
The role of cosmic rays on magnetic field diffusion and

the formation of protostellar discs

M. Padovani, D. Galli, P. Hennebelle, B. Commerçon, M. Joos
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ABSTRACT

Context. The formation of protostellar discs is severely hampered by magnetic braking, as long as magnetic fields remain frozen in
the gas. The latter condition depends on the levels of ionisation that characterise the innermost regions of a collapsing cloud.
Aims. The chemistry of dense cloud cores and, in particular, the ionisation fraction is largely controlled by cosmic rays. The aim
of this paper is to evaluate whether the attenuation of the flux of cosmic rays expected in the regions around a forming protostar is
sufficient to decouple the field from the gas, thereby influencing the formation of centrifugally supported disc.
Methods. We adopted the method developed in a former study to compute the attenuation of the cosmic-ray flux as a function of
the column density and the field strength in clouds threaded by poloidal and toroidal magnetic fields. We applied this formalism to
models of low- and high-mass star formation extracted from numerical simulations of gravitational collapse that include rotation and
turbulence.
Results. For each model we determine the size of the magnetic decoupling zone, where collapse or rotation motion becomes un-
affected by the local magnetic field. In general, we find that decoupling only occurs when the attenuation of cosmic rays is taken
into account with respect to a calculation in which the cosmic-ray ionisation rate is kept constant. The extent of the decoupling zone
also depends on the dust grain size distribution and is larger if large grains (of radius ∼10−5 cm) are formed by compression and
coagulation during cloud collapse. The decoupling region disappears for the high-mass case. This is due to magnetic field diffusion
caused by turbulence that is not included in the low-mass models.
Conclusions. We conclude that a realistic treatment of cosmic-ray propagation and attenuation during cloud collapse may lead to a
value of the resistivity of the gas in the innermost few hundred AU around a forming protostar that is higher than generally assumed.
Forthcoming self-consistent calculations should investigate whether this effect is strong enough to effectively decouple the gas from
the field and to compute the amount of angular momentum lost by infalling fluid particles when they enter the decoupling zone.

Key words. cosmic rays – ISM: clouds – ISM: magnetic fields

1. Introduction

The study of the formation of circumstellar discs around proto-
stars still presents considerable theoretical challenges. Because
of the presence of magnetic fields in the parent molecular clouds
and cores (Crutcher 2012), assuming the strict conservation of
angular momentum during cloud collapse and star formation is
not warranted. In fact, according to recent numerical and ana-
lytical studies, the main effect of a magnetic field entrained by
a collapsing cloud is to brake any rotational motion, at least as
long as the field remains frozen in the gas and the rotation axis of

? Appendices are available in electronic form at
http://www.aanda.org

the cloud is close to the mean direction of the field (e.g. see Galli
et al. 2006; Mellon & Li 2008; Hennebelle & Fromang 2008).
However, discs around Classes I and II young stellar objects are
commonly observed (e.g. Williams & Cieza 2011; Takakuwa
et al. 2012), and there is also some evidence of discs around
Class 0 objects (Tobin et al. 2012; Murillo et al. 2013).

Different mechanisms have been invoked as alleviating the
problem of magnetic braking during cloud collapse: (i) non-
ideal magnetohydrodynamic (MHD) effects (Shu et al. 2006;
Dapp & Basu 2010; Krasnopolsky et al. 2011; Braiding &
Wardle 2012a,b); (ii) misalignment between the main mag-
netic field direction and the rotation axis (Hennebelle & Ciardi
2009; Joos et al. 2012); (iii) turbulent diffusion of the magnetic
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field (Seifried et al. 2012; Santos-Lima et al. 2013; Joos et al.
2013); (iv) flux redistribution driven by the interchange insta-
bility (Krasnopolsky et al. 2012); and (v) depletion of the in-
falling envelope anchoring the magnetic field (Mellon & Li
2009; Machida et al. 2011).

Non-ideal MHD effects, namely ambipolar, Hall, and Ohmic
diffusion, depend on the abundances of charged species and
on their mass and charge. The ionisation fraction, in turn, is
controlled by cosmic rays (CRs) in cloud regions of relatively
high column density (visual extinction Av & 4, McKee 1989)
where star formation takes place. The CR ionisation rate is usu-
ally assumed to be equal to a “standard” (constant) value of
ζH2 ≈ 10−17 s−1, often called the “Spitzer” value (Spitzer &
Tomasko 1968). However, CRs interacting with H2 in a molecu-
lar cloud lose energy by several processes, mainly by ionisation
losses (see Padovani et al. 2009, hereafter PGG09). As a con-
sequence, while low-energy CRs (E . 100 MeV) are possibly
prevented from entering a molecular cloud because of stream-
ing instability (Cesarsky & Völk 1978), high-energy CRs are
slowed down to energies that are relevant for ionisation (ion-
isation cross sections for protons and electrons colliding with
H2 peak at about 100 keV and 0.1 keV, respectively).

PGG09 show that ζH2 can decrease by about two orders of
magnitude from “diffuse” clouds of column density ∼1021 cm−2

to “dense” clouds and massive envelopes with column densities
of ∼1024 cm−2. A similar attenuation can in principle take place
during the process of cloud collapse, resulting in a decrease in
ζH2 in the inner region of a core where the formation of a pro-
tostellar disc is expected to occur. A further attenuation is pre-
dicted by the toroidal field component generated by rotation that
increases the particles’ path length and enhances the losses by
magnetic mirroring (Padovani & Galli 2011, hereafter PG11). A
reduced CR ionisation rate results in a more efficient ambipo-
lar diffusion, which may help to alleviate the magnetic braking
problem (Mellon & Li 2009). The aim of this paper is to evalu-
ate how variations in ζH2 can affect the resistivity of the gas, and,
eventually, how CRs influence the dynamics of collapse and the
formation of a circumstellar disc.

A full treatment of this problem, in which the propaga-
tion of CRs is computed self-consistently with the evolution
of density and magnetic field, following at the same time the
formation and destruction of chemical species, would be pro-
hibitively time-consuming from a numerical point of view. Our
approach is therefore a simpler one. First, (a) we sacrifice the
self-consistency by taking snapshots at particular evolutionary
times of magnetic field configurations and density distributions
from ideal MHD simulations that do not include any resistiv-
ity of the gas. Second, (b) we propagate CRs in these configu-
rations, and compute the spatial distribution of the CR ionisa-
tion rate. Then (c) we build a simplified chemical model (that
can be used as a fast subroutine in any dynamical code) to ap-
proximately evaluate the chemical composition at each spatial
position using as input the distribution of CR ionisation rates
determined at the previous step. Finally, (d) we compute the
microscopic resistivities (ambipolar, Hall, and Ohmic) and com-
pare the time scale of magnetic field diffusion tB to the dynam-
ical time scale tdyn at each point in the model to determine the
region of magnetic decoupling, where tB < tdyn. In this region,
the dynamics of the gas is unimpeded by magnetic forces, and
whatever angular momentum is carried by fluid particles cross-
ing its border, it will be conserved in its interior. In particular,
centrifugally supported discs can form inside this region (but
not outside). Clearly, the assumption of ideal MHD on which
the simulations are based becomes invalid (by definition) inside

the decoupling region. In this sense, our calculation is not fully
self-consistent. However, our aims in this preliminary investi-
gation are: first, to show whether the extent of the decoupling
region can be sufficiently large to allow the formation of a re-
alistic disc (at least ∼10 AU in radius); second, to compare the
size of this region obtained with the accurate treatment of CR at-
tenuation with column density and magnetic field developed in
our previous studies and with a constant value of ζH2 , as usually
assumed.

The paper is organised as follows. In Sect. 2, we provide a
description of the model of CR propagation as well as of the
numerical simulations adopted. In Sect. 3 we describe the basic
features of the chemical code that we employed to compute the
ionisation fractions, exploring the effect of different grain size
distributions on abundances. In Sect. 4 we calculate the diffusion
coefficients, and, in Sect. 5, we use them to calculate the corre-
sponding diffusion time scales. Finally in Sect. 6 we summarise
our conclusions. A full description of the chemical code is given
in Appendix A. The dependence of the diffusion coefficients on
the grain size distribution is examined in detail in Appendix B.
Finally, in Appendix C we describe the contribution to the total
diffusion time due to the different diffusion processes.

2. Description of the models

PG11 showed that the magnetic fields of dense molecular cloud
cores (modelled as equilibrium configurations) can influence the
penetration and propagation of CRs from the intercloud medium
to the core centre, affecting the spatial distribution of the ion-
isation rate. In fact, since charged particles spiral around field
lines, CRs propagating in complex magnetic configuration “see”
a higher column density than particles moving on straight tra-
jectories, and therefore suffer larger energy losses. In addition,
Padovani et al. (2013, hereafter PHG13) found that the mir-
roring effect becomes stronger when the toroidal field compo-
nent is larger than about 40% of the total field, in the cen-
tral 300–400 AU where density is higher than 109 cm−3. This
makes the CR ionisation rate, ζH2 (hereafter we refer specifi-
cally to the ionisation of H2), to drop well below 10−18 s−1 down
to about 10−20 s−1, roughly equal to the ionisation level arising
from the decay of long- and short-lived radionuclides within pro-
toplanetary discs (Umebayashi & Nakano 1981; Cleeves et al.
2013). PHG13 performed a numerical study of the propagation
of CRs in collapsing clouds using several snapshots of numer-
ical simulations, adopting the formalism developed in PG11.
They found that the value of ζH2 can be orders of magnitude
lower than the standard “Spitzer” value in the inner region of
a core where the formation of a protostellar disc is expected to
take place. From their numerical results, they derived an approx-
imate analytical expression to compute the CR ionisation rate
taking both column density and magnetic field effects into ac-
count. This formula provides a fast and efficient way to calculate
the distribution of ζH2 that can be employed to estimate the ion-
isation fractions of charged particles in order to determine the
diffusion coefficients.

In the following, we compute the distribution of ζH2 for
three different configurations obtained from numerical simula-
tions performed with the AMR code RAMSES1 (Teyssier 2002;
Fromang et al. 2006) with the goal to compute the diffusion time
scales in the collapse region. The first two cases are low-mass

1 RAMSES simulations were analysed using PyMSES (Labadens et al.
2011).
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Table 1. Parameters of the simulations described in the text.

Case λ αB,J t Min MF Mdisc
[rad] [kyr] [M�] [M�] [M�]

L1 5 0 0.824 1 – –
L2 5 π/2 10.756 1 0.46 0.28
H ∼2 no initial rotation 6.000 100 1.24a 0.87a

Notes. Columns: non-dimensional mass-to-flux ratio λ, initial angle be-
tween the magnetic field direction and the rotation axis αB,J, time after
the formation of the first Larson’s core t (core formed in the centre of the
pseudo-disc with n & 1010 cm−3 and r ∼ 10–20 AU), initial mass Min,
mass of the protostellar core MF and of the disc Mdisc. (a) This value
refers to the densest fragment formed.

models from Joos et al. (2012), while the third one represents a
high-mass model from Commerçon et al. (in prep.). Table 1 sum-
marises the parameters. We assumed the dependence of ζH2 on
column density given by modelM in PHG13 (see their Fig. 1).
This model is obtained by adopting the CR interstellar proton
and electron spectra presented in Webber (1998) and Strong
et al. (2000), respectively.

2.1. Low-mass models

Models L1 and L2 have been already used by PHG13 to calcu-
late maps of the CR ionisation rate (see their Figs. 7 and 10)
and they represent two extreme situations: one snapshot taken at
the beginning of the simulation and one at the end (L1 and L2,
respectively). These ideal MHD numerical simulations describe
the collapse of a rotating core with initial mass of 1 M� and a
density profile given by a modified power-law,

n(r) =
n0

1 + (r/r0)2 , (1)

where n0 = 7.8 × 106 cm−3 and r0 = 4.68 × 10−3 pc accord-
ing to observations (André et al. 2000; Belloche et al. 2002).
The ratio of thermal-to-gravitational energy is about 0.25 and
the ratio of rotational-to-gravitational energy ratio is about 0.03.
Model L1 is a parallel rotator, i.e. the rotation axis is aligned to
the magnetic axis, defined as the average direction of the field
(αB,J = 0). No rotationally supported disc has formed at the time
of this particular snapshot (t = 0.924 kyr after the formation
of the first Larson’s core). In this case, ζH2 decreases to values
of 2−4× 10−18 s−1 in the inner 100–200 AU radius (see Fig. 7 in
PHG13). Model L2 is a perpendicular rotator (αB,J = π/2) and
a late-time configuration (t = 10.756 kyr), showing a Keplerian
disc perpendicular to the rotation axis. Here ζH2 drops to very
low values, down to 2 × 10−21 s−1 in the inner few tens of AU
and it is lower than 10−18 s−1 in a region of about 200 AU radius
(see Fig. 10 in PHG13). Clearly, at these low levels, CRs com-
pete with short-lived radionuclides in determining the ionisation
fraction (see e.g. Cleeves et al. 2013).

2.2. High-mass model

Model H has similar initial conditions as in Commerçon
et al. (2011). It consists in a 100 M� uniform temperature (T =
10 K) dense core, with the same density profile shape as in mod-
els L1 and L2 (n0 = 1.2 × 107 cm−3, r0 = 1.87 × 10−2 pc, and a
factor of 10 in density contrast between the centre and the bor-
der of the sphere). The turbulent-to-gravitational energy ratio is

Fig. 1. CR ionisation maps and iso-density contours (black solid lines)
for the case H in Table 1. Left panels: entire computational domain
while right panels: a zoom in the inner region. Upper and lower panels:
two perpendicular planes both containing the density peak. Labels show
log10 [n/cm−3].

about 0.2, corresponding to an initial Mach number of 7, and the
thermal-to-gravitational energy ratio is about 0.01. Following
Hennebelle et al. (2011) and Commerçon et al. (2011), we apply
initial perturbations to the velocity field only to account for ini-
tial turbulence in the core, which is not driven at large scales af-
ter the start of the calculations. There is no global initial rotation
in the model, namely the angular momentum is built from the
initial velocity fluctuations. The initial magnetic field is aligned
with the x-axis and its intensity is proportional to the column
density through the cloud.

In the following we focus on the densest fragment formed in
the calculations whose properties are summarised in Table 1 and
we discuss the results only for the (z, x) plane, since it is close
to the disc plane. As model L2, model H shows ζH2 ' 10−21 s−1

in the inner few tens of AU, but in the latter case the region with
ζH2 . 10−19 s−1 is even larger, with a mean radius of 150 AU. At
a radius of 300 AU ζH2 increases only to up to 5×10−18 s−1, while
at the same radius model L2 has already reached CR ionisation
rate values larger than 10−17 s−1. This can be explained by noting
the larger extent of the region with high density in the high-mass
case with respect to the low-mass cases (see Fig. 1).

3. Abundances of charged species

To compute the ionisation fraction we adopt a “minimal” chem-
ical network (a simplified version of more extensive networks,
like e.g. in Umebayashi & Nakano 1990) that computes the
steady-state abundance of H+, H+

3 , a typical molecular ion mH+

(e.g. HCO+), a typical “metal” ion M+ (e.g. Mg+), electrons
and dust grains as a function of the H2 density, temperature and
CR ionisation rate ζH2 at each spatial position in our models.
For each species i, the abundance is given by x(i) ≡ n(i)/n(H2).
Neutral hydrogen is assumed to be in the form of H2, namely
n(H) = 2n(H2). The fraction of charged vs. neutral grains is
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computed in a simplified way: if the density of electrons is
higher than the density of grains, all grains are assumed to carry
one electron; otherwise, the fraction of negatively charged grains
is determined by charge balance with the positively charged
species, and the residual number of grains is assumed to be neu-
tral. Positively charged grains as well as multiple charged grains
are ignored for simplicity. A detailed description of the chemi-
cal network adopted and a summary of the reactions included is
given in Appendix A.

As a benchmark test, we compared our results with those
obtained with the publicly available code ASTROCHEM2, that
includes about a thousand of reactions, finding comparable re-
sults within a factor of 2 to 5. The use of our simplified code
is justified by the fact that it allows the calculation of the ion-
isation fractions for each point of our models, in about 0.7 ms
on average against about 20 s needed by ASTROCHEM. Thus,
our minimal chemical network, combined with the fitting for-
mula given by Eqs. (19)–(24) of PHG13 to compute ζH2 (N, B),
is an effective tool to rapidly compute the fractional abun-
dances and diffusion coefficients at each time step in non-ideal
MHD simulations.

3.1. Effects of the grain size distribution

Grains play a decisive role in determining the degree of coupling
between the gas and the magnetic field. In fact, the electrical re-
sistivity of the gas depends on the abundance and the size dis-
tribution of charged grains: larger grains have a smaller Hall pa-
rameter (see Sect. 4) than smaller grains, and therefore are less
coupled to the magnetic field. To cover all possible situations,
we run our chemical model for three different grain size distribu-
tion. In particular, we fix the maximum size, amax = 3× 10−5 cm
(Nakano et al. 2002), while we vary the minimum grain size:
(i) amin = 10−5 cm, representative of large grains formed by
compression and coagulation during the collapse (Flower et al.
2005); (ii) amin = 10−6 cm, the minimum grain radius of a MRN
size distribution (Mathis et al. 1977) that gives the same grain
opacity found by Flower et al. (2005); and (iii) amin = 10−7 cm,
a typical size for very small grains.

In Fig. 2 we compare the abundances computed with our
minimal chemical network assuming a constant ζH2 = 5 ×
10−17 s−1 (hereafter “constant-ζ”) with those obtained from the
spatially-resolved values of ζH2 computed by PHG13 (hereafter
“variable-ζ”). The comparison is shown only for the model L2
(models L1 and H give similar results). As a general remark,
independently of amin, the variable-ζ model gives larger abun-
dances of charged species than the constant-ζ model at n .
106 cm−3. Conversely, at higher densities, abundances from
the variable-ζ model are well below those resulting from the
constant-ζ model. This happens because the variable-ζ model
is higher than the constant-ζ at n . 106 cm−3, while it quickly
decreases below ζH2 = 5 × 10−17 s−1 at higher densities.

3.2. Dependence of chemical abundances on ζH2

The relation between densities of charged species and neutrals is
usually expressed in the form

n(i) ∝ (ζH2 )k′ , (2)

with k′ ≈ 1/2 (e.g. see Ciolek & Mouschovias 1994, 1995).
However, k′ can differ from 1/2 depending on the grain size
2 http://smaret.github.io/astrochem/

Fig. 2. Ionisation fractions for model L2 as a function of the volume
density computed with a constant CR ionisation rate ζH2 = 5× 10−17 s−1

(constant-ζ, solid lines) and with a spatially resolved ζH2 (variable-ζ,
dots). The three panels are for amin = 10−5 cm (top), amin = 10−6 cm
(middle) and amin = 10−7 cm (bottom).

(except for molecular ions). Figure 3 shows the dependence of
the chemical species computed with our minimal model as a
function of ζH2 . As shown by the figure, in the case of large
grains the abundance of electrons and metal ions follows Eq. (2)
with k′ = 1/2, while negatively charged grains are independent
of ζH2 . For small grain size k′ increases towards 1 and 1/2 for
electrons and negative grains, respectively, whereas metal ions
become independent of ζH2 . It is worth noting that in the case
of strong depletion, H+

3 and H+ are the most abundant species
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Fig. 3. Ionisation fractions as a function of the CR ionisation rate at
density n(H2) = 106 cm−3 assuming large grains (amin = 10−5 cm, solid
lines) and small grains (amin = 10−7 cm, dotted lines). Dashed grey lines
show the trend for xi ∝ ζ

H2 and xi ∝ (ζH2 )1/2.

and both x(H+
3 ) and x(H+) are proportional to ζH2 irrespective of

grain size and density.

4. Diffusion coefficients

The electrical resistivity of a plasma is a measure of the abil-
ity of the magnetic field and the charges attached to it to move
(diffuse) with respect to the neutrals and/or other charges. In the
weakly ionised gas that characterise dense cores, the resistivity
is dominated by ambipolar diffusion, a process by which charged
particles develop a drift velocity with respect to the neutral com-
ponent, and the Lorentz force acting on the charges is conveyed
to the neutral gas through collisions.

For each charged species i in a sea of neutrals (molecular
hydrogen), the parameter gauging the relative importance of the
Lorentz and drag forces is the Hall parameter (e.g. Wardle & Ng
1999) defined by

βi,H2 =

(
ZieB
mic

)
mi + mH2

µmHn(H2)〈σv〉i,H2

, (3)

where mi and Zie are the mass and the charge of the species i, re-
spectively, and µ = 2.36 is the molecular weight for the assumed
fractional abundances of H2 and He. The momentum transfer
rate coefficients 〈σv〉i,H2 have been parameterised as a function
of temperature and relative speed in Pinto & Galli (2008).

Drifts of charged species with respect to neutrals determines
different regimes for the magnetic diffusivity. The induction
equation then becomes

∂B
∂t

+ ∇ × (B × U) = ∇ ×

{
ηO∇ × B + ηH(∇ × B) ×

B
B

(4)

+ ηAD

[
(∇ × B) ×

B
B

]
×

B
B

}
,

where U is the fluid velocity and B the magnetic field vector.
Ambipolar, Hall, and Ohmic resistivities (ηAD, ηH, and ηO, re-
spectively) can be written as a function of the parallel (σ‖),

Fig. 4. Density contours (solid blue lines with labels indicating
log10[n/cm−3]) superposed to the velocity field (red arrows). The shaded
areas show regions dominated by ambipolar (white), Hall (grey), and
Ohmic (black) diffusion. The resistivities are calculated for three differ-
ent values of amin and for the three models L1, L2, and H.

Pedersen (σP) and Hall (σH) conductivities (e.g. see Wardle
2007; Pinto et al. 2008)

ηAD =
c2

4π

 σP

σ2
P + σ2

H

−
1
σ‖

 , (5)

ηH =
c2

4π

 σH

σ2
P + σ2

H

 , (6)

ηO =
c2

4πσ‖
, (7)

which are defined by

σ‖ =
ecn(H2)

B

∑
i

Zixi βi,H2 , (8)

σP =
ecn(H2)

B

∑
i

Zixiβi,H2

1 + β2
i,H2

, (9)

σH =
ecn(H2)

B

∑
i

Zixi

1 + β2
i,H2

· (10)

In general, the ambipolar resistivity term controls diffusion in
low density regions (nH2 . 108−109 cm−3), whereas Hall diffu-
sion dominates at intermediate densities (108−109 cm−3 . nH2 .
1011 cm−3) and Ohmic dissipation sets in at even higher den-
sities (nH2 & 1011 cm−3), see Umebayashi & Nakano (1981).
However, the extent to which a diffusion process dominates over
the others hinges on several factors, one of which is the assumed
grain size distribution. To show this effect, we computed the
ionisation fractions using the values of ζH2 for the three mod-
els (L1, L2, and H) and we compared the spatial distribution of
the corresponding resistivities varying amin. Background colours
in Fig. 4 show the predominant diffusion mechanism. The dis-
tributions with amin = 10−5 and 10−7 cm lead to similar results,
independently on the distribution of ζH2 . This can be explained
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by looking at the trend of the different resistivity contributions as
a function of the grain size and n(H2) (see Appendix B). In fact,
the ambipolar diffusion term does not increase monotonically
with grain radius but, at densities of 108−109 cm−3, it shows an
absolute minimum around amin = 10−6 cm, while the Hall term
continues to grow. At the highest densities the Ohmic term pre-
vails, except for model L1. The Hall term can play an important
role down to densities of about 108 cm−3 for amin = 10−6 cm.

5. Diffusion time scales

The drift velocity of the magnetic field can be represented by
the velocity of the charged species, which are frozen with field
lines, with respect to neutrals. From the comparison of this ve-
locity with the fluid velocity, it is possible to assess the degree
of diffusion of the field and then to estimate the size of the re-
gion where gas and magnetic field are decoupled. In principle, a
more direct estimate of the reduction of magnetic braking result-
ing from a decrease in the CR ionisation rate would come from a
comparison between the magnetic braking time with the dynam-
ical time of the flow. However, a simple estimate of the former
is not straightforward, as it depends crucially on the field mor-
phology, strength, and relative orientation of the average field
direction and the cloud’s angular momentum. For this reason,
we prefer to present a comparison, at each spatial position at a
given time step, between the diffusion time of the field and the
dynamical time of the flow as defined in the following.

The magnetic field drift velocity UB can be written as a func-
tion of resistivities (Nakano et al. 2002), allowing to isolate the
ambipolar (AD), Hall (H), and Ohmic (O) contributions, namely

UB = UAD + UH + UO, (11)

where

UAD =
4π ηAD

cB2 j × B, (12)

UH =
4π ηH

cB3 ( j × B) × B, (13)

UO =
4π ηO

cB2 j × B (14)

and

UB =
4π
cB2

[
(ηAD + ηO) j × B + ηH ( j × B) ×

B
B

]
, (15)

where j = (c/4π)∇×B is the current density. Thus, the diffusion
time of the magnetic field, tB, can be written as a function of the
time scales associated to the three diffusion processes,

1
tB

=
1

tAD
+

1
tH

+
1
tO
, (16)

where tk = R/Uk (k = AD,H,O) and R a typical length scale of
the region (in the following at each point we take R equal to the
distance from the density peak). The diffusion time of the mag-
netic field can then be compared to the time scale of evolution
of the fluid (for example, Nakano et al. 2002 compare tB to the
free-fall time of a spherical homogeneous cloud). In this work
we define the dynamical time scale of the cloud as tdyn = R/U,
where U is the fluid velocity, including both infall and rotation.
In regions where tB < tdyn the magnetic field is partially decou-
pled and therefore has less influence on the gas dynamics while,
if tB > tdyn, diffusion is not efficient enough and the magnetic

Fig. 5. Diffusion time contours (white solid lines) evaluated with con-
stant ζH2 = 5× 10−17 s−1 (left column) and ζH2 from model L1 in Table 1
(right column) compared with dynamical time contours (black dashed
lines) for three different values of the minimum grain size. Labels show
log10(t/yr).

field remains well coupled to the gas. To stress the importance
of properly taking the propagation of CRs inside a molecular
cloud into account, we also compare the dynamical time with
the diffusion time computed in the constant-ζ case assuming
ζH2= 5 × 10−17 s−1 (hereafter tB,ζ−const), and in the variable-ζ
case, taking ζH2 from PHG13 (hereafter tB,ζ−var).

5.1. Low-mass models

Figure 5 shows contours of diffusion and dynamical time scales
for the aligned rotator model L1. Although the disc is not formed
at this early stage (t = 0.824 kyr), for amin = 10−5 cm in
the variable-ζ case the magnetic diffusion time becomes shorter
than the dynamical time in a central region with a radius of
about 20 AU. For smaller grains, tB,ζ−var is always larger than tdyn
and no decoupling zone is formed. The diffusion time computed
in the constant-ζ case is about one order of magnitude longer.
Even at later times (t = 11.025 kyr), Joos et al. (2012) find no
disc formation for this aligned rotator simulation. However, the
low ionisation rate found by PHG13 in a small central region of
density higher than ∼109 cm−3 (see their Fig. 8) can presumably
promote the formation of a centrifugally supported disc via en-
hanced Ohmic and Hall diffusion, at least in the case of large
grains.
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Fig. 6. Diffusion time contours (white solid lines) evaluated with con-
stant ζH2 = 5× 10−17 s−1 (left column) and ζH2 from model L2 in Table 1
(right column) compared with dynamical time contours (black dashed
lines) for three different values of the minimum grain size. Labels show
log10(t/yr).

A more interesting case is shown by the model L2 (Fig. 6),
where a protostellar disc of radius ∼200 AU has formed. While
tB,ζ−const is always larger than tdyn, tB,ζ−var is lower than tdyn in-
side a decoupling zone whose size depends on amin. Magnetic
decoupling is favoured by large grains (amin = 10−5 cm) that
are expected to form by coagulation of smaller grains during
the collapse. In particular, the lower left panel shows that in
the inner region with a radius of about 50 AU the gas expe-
riences collapse while the magnetic field diffuses. The region
of decoupling shrinks with decreasing amin, but even with the
smallest amin = 10−7 cm the decoupling occurs inside a region
of about 20 AU of radius. This comparison definitely proves
that CRs play a crucial role in determining the protostellar col-
lapse time scale. In fact, the correct evaluation of the CR ionisa-
tion rate as a function of density and magnetic field allows the
diffusion time to decrease up to three order of magnitudes. In
Appendix C we also show separately the contribution to tB re-
sulting from ambipolar, Hall, and Ohmic diffusion, respectively.

5.2. High-mass model

The high-mass case (Fig. 7) shows a similar behaviour to
model L2, but in the case of amin = 10−5 cm, the decoupling
between gas and field is allowed in a even larger region, of

Fig. 7. Diffusion time contours (white solid lines) evaluated with con-
stant ζH2 = 5 × 10−17 s−1 (left column) and ζH2 from model H in Table 1
(right column) compared with dynamical time contours (black dashed
lines) for three different values of the minimum grain size. Labels show
log10(t/yr).

about 100 AU of radius where both tB,ζ−var and tB,ζ−const are lower
than tdyn. Decreasing the grain size, the region of decoupling be-
comes narrower and vanishes for amin = 10−7 cm. The lack of a
decoupling region in this high-mass case is at variance with the
low-mass case discussed in the previous Section. This depends
on the field diffusing faster in the high-mass case owing to the
turbulent nature of the flow, as already stressed by Hennebelle
et al. (2011) and Joos et al. (2013). This diffusion is largely due
to numerical effects associated to the finite spatial resolution of
the simulation. This “numerical” field diffusion results in a re-
duced strength of the magnetic field with respect to the (non-
turbulent) low-mass case, and this in turn makes the microscopic
resistivity smaller (especially ambipolar diffusion, which is pro-
portional to B2). In this case, the microscopic resistivity is not
sufficient to produce a significant decoupling region. Of course,
if turbulence actually affects the field diffusion, the microscopic
resistivity is not relevant.

6. Conclusions

In this paper we investigated the role of CRs in the formation of
protostellar discs, using the results of PHG13 to evaluate CR ion-
isation rate in collapsing low-mass clouds accounting for both
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column density and magnetic effects. We developed a simple
chemical code based on a minimal set of reactions to calculate,
at each position in space at any given time, the abundances of the
charged species, the corresponding electric resistivities, and the
times scales associated to the main magnetic diffusion processes
(ambipolar, Hall, and Ohmic). We applied this formalism to se-
lected snapshots of numerical MHD simulations of the collapse
of low- and high-mass clouds. Comparing the magnetic diffu-
sion and the dynamical time scale, we determined the extent of
the area where the gas is dynamically decoupled from the field.
Inside this region, field freezing is invalid, and magnetic braking
is ineffective.

We performed our calculations in two cases: assuming a spa-
tially uniform CR ionisation rate of ζH2 = 5 × 10−17 s−1, and
adopting the formalism of PHG13 to evaluate the attenuation of
CRs in a magnetised cloud. We found that the ionisation fraction
is significantly lower in the second case, and therefore the cou-
pling with the magnetic field is weaker than usually assumed in
the central region of a collapsing cloud. In particular:

1. For model L2, a late-time snapshot of the collapse of a low-
mass cloud with mean magnetic field perpendicular to the
rotation axis, a decoupling zone of radius of 50–100 AU
around the central protostar is found in the case of vari-
able ζH2 , but not when ζH2 is assumed constant. This size
compares well with the size of protostellar discs. This
stresses the importance of accounting for CR attenuation
when computing ionisation fractions.

2. No decoupling zone is found in model L1, an early time
snapshot of the collapse of a low-mass cloud with aligned
field and rotation axis. In this model, the time scale of field
diffusion remains longer than the dynamical time scale ev-
erywhere, either for a uniform or attenuated CR ionisation
rate. In this case, the relatively modest increase in the density
and field strength by compression are insufficient to attenu-
ate the CR flux to levels low enough to produce significant
decoupling.

3. A decoupling zone of size ∼100 AU is also found in the
case of model H, a snapshot from a typical high-mass col-
lapse simulation. However, its size becomes smaller for
smaller grains, and disappears altogether for grains smaller
than 10−6 cm.

Although the models adopted do not represent a time sequence,
they nevertheless suggest that a decrease in the ionisation and/or
an increase in the resistivity occurs in the innermost region of
a cloud some time after the onset of collapse, but not earlier.
In fact, the conditions for a substantial increase in the magnetic
diffusion time are that the field is considerably twisted (com-
pare the late-time misaligned model L2 to the early-time aligned
model L1) and that dust grains had time to grow by coagulation
(compare the upper and lower panels of Figs. 5–7). It is tempt-
ing to speculate that large, 100 AU-size discs are only allowed
to form at a later stage when the powerful magnetic brake on the
infalling gas has been relieved by either (or a combination) of
these effects.

Other results of our study are:

1. The dominant diffusion processes are ambipolar and Hall
diffusion, with Ohmic resistivity becoming important only at
the highest densities reached in our models (n & 1011 cm−3),
where ηO is a factor of few larger than ηAD and ηH, (see black
regions in Fig. 4). In general, ambipolar and Hall diffusion
are comparable over the innermost few hundred AU around
a forming protostar. Thus, Hall diffusion should not be ne-
glected in non-ideal MHD collapse calculations. However,

the region where a diffusion process dominates over the oth-
ers depends sensitively on the grain size distribution. In fact,
while Hall and Ohmic resistivities have a monotonic de-
pendence on the grain size (all else being equal), ambipo-
lar diffusion has a minimum for a mean grain radius of
about 1−3 × 10−6 cm especially at high densities.

2. In general, the size of the decoupling zone decreases for
smaller grain size. The maximum grain size assumed here,
(amin = 10−5 cm), is likely a realistic value for the condi-
tion expected in disc-forming regions, where larger grains
are predicted to form by compression and coagulation of
smaller grains. Both Models L2 and H, referring to low- and
high-mass cases, respectively, predict the formation of a pro-
tostellar disc, but for model H the decoupling region disap-
pears for smaller grains (amin = 10−7 cm), since the magnetic
field becomes weaker.

3. The dependence of the fractional abundances of charged
species on the CR ionisation rate may differ from the usually
assumed

√
ζH2 dependence. Our minimal chemical model

shows that depending on the grain size distribution, the abun-
dance of several species can scale as ζH2 or become indepen-
dent on ζH2 , and in general the dependence is not the same
for all charged species. Thus, care should be taken when the
ionisation fraction is scaled with the CR flux.

To summarise, we demonstrated that a correct treatment of
CR propagation can explain the occurrence of a decoupling re-
gion between gas and magnetic field that in turn affects the disc
formation. We emphasise, however, that our calculations are not
strictly self-consistent, because we computed microscopic resis-
tivities using the density and magnetic field strength obtained
from ideal MHD simulations. If diffusion processes were in-
cluded self-consistently in the numerical simulation itself, the
line twisting would be presumably reduced. This would attenu-
ate the effect of cosmic-ray mirroring, and the decrease in ζH2

would not be so strong as found in this paper. In this sense,
our study should be considered a proof of concept showing
how a correct evaluation of ζH2 can affect the protostellar disc
formation.
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Appendix A: Chemical model

In this Appendix we describe the “minimal” chemical model
introduced in Sect. 3 to compute the ionisation fraction. The
charged species considered are H+, H+

3 , molecular ions mH+

(e.g. HCO+), “metal” ions M+ (e.g. Mg+), electrons e, and neg-
atively charged dust grains, whereas the neutral species are H2,
heavy molecules m (e.g. CO), metal atoms M, (e.g. Mg) and neu-
tral grains. Charged and neutral grains are collectively indicated
as g. We indicate with x(i) the abundance of each species i with
respect to H2. The abundance of the neutral species is fixed. In
particular, we assume x(m) ' 6× 10−4 and x(M) ' 4× 10−8. All
rate coefficients are estimated at T = 10 K.

A.1. Minimal chemical network

Protons are produced by CR ionisation of H2 at a rate εζH2 , with
ε ' 0.05 (Shah & Gilbody 1982). They are mainly destroyed by
charge transfer (CT) with molecules (at a rate β ' 10−9 cm3 s−1)
and by recombination on grains (at a rate αgr, see Eq. (A.8))

εζH2 n(H2) = [βn(m) + αgrn(g)]n(H+). (A.1)

The formation of H+
3 is driven by CR ionisation of H2 at a rate

(1− ε)ζH2 , while destruction is due to CT with heavy molecules,
dissociative recombination (DR, at a rate αdr ' 10−6 cm3 s−1),
and recombination on grains

(1 − ε)ζH2 n(H2) = [βn(m) + αdrn(e) + αgrn(g)]n(H+
3 ). (A.2)

The formation of molecular ions mH+ occurs by CT of H+
3 and

heavy molecules, while destruction occurs by DR and recombi-
nation on grains

βn(H+
3 )n(m) = [αdrn(e) + αgrn(g)]n(m). (A.3)

Metal ions are formed by CT with H+
3 and mH+, and destroyed

by recombination with free electrons and on grains

βn(M)[n(H+
3 ) + n(mH+)] = [αrecn(e) + αgrn(g)]n(M+). (A.4)

Note that CT with metal atoms can be neglected with respect to
DR if x(e) � (β/αdr)x(M) ' 10−3x(M).

Dust grains are assumed to be negatively charged
(charge −1) or neutral. The total number density of grains is ob-
tained from the MRN size distribution (Mathis et al. 1977)

dn(g)
da

= Ca−3.5, (A.5)

between a minimum (amin) and a maximum (amax) grain radius
(see also Sect. 3.2). The normalisation constant C is obtained by
imposing that the mass density of grains is equal to a fraction
q = 0.01 of the gas density. We assume that grains are spherical
and have density ρg = 2 g cm−3 (Flower et al. 2005). For amax �

amin we obtain

C =
3qmH

4πρga0.5
max

n(H2). (A.6)

Under these assumptions, the number density of grains is

n(g) =
3qmH

10πρga0.5
maxa2.5

min

n(H2), (A.7)

and is strongly dependent on amin.

The coefficient of recombination of positive ions on nega-
tively charged grains was computed by Draine & Sutin (1987)
assuming the MRN size distribution,

αgr =
10
3

e2amin

(
8π

mikT

)1/2 [
1 +

3kTamin

2e2 (1 − ψ)
]

(A.8)

= 1.6 × 10−7
(

amin

Å

) ( T
10 K

)−1/2

×

[
1 + 3.6 × 10−4

(
amin

Å

) ( T
10 K

) (1 − ψ
4

)]
,

where ψ is a numerical coefficient equal to −2.5 for an e–H+

plasma and −3.8 for a heavy-ion plasma. For simplicity, we
adopt the same value of αgr for all positively charged ions, as-
suming a typical ion mass mi = 25mH. The actual value of αgr is
larger by a factor 5 and 3 for H+ and H+

3 , respectively.

A.2. Evaluation of the ionisation fractions

The equation of charge neutrality is

n(g) + n(e) = n(H+) + n(H+
3 ) + n(mH+) + n(M+). (A.9)

Equations (A.1)–(A.4) then become

x(H+) =
εA

q(m) + rx(g)
, (A.10)

x(H+
3 ) =

(1 − ε)A
q(m) + rx(g) + x(e)

, (A.11)

x(mH+) =
(1 − ε)A

[rx(g) + x(e)][q(m) + rx(g) + x(e)]
q(m), (A.12)

x(M+) =
(1 − ε)A

[rx(g) + sx(e)][rx(g) + x(e)]
q(M), (A.13)

where we have defined

A =
ζH2

n(H2)αdr
, q(m) =

βx(m)
αdr

, q(M) =
βx(M)
αdr

,

r =
αgr

αdr
, s =

αrec

αdr
· (A.14)

Thus, the equation of charge neutrality

x(g) + x(e) = x(H+) + x(H+
3 ) + x(mH+) + x(M+), (A.15)

becomes

x(g) + x(e) =
εA

q(m) + rx(g)
+

(1 − ε)A
rx(g) + x(e)

+
(1 − ε)Aq(M)

[rx(g) + sx(e)][rx(g) + x(e)]
· (A.16)

We solve Eq. (A.16) as a cubic equation for x(e) assuming that
all grains have charge −1. When x(e) becomes negative, we set
x(e) = 0 and we solve Eq. (A.16) for x(g).

Appendix B: Dependence of diffusion coefficients
on grain radius

In this Appendix we compute the resistivities using Eqs. (5)–(7)
varying the minimum radius of the grain size distribution and
fixing the H2 density to evaluate the sensitivity of the diffusive
terms to the grain size. For the magnetic field strength we assume
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Fig. B.1. Ambipolar (upper panel), Hall (middle panel), and Ohmic
(lower panel) diffusion coefficients as a function of the mean grain
radius computed at different molecular hydrogen densities: 105 (thick
solid line), 106 (thick dashed line), 107 (thick dash-dotted line), 108

(dotted line), 109 (thin solid line), 1010 (thin dashed line), 1011 cm−3

(thin dash-dotted line), and 1012 cm−3 (thin dotted line).

|B| = (n/cm−3)0.47 µG (Crutcher 1999), in order to be indepen-
dent on specific models. The MRN size distribution given by
Eq. (A.5) implies that the mean value of the square of the grain
radius weighted on the grain distribution (namely the quantity
that enters the equation for the momentum transfer rate coeffi-
cients), defined by

〈a2
gr〉 =

∫ amax

amin
a2Ca−3.5da∫ amax

amin
Ca−3.5da

= 5
a−0.5

max − a−0.5
min

a−2.5
max − a−2.5

min

, (B.1)

Fig. C.1. Ambipolar, Hall, and Ohmic contribution to the diffusion time
(red dotted lines) compared with the dynamical time (black solid lines).
Labels show log10(t/yr).

is close to a2
min. We vary the minimum grain radius between 10−7

to 10−5 cm, fixing amax = 3 × 105 cm. This corresponds to
values of 〈a2

gr〉
1/2 ranging from 2.2 × 10−7 to 1.5 × 10−5 cm.

Figure B.1 shows that the coefficient of ambipolar diffusion is
not monotonic with the grain radius but presents an absolute
minimum at larger radii with increasing H2 densities. On the
other hand, the Hall term increases with the grain radius for any
value of n(H2), starting to decrease only at very large grain size
(amin & 10−5 cm). Finally, the Ohmic resistivity becomes impor-
tant at high densities (n & 1011 cm−3) and increases monotoni-
cally with grain size.

Appendix C: Contributions to the diffusion time
of the magnetic field

For the sake of completeness, in Fig. C.1 we show separately the
diffusion time for ambipolar, Hall, and Ohmic diffusion com-
puted with ζH2 from model L2. As expected, at the high densities
reached in the disc region, ambipolar diffusion time is more than
one order of magnitude larger than the dynamical time scale. On
the contrary, Hall and Ohmic diffusion times are comparable and
lower than the dynamical time scale in a region whose radius de-
creases from about 50 AU to 25 AU with decreasing minimum
grain size. This is another way to say that gas-magnetic field de-
coupling is due to Hall and Ohmic diffusion at densities higher
than n ∼ 1010 cm−3.
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