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Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose
gases, we present the experimental measurement of the full momentum-space density correlations
〈δnpδnp′〉, which are related to the two-body momentum correlation function. Our data span the
weakly interacting region of the phase diagram, going from the the ideal Bose gas regime to the qua-
sicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself
as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicon-
densate regime is however characterized by the presence of negative correlations between different
momenta, in contrast to Bogolyubov theory for Bose condensates, predicting positive correlations
between opposite momenta. Our data are in good agreement with ab-initio calculations.

PACS numbers: 03.75.Kk, 67.85.-d

Introduction. Ultracold-atom experiments have
proven their efficiency as quantum simulators of models
in quantum many-body physics [1]. One dimensional
(1D) gases in particular are accurately simulated, as
shown by the excellent agreement between experimental
results and ab initio theoretical predictions [2–9]. Among
the least understood properties of quantum many-body
systems is the out-of-equilibrium dynamics, addressed
recently by several cold-atom experiments [8, 10–12].

Correlation functions are essential tools to describe the
physics of a system, as they fundamentally characterize
the different phases the system can exhibit [13]. This
is particularly true for 1D gases, where the role of fluc-
tuations is enhanced. For instance, the local two-body
correlation function in real space distinguishes the ideal
Bose gas (IBG) regime (characterized by bunching) from
the quasicondensate (qBEC) regime (with the absence of
bunching) from the fermionized regime (characterized by
strong antibunching) [7][14]. The two-body correlation
function in an expanding Bose gas has been measured
in [15] and can be used for thermometry in the qBEC
regime [16], while higher order correlation functions per-
mit to identify non thermal states [17]. Correlation func-
tions are also essential to describe out-of-equilibrium dy-
namics. For example, the light-cone effect has been re-
ported on the time evolution of the correlation functions
after a sudden perturbation of the system [10, 11], and
the dynamical Casimir effect was identified by studying a
two-body correlation function in [18]. Investigating the
behavior of correlation functions is thus an important
issue in quantum simulation. However, correlation func-
tions, especially those of higher orders, are in general un-
known theoretically, not even at thermal equilibrium, so
that further knowledge in this domain is highly desirable.

In this letter, we investigate for the first time the full
structure of the second-order correlation function in mo-

mentum space of a 1D Bose gas at thermal equilibrium.
The measurements rely on the statistical noise analysis
of sets of momentum profiles taken under similar experi-
mental conditions. Our data span the weakly interacting
region of the phase diagram of 1D Bose gases [19], going
from the qBEC regime to the IBG regime. The bunch-
ing phenomenon, which manifests itself by strong, super-
Poissonian local fluctuations in momentum space, is seen
in all regimes. The qBEC regime is however character-
ized by the presence of negative correlations associating
different momenta, as predicted in [20]. This contrasts
with the positive correlations between opposite momenta
expected for systems with true or quasi long-range or-
der [21]. In both asymptotic regimes, our data com-
pare well with appropriate models, while the data in the
crossover are in good agreement with Quantum Monte
Carlo (QMC) simulations. These comparisons involve no
fitting parameters. Finally, we propose a quantitative
criterion to characterize the crossover.

Experiment. Using an atom-chip experiment, we re-
alise single quasi-1D ultracold 87Rb clouds, as described
in [22]. Using evaporative cooling, we prepare atoms in
the |F = 2,mF = 2〉 ground state, at thermal equilib-
rium in a harmonic trap whose transverse and longitu-
dinal oscillations frequencies are ω⊥/(2π) ' 1.9 kHz and
ωz/(2π) ' 7 Hz respectively. The estimated population
in the transverse excited states is at most 40%, such that
the data are indeed close to the 1D regime of Bose gases.
We perform thermometry by fitting the measured mean
in situ linear density profile ρ(z) and density fluctuations
to the thermodynamic predictions of the modified Yang-
Yang (MYY) model [2, 4], where the interatomic interac-
tion is taken into account only in the transverse ground
state, modeled by a contact term of coupling constant
g = 2~ω⊥a, a = 5.3 nm being the 3D scattering length.

A single shot of the momentum distribution n(p) is ob-

ar
X

iv
:1

50
5.

04
67

5v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

9 
Fe

b 
20

16



2

tained by imaging the atomic cloud in the Fourier plane
of a magnetic lens using the focusing technique [22, 24,
25], as detailed in the supplementary material (SM) [26]:
the spatial distribution of the atom cloud then reflects the
initial momentum distribution [22]. These images are dis-
cretized with a pixel size in momentum space ∆. More-
over, the resolution of the optical system and the atomic
motion during the imaging pulse are responsible for blur-
ring, modeled by a Gaussian impulse response function
of root-mean-square width δ. The effective atom number
measured in pixel α is thus Nα =

∫
dp n(p)A(α, p), where

A(α, p) =
∫

∆α
dq e−(p−q)2/(2δ2)/(δ

√
2π). The second-

order correlation function is deduced from a set of mo-
mentum profiles taken under similar experimental con-
ditions. The standard deviation of shot-to-shot atom-
number fluctuations ranges from 4% at high densities to
40% at low densities. To mitigate their effect, we order
profiles according to their atom number and, for each pro-
file, we use a running average to compute the correspond-
ing mean profile 〈Nα〉. Moreover, we normalize each pro-
file to the atom number of the running average, before
computing the fluctuations δNα = Nα − 〈Nα〉. We fi-
nally extract the momentum-correlation map 〈δNαδNβ〉.
Fig. 1 (top row) shows the results for three different
clouds lying respectively A) in the IBG regime, B) in the
qBEC-IBG crossover, and C) deep in the qBEC regime.
For the data presented in this letter, the focusing time
is τ = 25 ms, leading to a pixel size in momentum space
∆/~ = 0.15 µm−1. The resolution is δ/∆ ' 1.1 [27].
Ideal Bose gas regime. Thermometry based on in situ

density profiles indicates that Data A lies within the IBG
regime (N = 1900, T = 109 nK) [26]. Fig. 1 (A1) shows
the corresponding momentum correlations. We observe
large correlations on the diagonal α ' β, while 〈δNαδNβ〉
takes substantially smaller and rather erratic values in
the rest of the plane [28]. This is consistent with what
is expected for a homogeneous IBG in the grand canon-
ical ensemble: since the single-particle eigenstates have
well defined momenta, the correlations between different
momenta are vanishing. Moreover, fluctuations of the
occupation number Np in the state of momentum p are
〈δN2

p 〉 = 〈Np〉+ 〈Np〉2, where the second term is the fa-
mous bunching term. Previous results generalise to the
case of our trap clouds through a local density approxi-
mation (LDA), as outlined in the SM [26], valid since the
correlation length of 〈ψ†(z)ψ(z′)〉 is much smaller than
the cloud length L [29]. The momentum-space density
correlations is then the sum of the shot noise and bunch-
ing contributions,

〈δnpδnp′〉 = δ(p− p′)〈np〉+B(p, p′), (1)

B(p, p′) =

∣∣∣∣
∫
dz
〈
ν

(h)
ρ(z),T ((p+ p′)/2)

〉
ei(p−p

′)z/~
∣∣∣∣
2

,

where the bunching term B(p, p′) uses the momentum

distribution ν
(h)
ρ,T (p) of a homogeneous gas of temperature

T and linear density ρ, normalized to ρ =
∫
dp ν

(h)
ρ,T (p).

B(p, p′) takes non-zero values only for |p′−p| of the order
of ~/L. Since here ~/L � δ, one can make the approxi-
mation B(p, p′) = B(p)δ(p− p′), where

B(p) = 2π~
∫
dz〈ν(h)

ρ(z),T (p)〉2. (2)

Note that for a degenerate cloud, for p within the width
of n(p), the bunching term is much larger than the shot-

noise term since 〈ν(h)
ρ(z),T (p)〉 � 1. Finally, blurring and

discretization lead to the momentum-correlation map

〈δNαδNβ〉 =

∫ ∫
dpdp′ A(α, p)A(β, p′)〈δnpδnp′〉. (3)

The theoretical prediction quantitatively describes our
measurements, as shown in Fig. 1 (A1-A2). Here we

evaluate Eq. (2) approximating 〈ν(h)
ρ(z),T (p)〉 by its value

for highly degenerate IBG gases: a Lorentzian of full
width at half maximum (FWHM) of 2~/lφ, where lφ =
~2ρ/(mkBT ). Since correlations between different pix-
els are introduced by the finite resolution alone [30], the
only relevant information is the diagonal term 〈δN2

α〉,
whose scaling behavior is discussed in the SM [26]. In
Fig. 1 (A3), we overlay the measured 〈δN2

α〉 to theoreti-
cal predictions, and find a good agreement up to statis-
tical error of the measurement. The fluctuations are well
above the shot-noise level, which is obtained by setting
B(p) = 0, showing that this IBG is highly degenerate.

Note that the above grand-canonical analysis is legiti-
mate since ~/lφ � ∆ � ~/L: a pixel may be described
by a subsystem at equilibrium with the reservoir of en-
ergy and particles formed by the rest of the cloud.
Quasicondensate regime. The analysis of the in situ

density fluctuations [26], shows that Data C lies in the
qBEC regime (N = 14000, T ' 75 nK). The mean
density profile indicates a slightly higher temperature
(T = 103 nK), the difference possibly coming from de-
viation from the Gibbs ensemble [12, 17]. We show the
measured momentum correlations in Fig. 1 (C1) and its
diagonal cuts along α = β and α = −β in (C3). We first
observe that a strong bunching in momentum space is
also present here: the measured 〈δN2

α〉 is well above the
shot-noise level alone. This is in stark contrast with the
behavior in real space, where the qBEC regime is charac-
terized by the suppression of the bosonic bunching [31].
Moreover, the correlation map 〈δNαδNβ〉 shows strong
anticorrelations around the region α = −β (i.e. p′ = −p).
These features are characteristic of the qBEC regime in
a grand canonical ensemble, and have been computed for
a homogeneous gas in [20]. Since the correlation length
of the gas is much smaller than L [32], LDA applies and,
as shown in the SM [26], we have

〈δnpδnp′〉' δ(p− p′)〈np〉+B(p, p′) + 〈δnpδnp′〉reg,(4)

〈δnpδnp′〉reg =

∫
dz

lφ(z)3ρ(z)2

(2π~)2
F
(

2lφ(z)p

~
,

2lφ(z)p′

~

)
,(5)
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FIG. 1. Momentum correlations 〈δNαδNβ〉 for a gas in the IBG regime (Data A, left column), in the qBEC regime (Data C,
right column), and in the qBEC-IBG crossover (Data B, middle column). The pixel size is ∆/~ = 0.15 µm−1. The experimental
data are shown in the top row. Data A, B and C are compared with the IBG theory, QMC calculations, and qBEC theory
respectively, at the temperature of the data determined by independent thermometry methods [26]. The middle row gives
the computed momentum correlations. The bottom row shows the diagonal cuts: the experimental data in circles for α = β
(squares for α = −β for Data B and C only) are compared with their respective theory model in dashed (dotted) lines. The
error bars are statistical. The dash-dotted lines give the shot-noise limit.

where F is the dimensionless function given by Eq. (29)

of [20], and B(p, p′) is evaluated substituting ν
(h)
ρ,T (p) by

a Lorentzian function of FWHM ~/lφ. The effect of the
finite resolution and pixelization is taken into account us-
ing Eq. (3). These predictions, plotted in Fig. 1 (C2-C3),
are in quantitative agreement with experimental data.
Note that the center-of-mass (COM) motion is decoupled
from the internal degrees of freedom in a harmonic trap,
and the COM fluctations are about twice as large as those
expected at thermal equilibrium for this data set [33]. To
mitigate their effect, we post select the data by bounding
the COM fluctuations. Moreover, since the experimental
resolution is not sufficient to resolve momentum scales
of the order of ~/lφ, the effect of 〈δnpδnp′〉reg on the di-
agonal reduces the signal that would be expected from
bunching alone by almost a factor 10.

Our results provide the first experimental proof of the
persistence of bunching in momentum space in a qBEC,

as well as the presence of negative correlations, in partic-
ular between opposite momenta. The latter contrasts
with the behaviour expected for a weakly interacting
Bose-Einstein condensate, where Bogoliubov theory pre-
dicts the presence of positive correlations between oppo-
site momenta [26]. The absence of opposite-p positive
correlations is a clear consequence of the absence of true
long range order.

The atom-number fluctuations are strongly reduced in
a qBEC because of repulsive interactions and the nega-
tive part F , which concentrate on the momentum region
p . ~/lc, enforces the reduced atom-number fluctuations
by compensating for the diagonal bunching term [20].
In our experiment, however, one may a priori suspect
that the measured anticorrelations could come from the
normalization procedure used in the data analysis. We
rule out such a possibility by performing several checks,
detailed in the SM [26]. The agreement with theory
in our case is ensured by the fact that the fluctuations
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puted at t = 1000). Circles are experimental results for Data
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account for both fitting (in t) and statistics (in C and γ0).

〈δnpδnp′〉reg are dominated by the contribution from the
central part of the cloud, where lφ is the largest [see
Eq. (5)]. It is well described by the grand canonical en-
semble as the rest of the cloud acts as a reservoir, and the
corresponding anticorrelations are much stronger than
those introduced by the normalization of the total atom
number. The negative part of the correlation map thus
reflects a local decrease of the atom-number fluctuations.

In the qBEC-IBG crossover. While the theoretical
analyses above describe reasonably well the two asymp-
totic regimes of IBG and qBEC, they do not permit
to investigate the crossover in between. To explore the
crossover, we use canonical QMC calculations [34]. Dis-
cretizing space allows to recast the Lieb-Liniger model in
the form of a Bose-Hubbard model [22], which can be sim-
ulated via the Stochastic Series Expansion with directed-
loop updates [35]. In particular, a double directed-loop
update allows one to compute the momentum correla-
tions 〈δnpδnp′〉. Blurring and pixelisation is then ap-
plied according to Eq. (3). The features of 〈δnpδnp′〉 are
mainly washed out at the level of the experimental res-
olution [36], demanding a very high numerical precision
on 〈δnpδnp′〉 to properly evaluate the discretised corre-
lation map. The results for the parameters of Data B
(N = 7000, T = 144 nK), shown in Fig. 1 (B2) and (B3),
reproduce quantitatively the features seen in the experi-
mental data, shown in Fig. 1 (B1) and (B3). Namely, the
bunching phenomenon remains prominent on the α = β
diagonal, while the anticorrelations along the α = −β is
less pronounced than what is found for Data C.

Quantifying the crossover. As shown in the SM [26],
Eqs. (4) and (5) generalize the computation of the mo-
mentum correlations to the whole parameter space, pro-
vided F is now a function of the reduced tempera-

ture t = 2~2kBT/(mg
2) and the interaction parameter

γ(z) = mg/
(
~2ρ(z)

)
. F interpolates between 0 in the

IBG regime (t � 1 and tγ3/2 � 1) and Eq. (29) of [20]
in the qBEC regime (tγ3/2 � 1 and γ � 1). For the ex-
perimental resolution of this paper, however, one cannot
isolate the contribution of F from that of the bunching
term. We thus consider the experimental quantity

C =
∑

α

〈δNαδN−α〉/〈N0〉. (6)

As derived in the SM [26], in the limit δ,∆ � ~/lφ and
δ � ∆, C depends only on t and γ0 ≡ γ(z = 0). For a
highly degenerate IBG, we find C ' 1.08/(tγ2

0), whereas
C ' −2.28/(tγ2

0) for a qBEC. These asymptotic behav-
iors are shown as dashed and dotted lines in Fig. 2. The
solid line gives the prediction for an IBG (where Ctγ2

0

now depends on t and γ0) at t = 1000 [37]. Fig. 2 also
displays the experimental values of Ctγ2

0 for Data A-C.
However, since ~/lφ � δ � ∆ is not satisfied for our data
sets, the above theoretical predictions are not expected to
quantitatively agree with the experimental data. More-
over, comparing different data sets is delicate since they
correspond to different values of δ/lφ.

Outlook. A future extension of our study of two-body
correlations in momentum space concerns the fermion-
ized regime of 1D Bose gases, where quantum fluctua-
tions, difficult to observe in momentum space for weakly
interacting gases, might have measurable effects. The
study of correlations in momentum space at thermal equi-
librium could serve as a reference for the investigation
of non-thermal states and that of out-of-equilibrium dy-
namics arising, for example, from a quench of the cou-
pling constant g. Correlations in momentum space have
also been proposed as a probe of Hawking-like radiation
generated by a sonic black-hole [38], and the results of
this paper are certainly relevant for this quest.
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SUPPLEMENTARY MATERIAL: Two-body correlation function in momentum
space of a one-dimensional Bose gas

(Dated: October 25, 2015)

I. FOCUSING TECHNIQUES TO ACCESS THE
MOMENTUM DISTRIBUTION OF THE CLOUD

Measuring the longitudinal momentum distribution of
1D gases is a priori possible by switching off all confine-
ments and performing the so-called time-of-flight mea-
surements. Transverse expansion occurs in a time of the
order of 1/ω⊥, where ω⊥ is the initial transverse con-
finement frequency, much shorter than the time scales of
the longitudinal motion. This ensures that interactions
are effectively switched off almost instantaneously with
respect to the longitudinal motion. The atoms then ex-
perience a ballistic flight in the longitudinal direction.
For a sufficiently long ballistic expansion time, the cloud
size becomes much larger than its initial value and the
density distribution is homothetic to the momentum dis-
tribution. However, reaching this far field regime re-
quires a long time of flight, which is difficult to imple-
ment in practice. This is most stringent in the qBEC
regime. Indeed, the width of the momentum distribu-
tion of a qBEC of temperature T and peak linear den-
sity ρ0 is of the order of mkBT/(~ρ0), while the initial
size of the cloud, harmonically confined with a frequency
ωz/(2π), is about

√
gρ0/m/ωz. Thus, one finds that the

far field regime is obtained only for times much larger
than τff ≃

√
gρ0/m~ρ0/(kBTωz). Since in the qBEC

regime,
√
gρ0/m~ρ0/(kBT ) ≫ 1, one has τff ≫ 1/ωz.

The far field is reached only after very long times.
To circumvent this difficulty, we image the cloud in

the Fourier plane of an atomic lens, using the focusing
techniques [1, 2], whose implementation in our experi-
ment is detailed in [3]. The idea is to apply a pulse of
strong harmonic confinement in the longitudinal direc-
tion, of frequency ωc and duration τ , which is sufficiently
short that the atomic displacement is negligeable during
the pulse. This is in practice possible on our experiment
by using magnetic field generated by a combination of
DC and AC (modulated at 200 kHz) currents, allowing
an independent control of the longitudinal and transverse
potentials [4]. The effect of this harmonic pulse is then to
imprint a momentum kick on the atoms ∆p = −mω2

czτ ,
which is proportional to their distance z from the center
of the harmonic potential, and to the pulse duration τ .
After a time τf = 1/(ω2

cτ) of ballistic expansion, called
the focusing time, the effect of the initial spatial spread
of the cloud is effectively erased, and the density distribu-
tion is homothetic to the initial momentum distribution.
We use ωc ≃ 2π × 38 Hz, τ ≃ 0.7 ms, and τf = 25 ms
for the data presented in this article. The above classical
analysis also holds at the quantum level since the quan-
tum evolution of the Wigner function in phase space is
the same as that of a classical phase space distribution as

long as only quadratic potentials are involved. Note that
an alternative way to measure the momentum distribu-
tion is the Bragg scattering method (see e.g. [5] and ref-
erences therein). However, this method does not provide
the full momentum distribution within each experimen-
tal shot and thus cannot be used to measure momentum
correlations.

II. MOMENTUM CORRELATIONS USING THE
LOCAL DENSITY APPROXIMATION

Here, we outline the derivation of the key equations in
the main text.
Expressing n(p) in terms of the field operator, we find

〈δnpδnp′〉 = 1
(2π~)2

∫
d4z eip(z1−z2)/~eip

′(z3−z4)/~
(
〈ψ†

1ψ2ψ
†
3ψ4〉 − 〈ψ†

1ψ2〉〈ψ†
3ψ4〉

)
,

(1)

where d4z ≡ dz1dz2dz3dz4 and ψi is a short-hand nota-
tion for ψ(zi). Let us assume the gas has a finite corre-
lation length, that we denote lc. Note that this is true
for a finite temperature qBEC and a highly degenerate
IBG, and lc is of the order of the phase correlation length
lφ = ~2ρ/(mkBT ). The four-point correlation function
can then be written as a sum of singular and regular
terms [6],

〈ψ†
1ψ2ψ

†
3ψ4〉 − 〈ψ†

1ψ2〉〈ψ†
3ψ4〉 = 〈ψ†

1ψ4〉δ(z2 − z3)

+〈ψ†
1ψ4〉〈ψ†

3ψ2〉
+G̃2(1, 2, 3, 4).

(2)

The first term on the right-hand side is the shot noise.
The second is the bunching term, describing the exchange
process due to Bose quantum statistics. In infinite uni-
form systems, both give rise to singular momentum cor-
relations. The last term is what remains and gives a
regular contribution to 〈δnpδnp′〉 as soon as the gas has
a finite correlation length. It describes the binary elastic-
scattering processes, and goes to zero whenever one of the
relative coordinates is much greater than the correlation
length. Isolating the contribution of each of these three
terms in Eq. (1), we write

〈δnpδnp′〉 = S(p, p′) +B(p, p′) + 〈δnpδnp′〉reg. (3)

The contribution of the shot-noise term S(p, p′) is

S(p, p′) = δ(p− p′)〈np〉. (4)

To compute the contribution of the bunching term
B(p, p′), we use a local density approximation (LDA),
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which relies on the fact that the correlation length is
much smaller than the cloud size L. We then find that

B(p, p′) =

∣∣∣∣
∫
dz

〈
ν
(h)
ρ(z),T

(
(p+ p′)/2

)〉
ei(p−p′)z/~

∣∣∣∣
2

.

(5)

Here, ν
(h)
ρ,T (p) is the momentum distribution of a ho-

mogeneous gas of linear density ρ, normalized to∫
dp ν

(h)
ρ,T (p) = ρ. For a given p, 〈ν(h)ρ(z),T

(
(p + p′)/2

)
〉

has an extent in z on the order of L. B(p, p′) thus has
a width in p − p′ on the order of ~/L. Since the typical
size of our 1D gases is L ∼ 100 µm, and our resolution in
momentum space δ is δ/~ ≃ 0.15 µm−1 ≫ 1/L, one can
make the approximation

B(p, p′) ≃ δ(p− p′)B(p), (6)

where B(p) = 2π~
∫
dz 〈ν(h)ρ(z),T (p)〉2 is also given in the

main text.
It is instructive at this stage to look at the scaling of

the experimental signal predicted by the above results.
The effect of discretization and resolution is taken into
account through Eq. (3) of the main text. Within the
approximation of Eq. (6), all information lies in the di-
agonal, which writes

〈δN2
α〉 ≃

∫
dp A2(α, p)

(
〈np〉+ B(p)

)
. (7)

For an infinite resolution, i.e. δ → 0, we find that the
bunching term is on the order of 〈δN2

α〉 ≃ ∆L(ρlc)
2. We

recover here the prediction from a semi-classical anal-
ysis for an IBG: the typical occupation per mode is
n ≃ Nlc/L = ρlc, and the number of modes contribut-
ing to a pixel is M ≃ ∆L/(2π), such that the bunching
phenomenon should produce atom number fluctuations
〈δN2

α〉 ≃Mn2 ≃ ∆L(ρlc)
2 ≃ ρlc〈Nα〉. We thus find that

as soon as the gas is highly degenerate, i.e. for ρlc ≫ 1,
the bunching term is much larger than the shot-noise
term.
To compute the contribution of the regular term, we

apply LDA again. Together with dimensional analysis,
we have

〈δnpδnp′〉reg =

∫
dz

l3φρ
2

(2π~)2
F
(
2lφp

~
,
2lφp

′

~
; t, γ

)
, (8)

where lφ ≡ lφ(z) = ~2ρ(z)/(mkBT ), F is a dimension-
less function, t is the reduced temperature parameter,
and γ ≡ γ(z) = mg/(~2ρ(z)) is the local interaction pa-
rameter. In the IBG regime (i.e. for tγ3/2 ≫ 1 and

t ≫ 1), Wick’s theorem ensures that G̃2 vanishes, such
that

F(q, q′) = 0. (9)

In the qBEC regime (i.e. for tγ3/2 ≪ 1 and γ ≪ 1), the
results obtained for homogeneous gases in [6] show that

F(q, q′) =
256

(q2 + 1)2(q′2 + 1)2[(q + q′)2 + 16]
×
[
(q2 + 3qq′ + q′2)qq′ − 2(q2 − qq′ + q′2)− 7

]
.

(10)

Note that in [6] the crossover between the IBG and the
qBEC regimes is investigated by treating ψ as a classi-
cal field, in which case F reduces to a function of three
parameters only: F(q, q′; t, γ) = F̃(q, q′, 3

√
4/(t2γ3)).

III. IBG TO QBEC CROSSOVER: C FUNCTION

To investigate the behavior of the function C defined
by Eq. (6) of main text, let us first assume that ~/L
is much smaller than all other momentum scales. The
momentum correlations can thus be written as

〈δnpδnp′〉 = δ(p− p′)
(
〈np〉+ B(p)

)
+ 〈δnpδnp′〉reg, (11)

where 〈δnpδnp′〉reg is given by Eq. (8). Separating the
contribution of both the shot-noise and the bunching
terms from that of the regular term, we can write U =
C〈N0〉 ≡ Ui + Ur, where

Ui =

∫
dp R(p, p)

(
〈np〉+ B(p)

)
, (12)

Ur =

∫ ∫
dpdp′ R(p, p′)〈δnpδnp′〉reg, (13)

and

R(p, p′) =
∑

α

A(α, p)A(−α, p′). (14)

For a given value of p′+p, the functionR(p, p′) is periodic
in p: R(p + ∆, p′ − ∆) = R(p, p′). Its width in p′ +
p, depending on the distance of p to a pixel center, is
typically on the order of max(δ,∆).
The following asymptotic expressions can be deduced.

In the limit of ∆, δ ≪ ~/lc, we have

Ur ≃ ∆

∫
dp 〈δnpδn−p〉reg, (15)

regardless of the resolution (i.e. of the ratio δ/∆). In the
same limit, we also have

Ui ≃ ∆(〈n0〉+ B(0))I, (16)

where I =
∫
dp R(p, p)/∆. The value of I depends on

δ/∆, and the asymptotic behavior is given by
{

I = 1 for δ/∆ ≪ 1,
I ≃ 1

2 for δ/∆ ≫ 1.
(17)

Finally, for ~/lc ≫ δ ≫ ∆, one obtains

C =
1 + B(0)/〈n0〉

2
+

∫
dp 〈δnpδn−p〉reg/〈n0〉. (18)

Using LDA and transforming integrals over z into in-
tegrals over the chemical potential µ, we find that C
is an intensive quantity which only depends on t and
γ0 ≡ γ(z = 0). For a highly degenerate IBG, using the

equation of state ρ ≃ kBT
√
m/(~

√
2|µ|) and ν

(h)
ρ,T (0) ≃

~ρ2/(πmkBT ), we find that C ≃ 0.54~2ρ2/(mkBT ). For

a qBEC, using ρ ≃ µ/g and ν
(h)
ρ,T (0) ≃ 2~ρ2/(πmkBT ),

we find C ≃ −1.14~2ρ2/(mkBT ).
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FIG. 1. Thermometry of data sets (from top to bottom, Data A, B and C). Left: density profiles. ∆z = 2.7 µm is the pixel
size in real space. Fitting the measured mean profile (circles) with the MYY theory (dashed lines) yields T = 109 nK for
Data A, T = 144 nK for Data B and T = 103 nK for Data C. The dotted lines are the contribution of the transverse excited
states. We also include the zero-temperature Thomas-Fermi profile (solid line) for Data C. Right: atom-number fluctuations.
Experimental data (circles) are compared to the prediction from MYY equation of state at the temperature deduced from the
profile. The dash-dotted lines show the shot-noise limit. For Data C, the fit to the qBEC predictions (solid line) gives T = 75
nK.

IV. CHARACTERIZATION OF THE DATA

The data are characterized using a statistical ensemble
of about 100 in-situ images taken in the same experimen-
tal conditions. Temperature is extracted by analysing ei-
ther the mean density profile or the density fluctuations.
With our resolution in the atom-number calibration and
the fluctuation measurements, we estimate the accuracy
of our temperature measurement to be of about 20% [7].

Data A and B. The mean in situ density profiles. for
Data A and B (N = 1900 and N = 7000) are shown in
Fig. 1 (A1) and (B1) respectively. We fit our measure-
ments (circles) to the MYY theory (dashed lines), and
obtain T = 109 nK and T = 144 nK. The density fluctu-
ations, shown in Fig. 1 (A2) and (B2), are in agreement

with the thermodynamic predictions using the MYY the-
ory at the temperature obtained from the profile. For
Data A, the density fluctuations at large densities do
not saturate, which is characteristic of the IBG regime.
On the other hand, the measured fluctuations are well
above shot-noise level (dash-dotted line), indicating that
the gas is highly degenerate. Data B shows the onset of
saturation of the density fluctuations at large densities,
indicating that this data set lies within the IBG-qBEC
crossover.

Data C. The mean in situ density profile of this
data set (N = 14000) is shown in Fig. 1 (C1). We fit
our measurements (circles) to the MYY theory (dashed
lines), and obtain T = 103 nK. However, the central
part of the profile follows very well the zero-temperature
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Thomas-Fermi (TF) profile (grey solid line, nearly over-
lapping with the MYY profile). The information about
the temperature lies in the (small) wings, where the
MYY profile differs from the TF profile. The uncer-
tainty on the temperature obtained from a fit of such
a density profile is large, and more precise informa-
tion can be extracted from density fluctuations, shown
in Fig. 1 (C2). The MYY predictions in the qBEC
regime suffer from two weaknesses at large linear den-
sity. First, this model does not account for the infla-
tion of the transverse wave function of the transverse
ground state, which becomes noticeable when ρa ap-
proaches unity. Second, the treatment of the first trans-
verse excited states as an IBG no longer captures the
real behavior when ρ becomes sizable, with the predicted
density even diverging as ρa approaches 1/2. For these
reasons, it is preferable to consider the qBEC equation
of state µ = ~ω⊥

(√
1 + 4ρa− 1

)
instead of that of the

MYY model in the qBEC regime at large densities. The
fit (solid line) of the measured density fluctuations gives
T = 75 nK. Note that the failure of the MYY model is
first visible on the predicted fluctuations [see the diver-
gence of the dashed line in Fig. 1 (C2)], proportional to
the derivative of the equation of state, before the pre-
dicted density profile is affected.

V. EFFECT OF NORMALIZATION

The experimental realizations of 1D Bose gases as sin-
gle systems do not correspond to the grand-canonical-
ensemble description: the atomic cloud is not in contact
with a reservoir of energy or particle at a well defined
temperature or chemical potential. The shot-to-shot fluc-
tuations of the total atom number are linked to the prepa-
ration procedures. We remove such fluctuations by nor-
malizing each experimental profile to the total atom num-
ber of the corresponding mean profile. This procedure
would be exact if the momentum distribution satisfied
a scaling form of the kind n(p;N1)/N1 ≈ n(p;N2)/N2.
However, this is not the case in degenerate 1D Bose gas,
since the width of the momentum distribution is pro-
portional to 1/ρ. One then expects that the normalisa-
tion procedure induces extra-fluctuations whose variance
is proportional to the variance of atom number within
the set of data used to compute the averaged profile.
Note that one also expects that this normalisation pro-
cedure introduces negative correlations between small p
and large p′ components. This may partly explain the
difference between theoretical and experimental data in
Fig. 1 of the main text.
Moreover, the normalization procedure ensures a van-

ishing sum of the momentum correlation map 〈δNαδNβ〉,
and hence it introduces additional negative regions. Since
the area covered by such negative regions in the plane
(α, β) scales typically as N∆

2 (where N∆ is the width
of the momentum distribution in units of pixels), their
amplitude is negligible as long as N∆ ≫ 1. While the

condition N∆ ≫ 1 is well fulfilled for the Data A, one
may worry about the effect of normalisation for the Data
C. In this appendix, we show that the negative correla-
tions observed in Data C cannot be accounted for solely
by the effect of normalization.
We first compute the anticorrelations that would arise

due to the normalization procedure for a gas confined in
a box, showing that it would be difficult to differenti-
ate between the effect of normalization and the expected
anticorrelations within the grand-canonical-ensemble de-
scription of a homogeneous qBEC. The experimental re-
alization of the qBEC is however inhomogeneous, and in
the second part of this appendix, we make several numer-
ical checks to confirm that the normalization procedure
does not account for the negative correlations observed
in the data. In fact, the observed anticorrelations arise
mainly due to the central part of the cloud, where lφ is
the largest.

A. Effect of normalization on a homogeneous cloud

Let us consider a cloud confined in a box potential of
length L, whose momentum correlations are assumed to
be purely described by the bosonic bunching. For sim-
plicity, we will disregard the effect of resolution, assuming
δ = 0. The number of momentum states contributing to
a pixel of size ∆ is M = ∆L/(2π). Thus, for ∆ ≫ ~/L,
the fluctuations δNα of the atom number in a pixel, which
fulfill

〈δN2
α〉 = 〈Nα〉2/M, (19)

are small compared to 〈Nα〉2. Linearizing in δNα, the
normalization procedure to a total atom number N ,

changes the momentum profile to Ñα = 〈Nα〉 + δNα −
〈Nα〉
N

∑
β δNβ , leading to

〈δÑαδÑβ〉 = 〈δN2
α〉δα,β − 〈Nα〉

N 〈δN2
α〉 − 〈Nβ〉

N 〈δN2
β〉

+
〈Nα〉〈Nβ〉

N

∑
γ〈δN2

γ 〉
(20)

Replacing 〈Nα〉 by a Lorentzian with a FWHM of 2~/lφ
in Eq. (19) and (20), we obtain 〈δÑαδÑβ〉 = 〈δN2

α〉δα,β+
(∆L/(2π))2Fn(2lφp/~, 2lφp′/~)(ρlc)3/N where

Fn(q, q
′) =

−64(1 + q2)− 64(1 + q′2) + 16(1 + q′2)(1 + q2)

(1 + q2)2(1 + q′2)2
.

(21)
This function is plotted in Fig. 2 (a). For a homogeneous
qBEC in a grand canonical ensemble, one expects similar
fluctuations, but the function Fn should be replaced by
the function F of Eq. (10), plotted in Fig. 2 (b). These
two functions have the same integral in the (q, q′)-plane,
and their value at q = q′ = 0 is identical. Although
they differ slightly in shape (Fn is even in both q and
q′ whereas F is not), it would be difficult to distinguish
between them in practice.
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FIG. 2. (a) function Fn [see Eq. (21)] that describes the
effect of normalization to a given total atom number, for a
homogeneous gas that exhibits only the bosonic bunching in
its momentum-space fluctuations. Fn is even in both q and
q′, so that it has a symmetry upon reflection about the lines
q = 0 and q′ = 0. (b) function F [see Eq. (10)] that describes
the momentum-space anticorrelations of a homogenous qBEC
in grand canonical ensemble. These two functions have the
same integral in the (q, q′)-plane, and the same value at the
origin, and would be difficult to distinguish in practice.

B. Effect of normalization on a inhomogeneous
cloud

Here we focus on Data C, and present different anal-
yses showing that the negative regions observed are not
accounted for by the normalization of the data.

Firstly, we numerically simulate the effect of normal-
ization, assuming a statistical ensemble that would ex-
hibit a pure bunching. The negative correlations induced
by the normalization are lower than those measured by
about a factor of 5.

Secondly, the total atom number of the experimental
data fluctuates with a standard deviation of∼ 4%. With-
out normalizing, the momentum correlations are shown
in Fig. 3 (a), which has similar features as Fig. 1 (C1) of
the main text but differ slightly in the extreme values.

In addition, we see that the normalization procedure
applied to Data A does not introduce anticorrelations
as large as those observed in Data C. Since Data A lies
within the IBG regime, the anticorrelations are mostly a
consequence of the normalization, whose effect depends
on the values of ∆lc and δlc, where ~/lc is the width of the
momentum distribution. In order to compare Data A and
C on equal footing, we blur and rebin Data A (which has
a broader momentum distribution) such that its values
of ∆lc and δlc are similar to those of Data C, and show
the resulting momentum correlations in Fig. 3 (b). We
observe that the anticorrelations are much weaker than
the positive correlations in rebinned Data A than those
in Data C, seen as the absence of dark blue in Fig. 3 (b).
This further eliminates the possibility that the normal-
ization is responsible for the observed anticorrelations in
Data C.

We remark that a similar procedure could in principle
be employed to compute numerically (with QMC calcu-
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FIG. 3. Effect of normalizing the data. (a) Data C analyzed
without normalization procedure. The total atom number of
the experimental data fluctuates with a standard deviation of
∼ 4%. (b) Momentum correlations for Data A, rebinned and
blurred in order to have similar value of ∆lc and δlc as Data
C. The color scale of these two plots are symmetric so that
that the zero-crossing occurs at the same color. The absence
of the dark blue regions in (b) indicates that the negative
correlations introduced by normalization applied to Data A
would not explain the negative correlations observed in Data
C.

lations) the value of the quantity C in order to compare
across different data sets on an equal footing. However,
the smaller lc value of Data A and the convergence of
function C requires to access the momentum distribu-
tion at larger momenta and at a higher signal-to-noise
ratio. Both items are beyond the current data sets and
will be reserved for future investigations.

VI. PREDICTION FOR TRUE OR QUASI
LONG RANGE ORDER

In [8], Mathey and colleagues derived the noise cor-
relations G(k, k′), where k = p/~, assuming true long
range order (TLRO) : expanding the field operator up
to the second order around its mean value, G(k, k′) is
computed with a Bogoliubov treatment. G(k, k′) is then
the sum of two singular terms, the diagonal in δ(k − k′)
and the anti-diagonal in δ(k + k′), each of them being
positive. The prediction of a positive antidiagonal can
be understood, at zero-temperature, as the result of the
elementary process of condensate depletion, namely the
momentum-conserving production of opposite-momentm
pairs leaving the k = 0 condensate. We applied this for-
mula to a homogeneous one-dimensional Bose gas with a
temperature and linear density equal to those found at
the centre of the cloud of Data C. The resulting corre-
lation map, after convolving with our imaging response
function, is shown in Fig. 4. The result is approximately
symmetric around the k = 0 and k′ = 0 lines, which is
expected deep in the phononic regime. In particular, the
anti-diagonal is about the same as the diagonal.

The Hohenberg-Mermin-Wagner theorem prevents
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TLRO in a 1D gas at thermodynamic limit. At zero tem-
perature however, the correlation length lφ of the first

order correlation function g(1) diverges, g(1) decreasing
only algebraically. In such a case the results obtained
for TLRO are still qualitatively correct, as shown by the
Luttinger Liquid calculations presented in [8], although
the singularities around the anti-diagonal and the lines
k = 0 and k′ = 0 get broadened.

For our experimental data, the temperature is suffi-
ciently high so that lφ is much smaller than the size of
the cloud, such that the condition for the above calcu-
lations is not satisfied. Indeed, Fig. 4 differs strongly
from our experimental data. The most salient difference
lies in the symmetry of the correlation maps : whereas
Fig. 4 is symmetric around the lines k = 0 and k′ = 0,
the anti-diagonal and the diagonal being equal, the ex-
perimental correlation map shown in Fig. 1 (C1) of the
main text does not show at all this symmetry the antidi-
agonal being of opposite sign compared to the diagonal.
Our results thus confirm the theoretical prediction of [6]
that the positive anti-diagonal disappears in the case of
a finite correlation length. More precisely, it is shown
in [6] that one expects the positive anti-diagonal to van-
ish as L/lφ where L is the system size. Moreover, for a
system in the thermodynamic limit, a Luttinger Liquid

approach shows that G(k, k′) is a regular function except
for a singular diagonal bunching term. It is mainly nega-
tive, in particular around the anti-diagonal, for momenta
k . 1/lφ.
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FIG. 4. Prediction for true long range order : G(k, k′) com-
puted with the Bogoliubov approach in [8], for the tempera-
ture and peak linear density of Data C, convolved with the
imaging response function.
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