn}.

ThereforeN(A) ⊆ {v1, . . . , vk}∪{vj−k+1, . . . , vj}, andN(B) ⊆ {vj , . . . , vj+k−2}∪{vn−k+2, . . . , vn, v1}.
Hence |N(A)| 6 2k + 1 and |N(B)| 6 2k + 1.

Theorem 27. Let D be a digraph and let k > 1 be an integer. If D has a Hamiltonian directed
cycle and χ(D) > 6k − 6, then D contains a subdivision of a C(k, k). In other words, φ(k, k) 6
6k − 6.

Démonstration. If k = 2, then we have the result by Theorem 37. Henceforth, we assume k > 3.

For sake of contradiction, let us consider a counterexample (i.e a digraph D with a Hamilto-
nian directed cycle, χ(D) > 6k − 6 and no subdivision of C(k, k)) with the minimum number of
vertices.

Let C = (v1, . . . , vn, v1) be a Hamiltonian directed cycle of D. By Lemma 24 and because
χ(D) > 4k − 4, D contains a chord of span at least 2k − 2. Let s be the minimum span of a
chord of span at least 2k − 2 and consider a chord of span s. W.l.o.g., this chord is v1vs+1. Let
D1 = D[v1, . . . , vs+1] and let D2 = D[vs+1, . . . , vn, v1]. By minimality of the span of v1vs+1,
either D1 or D2 contains no chord of span at least 2k− 2. There are two cases to be considered.
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— Assume first thatD1 contains no chord of span at least 2k−2. By Lemma 24, χ(D1) 6 4k−7.
Let A = {v2, . . . , vs}. We have χ(D[A]) 6 χ(D1) 6 4k − 7. Moreover, by Lemma 26,
|N(A)| 6 2k + 1.

Now D2 has a Hamiltonian directed cycle and contains no subdivision of C(k, k). Therefore,
χ(D2) 6 6k−6 since D has been chosen minimum. Finally, by Lemma 25, since χ(D[A]) +
|N(A)| 6 6k − 6 and χ(D2) 6 6k − 6, we get that χ(D) 6 6k − 6, a contradiction.

— Assume now that D2 contains no chord of span at least 2k − 2. Set B = {vs+1, . . . , vn}.
Similarly as in the previous case, we have χ(D[B]) 6 χ(D2) 6 4k−7 and |N(B)| 6 2k+ 1.

Let D′

1 be the digraph obtained from D1 by reversing the arc v1vs. Clearly D′

1 is Hamilto-
nian. Moreover, D′

1 contains no subdivision of a C(k, k) ; indeed if it had such a subdivision
S, replacing the arc vsv1 by C[vs, v1] if it is in S, we obtain a subdivision of C(k, k) in D,
a contradiction. Therefore χ(D1) = χ(D′

1) 6 6k − 6, by minimality of D.

Hence by Lemma 25, since χ(D[B]) + |N(B)| 6 6k − 6 and χ(D1) 6 6k − 6, we get that
χ(D) 6 6k − 6, a contradiction.

5.4 Better bound when ℓ = 1

We now improve on the bound of Theorem 23 when ℓ = 1. To do so, reduce the problem to
digraphs having a Hamiltonian directed cycle. Recall that

φ(k, ℓ) = max{χ(D) | D ∈ S-Forb(C(k, ℓ)) and D has a Hamiltonian directed cycle}.

Theorem 28. Let k be an integer greater than 1. χ(S-Forb(C(k, 1))∩S) 6 max{2k−4, φ(k, 1)}.

To prove this theorem, we shall use the following lemma.

Lemma 29. Let D be a digraph containing a directed cycle C of length at least 2k − 3. If there
is a vertex y in V (D−C) and two distinct vertices x1, x2 ∈ V (C) such that for i = 1, 2, there is
a (xi, y)-dipath Pi in D with no internal vertices in C, then D contains a subdivision of C(k, 1).

Démonstration. Since C has length at least 2k−3, then one of C[x1, x2] and C[x2, x1] has length
at least k − 1. Without loss of generality, assume that C[x1, x2] has length at least k − 1. Let
z be the first vertex along P2 which is also in P1. Then the union of C[x1, x2] ⊙ P2[x2, z] and
P1[x1, z] is a subdivision of C(k, 1).

Proof of Theorem 28. Suppose for a contradiction that there is a strong digraph D with chro-
matic number greater than max{2k − 4, φ(k, 1)} that contains no subdivision of C(k, 1). Let us
consider the smallest such counterexample.

All 2-connected components of D are strong, and one of them has chromatic number χ(D).
Hence, by minimality, D is 2-connected. Let C be a longest directed cycle in D. By Bondy’s
theorem (Theorem 10), C has length at least 2k − 3, and by definition of φ(k, 1), C is not
Hamiltonian.

Because D is strong, there is a vertex v ∈ C with an out-neighbour w 6∈ C. Since D is
2-connected, D − v is connected, so there is a (not necessarily directed) oriented path in D − v
between C − v and w. Let Q = (a1, . . . , aq) be such a path so that all its vertices except the
initial one are in V (D) \ V (C). By definition aq = w and a1 ∈ V (C) \ {v}.

— Let us first assume that a1a2 ∈ A(D). Let t be the largest integer such that there is a
dipath from C − v to at in D − v. Note that t > 1 by the hypothesis. If t = q, then by
Lemma 29, C contains a subdivision of C(k, 1), a contradiction. Henceforth we may assume
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that t < q. By definition of t, at+1at is an arc. Let P be a shortest (v, at+1)-dipath in D.
Such a dipath exists because D is strong. By maximality of t, P has no internal vertex in
(C − v)∪Q[a1, at]. Hence, at ∈ D−C and there are an (a1, at)-dipath and a (v, at)-dipath
with no internal vertices in C. Hence, by Lemma 29, D contains a subdivision of C(k, 1),
a contradiction.

— Now, we may assume that any oriented path Q = (a1, . . . , aq) from C − v to w starts with
a backward arc, i.e., a2a1 ∈ A(D). Let W be the set of vertices x such that there exists a
(not necessarily directed) oriented path from w to x in D − C. In particular, w ∈W .

By the assumption, all arcs between C − v and W are from W to C − v. Since D is strong,
this implies that, for any x ∈W , there exists a directed (w, x)-dipath in W . In other words,
w is an out-generator of W . Let Tw be a BFS-tree of W rooted in w (see definitions in
Section 5.1.1).

Because D is strong and 2-connected, there must be a vertex y ∈ C − v such that there is
an arc ay from a vertex a ∈W to y.

For purpose of contradiction, let us assume that there exists z ∈ C − y such that there is
an arc bz from a vertex b ∈ W to z. Let r be the least common ancestor of a and b in
Tw. If |C[y, z]| > k, then Tw[r, a] ⊙ (a, y) ⊙ C[y, z] and Tw[r, b] ⊙ (b, z) is a subdivision of
C(k, 1). If |C[z, y]| > k, then Tw[r, a]⊙ (a, y) and Tw[r, b]⊙ (b, z)⊙C[z, y] is a subdivision
of C(k, 1). In both cases, we get a contradiction.

From previous paragraph and the definition of W , we get that all arcs from W to D \W
are from W to y 6= v, and there is a single arc from D \W to W (this is the arc vw). Note
that, since D is strong, this implies that D −W is strong.

Let D1 be the digraph obtained from D −W by adding the arc vy (if it does not already
exist). D1 contains no subdivision of C(k, 1), for otherwise D would contain one (replacing
the arc vy by the dipath (v, w) ⊙ Tw[w, a] ⊙ (a, y)). Since D1 is strong (because D −W is
strong), by minimality of D, χ(D1) 6 max{2k − 4, φ(k, 1)}.

Let D2 be the digraph obtained from D[W ∪ {v, y}] by adding the arc yv. D2 contains no
subdivision of C(k, 1), for otherwiseD would contain one (replacing the arc yv by the dipath
C[y, v]). Moreover, D2 is strong, so by minimality of D, χ(D2) 6 max{2k − 4, φ(k, 1)}.

Consider now D∗ the digraph D1 ∪ D2. It is obtained from D by adding the two arcs
vy and yv (if they did not already exist). Since {v, y} is a clique-cutset in D∗, we get
χ(D∗) 6 max{χ(D1), χ(D2)} 6 max{2k− 4, φ(k, 1)}. But χ(D) 6 χ(D∗), a contradiction.

From Theorem 28, one easily derives an upper bound on χ(S-Forb(C(k, 1)) ∩ S).

Corollary 30. χ(S-Forb(C(k, 1)) ∩ S) 6 2k − 1.

Démonstration. By Theorem 28, it suffices to prove φ(k, 1) 6 2k − 1.
Let D ∈ S-Forb(C(k, 1)) with a Hamiltonian directed cycle C = (v1, . . . , vn, v1). Observe that

if vivj is an arc, then j ∈ C[vi+1, vi+k−1] for otherwise the union of C[vi, vj ] and (vi, vj) would
be a subdivision of C(k, 1). In particular, every vertex had both its in-degree and out-degree at
most k − 1, and so degree at most 2k − 2. As χ(D) 6 ∆(D) + 1, the result follows.

The bound 2k − 1 is tight for k = 2, because of the directed odd cycles. However, for larger
values of k, we can get a better bound on φ(k, 1), from which one derives a slightly better one
for χ(S-Forb(C(k, 1)) ∩ S).

Theorem 31. φ(k, 1) 6 max{k + 1, 3k−3
2 }.
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Démonstration. For k = 2, the result holds because φ(2, 1) 6 φ(2, 2) 6 3 by Corollary 38.

Let us now assume k > 3. We prove by induction on n, that every digraphD ∈ S-Forb(C(k, 1))
with a Hamiltonian directed cycle C = (v1, . . . , vn, v1) has chromatic number at most max{k +
1, 3k−3

2 }, the result holding trivially when n 6 max{k + 1, 3k−3
2 }.

Assume now that n > max{k + 1, 3k−3
2 } + 1 All the indices are modulo n. Observe that if

vivj is an arc, then j ∈ C[vi+1, vi+k−1] for otherwise the union of C[vi, vj ] and (vi, vj) would
be a subdivision of C(k, 1). In particular, every vertex had both its in-degree and out-degree at
most k − 1.

Assume that D contains a vertex vi with in-degree 1 or out-degree 1. Then d(vi) 6 k. Consider
Di the digraph obtained from D− vi by adding the arc vi−1vi+1. Clearly, Di has a Hamiltonian
directed cycle. Moreover is has no subdivision of C(k, 1) for otherwise, replacing the arc vi−1vi+1

by (vi−1, vi, vi+1) if necessary, yields a subdivision of C(k, 1) in D. By the induction hypothesis,
Di a max{k + 1, 3k−3

2 }-colouring which can be extended to vi because d(vi) 6 k.

Henceforth, we may assume that δ−(D), δ+(D) > 2.

Claim 31.1. d+(vi) + d−(vi+1) 6 3k − n− 3 for all i.

Subproof. Let vi+ be the first out-neighbour of vi along C[vi+2, vi−1] and let vi− be the last
in-neighbour of vi+1 along C[vi+3, vi]. There are d+(vi) − 1 out-neigbours of vi in C[vi+ , vi−1]
which all must be in C[vi+ , vi+k−1] by the above observation. Therefore i+ 6 i + k − d+(vi).
Similarly, i− > i− k + d−(vi+1).

— if vi ∈ C[vi− , vi+ ], C[vi− , vi+ ] has length i+−i− 6 2k−d+(vi)−d−(vi+1). Hence C[vi+ , vi− ]
has length at least n − 2k + d+(vi) + d−(vi+1). But the union of (vi, vi+) ⊙ C[vi+ , vi− ] ⊙
(vi− , vi+1) and (vi, vi+1) is not a subdivision of C(k, 1), so C[vi+ , vi− ] has length at most
k − 3. Hence, k − 3 > n− 2k + d+(vi) + d−(vi+1), so d+(vi) + d−(vi+1) 6 3k − n− 3.

— otherwise, vi+ ∈ C[vi− , vi+1] and vi− ∈ C[vi, vi+ ]. Both C[vi− , vi+1] and C[vi, vi+ ] have
length less than k as vi−vi+1 and vi−vi+1 are arcs. Moreover, the union of these two dipaths
is C and their intersection contains the three distinct vertices vi, vi+1, vi− . Consequently,
n = |C| 6 |C[vi− , vi+1]| + |C[vi, vi+ ]| − 3 6 2k − 3. Let vi0 be the last out-neighbour of
vi along C[vi+2, vi−1]. All the out-neighbours of vi and all the in-neighbours of vi+1 are in
C[vi, vi0 ] which has length less than k because vivi0 is an arc. Hence d+(vi)+d−(vi+1) 6 k,
so d+(vi) + d−(vi+1) 6 3k − n− 3 because n > 2k − 3. ♦

But n > 3k−1
2 , so by the above claim, d+(vi) + d−(vi+1) 6 3k−5

2 for all i.

Summing these inequalities over all i, we get
∑n

i=1(d+(vi) + d−(vi+1) 6 3k−5
2 · n. Thus

∑n

i=1 d(vi) =
∑n

i=1(d+(vi) + d−(vi)) 6 3k−5
2 · n. Therefore there exists an index i such that vi

has degree at most 3k−5
2 . Consider the digraph Di defined above. It is Hamiltonian and contains

no subdivision of C(k, 1). By the induction hypothesis, Di has a max{k + 1, 3k−3
2 }-colouring

which can be extended to v because d(vi) 6
3k−5

2 .

Corollary 32. Let k be an integer greater than 1. Then χ(S-Forb(C(k, 1)) ∩ S) 6 max{k +
1, 2k − 4}.

Démonstration. By Theorems 28 and 31, χ(S-Forb(C(k, 1)) ∩ S) 6 max{2k − 4, k + 1, 3k−3
2 } =

max{k + 1, 2k − 4}.
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6 Small cycles with two blocks in strong digraphs

6.1 Handle decomposition

Let D be a strongly connected digraph. A handle h of D is a directed path (s, v1, . . . , vℓ, t)
from s to t (where s and t may be identical) such that :

— d−(vi) = d+(vi) = 1, for every i, and

— removing the internal vertices and arcs of h leaves D strongly connected.

The vertices s and t are the endvertices of h while the vertices vi are its internal vertices. The
vertex s is the initial vertex of h and t its terminal vertex. The length of a handle is the number
of its arcs, here ℓ+ 1. A handle of length 1 is said to be trivial.

Given a strongly connected digraph D, a handle decomposition of D starting at v ∈ V (D) is
a triple (v, (hi)16i6p, (Di)06i6p), where (Di)06i6p is a sequence of strongly connected digraphs
and (hi)16i6p is a sequence of handles such that :

— V (D0) = {v},

— for 1 6 i 6 p, hi is a handle of Di and Di is the (arc-disjoint) union of Di−1 and hi, and

— D = Dp.

A handle decomposition is uniquely determined by v and either (hi)16i6p, or (Di)06i6p. The
number of handles p in any handle decomposition of D is exactly |A(D)|− |V (D)|+ 1. The value
p is also called the cyclomatic number of D. Observe that p = 0 when D is a singleton and p = 1
when D is a directed cycle.

A handle decomposition (v, (hi)16i6p, (Di)06i6p) is nice if all handles except the first one
h1 have distinct endvertices (i.e., for any 1 < i 6 p, the initial and terminal vertices of hi are
distinct).

A digraph is robust if it is 2-connected and strongly connected. The following proposition is
well-known (see [5] Theorem 5.13).

Proposition 33. Every robust digraph admits a nice handle decomposition.

Lemma 34. Every strong digraph D with χ(D) > 3 has a robust subdigraph D′ with χ(D′) =
χ(D) and which is an oriented graph.

Démonstration. Let D be a strong digraph D with χ(D) > 3. Let D′ be a 2-connected compo-
nents of D with the largest chromatic number. Each 2-connected component of a strong digraph
is strong, so D′ is strong. Moreover, χ(D′) = χ(D) because the chromatic number of a graph is
the maximum of the chromatic numbers of its 2-connected components. Now by Bondy’s Theo-
rem (Theorem 10), D′ contains a cycle C of length at least χ(D′) > 3. This can be extended into
a handle decomposition (v, (hi)16i6p, (Di)06i6p) of D such that D1 = C. Let D′′ be the digraph
obtained from D′ by removing the arcs (u, v) which are trivial handles hi and such that (v, u) is in
A(Di−1), we obtain an oriented graph D′′ which is robust and with χ(D′′) = χ(D′) = χ(D).

6.2 C(1, 2)

Proposition 35. A robust digraph containing no subdivision of C(1, 2) is a directed cycle.

Démonstration. Let D be a robust digraph containing no subdivision of C(1, 2). Assume for a
contradiction that a robust digraph of D is not a directed cycle. By Proposition 33, it contains
a directed cycle C and a nice handle h2 from u to v. Now the union of h2 and C[u, v] is a
subdivision of C(1, 2).

Inria
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Corollary 36. χ(S-Forb(C(1, 2)) ∩ S) = 3.

Démonstration. Lemma 34, Proposition 35, and the fact that every directed cycles is 3-colourable
imply χ(S-Forb(C(1, 2)) ∩ S) 6 3.

The directed cycles of odd length have chromatic number 3 and contain no subdivision of
C(1, 2). Therefore, χ(S-Forb(C(1, 2)) ∩ S) = 3.

6.3 C(2, 2)

Theorem 37. Let D be a strong digraph. If χ(D) > 4, then D contains a subdivision of C(2, 2).

Démonstration. By Lemma 34, we may assume that D is robust.
By Proposition 33, D has a nice handle decomposition. Consider a nice decomposition

(v, (hi)16i6p, (Di)06i6p) that maximizes the sequence (ℓ1, . . . , ℓp) of the length of the handles
with respect to the lexicographic order.

Let q be the largest index such that hq is not trivial.

Assume first that q 6= 1. Let s and t be the initial and terminal vertex of hq respectively.
There is an (s, t)-path P in Dq−1. If P = (s, t), let r be the index of the handle containing the
arc (s, t). Obviously, r < q. Now replacing hr by the handle h′

r obtained from it by replacing the
arc (s, t) by hq and replacing hq by (s, t), we obtain a nice handle decomposition contradicting
the minimality of (v, (hi)16i6p, (Di)06i6p). Therefore P has length at least 2. So P ∪ hq is a
subdivision of C(2, 2).

Assume that q = 1, that is D has a hamiltonian directed cycle C. Let us call chords the arcs
of A(D) \ A(C). Suppose that two chords (u1, v1) and (u2, v2) cross, that is u2 ∈ C]u1, v1[ and
v2 ∈ C]v1, u1[. Then the union of C[u1, u2]⊙ (u2, v2) and (u1, v1)⊙C[v1, v2] forms a subdivision
of C(2, 2).

If no two chords cross, then one can draw C in the plane and all chords inside it without
any crossing. Therefore the graph underlying D is outerplanar and has chromatic number at
most 3.

Since the directed odd cycles are in S-Forb(C(2, 2)) and have chromatic number 3, Theorem 37
directly implies the following.

Corollary 38. χ(S-Forb(C(2, 2)) ∩ S) = 3.

6.4 C(1, 3)

Theorem 39. Let D be a strong digraph. If χ(D) > 4, then D contains a subdivision of C(1, 3).

Démonstration. By Lemma 34, we may assume that D is robust. Thus, by Proposition 33, D
has a nice handle decomposition. Consider a nice decomposition (v, (hi)16i6p, (Di)06i6p) that
maximizes the sequence (ℓ1, . . . , ℓp) of the length of the handles with respect to the lexicographic
order.

Let q be the largest index such that hq is not trivial.

Case 1 : Assume first that q 6= 1. Let s and t be the initial and terminal vertex of hq respectively.
Since Dq−1 is strong, there is an (s, t)-dipath P in Dq−1. If P = (s, t), let r be the index of the
handle containing the arc (s, t). Obviously, r < q. Now replacing hr by the handle h′

r obtained
from it by replacing the arc (s, t) by hq and replacing hq by (s, t), we obtain a nice handle
decomposition contradicting the minimality of (v, (hi)16i6p, (Di)06i6p). Therefore P has length
at least 2. If either P or hq has length at least 3, then P ∪h is a subdivision of C(1, 3). Henceforth,
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we may assume that both P and hq have length 2. Set P = (s, u, t) and h = (s, x, t). Observe
that V (D) = V (Dq−1) ∪ {x}.

Assume that x has a neighbour t′ distinct from s and t. By directional duality (i.e., up to
reversing all arcs), we may assume that x→ t′. Considering the handle decomposition in which
hq is replaced by (s, x, t′) and (x, t′) by (x, t), we obtain that there is a dipath (s, u′, t′) in Dq−1.
Now, if u′ = t, then the union of (s, x, t′) and (s, u, t, t′) is a subdivision of C(1, 3). Henceforth, we
may assume that t /∈ {s, u, u′, t′}. Since Dq−1 is strong, there is a dipath Q from t to {s, u, u′, t′},
which has length at least one by the preceding assumption. Note that x /∈ Q since Q is a dipath
in Dq−1. Whatever vertex of {s, u, u′, t′} is the terminal vertex z of Q, we find a subdivision of
C(1, 3) :

— If z = s, then the union of (x, t′) and (x, t)⊙Q⊙ (s, u′, t′) is a subdivision of C(1, 3) ;

— If z = u, then the union of (s, u) and hq ⊙Q is a subdivision of C(1, 3) ;

— If z = u′, then the union of (s, u′) and hq ⊙Q is a subdivision of C(1, 3) ;

— If z = t′, then the union of (s, x, t′) and (s, u, t)⊙Q is a subdivision of C(1, 3).

Case 2 : Assume that q = 1, that is D has a hamiltonian directed cycle C. Assume that two chords
(u1, v1) and (u2, v2) cross. Without loss of generality, we may assume that the vertices u1, u2, v1

and v2 appear in this order along C. Then the union of C[u2, v1] and (u2, v2)⊙C[v2, u1]⊙(u1, v1)
forms a subdivision of C(1, 3).

If no two chords cross, then one can draw C in the plane and all chords inside it without any
crossing. Therefore the graph underlying D is outerplanar and has chromatic number at most
3.

Since the directed odd cycles are in S-Forb(C(1, 3)) and have chromatic number 3, Theorem 39
directly implies the following.

Corollary 40. χ(S-Forb(C(1, 3)) ∩ S) = 3.

6.5 C(2, 3)

Theorem 41. Let D be a strong directed graph. If χ(D) > 5, then D contains a subdivision of
C(2, 3).

Démonstration. By Lemma 34, we may assume that D is a robust oriented graph. Thus, by
Proposition 33, D has a nice handle decomposition. Let HD = ((hi)16i6p, (Di)16i6p) be a nice
decomposition that maximizes the sequence (ℓ1, . . . , ℓp) of the length of the handles with respect
to the lexicographic order. Recall that Di is strongly connected for any 1 6 i 6 p. In particular,
h1 is a longest directed cycle in D. Let q be the largest index such that hq is not trivial. Observe
that for all i > q, hi is a trivial handle by definition of q and, for i 6 q, all handles hi have length
at least 2.

Claim 41.1. For any 1 < i 6 q, hi has length exactly 2.

Subproof. For sake of contradiction, let us assume that there exists 2 6 r 6 q such that hr =
(x1, . . . , xt) with t > 4. Since Dr−1 is strong, there is a (x1, xt)-dipath P in Dr−1. Note that P
does not meet {x2, . . . , xt−1}. If P has length at least 2, then P ∪hr is a subdivision of C(2, 3). If
P = (x1, xt), let r′ be the handle containing the arc hr′ . Now the handle decomposition obtained
from HD by replacing hr′by the handle derived from it by replacing the arc (x1, xt) by hr, and
replacing hr by (x1, xt), contradicts the maximality of HD. ♦
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For 1 < i 6 q, set hi = (ai, bi, ci). Since h1 is a longest directed cycle in D and χ(D) > 5, by
Bondy’s Theorem, h1 has length at least 5. Set h1 = (u1, . . . , um, u1).

A clone of ui is a vertex whose unique out-neighbour in Dq is ui+1 and whose unique in-
neighbour in Dq is ui−1 (indices are taken modulo m).

Claim 41.2. Let v ∈ V (D) \ V (D1). Let 1 < i 6 q such that v = bi, the internal vertex of hi.
There is an index j such that bi is a clone of uj, that is ai = uj−1 and ci = uj+1.

Subproof. We prove the result by induction on i.
By the induction hypothesis (or trivially if i = 2), there exists i− and i+ such that ai is

ui− or a clone of ui− and ci is ui+ or a clone of ui+ . If i+ /∈ {i− + 1, i− + 2}, then the union
of hi and (ai, ui−+1, . . . , ui+−1, ci) is a subdivision of C(2, 3), a contradiction If i+ = i− − 1,
then (ai, bi, ci, h1[ui++1, . . . , ui−−1], ai) is a cycle longer than h1, a contradiction. Henceforth
i+ = i− + 2. If ci is not ui+ , then it is a clone of ui+ . Thus the union of (ai, bi, ci, ui++1)
and (ai, ui−+1, ui+ , ui++1) is a subdivision of C(2, 3), a contradiction Similarly, we obtain a
contradiction if ai 6= ui− . Therefore, ai = ui−−1 and ci = ui−+1, that is bi is a clone of ui−+1.
Moreover all bi′ for i′ < i are not adjacent to bi and thus are still clones of some uj. ♦

For 1 6 i 6 m, let Si be the set of clones of ui.

Claim 41.3.

(i) If Si 6= ∅, then Si−1 = Si+1 = ∅.

(ii) If x ∈ Si, then N+
D (x) = {ui+1} and N−

D (x) = {ui−1}.

Subproof. (i) Assume for a contradiction, that both Si and Si+1 are non-empty, say xi ∈ Si and
xi+1 ∈ Si+1. Then the union of (ui−1, ui, xi+1, ui+2) and (ui−1, xi, ui+1, ui+2) is a subdivision of
C(2, 3), a contradiction.

(ii) Let x ∈ Si. Assume for a contradiction that x has an out-neighbour y distinct from
ui+1. By (i), y /∈ Si−1, and y 6= ui−1 because D is an oriented graph. If y ∈ Si ∪ {ui}, then
(x, y, h1[ui+1, ui−1], x) is a directed cycle longer than h. If y ∈ Sj ∪ {uj} for j /∈ {i − 2}, then
the union of (ui−1, x, y, uj+1) and h1[ui−1, uj+1] is a subdivision of C(2, 3), a contradiction.
If y ∈ Si−2, then the union of (x, y, ui−1) and (x, h1[ui+1, ui−1] is a subdivision of C(2, 3), a
contradiction. If y = uj for j /∈ {i− 1, i, i+ 1}, then the union of (ui−1, x, y) and h1[ui−1, y] is a
subdivision of C(2, 3), a contradiction. ♦

This implies that q = 1. Indeed, if q > 2, then there is i 6 m such that b2 ∈ Si. But
D − bq = Dq−1 is strong, and χ(D − bq) > 5, because χ(D) > 5 and bq has only two neighbours
in D by Claim 41.3-(ii). But then by minimality of D, D − bq contains a subdivision of C(2, 3),
which is also in D, a contradiction.

Hence m = |V (D)|. Because χ(D) > 5, D is not outerplanar, so there must be i < j < k <
ℓ < i+m such that (ui, uk) ∈ A(D) and (uj , uℓ) ∈ A(D). We must have j = i+ 1 and ℓ = k+ 1
since otherwise (ui, . . . , uj , uℓ) and (ui, uk, . . . , uℓ) form a subdivision of C(2, 3). In addition,
k = j + 1 since otherwise, (uj , uℓ, . . . , ui, uk) and (uj , . . . , uk) form a subdivision of C(2, 3).
Therefore, any two “crossing” arcs must have their ends being consecutive in D1. This implies
that N+(uj) = {uj+1, uj+2}, N−(uj) = {uj−1}, N+(uk) = {uk+1} and N−(uk) = {uk−1, uk−2}.

Now let D′ be the digraph obtained from D − {uj, uk} by adding the arc (ui, uℓ). Because
uj and uk have only three neighbours in D, χ(D′) > 5. By minimality of D, D′ contains a
subdivision of C(2, 3), which can be transformed into a subdivision of C(2, 3) in D by replacing
the arc (ui, uℓ) by the directed path (ui, uj, uk,l ).
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Since every semi-complete digraph of order 4 does not contain C(2, 3) (which has order 5),
we have the following.

Corollary 42. χ(S-Forb(C(2, 3)) ∩ S) = 4.

7 Cycles with four blocks in strong digraphs

Theorem 43. Let D be a digraph in S-Forb(Ĉ4). If D admits an out-generator, then χ(D) 6 24.

Démonstration. The general idea is the same as in the proof of Theorem 23.
Suppose that D admits an out-generator u and let T be an BFS-tree with root u (See

Subsubsection 5.1.1.). We partition A(D) into three sets according to the levels of u.

A0 = {(x, y) ∈ A(D) | lvl(x) = lvl(y)};

A1 = {(x, y) ∈ A(D) | | lvl(x) − lvl(y)| = 1};

A2 = {(x, y) ∈ A(D) | lvl(y) 6 lvl(x)− 2}.

For i = 0, 1, 2, let Di = (V (D), Ai).

Claim 43.1. χ(D0) 6 3.

Subproof. Suppose for a contradiction that χ(D) > 4. By Theorem 6, it contains a P−(1, 1)
(y1, y, y2), that is y, y1 and y, y2 are in A(D0). Let x be the least common ancestor of y1 and y2

in T . The union of T [x, y1], (y, y1), (y, y2), and T [x, y2] is a subdivision of Ĉ4, a contradiction. ♦

Claim 43.2. χ(D1) 6 2.

Subproof. Since the arc are between consecutive levels, then the colouring φ1 defined by φ1(x) =
lvl(x) mod 2 is a proper 2-colouring of D1. ♦

Let y ∈ Vi we denote by N ′(y) the out-degree of y in
⋃

06j6i−1 Vj . Let D′ = (V,A′) with
A′ = ∪x∈V {(x, y), y ∈ N ′(x)} and Dx = (V,Ax) where Ax is the set of arc inside the level and
from Vi to Vi+1 for all i. Note that A = A′ ∪Ax and

Claim 43.3. χ(D2) 6 4.

Subproof. Let x be a vertex of V (D). If y and z are distinct out-neighbours of x in D2, then
their least common ancestor w is either y or z, for otherwise the union of T [w, y], (x, y), (x, z),
and T [w, z] is a subdivision of Ĉ4. Consequently, there is an ordering y1, . . . , yp of N+

D2
(y) such

that the yi appear in this order on T [u, x].
Let us prove that N+(yi) = ∅ for 2 6 i 6 p − 1. Suppose for a contradiction that yi has

an out-neighbour z in D2. Let t be the least common ancestor of y1 and z. If t = z, then the
union of (yi, z)⊙ T [z, y1], (x, y1), (x, yp), and T [yi, yp] is a subdivision of Ĉ4 ; if t = y 6= z, then

the union of (yi, z), (x, y1) ⊙ T [y1, z], (x, yp), and T [yi, yp] is a subdivision of Ĉ4. Otherwise, if

t /∈ {y, z}, T [t, y1], T [t, z], (x, yi)⊙ (yi, z) and (x, y1) is a subdivision of Ĉ4.
Henceforth, in D2, every vertex has at most two out-neighbours that are not sinks. Let V0

be the set of sinks in D2. It is a stable set in D2. Furthermore ∆+(D2 − V0) 6 2, so D2 − C is
3-colourable, because D2 (and so D2 − V0) is acyclic. Therefore χ(D2) 6 4. ♦

Claims 43.1, 43.2, 43.3, and Lemma 22 implies χ(D) 6 24.
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8 Further research

The upper bound of Theorem 23 can be lowered when considering 2-strong digraphs.

Theorem 44. Let k and ℓ be two integers such that, k > ℓ, k + ℓ > 4 and (k, ℓ) 6= (2, 2). Let D
be a 2-strong digraph. If χ(D) > (k+ ℓ− 2)(k− 1) + 2, then D contains a subdivision of C(k, ℓ).

Démonstration. Let D be a 2-strong digraph with chromatic number at least (k+ℓ−2)(k−1)+2.
Let u be a vertex of D. For every positive integer i, let Li = {v | distD(u, v) = i}.

Assume first that Lk 6= ∅. Take v ∈ Lk. In D, there are two internally disjoint (u, v)-dipaths
P1 and P2. Those two dipaths have length at least k (and ℓ as well) since distD(u, v) > k. Hence
P1 ∪ P2 is a subdivision of C(k, ℓ).

Therefore we may assume that Lk is empty, and so V (D) = {u}∪L1∪· · ·∪Lk−1. Consequently,
there is i such that χ(D[Li]) > k+ℓ−1. Since k+l−1 > 3 and (k−1, ℓ−1) 6= (1, 1), by Theorem 6,
D[Li] contains a copy Q of P+(k − 1, ℓ− 1). Let v1 and v2 be the initial and terminal vertices
of Q. By definition, for j ∈ {1, 2}, there is a (u, vj)-dipath Pj in D such that V (Pj)∩Li = {vj}.
Let w be the last vertex along P1 that is in V (P1) ∩ V (P2). Clearly, P1[w, v1] ∪ P2[w, v2] ∪Q is
a subdivision of C(k, ℓ).

To go further, it is natural to ask what happens if we consider digraphs which are not only
strongly connected but k-strongly connected (k-strong for short).

Proposition 45. Let C be an oriented cycle of order n. Every (n − 1)-strong digraph contains
a subdivision of C.

Démonstration. Set C = (v1, v2, . . . , vn, v1). Without loss of generality, we may assume that
(v1, vn) ∈ A(C). Let D be an (n−1)-strong digraph. Choose a vertex x1 in V (D). Then for i = 2
to n, choose a vertex xi in V (D) \ {x1, . . . , xi−1} such that xi−1xi is an arc in D if vi−1vi is an
arc in C and xixi−1 is an arc in D if vivi−1 is an arc in C. This is possible since every vertex has
in- and out-degree at least n− 1. Now, since D is (n− 1)-strong, D − {x2, . . . , xn−1} is strong,
so there exists a (x1, xn)-dipath P in D−{x2, . . . , xn−1}. The union of P and (x1, x2, . . . , xn) is
a subdivision of C.

Let Sp be the class of p-strong digraphs. Proposition 45 implies directly that S-Forb(C)∩Sp =
∅ and so χ(S-Forb(C)∩Sp) = 0 for any oriented cycle C of length p+1. This yields the following
problems.

Problem 46. Let C be an oriented cycle and p a positive integer. What is χ(S-Forb(C) ∩ Sp) ?

Note that χ(S-Forb(C) ∩ Sp+1) 6 χ(S-Forb(C) ∩ Sp) for all p, because Sp+1 ⊆ Sp.

Problem 47. Let C be an oriented cycle.

1) What is the minimum integer pC such that χ(S-Forb(C) ∩ SpC
) < +∞ ?

2) What is the minimum integer p0
C such that χ(S-Forb(C) ∩ Sp0

C

) = 0 ?
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