
http://wrap.warwick.ac.uk/

Original citation:
Wadge, W. W. (1979) An extensional treatment of dataflow deadlock. Coventry, UK:
Department of Computer Science. (Theory of Computation Report). CS-RR-028

Permanent WRAP url:
http://wrap.warwick.ac.uk/46328

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/5229626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46328
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF COMPLJTA|ION

REPORT NO.2B

AN EXTENSIONAL TREATlvlENT OF

DATAFLOl,'| DEADLOCK

B}

l^IILLIAI{ l^l, I,I ADGE

Department of Computer Science
University of Warwick
COI€NTRY CV4 7AL
EI'IGLIND.

April 1979

A}T EXTENSIONAL TRNAT}ENT OF DATAFLOW DEADLOCK

William W.Wadge
Computen Science Depantrnent

Univensity of Warwick
Coventr"y CV4 7AL UNITED KINGDOM

Presented at the July 1979

of Concunrent Comoutations.

Conference on Semantics

Evian, France

Abstract

we discuss deadl-ock in r:efenence to a simple equationaJ- dataflow language, and
devise a test (the cycle sum test) which is applied to the dependency g::aph of a
Pnogram' we use Kahnfs extensional semantics of dataflow and give a punery extens-
ional (non openational) proof that no pragram passing the cycle sum test can ever
deadlock. The pnoof is based on the notions of l;ize (length) and completeness in
the domain of histonies, and shourd extend to a much widen context.

O. Intnoduction

The question of termination has arways been of fundamental importance in the
theory of computation; in fact the single most impontant theor.etical ::esult is the
unsolvability of the trhalting pnoblemrt. of counsen termination is of gneat practical
importance as well. A conventional pr€gram which fairs to terminate fon son€ appro-
priate input is traditionally considened to be incor-nect (or. at reast only pantially
coruectn complete correctness being defined as partiar conr.dctness prus termination).

Recent developments, howeven, have to a lange extent made obsolete the idea that
proper programs all stop after some finite numben of steps. Many programs now wr.itten
are intended to perform continuously; fon exampJ-e an openating system, a tnaffic
control- system' on (the one we|''will use) a data flow netwonk. Fon these programs

thene is still a notion of 'healthy' behaviour, but i.t is (superfieially) the exact
opposite of terminatio.n. if such a program hal-ts at sone stage, it is usually cons-
iclered to be in er"ror, the victim of a "crash'r or of "deadiock'?. Obviously, conven-

tional methods for proving ter"mination of conventional progtams need not be nelevant.

mone

+L -+LIlq L

which

mind

The reason that the tr.acitional
general ccntexts is that it is
there is a static notion (which

notion of termination fails to extend to these
an operational notion. Fortunately, it appeans

refers to data nhionf< rnd nnr ComputationS)

co]sresponds to termination in simple cases, but al-so generalizes. I{e have in
the notion of cornpieteness.

A nnmnlo+e sfject (in a dornain of data objects) is, roughly speaking, one which

has nc holes or gaps in it, one which cannot be funther completed. In a standard
l€1 -+l ;^--.1 *'rrat' aomaan' a]l but the minimal elements are complete; in a domain of ordered
pairs, the complete elements are those for which the components ar.e complete I in a

domain of finite trees, those in which all the leaves are completel and in a d.omain

of functionso those which are total, i.e. which yield a con:plete result when given a

complete argument. ;

The distinction between complete and pantial (or incomplete) objects could prove
to be even more important than that between terminating and nontenminating comput-
ations. Complete objects are important because they are mathematically rconventionalr

and the collection of complete objects in a domain usually enjoys conventional math-
ernatical pnoperties which are not true of the domain as a whole.

Completeness is' as we sa.i"el , a static concept, but it also has openational sig-
nificance. If our progrannning language has a denotational (nethematical-, extensional)
semantics, then we have a corresponCence between pnograms and elements of an apprpp-
riate domain. From oun limited experience, it seems that prog::ams which behave in a
1-^^1 +L., €--L-'^-neartny rasnLon will correspond to complete elements of the <iomain. Fon example, a

Turing machine which always hal-ts computes a total (i.e. conplete) function.
T+ *i-L+ ^^rr ml-gnr seem stnange that we have defined so impor"tant a concept in such a vague

and informal way. Unfortunately, there is at pnesent littte choice, fon it seens
that in gener"al there is no way of determining which elements of an anbitrarv d.omain

dese:rve to be calLed complete.

rn mrnrr i^nains the complete elements are exactly the naximal elements, but this
need not aiways be the case; there may be incomplete elements which cannot be com-
pleted. In a domain of continuous functions, fon exarnple, there may be partial func-
tions (tiXe the as soon as functions of Lucid [2]) which have "essentiattrsingulan-
ities. And even if completeness could be defined precisely in the context of
standard domain theory (i.e. in terms of the relation of appr"oximation), it would be
of littl-e help without methods fon proving that objects defined in centain ways must

be complete.

Fortunately there appears to be a simple way to extend the notion of domain to
give a meaning to I'completenessrr. The r"emedy is to adopt the methods of topology

and introduce a quantitative measure of convergence, nelated to a metric. Rather

than develop a general theor"y of such domains (at present only pantially understood)

we instead give an example of the power of the method by using it to justify the cor-
rectness of a simple and useful test fon deadfock in a sirnple datafl"ow language.

1. Data FIow

The term rrdata flowr' ::efer"s to a loosely defined oper"ational concept in which

computation is controlled by the flow of data through a netwo::k ([1], [3], [4], [Z]).
The model we wifl use is that of [7]. A data flow netwonk is a directed gr:aph, the
ancs of which are communication channels down which data rtokensr tnavelo and the
nodes of which are processing stations. The diag::am shows a simple data flow networ"k

which generates in o::der the sequence 1, 2, 3, 5, 8, ... of Fibonnaeci numbers (our"

nets ane continuously openating devices).

The example netwonk ill-ust:rates the use of several important nodes.

The simplest ane those like the one Iabelled tr+tt ,which coruespond to ondinary
openations on data items. The rt+r' node nepeatedly awa.its the an:ival of tokens on

its input Lines; as soon as there ane tokens on both lines, the two tokens are ye-

moved and a token representing their sum is sent down the output 1ine. As with the
other nodes, input on the diffenent lines need not anrive simultaneously on even at
the same nate, and tokens awaiting processing queue on. the ancs. A special case of
this kind of nod.e are the rconstantr nodes with no input lines. The node labelled
t'2rr simply gener:ates an endless stream of tokens repnesenting the number.2.

The nemaining nodes do not process tokens but merely manipulate them. The I'nexttt

node discards the first token which anrives but passes the rest on.Thetrfbytt(ttfolfowed

byt') node awaits the finst token to arrive on its left input, passes it on as its
first output, but after that passes on whatever appears on its second irrput tine.
Any tokens which might arrive later on the first input Iine are discanded (but no

innrrt €nnm thp second line is discar"ded). The'tfbyrtnode allows arcs to be initia]-rr.P u L

ized, though possibly with values computei by othen parts of the net. Both nodes

have a two state internal memorSr.

These, of course, ane not the only useful nodes. One panticulanly impcr"tant one,

which we will ca-r-I the "upon" node (for war:t of a betten name), acts as a va-ve or
--+^ +^ -)^" "r the rate of fiow of its fir"st argunent. As long as Crs arrive cownBdLE LV Drvw ur'

its second input line it sends on copies of the last token it nead in from the finst
input line. hhen a 1(representing "trlle'r) aruives it ingests the next token on the

first line and sends on copies of it until another I arrives. For example, if tokens

representing 3, 5, 7,9,11, arrive down the first input line, and tokens uepre-

senting O, 0, I, 0, 1, I, 0, 0, 1, anrive down the second input 1ine, then tokens

repnesenting 3, 3, 3, 5, 5, 7,9,9, 9, l-1, ... will be sent down the output line.
This node has an internal rstor"age locationr capa-bIe of holding one data iten.

M:nrr ntha' nodes have been proposed on are possible, but even with the few des-

cnibed here one can (as we shall see) write interesting programs.

a The Extensional Semantics of Data Flow

The nodes just described all possess an ext::emely important property, namely
c"-^+:^-^r':+" A node is said to be functional iff the entine history of its outputf Ull9 L tvllq!r LJ .

activity is completely determineo by the enti::e histories of the activities of its
input lines. Roughly speaking, this means that thene ane no r:andom Cevices in the

node itselfo and that the rate cf arr.ival of inputs effects only the rate of depar"ture

of outputs. A functional noCe can obviously take into account the order of anrival
tokens on a par.ticular line but not the nelative order of aruival- of tokens on dif-
fer"ent fines. The canonieal- example of a nonfunctjonal noCe is the tracer on rcol-

lectonr node which passes on down its single output line whatever appears at eithen
of its inputs (choosing at random if tokens ane waiting on both lines).

Functional-ity is extremely important because it allows a simple extensional (i.e.
mathematieal or. denotational) treatment of data fl-ow. It allows us to use mathenatical
objects to characterise the r"ole or function of arcs, nodes and graphs.

The mathematical object assigned to an anc is a histo::y, namely a::ecord of all
the tokens which travelled dovm the anc. In a rhealthyr net the activity proceeds

ir:definitely, so that the history will- be an infinite sequence of data items; but
(as we shall see) it is possible that activity might cease at some finite stage, and

so our domain of histories contains all finite and infinite sequences. This domain

is a cpo unde:: the subsequence ondering.

The mathematical object which we assign to a nodd is the function from histories
to histories which describes the correspondence between the inputs and the outputs of
the node.

Suppose now that we have a net all of whose nodes ane functional. Each arc is
the output of some node, so that the histor:y cornesponding to it is the nesult of
applying the function connesponding to thj.s node to the histories of its input ancs.
The history of each arc is ther"efone defined by a simple equation, and so to a data-
flow net there comesponds a set of equations, one fo:: each ar.c in the net. If the
net has cycles in it, this set of equations is recu::sive. Kahn indicated in [7],
and Faustini has pnoved in [S], that the actual oper"ational behaviour of the net is
exactly described by the least fixed point (solution) of the equations.

3. The Eouational Datafl-ow Language

The nestr.lt'just guoted is generally accepted as being very inportant, but often
only as an accomplishment of descr"iptive semantics. In this perspective histosies
are used to describe the activity on arcs, functions desc::ibe- the activities of nodes,
and least fixed points of equations descr:ibe the aetivity of nets. Fnom this point
of view the nesult appears somewhat limited, because minon va::iations in the operat-
ional basis (".g. nonfunctional- nodes) cause the whole systern to bneak down.

The neal significance of the result emer.ges only when we reverse the point of
view. Arcs and tokens shouLd be seen as openational ways to realize histories;
nodes, as implementations of histor.y functions, and nets as devices fon computing
the solutions of equations. Fnom this perspective many of the variations on pur.e

data flow can be simply rejected as unsuitable for the pur:poses intended.

One ve::y inte::esting feature of this new perspective is that data flow prognams

are not graphs but ::ather sets of equations. This equational language is quite easy
to use and the progLams are concise and often veny elegant. Hene is an equational
vension of the Fibonnacci prognam

F=1fby(2fbyF+G)
G=nextF

and here is one which generates the stream of factorial_s

I=1fbyI+I
F=lfbyF:tnextl

(fby appears as an infix operaton vrith lowest possible precedence, so that e.g.
"2 fby F + Grris the same as "2 tby (r + e)"). Notice that nested expressions ane

permitted on the::ight hand side. Subexpressions (like ilnext Iil) coruespond to
ranon5rmousr ancs in the datafl-ow netwonk, i.e. arcs which do not correspond to any /

program vaniable

Here is a merge program

XX : X upon

YY = Y upon

Z=ifXX<

YY

XX

then XX else YY

uponB<2
fby if B > 1 then B+2 else next

mod 2

the binary expansions of the nunbers

D begins 11 0, O, fr 0r 11 1,0, O,

=l_fby22\A

vv<

YY<

which has two input (i.e. undefined) variablesr'rXrrand rrYil (ttupontt, like rrfbyrt, has

J-ow precedence). Given any values for these vaniables, the least fixed point of the
program gives us the cornesponding value of rtzrt. It is not hard to see that if X

and Y are increasing streams of natural- nurnbers then Z is thein ordened merge, with-
out repetitions. Fon example, if X begins 3, 5, 7, 9, 10, ... and Y begins 2,6,'l)
9, 12, ... then Z begins 2, 3, 5, 6, 7, 9, .l-0,

If r+e add to the above program the equations

S=IfbyZ
X=!:!5
t=lfcg

have a new pr'ogram without input var^iables which generates in orde:: aII nurnbers
1t

the for"m 2'3r (S begins Ir 21 3, 4, 6, 8,).

The following pnog::am

we

of

B=AA AA

in A (so that if A

o, 1, l, I,).

generates and concatenates

begins 9, 6, 8, 3, then

If we add the equation

D will be the sequence l, O, lo O, 0, 1, 0, O, 0, 1,

4. Circularity and Deadl-ock

A11 the example dataflow programs given so far" are recursive, i.e. have vaniables
which a::e defined dinectly or indinectly in terms of themselves. This is tr:ue in
general of all but the simplest pr.ograms, whether they gener"ate streams of data (like
the Fibonnacci program) on just process them (l-ike the menge prognam).

Tho anrr=*i^na1 pnogrammer uses circulanity to bring about repetition (this acc-
ounts for its impor"tance) although it is fan more genenal and powerful than simple
iteration. In operational terms, the fact that a var"iabl-e is defined in terms of it-
self rneans that the cornesponding arc in the net is pant of a cycle (loop) in the
net. Data tokens travel- around and anound the loops in a net, usually being trans-
formed in the pnocess. These loops are the rwheelst that keep the net moving.

Real wheels in real machines have, however, a tendency to seize up and stop,
and the same is tnue of the cycles in a dataflow net. ff a net has a cycle in it,
it means that some node is direetly or indirectly consuming its own output. The
possibility therefore arises that the node might starve itself, i.e. rnight find it-
self in a situation in which it is waiting for itself to pr"oduce data. This is what
is usually (atthough in mone general contexts) calted deadlock.

Deadlock in a dataflow net can in fact occun. In the simple example

G = I fby (2 fby I + next neit C)

the net turns out two numbers (1 anfl 2) and then seiaes up when the two f'nextr nodes
rgobble upt the two tokens. Nothing furthen is producedo and the n+tr nod.e sDends
eter^nity waiting for its own output.

Another example is the following

Y=5fbynextX
X=2t"YUPonP

which deadlocks almost immediately unless the first value of-p is O. If it is O,
the extra copy of the 10 token makes its way past the t'nextrt node and. enables the
second multiplication.

on the other hand, it is centainly possible to wnite cincular progr:ams which
never deadlock pnovided only that their: inputs do not run d::y. This is the case
with al.l the example pr"og:rams given ean.l-ier.

obviously, deadlock does not occur: just because a vaniable is defined. in tenms
of itself. A study of a small numben of examples soon reveals that what matters is
how a vaniable depends on itself. Fon example, in the following ver:y simple healthy
pr\cgt:am

I=lfbyI+1

the vaniable I depends on itsel-f but in such a way that the pnesent value of I (i.e.
the one cunnently being computed) depends on at most the previously computed. value.
On the othen hand, in the follor+ing deadlocking program

the present val-ues of J and K depend on the present and futune values of J and K

respectively.

What is clearly inCicated is some sor"t of r.equinement which would ensune that
the pnesent value of any variable depenCs only on its previous values.

The first step in forrnulating such a requinement is to describe more exactly
the way in which the outputs of the various nod.es depend on their inputs. For ex-

7-irJ-lfiJ

K:2:lnextK

if

ample, if

A=B+C

then the value of A being cornputed depends only on the values of B and C just read

in; the output of a "+" node neither leads nor lags the inputs, and the first three
(say) values of A require the first three values of B and C. On the other hand, if

A=nextD

then the output lags the input by one : the fir"st three values of A r^equire the finst
four" values of D (or. at least nequire that the node read these values in). Conve::seiy,

A=3fbyB

then the output leads the second input : the first three values of A r"equine only
the first two values of B.

These lead/lag effects ane clearly cumulative. If we have

A=3fby(5fbyB)

then A leads B by 2, so that the finst three values of e require only the first va1ue

of B. The effects can also cancel each other: if

A=3fbynextB

then in gener^a1 the fi::st n values of A reguine the finst n values cf B.

These observations suggest some sort of quantitative measure of this tine dis-
placement of dependencies. We therefore associate with each of the anguments of the
i,ifferent operations an integen which (informal-ly speaking) measur"es how fa:: the out-
put leads the angument in question. The associated numbers are as follows:

(i) O is associated with each argument of the r'+rf node, and in genenal with
each argument of a node computing an ordinany data operation;

(ii) O and 1 nespectively ane associated with the anguments of fby;

(iii) -I is associated with the argument of next;

(iv) C and I respectively ane associated with the arguments of upon.

When openations al.e composed, these number"s a:re added; to find the way in which

the value of a whole expression can depend on the values of va::iables occur'::ing in
itrwe considen the expression as a tnee, trace a path fnom the rrcot of the tnee to
the variable, and add up the numbers associated with the ope::ations on the path. For

example, if the expression is

(3 fby (next B + next C)) upor: (next (P fby B))

then the path tortPrrgoes thnough the secon<i ar.gument of ttupontt(+1), the a::gument

of t'nexttt (-I), and the first argument of t'fbytt (O). The sum of these numbens is O,

and so we concluCe that in general the present value of the ex1>ression could depend

on the present val-ue of P. If a vaniable occurs more than once in an expression, we

take the minirnum of the path sums (which, in the case of rrBr!here, is O).

It should not now be too hand to guess how we can use these numbens to assure
ourselves that a vaniabLe in a data flow prrcgram is not defined in terms of its own

pr"esent or" future values. We look at tbe graph of the program and fonm path sums

fon all paths which start and end with the arc correspond.ing to the va:riable in ques-
tion (i.e. all cycles containing that arc). If eveny such "cycle sumrtis positive,
the ciependency of that variable on itseff is healthy. To make sure that the whole
program is healthy, we perform the test for every anc. Equivalently, we make su:re

that every cycle in the g::aph of the pnogr:am has a positive cycre sum.

This is the cycle sum test and oun claim is that ever5r proguam passing the test
is immune to deadlock (provided only that its inputs do not deadl-ock). AII the ex-
ample prograns given in the eanlier" section pass the test. In the gnaph of the
Fibonacci programr for example, thene ane two cycles, and their sums a-re l- and 2.

5. Justification of:glre Cycle Sum Test

Deadlock is an opez'ational concept and so it might be expected that we will now

proceed to an operational proof of oun clairn. This is possible, and worth doingrbut
it would be missing the point of this paper, whieh is to illustrate the possi-bility
and importance of an extensional (non operational) notion of completeness.

The connection between deadlock and completeness is actually quite easy to app-
reciate. Even in the absence of a pnecise definition of dataflow dead.lock, it is
evident that deadlock cannot be pnesent in a net in which the activity on arcs(flow of
tokens) goes on indefinitely. In terms of extensional- concepts, trnceasing activity
corresponds to infinite elements in the domain of histo::ies pr"eviously descnibedrand
we can certainly agree that these ar€ exactly the elements of that domain which des-
enve to be called complete. The equivalenee of the ope::ational and extensional sem-
antics of dataflow tells us that to prove a program deadlock free it is sufficient
to prove that its least fixed point is complete (fon everS/ complete set of values
fon its input vaniables). (lcahn himself noticed this gonnection between deaC.Lock and

cornpleteness) ,

Our goal therefore is to show that the feast fixed point of a set of equations
passing the cycle sum test must be complete. We can get a good idea of why this nust
be the case by examining almost the simplest healthy recu::sive prognam,

I=lfbyI+1

whose least fixed point <I,2,3r...> is complete. Let f be the function defined by
/the right hand side, i.e. Let f(x) be 1 fby x+l for any histony x: so that the mean-

ing of the pnognam is the least fixe<i point of f. We know that this least fixed

point is the limit (lub) of the sequence fl, t(Q), f(f(g)), , rl(q), ... (where

0 is the empty histony). This sequence of histories beEins

a

<l>

<I ,2>
<1r2r3>

and it is easy to see why the l-imit must be cornplete - the terms of this sequence
increase in length by one on each step. Furthermore, it is easy to see why these
lengths increase -the function f incr"eases iength, i.e. the length of f(x) (x finite)
is one plus the iength of x. In fact it is evid.ent that the least fixed point of
any length incneasing function must be infinite (complete).

Since we measul3e the Cependency of ttlrr on itself as plus one, it woul6 seem

likety that thene is sorne connection between length and the numbens we assigned to
the arguments of operations. This is indeed the case. Fon example, ive associated
the numbers O and I with the anguments of upon, and sinrple calcul-ations will show
that (if x and p are finite) tne length of x upon p is at lea,st the minimum of the
length of x and the length of p plus one. In general we wi1l associate a sequence d

of integens of length n with an n-ary operation g on histor"ies wheneve:: the length
of g(*Or*1r...xn_I) is, fon any xO...xn_., at 1east

min(length(x-) + d_.)
i*r

To rnake these ideas morre precise, 1et H be the domain of histories, let E be
the natural numbens plus - (with numerical ordering) an4 extend addition and sub_
traction to f; in the obvious wav.

uertnLtLon ror any positive integers n and m and any nxm matrix M with comDonents
rrr a.

B(M) is the set of all functions g from Hn to Hm such that

length(g(x))., >, min (length(x.) + l,t.-),i
fon any j and any x in Hn

The components of the matrix M estimate the way in which the ith input of g

effects the j"'output. Fon example, if g e B(M) and M^ - is 2.then the first k
values of the 5th output of g nequine at most the first"rl]z ,r.rres of the 3"d in-
nrr{-

This association between functions and matr.ices has the fol-Iowing important
property: that ccmposition connesponds'Eo nnin/sum rnatnix product. If g e B(M) anC

n e B(N) and if the composition of g and h is defined, then their composition is in
B(L) where

10

t-
1'1

I\' + Li
r,K Kl

Now suppose that we have a genenal Catafl-ow pn3gnam (for simplicity without in_put variabres) consisting of n equa';ions defining n vaniabres. From these equations
we fon-n the nxn matnix (with components in i) the ith row of which consists of the
numbens descnibing the way in which the expnession on the right hand side of the
equation defining the ith varia-ble depends on the other variables. For example,
if the pnognam

A=1fby2"sA
AA=AuponB<2
B = AA fby if B > 1 then B/2 else next AA

D-:Bmod2

then the matr"ix and its conr€sponding graph is

Uo@0q

(notice that - signifies no dependency)

This is the mat'ix of dinect depend.encies; the connesponding graph is not exactly
the dataflow gnaph of the Pnognam' but it is appanent that both gnaphs pass o:: failthe cycle sum test together.

rt is not hand to see that this mat'ix M can be assoeiated with the function f
fnom Hn to Hn defined by the equations of the pr€gram; in othen wonds, f is in B(M).
Thus fon any x in Hn we have

Iength(f(x)) >. yt lt length(x)
whene length -has been t coerced t into a vector-to-vector operation and rs is min/sumproduct' I{e must somehow put these facts togethen to conclude that the least fixedpoint of f is cornplete (that each component is coniplete).

rf it happens that all the entnies of the matnix M associated with r ar.e positive,
the nesult is guar:anteed. The neason is that in these eircumstances, f inc'eases
length in the fol10wing sense: the length of the sirortest component of f(x....*.r_1)

/is always greaten than the length of the shontest component of <xo...xn_l>, and this

AA

AA

t-1

condition easily implies that every component of the least fixed point of f is in-
finite.

Unfontunatell. 11 is alrnost neven the case that all of the entries of the matr ix
M itself are positive, even when the program (fi,te the exarnple just given) satisfies
the cycle sum test. In panticular, if the program i-ncludes the equation

V. = next V-

fh
then the i,j-" conponent of Ii wil-I be -1. The fact that the program passes the cycle
sum test means only (in matnix terns) that the diagonal el-ements of the Cependency

matrix

min #
1-<k.<n

ane positive. Fcr example, the dependency natrix of the pnogram just given is

AAABD
AIs@@

fo

A little experiment shows that the pr"oblem is that it rtakes timer fon the in-
creases in the length of one component to effect the nest. This would suggest speeding

up the process by iterating f, i.e. by considering an equation of the for:m

" = fl(*)
for some large m. (The least fixeC point of fm is the same as that of f fo:: any

positive m). By what was said eanlier we know that fl is in B(il), where exponent-
iation is with nespect to the rnin/sum pnoduct. It is fher"efone enough to show that
some powen of M has al-L positive entries.

We mentioned that M r"epnesents the labe1led dependency gr.aph of the program.

Since we are using the min/sum pnoduct, the irjth entry of Un must be the rcostl
(i.e. path sum) of the rcheapestt path of l-ength m fr"om i to j in this g:raph. Since
this gr:aph has n nodesr any path through this gnaph muBt consist of a cycle f::ee pant
of length not greater than n plus a number" of cycleso each also of length not g::eaten

than n. Thene are only a finite nunben of cycle free paths, so that the cost of the
cycle fnee part of any path must be not less than some numbe:: b independent of m.

On the other hand, each cycle cont::ibutes at least +1 to the cost. Thus if m is
greater" than (n+1llll, ever5l path of length rn will have rnone than b cycles and will
thenefone have positive cost. In other wonds, all the entries of fl must be positive,
as desired.

This completes an infonrnal outline of the punely extensional prrcof that eveny

program passing the cycle sum test is deadlock fnee.

AAO
BO

11
o1
@1

ia
LZ

6. Application g.f the Test

The fact that a program passes the cycle sum test means first of all that it is
free of deadlock, as we alneady inCicateC. The class of prognans which pass the test
is surprisi.ngly lar"ge, and includes all those which cornespond to sinrple iterative
algorithms (wnitten in A1gol- with for-loops). There ane, howeven, quite sensible
programs which faiL the test but nevertheless do not <ieadl-ock, and it would be too
restrictive to requine that a 1egal dataflow program pass the test. For these mone

genenal programs other methods of pnoving completeness must be devised.

We also saw that the meaning (J-east solution) of a cycle sum test approved pr"o-

gram is a complete element in the domain of histories. This means that the denotat-
ion of the va:riabLes ane rconventionalI objects, and one veny impor"tant consequence

is the fact that we can use conventional mathematical rules in reasonins about them.
Fon example, we can invoke the equations

(r+;)-J=r
if tnue then X el-se Y = X

which may not be valid if X, Y, I and J ane not complete.

Finally, the fact that
unique solution (since its
ful verification ::ule. For.

I
J

a program passes the cycle sum test means that it has a
]east sol-ution is maximal) and this gives us a very power-
example, the equations

fbyl+1
fbyJ+2,"I+1

pass the test; funthermore, some simple nules tel1 us that
.)a

I'=l-fbvI'+2:lI+1
a

so that I' satisfies the equation defining J. Since this equation has a unique sol-
ution, we conclude that I' = J. Note that this proof involved no induction.

7. Towands a Gengnal Notion of Completeness

The pnoof that a progran passing the cyele sum test has a unique, complete so1-
ution was purely extensional, and clea:rly used only a few assumptions about the dis-
tinction between complete and par:tial elements of the domain of histories and the
length function. It is quite plausible that the pr"oof could be genenalized to any
domain equipped with simil-an notions of rsizet and completeness.

We have alneady mentioned that thene seems to be no way, given an ar"bitrary do-
main, to single out a subset of complete elements; non does there seem to be a genenal
way to intrrcduce a norrn. Most inter"esting <iornains, however', are not arbitrary, they
are not pulled out of hats. They are constructed from simple domains using domain I

operations (tike cantesian pnoduct) and necunsive definitions. For these domains it
seems like1y that we can define size and completeness in a natur:al way. In fact we

f^

have already seen a simple example, where we earl,ier (impricitry) defined the length
n€: rrrnlo ar hi5iories to be the length of its shortest component, so that a tuDlersl/4v v4 ..

is complete iff aLl its components ane.

One specially intriguing pnoperty of these (to some extent hypothetical) domains

is that the collection of complete elements in a domain would seem to foyrn a metnic
space, if we define the distance between two complete elements to be 2-s where s is
the size of the glb of the elements. In the case of natural nurber valued histonies,
the space of complete elements is the Baine space of classical descr iptive set theor.y
(see, for exarnple, [8]).

It is not possible (as fan as we know) to formulate the cycle sum theor"em pu3ely
in ter"ms of functions on an abstr"act metr"ic space. But it is possible, however, if
we use instead of a rnetric a dual notion which we eal-1 an 'ragreementrt: a function
which assigns to any two points a nonnegative element of i which measunes how close
together the points are, yielding - if they coincide. This appnoach could allow a
fixed point sernantics for a lange class of tobviously terrninatingt necunsive pr.ograms

which would be mathematically tconventionalt in that it could completely avoid refer-
ence to pantial objects and approximation

8. Acknowledgements

The cycle sun test was finst devised by the author. in orCer to chanacter"ize a

class of compilable Lucid pnog:rams; C. Hoffman used the test in [6]. M. Fapah was

probably the finst to notice that Lucid pnograms passing the test had unique solutions
(which might not be complete because Lucidts as soon as function is incomplete). The

impo::tance of the test in the study of dataflow became apparent in the eourse of
supervising Faustinirs nesearches, and the l-atten helped formul-ate the pnesent version
of the proof.

14

References

1. Arvind and Gostelow, DatafJ-ow computer architecture: research and goa.ls,

technical- report no. IJ-3, Departrnent of Information and Computen Science,

Universitv of Califo:rnia Invine.

2. Ashcroft, E.A., and Wadge, W., LuciC, a nonpnocedural language with itenation,
CACM 2Or Do. 7, pF 519-526.

3. Davis, A.L., The architecture of DDI'1-1 : a recunsively structuned data driven
machine, report UUCS-77-1I3, Depar"tment of Computen Science, Ilnivensity of Utah.

4. Dennis, J.8., First version of a datafJ-ow procedure language, MC TM 61, MIT.

5. Faustini, A.A., The equivalence of the operational and extensional- semantics of
pure dataflow, Ph.D. (in prepar.ation), University of Warwick, Coventry UK.

6. Hoffman, C.II., Design and conrectness of a compiler for a nonpnccedunal

language, Acta Informatica 9, pp 217-241 (1978).

7. Kahn, G., The semantics of a simple language fon parallel prrccessing, IFIPS 74.

B. Ku:ratowski, K., Topologie (I), Warsaw (1958).

l-5

