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Some ideas about quantitative convergence
of collision models to their mean field limit

Rémi Peyre

July 12, 2009

Abstract

We consider a stochastic N -particle model for the spatially homoge-
neous Boltzmann evolution and prove its convergence to the associated
Boltzmann equation when N −→ ∞, with non-asymptotic estimates: for
any time T > 0, we bound the distance between the empirical measure of
the particle system and the measure given by the Boltzmann evolution in
a relevant Hilbert space. The control got is Gaussian, i.e. we prove that
the distance is bigger than xN−1/2 with a probability of type O(e−x

2
). The

two main ingredients are a control of fluctuations due to the discrete na-
ture of collisions and a kind of Lipschitz continuity for the Boltzmann
collision kernel. We study more extensively the case where our Hilbert
space is the homogeneous negative Sobolev space Ḣ−s. Then we are only
able to give bounds for Maxwellian models; however, numerical computa-
tions tend to show that our results are useful in practice.

Introduction

The Boltzmann equation was written down by L. Boltzmann [3] in 1872, five
years after Maxwell’s seminal paper [15], to describe the behaviour of a large
number of gas molecules interacting by pairwise collisions. Proving rigor-
ously the heuristic arguments of Boltzmann to get some convergence of the
N -particle model to the continuous Boltzmann equation when N −→ ∞ is an
extremely difficult challenge that mathematicians are still dealing with.

Here we are only going to handle the spatially homogeneous Boltzmann
equation (also called mean field Boltzmann equation), in which one forgets
the positions of the gas particles to concentrate only on the collision phe-
nomenon. Then proving the convergence of the N -particle system to the con-
tinuous equation is a typical mean field limit problem—a particle model is
said to be mean field when each particle interacts with comparable strength
with all the other ones. Such a problem, which was first proposed by Kac [12],
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is far more tractable than the original one, and convergence results, mostly
qualitative, have already been obtained for it (see §6.4).

Here however we are interested in a quantitative and non-asymptotic ver-
sion of these results. We would also like to set our results in an infinite-
dimensional setting, that is, to say that not only any reasonable functional of
the particle model converges to the corresponding functional of the limit sys-
tem, but moreover that all these functionals converge uniformly. The quan-
titative convergence we are going to prove will even have an N−1/2 speed,
typical of the uniform central limit theory (see [8] about it).

Concerning concrete Boltzmann models, in the actual state of my work I
am only able to use my results for Maxwellian systems, and moreover con-
stants in convergence bounds deteriorate rapidly with time. However that
does not seem to be a fundamental feature of my approach, and further im-
provements might overcome these issues.

0.1 Important Remark. There are two sides in this work. The first one,
whose climax is Theorem 3.3, is abstract: it consists in showing how Hilbert
spaces can be used to prove a new powerful type of convergence results for
collision models like Boltzmann’s. That work is a priori likely to be applied
to a wide range of situations, but for each of them checking the hypotheses
of the abstract theorem is a different challenge. The second side, which is
more physical, consists in studying one particular case of application of our
formulas, namely the Boltzmann model looked at in the Ḣ−s space, for which
we obtain precise numerical bounds (cf. §6.3). Though the results got for that
particular choice can be proved to be definitely limited in some way (cf. §4.1),
that may not be true any longer for a smarter choice of Hilbert space—which
would however be more complicated to handle. So this article highlights a way
of studying collision models, but remains at a simple level in the applications,
hence the title “some ideas”.

Here is some notation which will be used throughout this paper:

• The space Rd is equipped with its Euclidean structure, whose norm is
denoted by | · |.

• f : E −→ F being a measurable function and µ a measure on E, the
image measure of µ by f on F will be denoted f#µ.

• δx denotes a Dirac mass at x.

• S(Rd) is the Schwartz space on Rd, i.e. the set of (complex-valued) C∞
functions on Rd which tend to 0 at infinity faster than any |x|−k, as well
as all their derivatives.

• The Fourier transform of a function f ∈ S(Rd) is denoted by f̂ , with the
unitary convention f̂(ξ) = (2π)−d/2

∫
Rd
f(x)e−iξ·xdx.
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• The notation || · || will be used to denote Hilbert norms in functional
spaces. If Q is a linear operator between two Hilbert spaces, its oper-
ator norm sup||x||61 ||Qx|| will be denoted |||Q|||.

• x, y and z being three points of an affine Hilbert space with y, z 6= x, ŷxz
denotes the angle between −→xy and −→xz, which is an element of [0, π].

• The identity matrix of size d is denoted Id.

1 The model

1.1 The microscopic model

Let us describe the particle model for the spatially homogeneous Boltzmann
evolution. Such models have been first proposed by Kac [12] and later thor-
oughly studied by Sznitman [22], Spohn [20] and others. There are N iden-
tical particles indexed by 0, . . . , N − 1, each particle i being characterized by
its velocity vi ∈ Rd. One imposes random collision times, so that the micro-
scopic evolution is a Markov process. The way two particles with respective
velocities v and w hit each other is described by some positive measure γv,w on
(Rd)2, N−1dγv,w(v′, w′) being the collision rate from state (v, w) to state (v′, w′).
In other words, the generator L of the Markov process is

Lf(v0, . . . , vN−1) =

1

2N

∑
06i,j<N

∫
(Rd)2

(
− f(v0, . . . , vN−1) + f(. . . , v′i, . . . , v

′
j, . . .)

)
dγvi,vj(v

′
i, v
′
j). (1.1)

We may add to this model some extra physical conditions. First, we will
always suppose that the momentum and energy are conserved by collisions,
and that the model is invariant by velocity translation or rotation, i.e. that for
all v, w ∈ Rd, for any (positive) isometry J of Rd;

γv,w-a.e. v′ + w′ = v + w, (1.2)
γv,w-a.e. |w′ − v′| = |w − v|, (1.3)

γJv,Jw = (J, J)#γv,w. (1.4)

When conditions (1.2) to (1.4) are satisfied, the model is completely described
by the family of measures

(
γu
)
u∈(0,∞)

on (0, π], where dγu(θ) is the proportion,
by unit of time, of particles with relative speed u which undergo a collision
making them deviate by an angle θ in the collision referential.

Moreover, it is often assumed that the γu have a scale invariance property,
in the sense that there exists a real parameter g such that for any λ ∈ (0,+∞),

γλu = λg γu. (1.5)
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For instance, the hard sphere model is scale-invariant with g = 1. Another
very interesting particular case is when g = 0—then one says that the model
is Maxwellian. In this article the concrete results obtained will actually con-
cern Maxwellian models.

Before turning to the macroscopic model, let us make some remarks on the
microscopic one:
1.1 Remark. 1. The N−1 factor in Equation (1.1) is essential to get the

mean field limit: it morally says that the global collision rate of one
particle is independent of the total number of particles.

2. Strictly speaking, generator (1.1) allows a particle to collide with itself,
which is physically absurd. Yet because of the conservation law (1.3),
the auto-collision term is actually zero, so there is no problem.

3. The γv,w have to satisfy some integrability conditions for the Markov
process to be well-defined. For instance, if conditions (1.2) to (1.5) are
statisfied, then it suffices that for an arbitrarily chosen u ∈ (0,∞),∫ π

0
θd−1dγu(θ) is finite, cf. [21].

1.2 The macroscopic model

The macroscopic space-homogeneous Boltzmann equation [5] is obtained in-
formally by letting N tend to infinity in the microscopic evolution. Then the
particles’ velocities are described by they empirical measure, which is a (non-
atomic in general) probability measure µt on Rd. The evolution of that mea-
sure is deterministic and is governed by the equation:

Dtµ = Q(µt, µt), (1.6)

where Q is the Boltzmann collision kernel of the system, formally defined by:

Q(µ, ν) =
1

2

∫ (∫ (
− δv − δw + δv′ + δw′

)
dγv,w(v′, w′)

)
dµ(v)dν(w). (1.7)

Equation (1.6) is an ordinary differential equation in an infinite-dimensio-
nal space; that equation is non-linear because of the quadratic term Q(µ, µ).
Unique existence of a solution to it has been thoroughly studied over the last
decades [7, 23]. For our theory to work, we will need to consider a setting
where that unique existence is achieved in some convenient space—which
is quite logical altogether. Later we will see concrete examples where (1.6)
behaves well for our purpose.

1.3 Conservation laws, convergence to equilibrium

Because of the conservation laws (1.2) and (1.3), we get d + 1 invariant func-
tions for the microscopic system: the first d are synthetised in the momentum
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P =
∑N−1

i=0 vi, and the last one is the energy K = 1
2

∑N−1
i=0 |vi|2. In the macro-

scopic model, these invariants become p =
∫
v dµ(v) and k = 1

2

∫
|v|2 dµ(v).

Moreover the fact that the macroscopic model derives from the description
of an evolution of particles implies two extra properties for it: first positivity
of Equation (1.6), which means that if µ0 is a positive measure, then so are
the µt for t positive; secondly conservation of mass which gives the (d + 2)-nd
invariant m =

∫
dµ(v) for the macroscopic equation.

Concerning equilibrium, if we impose some minimal non-degeneracy con-
dition (see [23]), then it is a well-known beautiful result due to Boltzmann [3]
that Equation (1.6) is dissipative for positive measures and converges to an
equilibrium measure µeq depending only on p, k and m: for m = 1 and p = 0, it
is

dµeq(v) =
( d

4πk

)d/2
e−d|v|

2/4kdv, (1.8)

and it has the invariance properties µeq(p, k, 1) = τp#µeq(0, k − p2/2, 1), τp being
the translation by vector p, and µeq(λp, λk, λm) = λµeq(p, k,m). More recently
a beautiful quantitative version of that convergence result has been proved
by Carlen, Gabetta and Toscani [6].

For the microscopic model, there is also a unique ergodic equilibrium mea-
sure for each value of P and K (N being fixed), which is merely the uniform
measure on the (dN−d−1)-dimensional sphere(∗) of (Rd)N made of theN -uples
of vectors having these P and K. Note that for N particles with momentum
Np and energy Nk, the marginals of that measure tend to the continuous
equilibrium measure µeq(p, k, 1) when N −→∞.

Finally it is worth recalling that the microscopic process is reversible un-
der its equilibrium measure, while on the contrary the macroscopic equa-
tion (1.6) exhibits a dissipative behaviour—a phenomenon which caused
much trouble at Boltzmann’s time, but has been well understood today.

2 Homogeneous Sobolev spaces

2.1 Why homogeneous Sobolev spaces?

To be able to speak of quantitative convergence, we will work in some Banach
space. Which one will we take ? As we want to compare the empirical measure
of our particle system to its limit evolution, a natural choice is to take some
coupling distance between measures—say, the W1 Wasserstein distance [24,
§7], defined for µ, ν two positive measures with the same mass by:

W1(µ, ν) = sup
f 1-Lip.

∣∣∣ ∫ fd(ν − µ)
∣∣∣, (2.1)

(∗) Possibly of radius 0.
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where “f 1-Lip.” means that the supremum is taken over all 1-Lipschitz func-
tions on R

d. However it turns out that it is hopeless to get an N−1/2 rate
of convergence in such a space, because testing ν − µ against so much test
functions makes the uniform central limit theory fail: see [8, §6.4] for more
details. We also give a more intuitive, completely different explanation of that
fact in §A.

Thus the idea is to test ν−µ against a smaller space made of more regular
functions. Sobolev spaces W s,p, s > 0, are such natural test spaces; then ν − µ
will be seen as an element of the dual space W−s,p/(p−1). For our theory we
will have to work in a Hilbert space, so we take p = 2 and work in W−s,2 =
H−s; then we can take s fractional, which will turn out to be useful indeed.
Yet since defining a norm for H−s spaces requires to choose some aribtrary
length, which is physically annoying, we will rather consider homogeneous
Ḣ−s spaces, which do have a canonical norm (plus other advantages). Note
however, cf. Remark 0.1, that this choice is only one possibility—certainly
particularly reasonable—among other ones, and that trickier choices might
also be relevant.

2.2 Definition and useful properties

Let us define properly the Ḣ−s spaces.

2.1 Definition. Let s ∈ R, and for f ∈ S(Rd), set

||f ||Ḣ−s =

(∫
Rd

|f̂(ξ)|2 |ξ|−2s dξ

)1/2

. (2.2)

Then those of the f ∈ S(Rd) for which ||f ||Ḣ−s < ∞, equipped with the norm
|| · ||Ḣ−s, constitute a pre-Hilbert space with scalar product

〈f, g〉Ḣ−s =

∫
Rd

f̂(ξ) ĝ(ξ) |ξ|−2s dξ. (2.3)

The Hilbert space obtained by completing it is denoted Ḣ−s.

2.2 Remark. For a physicist, f : Rd −→ C has some homogeneity: say, the
elements in Rd are measured in x (generally x is a unit of length, say meters)
and the elements in C are measured in y (which will often be a density, say
kg ·m−d). Then ||f ||Ḣ−s is measured in y · xs+d/2 (in our example, ||f ||Ḣ−s would
be measured in kg ·ms−d/2). Equivalently, if µ is a measure on Rd, the physical
dimension of ||µ||Ḣ−s is z ·xs−d/2, x being the physical dimension of the elements
of Rd and z the physical dimension of µ (which in our example would be kg).

As we told in §2.1, bounding a function or a measure in Ḣ−s means bound-
ing uniformly its integral against some class of regular functions:

6



2.3 Proposition. Define Ḣs in the same way as Ḣ−s. Then, for any f for which
it makes sense:

||f ||Ḣ−s = sup
||g||Ḣs61

∣∣∣ ∫
Rd

f(x)g(x)dx
∣∣∣. (2.4)

2.4 Lemma. For s ∈]0, d[, let φs be the locally integrable function

φs(x) = |x|−(d−s), (2.5)

then one has for all f, g ∈ S(Rd):

〈f, g〉 = c(s, d)2
〈
f ∗ φs, g ∗ φs

〉
L2(Rd)

, (2.6)

with

c(s, d) =
Γ
(
(d− s)/2

)
(2π)d/2Γ(s/2)

, (2.7)

Γ(·) being Euler’s Gamma function.

Proof. Use that the Fourier transform of |ξ|−s is (2π)d/2c(s, d)φs(x), cf. [19, ex-
ercise V-10].

2.5 Immediate proposition. Let Jλ be a similarity of Rd with dilation factor
λ, then for any map f ∈ Ḣ−s,

||f ◦ Jλ||Ḣ−s = λs+d/2||f ||Ḣ−s . (2.8)

Equivalenty, for any measure µ ∈ Ḣ−s,

||Jλ#µ||Ḣ−s = λs−d/2||µ||Ḣ−s . (2.9)


 From now on, we will always write implicitly s = d/2 + r.

2.6 Proposition. Suppose d > 2(†) and let µ be a compactly supported signed
measure on Rd with total mass 0, then for any r ∈ (0, 1), µ can be seen as an
element of Ḣ−s.

Proof. Thanks to Lemma 2.4 we just need to prove that µ ∗ φs is a square-
integrable function. Suppose that µ is supported by the ball B(R) of radius R
centered at 0 and splits into µ+ − µ− with µ+ and µ− positive measures each
of total mass M . Then for ρ > 0, on B(ρ) µ ∗ φs is equal to µ ∗ (1B(R+ρ)φs), so
the L2 norm of 1B(ρ)(µ ∗ φs) is bounded above by 2M · ||1B(R+ρ)φs||L2 <∞. Thus
µ ∗ φs is locally L2. On the other hand, for |x| = ρ > R,

|(µ ∗ φs)(x)| 6 M

(
1

(ρ−R)d/2−r
− 1

(ρ+R)d/2−r

)
6 2MR

d/2− r
(r −R)d/2+1−r , (2.10)

so µ ∗ φs is L2 at infinity, which finishes the proof.
(†) The proposition remains valid with d = 1, except that it must be demanded that r < 1/2.
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2.7 Corollary. Still suppose d > 2, then for r ∈ (0, 1), any signed measure
with zero total mass, if it has an r-th polynomial momentum, can be seen as
en element of Ḣ−s.

Proof. Let µ = µ+ − µ− be such a measure with its Hahn decomposition, µ+

and µ− each having total mass M . Then the integral Minkowski inequality
gives

||µ||Ḣ−s 6
1

M

∫
(Rd)2

||δx − δy||Ḣ−sdµ+(x)dµ−(y)

=
Cr
M
·
∫

(Rd)2
|x− y|rdµ+(x)dµ−(y) <∞, (2.11)

Cr being the Ḣ−s norm of any δx − δy for |x − y| = 1, which is finite by the
previous proposition.

2.8 Remark. The Ḣ−s norm allows us to measure the distance between two
(sufficiently integrable) probability measures, but speaking of the Ḣ−s norm
of a single probability measure would be nonsense! Note also that, by Sobolev
imbedding, one can bound above ||ν − µ||Ḣ−s, for any two probability measures
µ and ν, by (up to some explicit multiplicative constant)

W1,r(µ, ν) = sup
{∣∣ ∫ fdµ−

∫
fdν

∣∣ ; ∀x, y |f(x)− f(y)| 6 |y − x|r
}
. (2.12)

3 Dynamic control

3.1 Abstract setting

Now let us study the evolution of our particle system along time. We first give
our main result in an abstract setting to alleviate its proof; the reader more
comfortable with physical settings may read Theorem 3.6 instead.

Let H be a Hilbert space, let A be an H-affine space and let (X̂t)t>0 be some
jump Markov process on A with generator L. Fix o an arbitrary point of A and
define

I : A −→ H
x 7→ −→ox :

(3.1)

since I is defined up to an additive constant, the operator (LI) : A −→ H (‡)

does not depend on the choice of o and we can therefore define (Xt)t>0 as the
(‡) Stricto sensu L acts on some space of real functions on A, say the space of continuous

bounded functions Cb(A,R). Yet we can straightforwardly extend L to the space Cb(A,E) for
any Banach space E by defining the operator L(E) : Cb(A,E) −→ Cb(A,E) through:

∀φ ∈ E′ ∀f ∈ Cb(A,E)
〈
φ,L(E)f

〉
= L

(
〈φ, f〉

)
. (3.2)

That is what we do here: I is a function from A to H, so LI actually denotes L(H)I.
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deterministic process on A following the differential equation

DtX =
(
LI
)
(Xt). (3.3)

Our goal is to control the distance between X̂t and Xt. Here what is
important for us is to have a good control of large deviations for that dis-
tance. As Cramér’s method cannot be applied directly because of the infinite-
dimensional setting, we introduce an exponential utility function U : H −→ R

defined by:
U(x) = e||x|| + e−||x||. (3.4)

The following proposition gathers the properties of U we will use in our work:

3.1 Immediate proposition. 1. For all x ∈ H, U(x) > e||x||;

2. U(0) = 2;

3. For all x, h ∈ H, U(x+ h) 6 e||h||U(x);

4. U is of class C∞(∗);

5. For all x ∈ H, ∇U(x) is positively colinear to x;

6. For all x ∈ H, |||∇2U||| 6 U(x).

Then one can state the theorem which will be our central tool. We first
need some notation to alleviate our formulas:

3.2 Definition. We denote e1(t) = (et − 1)/t, extended by e1(0) = 1, resp.
e2(t) = (et − 1− t)/t2, extended by e2(0) = 1/2. We also denote κ− the negative
part of κ, i.e. κ− = max{−κ, 0}.

3.3 Theorem. Suppose that Equation (3.3) has a κ-contracting semigroup for
some κ ∈ R, in the sense that for all x ∈ A, h ∈ H:〈

Dx(LI) · h, h
〉

6 −κ||h||2. (3.5)

Suppose moreover that the Markov process—which we recall to be a jump
process—has the amplitude of all its jumps bounded above by some L < ∞,
and satisfies:

∀x ∈ A L(|| · −x||2)(x) 6 V (3.6)

for some V <∞.

Then, denoting X̂0 the (random) initial value of the Markov process and X0

the (deterministic) initial value of the differential equation (3.3), one has for
any T > 0, for any λ > 0:

lnE
[
U
(
λ(X̂T −XT )

)]
6 lnE

[
U
(
λe−κT (X̂0 −X0)

)]
+ λ2e2(λe2κ−TL)e1(−2κT )V T. (3.7)

(∗) To prove it, note that U(x) = f(||x||2), where f = 2 cosh(
√
·) is (the restriction to [0,+∞)

of) an analytic function on R.
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Proof. The principle of the proof is to show that some time-depending func-
tional

F (X̂t) = eh(t)U
(
λeκ(t−T )(X̂t −Xt)

)
, (3.8)

for a well-chosen function h, is a supermartingale.


 To make our computations completely rigorous, throughout the proof
we will assume that the expected number of collisions per unit of time is uni-
formly bounded, that is, that there is some M < ∞ such that |(L1A′)(x)| 6 M
for all x ∈ A and any Borel subset A′ ⊂ A. Then the general result can be
recovered by a standard truncation argument.

Let us fix some t ∈ [0, T ] and suppose (X̂t′)t′∈[0,t] is known. Let δt be a small
amount of time devised to tend to 0; O(δtn) will denote any quantity bounded
by some Cδtn when δt tends to 0, where C depends only on κ, V , M , λ, T ,
t and ||Xt||. With this notation, the law of X̂t+δt depends on (X̂t′)t′∈[0,t] only
through X̂t, and our goal is to show that E[F (X̂t+δt)]−F (X̂t), which is O(δt), is
nonpositive—more precisely, we only need to prove that E[F (X̂t+δt)]−F (X̂t) 6
O(δt2)(†).

Set Ŷ = X̂−X. Denote δX̂ = X̂t+δt−X̂t, resp. δX = Xt+δt−Xt, δŶ = Ŷt+δt−Ŷt,
δF = F (X̂t+δt)− F (X̂t). The fundamental observation is that

E
[
δX̂
]

=
(
LI
)
(X̂t) δt+O(δt2). (3.9)

Now, admitting temporarily that h will be of class C2, we write:

δF = h′(t)F (t)δt (3.10)
+ eh(t)λeκ(t−T )∇U(λeκ(t−T )Ŷt) ·

(
LI(X̂t)− LI(Xt) + κŶt

)
δt (3.11)

+ eh(t)
[
U
(
λeκ(t−T )Ŷt+δt

)
− U

(
λeκ(t−T ){Ŷt + [LI(X̂t)− LI(Xt)]δt}

)]
(3.12)

+ O(δt2).

In that sum we first see that the term (3.11) is nonpositive: (3.5) indeed
implies, for all x ∈ A, y ∈ H,〈

(LI)(x+ y)− (LI)(x) + κy , y
〉

6 0, (3.13)

which we apply here with x = Xt and y = Ŷt, using that ∇U(λeκ(t−T )Ŷt) is
positively colinear to Ŷt (Proposition 3.1-5).

Now let us look at term (3.12). Because of (3.9), the expectation of the
random variable

λeκ(t−T )
(
Ŷt+δt −

(
Ŷt + [LI(X̂t)− LI(Xt)]δt

))
(3.14)

is O(δt2). We will use it thanks to the following
(†) Beware that “expr. 6 O(δtn)” does not mean “expr. = O(δtn)” but actually “(expr.)+ =

O(δtn)”.
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3.4 Lemma. Let X ∈ H; let y be an H-valued random variable with zero
mean. Then one has:

E[U(X + y)] 6 U(X)
(
1 +E

[
e2(||y||) ||y||2

])
. (3.15)

Proof of the lemma. Taylor’s formula yields

U(X + y) = U(X) +∇U(X) · y +

(∫ 1

0

(1− θ)∇2U(X + θy)dθ

)
· (y ⊗ y). (3.16)

In that sum the third term is bounded above by

||y||2
∫ 1

0

(1− θ)U(X + θy)dθ (3.17)

by Proposition 3.1-6, which in turn is bounded by

||y||2 U(X)

∫ 1

0

(1− θ)eθ||y||dθ = e2(||y||) ||y||2. (3.18)

by Proposition 3.1-3. Taking expectation gives the result since the second
term in sum (3.16) has zero mean by assumption.

What does it give for us? Let E be the event “some collision occurs between
t and t+δt”. E is an event of probability O(δt), on E, the random variable (3.14)
is O(1), and on cE it is O(δt). Hence, denoting temporarily ∗ for that variable,
E
[
|| ∗ ||2e2(|| ∗ ||)

]
, up to some O(δt2), is merely λ2e2κ(t−T )

E
[
||δŶ ||2e2(||λeκ(t−T )δŶ ||)

]
,

which is bounded above by λ2e2κ(t−T )e2(λe2κ−TL)V uniformly in t.

Putting all things together, we get

E[δF ] 6
(
h′(t) + λ2e2κ(t−T )e2(λe2κ−TL)V

)
F (t)δt+O(δt2), (3.19)

which will be 6 O(δt2) provided

h′(t) 6 −λ2e2κ(t−T )e2(λe2κ−TL)V. (3.20)

To achieve that optimally with h(T ) = 0, we choose

h(t) = λ2e2

(
λe2κ−TL

)
e1

(
2κ(t− T )

)
V (T − t), (3.21)

which is of class C2 indeed. Formula (3.7) then follows by the supermartingale
property.

3.5 Remark. Strictly speaking our proof only shows that F (X̂t) is a local su-
permartingale. But this local supermartingale is nonnegative, so it is actually
a global supermartingale (see [18, § IV-1.5]).
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3.2 Application to Boltzmann’s model

Translation of Theorem 3.3 Let us see what Theorem 3.3 gives for the
Boltzmann model. For the time being, according to Remark 0.1 we do not
precise what H and A are: all you have to know is that H is some Hilbert
space of measures and A the corresponding affine space, which is assumed to
contain all the probability measures having enough moments.

Let N ∈ N
?. The stochastic process (X̂t)t>0 on A will be the empirical

measure µ̂Nt of our microscopic process
(
v0(t), . . . , vN−1(t)

)
on (Rd)N . It is a

Markov process indeed; let us denote LN its generator. Regardless of N , one
has as expected:

∀µ ∈ A
(
LNI

)
(µ) = Q(µ, µ), (3.22)

so the deterministic process (Xt)t>0 on A will be our macroscopic process fol-
lowing the Boltzmann equation (1.6). Finally, for µ ∈ A, ν ∈ H,

(
Dµ(LI)

)
· ν =

2Q(µ, ν)(‡). So Theorem 3.3 becomes:

3.6 Theorem. Let H be a Hilbert space of measures and A the corresponding
affine space containing probability measures (or a subset of it, cf. Remark 3.7).
Consider our microscopic and macroscopic models for some N ∈ N?, with cer-
tain initial conditions(∗) (v0, . . . , vN−1), resp. µ0.

Suppose that there exists some constants κ ∈ R, L <∞, V <∞ such that:

1. For all µ ∈ A, ν ∈ H, 〈
Q(µ, ν), ν

〉
6 −κ

2
||ν||2; (3.23)

2. For all µ ∈ A,
E
[
||µt+ − µt||2

∣∣µt = µ
]

6 V ; (3.24)

3. The effect of collisions for the microscopic model in A is always bounded
by L, i.e. one has almost surely

∀t > 0
∣∣∣∣µ̂Nt+ − µ̂Nt ∣∣∣∣ 6 L. (3.25)

Then for any T > 0, for any λ > 0,

lnE
[
U
(
λ(µ̂T − µT )

)]
6 lnE

[
U
(
λe−κT (µ̂0 − µ0)

)]
+ λ2e2(λe2κ−TL)e1(−2κT )V T. (3.26)

3.7 Remark. Theorem 3.6 remains valid, with the same proof, if we replace A
by any subset Ã ⊂ A such that almost surely ∀t > 0 X̂N

t , Xt ∈ Ã. An important
(‡) Stricto sensu Q(µ, ·) is an affine operator from A to H, not a linear operator on H: in fact

here Q(µ, ν) denotes Q(µ, ν), Q(µ, ·) being the linear part of Q(µ, ·). Identifying notations is
relevant because Q, like Q, is formally defined by (1.7).

(∗) The initial condition for the stochastic process can be random.
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example of it is that, when A contains nonpositive measures, one can always
take for Ã the subset of the true probability measures of A (which subset is
stable because of positivity and conservation of mass for the evolutions, cf.
§1.3), for which the properties of positive measures can be used.

Constants for the Sobolev setting


 From now on, when dealing with Boltzmann models we work in the
space Ḣ−s(Rd) for some r ∈ (0, 1). We denote by Cr the Ḣ−s norm of any δx − δy
for |x− y| = 1, which is some finite explicit function of d and r.

To apply Theorem 3.6, we have to compute the values of L, V , κ and
E
[
U
(
λe−κT (X̂0 − X0)

)]
. Here let us just look at the first two quantities—the

last two ones will be the objects of separate sections.

Recall that K denotes the energy of the N -particle system, which is con-
served along the stochastic evolution—note by the way that up to translating
the origin of Rd, we can replace K by the internal energy

K̃ = K − |P |
2

2N
. (3.27)

Then at any time no particle has speed greater than
√

2K, so the effect of a
collision between two particles on the empirical measure can be no more than
2 · (8K)r/2CrN

−1, which yields an admissible value for L.
3.8 Remark. To get the bound L 6 2 · (8K)r/2CrN

−1 we have used that the
relative speed between two particles is at most 2

√
2K, and that the effect of a

collision with relative speed u is at most 2urN−1. Actually one can do slightly
better: the relative speed between two particles is at most 2

√
K and the effect

of a collision with relative speed u is at most 2
√

21−r − 1Cru
r/N (corresponding

to the deviation angle θ = π/2), so we could have taken

L = 21+r
√

21−r − 1CrK
r/2N−1. (3.28)

It is that bound that we will use in the sequel.

Anyway remember that, since K is going to be of order of magnitude O(N),
one has L = O(N r/2−1) when N −→∞.

Now let us compute V : V is defined by (3.24), which is bounded above by

2Cr
2N−1

∫
(Rd)2

|w − v|2rdµ(v)dµ(w)

Jensen
6 2Cr

2N−1

(∫
(Rd)2

|w − v|2dµ(v)dµ(w)

)r
= 21+2rCr

2N−1

(
K̃

N

)r
6 21+2rCr

2KrN−(1+r); (3.29)

13



taking into account Remark 3.8, we could even take

V = (21−r − 1)21+2rCr
2KrN−(1+r). (3.30)

Anyway remember that V = O(N−1) when N −→∞.

3.3 Comments on the results


 All the computations in this subsection are heuristic, so we will drop
lower order terms without wondering when we can do so. C1, C2, . . . will denote
constants depending only on κ, V , L and T , whose exact expression does not
interest us.

In the right-hand side of Formula (3.26) there are two terms: the first
one, lnE[U(λe−κT (X̂0 −X0))], merely expresses the difference between the ex-
perimental initial condition and its continuous limit. There is obviously no
surprise in getting such a term, whose study is deferred to §5: for the time
being just notice the presence of the factor e−κT in front of X̂0 − X0, which
means that the effect of initial fluctuations will be quite large if κ < 0, and
conversely quite small if κ > 0.

The actual dynamic effect in (3.26) lies in the term λ2e2(λe2κ−TL)e1(−2κT )
V T . Let us study it in the case of our Boltzmann model, according to §3.2.
We have noticed that, when N becomes large, one has L = O(N r/2−1), resp.
V = O(N−1). So let us write L ' `N r/2−1, resp. V ' ωN−1. Then the dynamic
term of (3.26) becomes

λ2e2(λe2κ−TL)e1(−2κT )V T ' λ2N−1e2(λe2κ−T `N r/2−1)e1(−2κT )ωT. (3.31)

The λ2N−1 factor hints that the good order of magnitude for λ will be λ =
O(N1/2). So write λ = yN1/2; then (3.31) becomes

λ2e2(λe2κ−TL)e1(−2κT )V T ' e2(ye2κ−T `N (r−1)/2)e1(−2κT )ωy2T. (3.32)

In our case (r − 1)/2 < 0 so, if N is sufficiently large, ye2κ−T `N (r−1)/2 is very
close to zero and the e2(∗) term is very close to e2(0) = 1/2, finally giving

λ2e2(λe2κ−TL)e1(−2κT )V T ' 1

2
e1(−2κT )ωy2T. (3.33)

For a fixed T , (3.33) shows that the dynamic term in Formula (3.26)
is approximately C1y

2. Moreover, as we will see in §5, the static term
lnE[U(λe−κT (X̂0 −X0))] is approximately C2y

2 + C3. In the end, one gets

lnE
[
U
(
yN1/2(X̂t −Xt)

)]
. C4y

2 + C3, (3.34)

hence by Markov’s inequality and Proposition 3.1-1, for all x > 0,

P

(
yN1/2||X̂T −XT || > x

)
. eC4y2+C3−x. (3.35)

14



Optimizing Formula (3.35) for fixed x/y ratio, one finally finds:

∀ε > 0 P
(
||X̂T −XT || > ε

)
. exp

(
C3 − C5Nε

2
)
. (3.36)

So Theorem 3.6 gives a Gaussian control for the fluctuations between X̂T and
XT for any fixed value of T—provided the existence of some contractivity con-
stant κ, which for H = Ḣ−s will be proved for the Maxwellian case in §4.
Moreover the order of magnitude of the fluctuations we get is N−1/2, the typi-
cal deviation size in central limit theorems. So we may say that the bounds we
have got are a kind of explicit dynamic central limit bound for the Boltzmann
model.
3.9 Remark. Actually the approximations we made to get (3.34) are sensible
only if y is not too large, otherwise λe2κ−T `N r/2−1 & 1 and then the e2(∗) term
in (3.31) cannot be considered as close to 1/2. It follows that our computa-
tions are valid only for λ . N1−r/2/`, i.e. for y . N (1−r)/2/`. Tracking that
constraint throughout our reasoning, it finally turns out that (3.36) is only
valid for ε . TωN−r/2/`. So our Gaussian control does not hold up to large
deviations but only till some intermediate deviations(†). Fortunately (3.36)
tells us that the probability of such intermediate deviations is bounded above
by something like e−C6N1−r , which goes very fast to 0 anyway. Moreover, even
for ε � ωTN−r/2/` one can still use (3.35) with y = N (1−r)/2/` and k ' yN1/2ε,
which gives an exponential control of the tail of the law of ||X̂T−XT || applicable
to large deviations.

The behaviour of Formula (3.33) as T becomes large depends on the sign
of κ:(‡)

• If κ < 0 (the worst case), then the e1(−2κT ) factor becomes exponen-
tially large as soon as T & 1/|κ|. Thus the dynamic control given by
Theorem 3.6 is relevant only for moderate values of T corresponding
to durations for which each particle makes only a couple of collisions.
Moreover, as we noticed in the beginning of that subsection, in that case
the term due to the control of initial fluctuations will become huge as T
increases. Note however that qualitatively we get a Gaussian control for
any fixed T , only the constants in that control becoming bad.

• If κ = 0 the dynamic term of (3.26) increases proportionally to T , so
our bound remains good even for moderately large values of T , but ulti-
mately becomes uninteresting.

(†) Note however that our control (3.28) on L was very coarse: in real situations indeed the
maximal relative speed between two particles is ∼

√
lnN with very large probability (think

about the Maxwell distribution), so in most cases L ∼ (lnN)r/2N−1, and then we can study
deviation orders N−η with η arbitrarily close to 0. However such a study needs a control on
the probability that L becomes large, in other words a control on the probability of appearance
of an abnormally hot particle, which would require another article.

(‡) In §4.1 we will see that for H = Ḣ−s, κ is actually always negative. Our the discussion
is relevant nevertheless, because it remains valid for other applications of abstract Theo-
rem 3.3, therefore highlighting the interest of choosing a Hilbert space better than Ḣ−s.
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• If κ > 0 (the best case) then Te1(−2κT ) −→ 1/2κ when T −→ ∞, so
the right-hand side of (3.26) remains bounded uniformly in T , implying
that the N -particle model approximates well its continuous limit for any
time(∗). Note that κ > 0 is tantamount to having an exponential conver-
gence of (1.6) to equilibrium in A, so in that case our bound rather looks
like a result of convergence to “equilibrium” for the empirical measure
µ̂Nt .

4 Contractivity of the collision kernel

4.1 Limitations due to our settings

In this section we are going to look for computing constant κ in (3.5). Un-
fortunately it turns out that, for the choices we have made, our results are
unavoidably limited, as we quickly explain in this foreword. Let me stress
however that all the issues encoutered may be solved by working in a trickier
space than the plain Ḣ−s (cf. Remark 0.1).

First κ can only be negative, which is the worst case (see page 15). Why
that? Well, if κ were positive, as we said previously it would imply conver-
gence of Equation (1.6) to a unique equilibrium for all probability measures.
Yet there are several different equilibrium probability measures for the Boltz-
mann evolution (see Formula (1.8) and below), whose differences lie in Ḣ−s,
which is a contradiction. So κ is nonpositive. Then we could prove, using
that the model is nondegenerate, that κ cannot be zero and thus is negative.
To have a chance to get positive values of κ, Ḣ−s should be replaced by a
Hilbert space containing only signed measures η such that

∫
η(dx),

∫
xη(dx),∫

|x|2η(dx) = 0—but which one?

Secondly, the only chance for κ to be finite is the case of Maxwellian models
(remember definition below (1.5)): this is due to a bad scale invariance prop-
erty for non-Maxwellian models, cf. Remark 4.4. Though the Maxwellian case
is often a useful first step for theoretists, the physical models encountered in
real life do not have any reason for being so! To have a chance to get results for
non-Maxwellian models, Ḣ−s should be replaced by some non-homogeneous
space—but non-homogeneous spaces are often less tractable than homoge-
neous spaces and more difficult to interpret physically.

(∗) Beware: it does not mean that one random particle system has large probability to stay
always close to the continuous limit—which is trivially false by ergodicity—but that at any
given time, most of the particle systems will be close to the limit.
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4.2 Principle to the computation of κ

To check Hypothesis (3.23), according to Remark 3.7, we can consider our
Markov processes restricted to the set of probability measures, and then by
positive linearity it suffices to prove (3.23) when µ is a Dirac mass:

4.1 Immediate proposition. If, for one arbitrary (then for all) v ∈ Rd, the
linear operator Q(δv, ·) : Ḣ−s −→ Ḣ−s satisfies the “contractivity” property

∀f ∈ Ḣ−s 〈Q(δv, f), f〉 6 −κ
2
||f ||2, (4.1)

then the restriction of Q to probability measures satisfies Hypothesis (3.23).

4.2 Remark. It is not hard to see that conversely the best κ possible in (3.23)
is exactly the best κ possible in (4.1). We do not prove it as it is not essential,
but it will be implicitly used in Remark 4.4.

4.3 Lemma. Recall definition (2.5) of φs. Note (∗φs) the convolution operator

∗φs : Ḣ−s −→ L2

f 7→ f ∗ φs.
(4.2)

Then Q(δv, ·) : Ḣ−s −→ Ḣ−s satisfies property (4.1) if and only if

(∗φs) ◦Q(δv, ·) ◦ (∗φs)−1 : L2 −→ L2 (4.3)

satisfies the same property in the space L2(Rd).

Proof. It follows directly from the isomorphism formula (2.6).

4.4 Remark. Now we can understand why κ cannot be finite for a non-
Maxwellian model: suppose the model satisfies (1.5) with g 6= 0, and for
λ ∈ (0,+∞) denote by Iλ the homothety transforming v into λv, then you
get

Q
(
δ0, Iλ#µ

)
= λgIλ#Q

(
δ0, µ

)
, (4.4)

so if Q(δ0, ·) were κ-contracting for a κ < 0 it would also be λgκ-contracting for
all λ, thus 0-contracting, which is impossible.

4.3 Effective computation

4.5 Lemma. Let θ ∈ [0, π]; define the linear operator Q̌θ on measures on Rd,
such that Q̌θ(δv) is the uniform probability measure on the (d− 2)-dimensional
sphere(†) of velocities v′ such that |v′ − v/2| = |v|/2 and v̂ v

2
v′ = θ. Then

(∗φs) ◦ Q̌θ =
(
cos(θ/2)

)s
Q̌θ ◦ (∗φs). (4.5)

(†) That sphere degenerates into a point if θ ∈ {0, π}.
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4.6 Remark. Q̌θ(δv) respresents the post-collisional distribution of velocity of
a particle at initial velocity v which has collided with a particle at initial
velocity 0, undergoing an angular deviation θ in the collision referential, the
precise direction of that deviation being random.

Proof. Let us give first a neat proof working when d is even. CallRθ the set of
the rotations R of Rd satisfying v̂0(Rv) = θ/2 for all v ∈ Rd. If d is even, Rθ is
non-empty and has some canonical probability measure πθ equipping it. Then
we notice that

Q̌θ(µ) =

∫
Rθ

[cos(θ/2)R]#µ dπθ(R). (4.6)

Because of the rotational invariance of φs, for any R ∈ Rθ,

(∗φs) ◦R# = R# ◦ (∗φs). (4.7)

Similarly, the scale invariance of φs makes that for any λ ∈ (0,∞),

(∗φs) ◦ Iλ# = λs · Iλ# ◦ (∗φs). (4.8)

The result then follows by applying Formulas (4.7) and (4.8) to the inte-
gral (4.6).

When d is odd unfortunately I have nothing better than a calculation—
which by the way also works for d even. Choose an arbitrary v > 0, we will
prove that (Q̌θδv)∗φs = Q̌θ(δv ∗φs), where v also denotes the point (v, 0, . . . , 0) ∈
R
d. Since these two functions are invariant by any rotation around v, we will

locate a point in Rd merely by its first coordinate z and its distance ρ to the
z axis; we will also denote Z =

√
z2 + ρ2 its distance to 0. In the following

calculations S denotes the unit sphere in Rd−1, equipped with its Lebesgue
probability measure σ, and ρ also denotes the point (ρ, 0, . . . , 0) ∈ Rd−1; points
of S are denoted y = (y0, y1) with y0 ∈ R, y1 ∈ Rd−2. Treating (Q̌θδv) ∗ φs as a
function, we find:(

(Q̌θδv) ∗ φs
)
(z, ρ)

=

∫
S

{(
cos(θ/2)v − z

)2
+
(
sin θ y0v/2− ρ

)2
+ (sin θ)2|y1|2v2/4

}−(d−s)/2
dσ(y0, y1)

=

∫
S

{
Z2 + cos(θ/2)2v2 − 2 cos(θ/2)2vz − sin θ vρy0

}−(d−s)/2
dσ(y0, y1). (4.9)

For Q̌θ(δv∗φs) it is more complicated since that case needs computing a expres-
sion of type Q̌θf , f being a function. Usually that kind of computation raises
no difficulty, but here the operator Q̌θ has some singularity which makes it
less tractable: in Q̌θf , the “mass” (in the measure sense) received by the point
(z, 0, . . . , 0) comes only from a (d−2)-dimensional sphere inRd—more precisely
the sphere of points (z, ρ), ρ ∈ Rd−1, with |ρ| = tan(θ/2)z. That regularity prob-
lem can be overcome by an approximation technique, yielding:(

Q̌θf
)
(z, 0, . . . , 0) =

1

cos(θ/2)d

∫
S

f
(
z, [tan(θ/2)z]y

)
dσ(y) (4.10)
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—that formula also allowing to compute Q̌θf at points not located on the z
axis by rotational invariance.

So(
Q̌θ(δv ∗ φs)

)
(z, ρ) = cos(θ/2)−d·∫

S

{(
z − tan(θ/2)ρy0 − v

)2 +
(
ρ+ tan(θ/2)zy0

)2 + tan(θ/2)2Z2|y1|2
}−(d−s)/2

dσ(y0, y1)

= cos(θ/2)−d
∫
S

{(
1 + tan(θ/2)2

)
Z2 − 2v

(
z − tan(θ/2)ρy0

)
+ v2

}−(d−s)/2
dσ(y0, y1)

= cos(θ/2)−s
(
(Q̌θδv) ∗ φs

)
(z, ρ). (4.11)

4.7 Corollary. Let Qθ = Q̌θ + Q̌π−θ − Q̌0 − Q̌π. Then, for any f ∈ Ḣ−s,

〈Qθf, f〉 6
[(

cos(θ/2)
)r

+
(
sin(θ/2)

)r − 1
]
· ||f ||2. (4.12)

Proof. Observe first that Q̌0 is the identity and that Q̌π = 0, so it suffices to
prove that the operator norm of Q̌θ in Ḣ−s is bounded above by

(
cos(θ/2)

)r. By
isomorphism Formula (2.6), that is also the norm of (∗φs) ◦ Q̌θ ◦ (∗φs)−1 in L2,
which is cos(θ/2)sQ̌θ by Lemma 4.5. So we just have to bound the norm of Q̌θ,
regarded as an operator in L2, by cos(θ/2)−d/2. Now we note that one can write

Q̌θf = Icos(θ/2)#Q̃θf, (4.13)

where Q̃θ is the kernel of the Markov chain on Rd which sends x uniformly
to the (d − 2)-dimensional sphere of points y such that |y| = |x| and x̂0y =
θ/2. But that Markov chain has the Lebesgue measure on Rd as reversible
equilibrium measure, so |||Q̃θ|||L2 6 1, thus |||Q̌θ|||L2 6 cos(θ/2)−d/2, quod erat
demonstrandum.

Now we are ready to state the main result of this section:

4.8 Theorem. In a Maxwellian model, calling γ the common value of all the
measures γu, the collision kernel Q, when restricted to the probability mea-
sures, satisfies hypothesis (3.5) with

κ =

∫ π

0

[
1− cos(θ/2)r − sin(θ/2)r

]
dγ(θ). (4.14)

Proof. Note that

Q(δ0, ·) =
1

2

∫ π

0

Qθdγ(θ) (4.15)

and apply all the previous work of this section (Lemmas 4.1, 4.3, 4.5 and 4.7).
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4.9 Example. The “Kac” model(‡) is the case where the measure γv,w always
has total mass 1 and is uniform on the sphere supporting it, i.e. it is the
Maxwellian model with

dγ(θ) =
Γ(d− 1)

2d−2Γ
(
(d− 1)/2

)2 (sin θ)d−2dθ. (4.16)

By Theorem 4.8, for that model one has −∞ < κ < 0 for any r ∈ (0, 1).
4.10 Example. The model of Maxwellian potential corresponds to particles
having a repulsive force with a radially symmetric potential decreasing like
ρ−(2d−2) as the distance ρ between two particles increases. For that model
dγ ∼ θ−3/2dθ when θ −→ 0 for any d (thus the measure γ is not finite, however
it remains possible to define both the N -particle and the limit models, cf.
Remark 1.1-3), so by Theorem 4.8 one also has −∞ < κ < 0 for any r ∈ (0, 1).

5 Initial value

In Formula (3.26) given by Theorem 3.6, as we saw, besides the dynamic term
there is a term due to the fluctuations of the initial empirical measure. In
this section we control these fluctuations in the case of i.i.d. initial particles.

Let µ be a probability measure on Rd and let r ∈ (0, 1). We assume that µ
has an r-th exponential moment, i.e. that there exists some a > 0 such that∫

Rd

ea|v|
r

dv <∞. (5.1)

In the sequel we suppose a fixed.

If v is a random variable of Rd with law µ, then δv−µ is a random variable
in Ḣ−s, whose law will be denoted Dµ: Dµ is a centered probability measure
on Ḣ−s. I claim that Dµ has an exponential moment with parameter a, i.e.∫

Ḣ−s
ea||ν|| dDµ(ν) <∞ : (5.2)

To prove it it suffices to note that

||δv − µ|| 6 ||δv − δ0||+ ||δv0 − µ|| = Cr|v − v0|r + ||δv0 − µ||, (5.3)

whose a-parameter exponential is integrable because of (5.1).

So the law Dµ has a finite exponential moment, hence a fortiori a finite
variance. Let us denote it by σ2:

σ2 =

∫
Ḣ−s
||ν||2dDµ(ν). (5.4)

(‡) Actually this is not exactly the Kac model of [12], but the spirit is the same.
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Now we have all the definitions at hand to state the main result of this
section:
5.1 Theorem. Let v0, . . . , vN−1 be N i.i.d. random variables on Rd with law µ,
and denote µ̂N = N−1

∑N−1
i=0 δvi their empirical measure. Then there exists an

explicit constant A(µ), which is easy to bound, such that for all λ 6 aN :

E
[
U
(
λ(µ̂N − µ̂)

)]
6 2 exp

(
λ2σ2

2N
+
λ3A(µ)

N2a3

)
. (5.5)

Before proving Theorem 5.1, let us further examine Formula (5.5): the
term in the exponential remains bounded when N −→ ∞ if λ increases as
N1/2, like in (3.31). Thus, writing λ = yN1/2 like in (3.34):

E
[
U
(
yN1/2(µ̂N − µ)

)]
6 2 exp

(
σ2y2

2
+
A(µ)y3

a3
N−1/2

)
. (5.6)

Though we will not use it in the sequel, note the following
5.2 Corollary. For S > σ2, for all x > 0, for all N > N0 ··= x2/a2S2:

P

(
||µ̂N − µ|| > xN−1/2

)
6 exp

(
− x2

2S
+ ln 2 + A(µ)N0

1/2N−1/2

)
. (5.7)

5.3 Remark. (5.7) works as soon as N > x2/a2S2, i.e. as soon as x 6 aSN1/2, so
that estimate is valid up to the large deviations setting.

Proof of Theorem 5.1. The principle of the proof is exactly the same as for
Theorem 3.3, except that here time will be discrete.

Let v0, . . . , vN−1 be N i.i.d. random variables with law µ and set M̂i =∑i−1
j=0 N

−1(δvi − µ), then (M̂i)i is a Markov chain and a martingale, and M̂N

has the same law as µ̂N . So it suffices to prove that for all 0 6 i < N ,

E
[
U(λM̂i+1)

∣∣M̂i

]
6 exp

(
λ2σ2

2N
+
λ3A(µ)

a3N2

)
U(λM̂i). (5.8)

To get (5.8), thanks to Lemma 3.4 it suffices to prove that∫ (
eλN

−1||ν|| −N−1λN−1||ν||
)

dDµ(ν) 6 exp

(
λ2σ2

2N2
+
λ3A(µ)

a3N3

)
. (5.9)

We set
A(µ) =

∫ (
ea||ν|| − a||ν|| − 1

)
dDµ(ν). (5.10)

The function e2(t) = (et − 1− t)/t2 is convex on R+, so

∀t > 0 ∀θ ∈ [0, 1] eθt − θt− 1 6
1

2
(1− θ)θ2t2 + θ3(et − t− 1). (5.11)

Consequently∫ (
eN
−1λ||ν|| −N−1λ||ν|| − 1

)
dDµ(ν) 6

(
1− λaN−1

)λ2σ2

2N2
+
λ3A(µ)

a3N3
, (5.12)

whence (5.9).
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6 Discussion

6.1 Examples of synthetic results

Until now in this article I have just given separate results, mainly Theo-
rem 3.6, Formulas (3.28) and (3.30), and Theorems 4.8 and 5.1. Obviously
all these results are to be put together to get synthetic results on the conver-
gence of N -particle dynamic models to their mean field limit; yet I did not do
it in the previous sections.

There are several reasons why I have postponed the presentation of such
synthetic results to the last section. The most obvious one is that these global
results would have been quite unreadable if put in the beginning of the article.
More important, the different “bricks” of results given within the core of the
paper are open to improvements different for each, some of which may work
for some cases but not for others, so that there may be no ideal general result.

Let us however give some examples of formulas got by piling our theorems
together—proofs will not be given since they really consist in plain gluing
game:

6.1 Theorem. Let d > 2, r ∈ (0, 1). Let µ0 be a probability measure on Rd with
finite r-exponential moments for all r < 1. Up to translating the origin of Rd

we can suppose that p ··=
∫
Rd
vdµ0(v) = 0; then let k = 1

2

∫
|v|2dµ0(v). Choose

some k1 > k and define

κ = 1− Γ(d− 1)

2d−3Γ
(
(d− 1)/2

)2

∫ π

0

sin(θ/2)r sin(θ)d−2dθ (∗), (6.1)

` = 21+r
√

21−r − 1Crk
r/2
1 , (6.2)

ω = (21−r − 1)21+2rCr
2kr1, (6.3)

σ2 =

∫
Rd

||δv − µ0||2Ḣ−sdµ0(v). (6.4)

Let N > 2; let v0
0, . . . , v

0
N−1 be N i.i.d. random variables with law µ0 and

let µ̂N0 be their empirical measure; denote K̂N = 1
2

∑N−1
i=0 |v0

i |2. Let µ̂Nt be the
empirical measure at time t of the Markov process with generator (1.1) for
the “Kac” model (4.16) and initial condition (v0

0, . . . , v
0
N−1). Let (µt)t>0 be the

deterministic evolution (1.6) for the same model with initial value µ0.

Then for any a > 0, there is a (easily bounded) constant A(a, µ) such that,
for any T > 0, as soon as λ 6 ae−|κ|TN :

lnE
[
1 bKN6Nk1

U
(
λ(µ̂Nt − µt)

)]
6

ln 2 +
e2|κ|Tλ2σ2

2N
+
e2|κ|Tλ3A(a, µ)

N2a3
+
λ2ωT

N
e1(2|κ|T )e2

(
λe2|κ|T `N r/2−1

)
. (6.5)

(∗) Warning, κ is negative.
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6.2 Corollary. For the same model, for any y > 0:

lim
N−→∞

lnE
[
1 bKN6Nk1

U
(
yN1/2(µ̂Nt −µt)

)]
6 ln 2+e2|κ|T σ

2y2

2
+e1(2|κ|T )

ωTy2

2
. (6.6)

6.3 Corollary. Still for the same model, for any x > 0:

lim
N−→∞

P
(
||µ̂Nt − µt|| > xN−1/2

)
6 2 exp

(
−x2

2
[
e2|κ|Tσ2 + e1(2|κ|T )ωT

]). (6.7)

6.4 Remark. As (6.7) is true for any value of k1, we can make k1 approach k in
it, which allows to replace ω by ω0 ··= (21−r − 1)21+2rCr

2kr.

6.2 Optimality

Theorem 6.1 essentially gives a convergence to the continuous limit at rate
N−1/2 with Gaussian control. Qualitatively it is the best result one could hope
for, because it is the same way of convergence as for central limit theorems.
Quantitatively however, is the parameter in the Gaussian bound optimal?

Here we will look at what happens for Theorem 5.1 (Theorem 3.3 exhibits
the same behaviour, but it is harder to see). Through Corollary 5.2, Theo-
rem 5.1 gives some Gaussian bound in an infinite-dimensional frame. Yet its
proof, whose main ingredient is the use of the utility function U , would work
as well in a finite-dimensional setting. So let us imagine that we replace Ḣ−s
byRd and Dµ by the centered normal law with variance Id, denoted byN ; then
σ2 becomes

∫
Rd
|x|2dN (x) = d. In that case µ̂N turns into a random variable

XN on Rd which is centered normal with variance N−1Id, and we get:

P(|XN | > xN−1/2) 6 exp

(
−x

2

2d
+ ln 2 + AN0

1/2N−1/2

)
(6.8)

for some A and N0 not depending on N , so making N −→∞:

N (|X| > x) 6 2e−x
2/2d, (6.9)

whereas the exact result is

N (|X| > x) =
21−d/2

Γ(d/2)

∫ ∞
x

yd−1e−y
2/2dy ≈

x−→∞
e−x

2/2, (6.10)

where “≈” means “having equivalent logarithms”.

So for d > 1 the parameter in the Gaussian bound is underestimeted by
a factor d. Why that? Well, the proof of Theorem 5.1 uses the bound on the
curvature of the utility function U given by Proposition 3.1-6. But as soon as
x is reasonably large, the Hessian of U at x is much more curved in one direc-
tion than in all the other ones, so that Formula (3.15) in Lemma 3.4 becomes
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strongly suboptimal since the factor ||y||2 in it should morally be replaced by
the sole component of the variance of y in the direction along which ∇2U(x) is
most curved.

So the techniques involving U are poor as soon as the dimension in which
the random phenomena occur becomes large. For our particle models we work
in Ḣ−s, whose dimension is. . . infinite! Does that mean that our results are
“infinitely bad”? Actually not, because each increment of the martingale M̂
(see the proof of Theorem 5.1) is determined by the value of one vi, so the
law of this increment may be seen as a probability on Rd. More precisely, the
support of Dµ is isometric to Rd equipped with the distance | · − · |r, whose
Hausdorff dimension is d/r, so that the “effective” dimension of Ḣ−s in our
theorem is d/r.

As a consequence we had better not choose r too close to 0. On the other
hand, the bigger s is, the more regular the test functions in the definition of
||·||Ḣ−s (see Proposition 2.3) are, so the less small-scale details ||·||Ḣ−s catches(†).
So it should be advised to take medium values of r, e.g. r = 1/2.

6.3 A numerical computation

One important side of our work is that it gives non-asymptotic results. The
idea behind it is that, to understand Boltzmann’s evolution, we will not actu-
ally look at N −→∞, but rather take some fixed large N and say that the be-
haviour of the N -particle system for that N is very close to the limit evolution
with very large probability. In particular, think about the case of numerical
simulation: we cannot afford dealing with 1024 particles on our computers!

Here I will compute numerical values for the following case: the collision
kernel is the one of “Kac” model for d = 3 and we take µ0 = 1

2
(δ−1 + δ1). Physi-

cally speaking, it means that we crash together two same-sized sets of frozen
particles with relative speed 2. Then the collisions between particles of dif-
ferents sets will tend to scatter the distribution of velocities of the particles,
which will morally converge to the law (1.8) with k = 1/2 in a few units of
time—this is the behaviour of Boltzmann’s equation (1.6) indeed. The ques-
tion is, which N shall we choose to be almost certain that the evolution of the
particle system will be fairly close to (1.6)?

Say we take r = 1/2 and we want to have ||µ̂NT −µT ||Ḣ−s greater than ε = 10−2

with probability less than q = 10−1 for T = 3. As in our case K̂N 6 Nk almost
surely, we take k1 = k = 1/2. Then one computes the following numerical

(†) Remember however that homogeneous Sobolev spaces have no inclusion relations.
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values, which are all rounded above:

−κ ' 0.600; (6.11)
` ' 0.432; (6.12)
ω ' 0.0933; (6.13)
σ2 ' 0.0398. (6.14)

We choose arbitrarily a = 1; then (5.10) gives A(a, µ) ' 0.0213. We have to
take λ & | ln q|/ε, so let us put λ = 500. For N = 8 · 105 we find by (6.5):

lnE
[
U
(
λ(µ̂Nt − µt)

)]
< 2.692, (6.15)

thus
P
[
||µ̂Nt − µt|| > 10−2

]
< 10−1 (6.16)

by Markov’s inequality.

So with a discrete system of 8 · 105 particles one will much probably find
a quite good approximation of Boltzmann mean field limit by running the
particle system 3 units of time. Now simulating 8 · 105 particles is easy for
today’s computers, which shows that our bounds can actually be useful in
practice. However there is little doubt that the true speed of convergence is
much faster than what our computations suggest.

6.5 Remark. Here we have bypassed the problem of the 1 bKN6Nk1
factor in (6.5)

by a specific argument. How can we do for it in the general case? Well,
merely note that, as soon as one wants to have a result in terms of probability,
they will just have to add P(K̂N > Nk1) to the probability they get forgetting
the indicator. But the event {K̂N > Nk1} is a large deviations event, so as
soon as µ0 has some square-exponential moment its probability will decrease
exponentially with N and thus cause no problem actually.

6.4 Comparison to older results

The usual method to tackle mean field limit problems relies on the concept
of propagation of chaos devised by Kac [12]. Briefly speaking, propagation of
chaos consists in studying the law of the N -particle assembly (v0, . . . , vN−1)
through its finite-dimensional marginals, i.e. in studying the laws of the
(v0, . . . , vk−1)’s for k finite. One says that there is “chaos” when these finite-
dimensional laws tend to product laws u⊗k when N −→ ∞, and the goal is to
prove that, if there is chaos at time 0, then this chaos “propagates” for all t.

Propagation of chaos has been proved by Sznitman [21] for spatially homo-
geneous Boltzmann models, and more recently by Graham and Méléard [11]
for the more general Povzner equation. Actually, proving propagation of chaos
is the same as proving the convergence of empirical distributions of the N -
particle system to some deterministic distribution, but propagation of chaos
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emphasizes the individual behaviour of each particle, which is described by
the nonlinear particle [22]. On the other hand, the finite-dimensional setting
of that method makes that the quantitative results got thanks to it (for in-
stance in [10, 14]) do not translate very well when one tries to control the
difference between µ̂N and µ in some metric space.

My paper was motivated by the reading of [2], in which Bolley, Guillin and
Villani tackle some mean field limit problems in a quantitative way by work-
ing with W1 Wasserstein distances for the empirical measures. They get an
explicit control on the large deviations of the difference between the empirical
measure of the N -particle system and its theoretical limit for positive times.
Yet there are two annoying shortcomings in their work:

• First, it seems to be limited to McKean–Vlasov models, that is, systems
where the interactions between particles are due to forces rather than
collisions. The proofs of [2] indeed fundamentally relie on a coupling
technique (popularized by Sznitman [21]), in which one defines a cou-
pling between the real assembly of particles and a virtual assembly of N
independent nonlinear particles. Such a technique has little relevance
when one deals with collisions, because these events imply two particles
at the same moment each time they occur, so there is no natural way of
coupling with independent particles.

• Secondly, the results of [2] are good for large deviations, but the con-
trol they give for medium deviations is far too poor to get, as we would
wish, some N−1/2 convergence rate. As we tell in §A, that is actually an
intrinsic shortcoming of W1 distances.

After writing my article I discovered some other papers sharing certain
features with mine:

• The microscopic model exposed in this paper is an example of Bird’s
direct simulation Monte-Carlo method [1], whose convergence for the
Boltzmann equation was proved in [25, 17], with explicit estimates on
L1 distance of the marginals.

• The first having looked at the empirical distribution of the particles in
Hilbert spaces to bypass the coupling problems were Fernandez and
Méléard [9], who analysed the fluctuations of the particle distribution
when N −→∞ in a spirit close to uniform central limit theory [8].

• Aldéric Joulin pointed out to me that my convergence theorems could be
interpreted as results of concentration of measure for a Markov process
with positive curvature, according to the geometric notions for Markov
chains introduced by Ollivier in [16]. Hypotheses 1, 2 and 3 of Theo-
rem 3.6 indeed correspond resp. to the hypotheses about the discrete
Ricci curvature κ, the coarse diffusion constant σ(x) and the granularity
σ∞ in Theorem 33 of [16].
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6.5 Uniform in time bounds

The results we have given work for some fixed T , i.e. they control ||µ̂NT −µT ||. It
may be more natural to control supt∈[0,T ] ||µ̂Nt −µt||, i.e. to say that the system is
always close to the Boltzmann mean field limit between times 0 and T , as [2]
does for McKean–Vlasov models. We do not do it here, but note that, as we
have used martingale techniques, getting results valid for all t ∈ [0, T ] could
be easily achieved from the previous work by using stopping times. Actually
for κ 6 0 it would turn out that uniform in time results are not much different
from fixed time results (which is quite logical because then the control on
||µ̂Nt − µt|| is worst for t = T ). For κ > 0 yet, when T is large the maximum of
the difference between µ̂Nt and µt is much less well controlled than its terminal
value, as we already noticed in Footnote (∗) at page 16.

A Why Wasserstein distances cannot yield
N−1/2 convergence

This appendix aims at explaining quickly why, in quite general situations,
the W1 distance cannot yield a N−1/2 rate of convergence for the empirical
distribution of an assembly of N particles to its continuous limit. As it is not
the main matter of this article, I will remain at a heuristic level.

My explanation relies on the transportation interpretation ofW1 distances.
Recall that a coupling between two finite measures of same mass µ and ν on
respective spaces X and Y is a measure π on X×Y whose marginals are resp.
µ and ν, i.e. s.t. π(A × Y ) = µ(A) for all measurable A ⊂ X, resp. π(X × B) =
ν(B). π is also called a transportation plan because it describes a way to
transport a mass distributed according to µ into the mass distribution ν. The
set of couplings between µ and ν is always non-void; we denote it Π(µ, ν).
When X = Y = R

d, for π ∈ Π(µ, ν) we define the transportation cost

I[π] =

∫
(Rd)2

|y − x| dπ(x, y), (A.1)

which represents the total effort you have to put in to transform µ into ν
following the plan π. Then the optimal transportation cost is merely

W1(µ, ν) = inf
π∈Π(µ,ν)

c(π). (A.2)

It is a deep result due to Kantorovitch [13] that Definitions (2.1) and (A.2)
actually coincide. For more details on all that, see [24, §1].

Now, consider aN -particle system whose empirical measure µ̂N is expected
to converge to some density measure µ, say the Lebesgue measure on [0, 1]d,
and look at the Wasserstein distance W1(µ, µ̂N). Let π be a coupling between

27



µ̂N and µ. Write µ̂N = N−1
∑N

i=1 δvi, and call Ai ⊂ Rd the image of N−1δvi by
the transportation plan π. Ai has Lebesgue measure N−1, so its observable
diameter, which by isoperimetry is minimal when Ai is a ball, is at least ∼
N−1/d, therefore

∫
Ai
|v − vi|dµ(v) & N−1 · N−1/d. Thus the total transportation

cost between µ and µ̂N is I[π] =
∑

i

∫
Ai
|v − vi| dµ(v) & N−1/d, and since that

is true for any transportation plan, in the end W1(µ, µ̂N) & N−1/d. But that
is always true, however cleverly you might choose the vi’s (in other words, the
phenomenon we describe is not due to fluctuations but to discretization), so
for d > 2(‡) it is hopeless getting an N−1/2 convergence rate of µ̂N to µ for the
Wasserstein distance.
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Gasmoläkuler. Sitzungsberichte der Akademie der Wissenschaften 66
(1872), 275–370. See [4] for an English translation.

[4] BRUSH, S. Further studies on the thermal equilibrium of gas molecules.
Kinetic theory 2 (1966), 88–175.

[5] CARLEMAN, T. Sur la théorie de l’équation intégrodifférentielle de Boltz-
mann. Acta Math. 60, 1 (1933), 91–146.

[6] CARLEN, E. A., GABETTA, E., AND TOSCANI, G. Propagation of smooth-
ness and the rate of exponential convergence to equilibrium for a spa-
tially homogeneous Maxwellian gas. Comm. Math. Phys. 199, 3 (1999),
521–546.

[7] DESVILLETTES, L. Boltzmann’s kernel and the spatially homogeneous
Boltzmann equation. Rivista di Matematica dell’Universit di Parma 6, 4
(2001), 1–22. Special issue.

[8] DUDLEY, R. M. Uniform central Limit Theorems. No. 63 in Cambridge
Studies in avanced mathematics. Cambridge university Press, 1999.

(‡) For d = 1, Wasserstein distances do typically yield N−1/2 fluctuations, but that case is
physically trivial when you study Boltzmann gases. For the critical dimension d = 2 (for
which the phenomena of discretization and fluctuations have the same order of magnitude
N−1/2), it turns out that the typical rate of convergence of empirical measures is N−1/2 lnN ,
so there is in fact no central limit theorem either.

28
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mogènes. Z. Wahrsch. Verw. Gebiete 66, 4 (1984), 559–592.

[22] SZNITMAN, A.-S. Topics in propagation of chaos. In École d’Été de Prob-
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