
http://wrap.warwick.ac.uk/

Original citation:
Wadge, W. W. (1978) Programming constructs for nonprocedural languages. Coventry,
UK: Department of Computer Science. (Theory of Computation Report). CS-RR-023

Permanent WRAP url:
http://wrap.warwick.ac.uk/46323

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/5229621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46323
mailto:publications@warwick.ac.uk

The Univensity of Warwlck'

THEORY OF COMPUTATION

REPORT NO.23

',*O
G RAI,I I'I I N G CO NSTRU CTS

FOR

N O N P RO C ED U RA L LA N G U A C ES

BY

HILLIAI'1 l,l. l^lADGE

Department of Computen Science
University of Warwick
COVENTRY CV4 ?AL
E}IGIAND.

. llanc! 1978

PROGRAMMING CONSTRUCTS

fon

NONPROCEDUML I,ANGUAGES

I{illiam W. Wadge

i

Abstract: In this paper how a prr:e denotative (nonprocedural) language based on

: the lambda calculus can be provided with purely denotative analogs of

the var"ious constr:ucts - such as while loops, blocksr case statements

and the like - of conventional irnpenative stnuctured pnognarnning

languages. They can be sinulated quite adequately using only two

sirnple tools: phrases, which are compound e:ipnessions not unlike blockst

and pnonouns, special vaniables not unlike keywonds between which certain

relationsbips are runder"stoodr to hold.

Computen Scienqe Depantment, Univensity of Warwick, Coventry UK

This paper was presented at the 3r'd fnternational Symposiun on Prognarrning,
Panis, Manch 1978.

0. Introduction

A denotative (on nonpnocedural) programning language is a language based on

some mathematical fonnal system, such as the l-calcuLus or" predicate logic. A

proglram in such a tanguage is a tenn or" formula in the formai. system, rather than
a sequence of comrnands to be executed, and its neaning is 'she value of the exppes-
sion o:: the solution(s) of the formula, r,athen than the nesult of obeying the com-
nands. The great advantage of denotati.ve languages i,s that the tnansformation on
inference nules of the fonmal systen can be applied dir:ectIy to prog:!'ams, and are ,

'powenfut nules fon pnogran venification or massage.

, ffr" merits of the denotative approach have been wel-i under:stood fo:: at least
a dozen years now (see the discussion following Landints rtThe next 700 programning
languagesrr, Landin [3]), but at pnesent few computen scientists would consider them
to be senious alter"natives to conventional impenative languages" This is in palt

,due to sone sirnple nisunderstandings (fon example, the widespread belief that com-
putation is inherently a sequential activity); but thene ane also rnone senious ob-
jections to denotative languages, in matters both of form (syntax) and meaning
(semantics).

The rnain objection on semantic grounds is that progranmers using a denotative
language have no contr"ol oven the behaviour. (as opposed to the ureanl.ng) of thei:t
prograns, ie they cannot make anything happen the way they want. The conclusion:
that denotative pnognanming is inhenently inefficient. r

And the rnain objection on s1mtactic grounds (the one with which this paper: is
concenned) is that denotative languages are too impoverished of exp:ressionrlacking
as they do the r^ich variet5r of constr.ucts - blocks, for: Ioops, case statements and
so on - found in impenative languages. The conclusion: that denotative J-anguages
ane inhenently clumsy. It is apparent that this objection is closely nelated to.
the formen - the various constnucts of irnpenative languages ane operationally mot-
ivated (so it seems), i.e designed to bring about desined activity. Thenefone (so
it seems) tbey cannot have denotative analogs

Now it is certainly tnue that the definition of the semantics of denotative
Ianguages a:re pu:rely nathematical in that they descnibe only the d.enotations of
proglrans and parts of programs. But there is no reason why such a languge (on sub-
set thereof) cannot have an alternate, openational semantics which des$ribes the
meaning of prognams in terms of activity they give nise to. As long as the oper-
ational semantics is equivalent to the mathematical one the progranner may use
eithen (on both) as a prognarnming guide. Moneoven, if the implementation is based
on the openational- semantics, the programmen can use his knowledge of it to bning
about desined efficient behavioun by varying the form of his pnogram.

, Considen, fon example, the case of blocks and procedure (ie. function) declan-
ations. Most A1go1 Prognammers have a very openationaL undenstanding of these
constructs' one in which blocks are entened and exited, stonage is allocated and
:deallocated, and threaded stacks bob up and down. Now Landin in the paper cited
descnibed a Pure nonpnocedunal language ISWfM which al-lows both block structunes
and function definitions in a very natural (and veny simple) way. yet neithen the
s3rntactic rules of the language' nor the formal senantics, non the rules of infer-
ence' make any r-efenence to stacks, pointers, return links and so on. Indeed no .

notion of tstoraget is required. of counse, thene is nothiug to stop a prognamnen
frorn imagining an fSWfM b.Lock being ?entenedt, or a function being called, but it
is not necessar5r to think oper^ationally like that. Even the implementon night want
to avoid the classical Algol view of execution, perhaps by using the copy nule fon
funetions and by tnanslating blocks into pants of a data flow netwonk.

Sinilanly, ther"e is no neason why impenative languages should have a rqonopory
of conditional' case' and switch statements and the like. ft is very easy to dev-
ise a sirnple denotative case e>cpnession, and the usual operational view involving
rrtestingrr and I'jumpingrr might on might not be helpful to the usen. Even nepetitive
constnucts (fon loops, while statements and so on) fit in to this franewonk if we
use Lucidrs denotative appr:oach to iter"ation.

In this paPer we give details of the denotative constnucts just mentioned.
what is especially unusua.I about our approach is that it does not nequine adding
any new slmtactie constnuctions. Instead, the effect can be achieved using only
special rkeJrwondr vaniables called pnonouns anong which centain inplieit nelation-
ships (in the forrn of equations) are assumed to hold..

1.

rn this papen the formal system on which we base oun programning language is .

the l'-ca1culus. Now it is centainly tnue that the pu:re l-calcuLus by itself must,
on s5rntactic g:rounds alone, be nejected as a pnactical prognamrning language. All
but the simplest l-e>pnessions ane (when pnesented in fu1l) almost unneadable (evLn
if infix notation and othen minon suganings ane a[owed). This unneadahility is
often blamed on the tendency of tr-expnessions to be deepry nested; but a more ser-
ious pnoblem is the fnequently lange textual distance between vaniabLes and the
expnessions to which they are bor:nd. Fon e:<ample, even in the e:q>nession

{lx ly *2*y2}t"-b) (a+b)

the connection between the vaniable tty'r and the expnession ra+brr does not leap to
the eye.

of course, if we are intenested in the l-calculus only as a forrnal system, ie.

Phnases

if *. ar:e interested only in
tions are of no consequence.

a prognaruning languager ie if
l-expnessions, then problems

ant.

neasoning g!gq! l-expnessions, then these obsenva-

But if we are interested in adapting the notation in
we are inter.ested in actually neading and w:riting

of forrn like the one just discussed ane very funpont-

Fortunately, thene is a verly sirnple solution to the problem. It involves

adding a class of special expressions (which we call phrasgs) which include equa-

tions defining vaniables; a vaniable and the expnession to which it is bound ane

b:rought together across an ft=rr symbol. Ph::ases wene first formalized by Landin

(in t3l), although (as he points out) mathematicians have been using tbem inforrn-

a1ly for a long tine. Hene ane two examples of the above l-expnession in phnase

forrn:

Ietx:a+bin
letY=a-bin

22x+y

and

The sennntics of phnases can

e:<anple o if v is a variable and

a+b

a-b.

a stnaightforryand tnanslation. Fon

are expressions, then

22x+y whene

and

x=
y=

by

N

be

M

given

and

Ietv:NinM

is defined to be

{rvu}u.

0f course the fact that phrases can be t::anslated into l-expnessions does not

in itself justify the claim that the enlanged language is denotative; because in
genenal translations are defined in terrns of the folg of expnessions. What is none

pensuasive is the fact that thene exist nules of infenence for tnansfonning phrases

gb that it is possible to reason about such expressions without refenence to thein
tnanslations. Fu:rthennore, it is also possible to define the denotation of such

expressions in a given environment in a stnaightfornar"d way, also without consid-

ening translations.

So powerful are these simple constnucts, that if we add then to an applied
version of the tr-calculus (ie one which has additional slrmbols such as rr+rr togethen

with an interpretation of these symbols); and if we allow infix oper^atons and the
like; we have a penfectly usable (and very expnessive) prrcgramming language.

2. The pronoun rr::esultrl

AIl the phrases rnentioned so far have, syntactically speaking, two pants: a

list of definitions, and an expression to which the definitions ar.e to be applied.
'As our first example of the use of pronouns ,le define a s3mtactica.lly slmpler:

ph:rase which consists sole1y of a .'List of defj.nitions.

The phnase we ane deseribing might be eall-ed the "applicati.ve valoflr. A ;

phnase of this t)pe collsists of a set of equations encl-osed by the tbr:acketsr

.rrval.oflr and rf endrr. Each equation is of the form

variable : expression

and no vaniable may occul' as the left hand side of two different equations in the
same vaLof. The variables appeaning on the left hand side of equations in a vblof
a::e called the loca1s of the valof; and among these must be the special variable
rr!€sultrr.

i thu following is a typical vat-of phnase

valof
X=canA
Y=cdrB
C : cons(yrB)

nesult = cons(XrC)
end.

The following ane not legal valof phnases.

valof
X
Y
Y

regul_t
end

valof
=A-B Q=A
=x+1. R:A
=Y+1 Z=e
=X end

+B
-B.R

the first because the vaniable rfY" has two definitions, and the second because the
special var.iable rrnesultrt is not defined.

, The meaning of a valof phnase is, infonmally at least, clean enough: it is the
value of rrresultil in the envi::onment defined by the body (necunsive definitions are
allowed). It is possible to nake this definition precise by giving a nule fon
tnanslating valof expressions into pune l-expressions, but we have alneady nemanked

that the existence of tnanslations does not necessanily justify the use of the ad-
jective rtapplicativet'. fnstead, we give a direct semantics and mention some nules
fon tnansforrning valof f s.

Let us assume that we ah"eady have in mind some stnucture, ie some donain of
possible values togethen with interpnetations of constant s5rmbols like r'+r or
rrconsrt oven the domain. Then given any environrnent o (ie any function which maps
va-riabLes into elements of the domain) we define the meaning of the phrase

valof
t.r-
u2.

vnn
end

to be or(ttresulttt) where sr is the least defined envinonrnent such that
(i) or agrees with o except possibly on the values assigned to

the locaI" r'rt2, ...
".ri

(ii) o' makes valid all the equations in the body of the valof, ie
ot(vr) is, fon each i, the value of E. i.n ffr.

Two of the nost irnportant rules which can be derived fnom the senantics just
given are the substitution rule and the renaming nuJ-e. The finst says that if a

phrase contains the equation v : E then E may be sr,rbstituted for any occurn-

ence of v which is fuee fon E in any expnession which is the right hand side

of an equation in the phr:ase. This nule is nelated to the 8-nule of the l-calcul-
us, and it justifies the use of the symbol t!=tr. The second nu1e, the nenaming

nule, allows us to neplace all free occurrences of a local v by a vaniable vr

provided (i) vt does not occur fnee in any equation in the phnase; (ii) all
fnee occunnences of v ane fnee fo:: vt; and (iii) v is not the vaniable
rrresultrr. This last restr"iction extends to all the pronouns to be intr.oduced, and

bnings out clear'ly the difference between them and ondinary local vaniables. Pro-

nouns may not be renamed because they have panticulan, predefined noles to play -
in the case of rrresultrr, to define the val-ue on output of the phrase.

3. Case statements

The intr.oduction of phnases does not nemove the only sounce of unwieldly and

un:readable expressions. Some of the wonst examples occur (and not just in denot:

ative languages) when if-then-else expressions are deeply nested. A good exr

arnple appears in the following recunsive definition of a function comp which

tests S-expressions for equality:

comp = lx try if atom(x) then if atom(y) then eq(xry)
else false else if atom(y) then false
else if comp(can x, car y) then conp(cdn x, cd:r y)
else false.

0f cou::se wniting such an expnession is simply not good style. A far. betten way

is to rewrite the big expnession as a phnase with locals defined as tests and con-

nesponding nesults. Pnonouns allow us to do this in a systenatic way and at the
same time simulate a iina of logical case statement.

-r-!l

- r:^
z

='f

Thenefor:e we add to ou:r list of unr.enameahle special 'yaniables those in the
thnee sequences

testO, testl, testZ, ...
nes0 , nes.l-., nes2 , ...

condl, cond2, ...

We e:<pand the class of valid phnases by allowing vaniables frorn the finst two (but
not the third) list to be defined in phrase bodies; and by allowing, fon each i,

.ththe i-" cond var"iable to be used provided the phrase has definitions of ever.y test'
vaniable up to the i-lth and ever.y nes vaniable rrp to the ith. The following
relationship between these vaniabLes is qlrderstood to hold: the value of condi
is, fo:: each i, the value of nesj fon the least j less than i fon which
testj is tnue; and if all are false, condi is resi. Oun definition of conp

can now be new:ritten:

plus the vaniable ttdefaultrf

: cond3
= atom(x) ,r aton(y)
= eq(xoy)
= atom(x) v aton(y)
= false
= comp(can x, can y)
= comp(cdr x, cdr y)
= false

caseO, casel, case2, ...

And we add as dependent pronouns those in the list

comP =),x)'Y rralof
r"esult
testO
r"esO
testl
nesl
test2
nes2
nes3

end

When we say that the above r.elations ane rrundenstoodrf to hold we can make this
preeise in two ways: syntacticatly, as meaning that the equations defining condi
(such as

cond3 = if testo then nes0 else if testl then resl_
else if test2 then nes2 else nes3)

are considened as automatically included in the body of eveuy phr^ase; on senantic*
aIly, as rneaning that we considen only those environments which make such equa-
tions tnue. Note that thene a::e two types of pnonouns: indelendent pnonouns like
Itresult[which can be defined by the pnognammen, and dependent pronouns like
"cond3[which cannot be defined but may be used provided thene exist definitions
for those othen pnonouns upon which the dependent pronoun is undenstood to depend.

The pronouns and nelationships just descr:ibed give us the effect of a kind of
logical case statement. It is easy to devise othen pronouns and nelationships which
give us the effect of an integen case statement. He add as independent pronouns
those in the list

switchon0n switchonl, switchonZ,

representing functions of one integen angument. The undenstood neLationship be-
tween these pronouns is that

switchoni = n if n eq 0 then caseO else if n eq I then casel
else default.

The pronoun switchoni may therefone be used pnovided the ph::ase has a definition
of casej fon every j less than i.

t

Hene is a typical phnase using these pronouns:

valof
nesult = switchon3(opcode)
caseO=A+B
casel=A'B
case2 = - d

. default = er:n(8)
end

Sequences of pronouns (like the I'caselr sequence) could be neplaced by single
firnction plronouns of a natural numben angunent although this means that some eval-
uation must be penformed just to check whether or not a phnase is well forroed. One

way to make sune that this is alwavs possible is to requine that the anguments be
constants (eg "case(z1tt1; but it is arso sufficient to requi::e that the anguments
depend only on vaniables defined egual to constants in some enclosing phnase. This
last appnoach, would allow

valof
plus = 0

;iffi: = l
""i;;nesult = switchon3(opcode)

case(p1us)=A+g

::::[;ffi:i =i;'
default = enn(B)

end

end

and gives us the effect of the rrmanifesttt constants of impenative languages.
Cleanry othen extensions, such as simurtaneous switches on two o:r more expnessions,
ane easiJ-y formulated.

4. Loops

Many of the constnucts of imperative languages are (fite the classic A1go1
fon statement) loop-related constnucts: they are used by prognamners to bning about
and contnol nepetition. Now stnictly speaking a programner. using a denotative

f"rrgu.g. cannot rbring aloutt repetition or any othen kind of operationally de-
fined activity; but by using the approach of the ranguage Lucid (see Ashcnoft and
Wadge trl) it is possible to wnite denotative pnograms which nay be understood in
terms of itenation. Pronouns are a valuable addition to the Lueid. appr"oach be-
cause' as we wiLl see, they alIow us to simulate the inrperative loop constnucts.

Lucid aehieves its effect by having vaniables anrl expnessions d.enote tine se-
quences of data so that time dependent functions such as fir.st and next can be
defined denotatively. The unary functions finst and next (on the binapy

I

function fby (t'followed bytt)) a::e used to give inductive definitions, and the
binary function asa (ttas soon as ft) extnacts values fnom tfune sequences. Lucid
itself is defined in tenns of elauses (compound assentions), but we will use an
obvious analogous phrase oniented vension. Hene is a sinple prograrD to conpute
the integen square noot of the constant N:

valof .
I=0fbyI.+1
J=0fby"I+2.I+I

nesult = (I-l-) asa J>N
end

Lucid iter:ations neven tenminate; they ane (conceptually) infinite comput-
ations fnom which values are extracted using asa. Explicit use of asa is not -

always convenient (especial-ly in pnoofs), and so we show how pnonouns can be used
to simulate the npre conventional while construct. Ite use an independent pronoun
rfhaltrr and a dependent function pronoun t?lasttf of which it is undenstood

last = l,x x asa halt.

The above loop can be new::itten as

These pronouns are

value of more than

valof
?-I-
T-

halt =
nesult =

end

especiall-y useful
one expnessionreg

We can also simuLate the classic
ent pnonoun |trangeil and two dependent

undenstood:

index =
final =

OfbyI+1
OfbyJ+2.f+l
'J>Nlast(I) - I

when it is necessa4r to nefen to the last

for'-loop with pronouns. We add an independ-
pnonouns, rrindexrt and |tfinaLtf of which it is

can(r"ange) fby index + 1
lx x asa index eq cdn(r,ange)

9

if tast(X)<M then last(y) el_se last(y)+f
would be somewhat less clean if written in tenns of asa.

(we ane assuming a step size of one). Hene is a simulated. fon-loop which conputes
the vector dot pnoduct of a(1), a(2), , a(N) and b(r), b(2) , b(N):

,

(we are using "," to a"""::r:rtain constnuctor)

range : (lrN)
I : index

sum = a(1).b(1) fby sum * next a(I).b(I)

.rru
ot"ttt = final(sum)

A very impontant pnopenty of loops like the one above is that they are guananteed
to terminate (provided N is defined).

A fnequent eniticism of the classical fon- and while- constructs is that in
'each case the loop can terrninate in only one way; whereas in fneal tifer thene ane
iterative algonithms which seem to a11ow several different ways of terminating,
each giving diffenent nesults. A classic e><ample is seanching a table for an iten
which nray not be present (two exits), and another is companing two seguences to
detenmine thein nelationship in the lexicogr.aphic ondening (thnee exits). Whethen
coded as fon- or while- loops or even in Lucid with last, the nesulting prognams

. ane ver5r inelegant because of the need to find out, aften the loop has tenninated,,
er<act1y how it was terrninated. Some author.s (eg Knuth in t3l) have used these
examples to angue that the goto statement might have a place in stnuctuned pro-
gr"amming. Fortunately pronouns provide a simple (and, needless to say, goto_Iess)
solution. We add the sequence

ha1tl, ha1t2, ha1t3, ...
of independent pronouns and the dependent function pronoun rtexits,, of which it is
undenstood

exits(i) = (if haltl then nesL else if halt2 then res2 else
... nesi) asa haltl v halt 2 v ,.. v halti .

Here is the table seareh program

valof \

r:esult = exits(2)
I=lfbyf+l

haltl = tab(f) eq key
nesl = f

halt2:IeqN
nes2 = ni1

end

whieh retu-rns i if key is at position i in tab, otherwise nil. And hene is
the comparison program

10

valof
result

I
haltl
nesl

halt2
nes2

halt3
res3

end

: exits(3)
= I fby I+l
= a(I)<b(I)
=It
= a(I)>b(I)
=gt:IeqN
= ec{l

which returns lt, eql or gt according to the lexicognaphic or"dering of the se-
'

quences consisting of the finst N values of a and b respectively. These

Pronouns and equations give the prrcgrammen nlone or less the effect of Zahn?s

'rrevent indicators" (see Zahn [4]) without the cumber:some slmtax

5. Reasonj!-ng about pnognams

: It venifying or massaging progr"arns which use pronouns thene is of counse no
' need to fir"st translate the pnognam into a pronoun fuee fonm; one can wonk dinect-
Iy on the original text using nules such as

last(X+Y) : last(X) + last(y)

which involve pronouns

It is possible to venify pnograms using tnansfo::mation nules alone, but it is
alnost always helpful to be able to use, in addition, inference nules which allow
us to deduce asser"tions about var"iables. This involves eithen using clauses as

opposed to phrases' 01' else making pneclse the notion of making asser:tions about
the locals of a phnase. In eithen case we find that thene aFe very natuna]- and

suggestive rules of infenence involving pronouns. Some involve pronouns which ar:e

used in proofs only, and not in pnog::ams. Fon example, let us introduce the de-
pendent pronoun rrter^minationft with the implicit definition

tenmination = eventually(halt).

Then we have the followirrg rule of inference

finst F, pnlhalt + next po terrnination 'ts last(pnhalt)

which is the analog of Hoanefs while rule.

6. Extensions

It should be apparent that a great vaniety of constnucts can be simulated
using the pnonoun method. One gneat advantage of the rnethod is that the semantics
of these constnucts can be specified absolutely pnecisely by an equation on two,
without nesont to the. intnicacies of context free grammans, the Vienna Definition
Language, on the Scott-Stnachey method. A second advantage is that in rnany cases

t1

the pnonoun forms are actually easier to use because the angunents are specified
by an unondened set of rkeywor"dr eguations, nathen than beir:g specified positlon-
aIly by plugging expnessions in the pigeonholes of some g::anmatical template. An

obvious possibility is to combine the two approaches, eg to define a for loop in
which the index value and the range are specified positionally, but in which the
final nesult and enno:: exits ane defined with pronouns. Anothen is to define
diffenent phnases within which different equations ar^e assumed to hold; and a
thind is to al-low the usen to pnovide his own implicit equations. This last pos-

sibility must not be undentaken lightlyo fon it amounts to perrnitting a forrn of
d5manic binding.

Refenences

1.

2.

3.

4.

Ashcnoft,
itenation,

E.A., and Wadge, W.W., Lucid, a nonpnocedunal language with
CACM 20, ? (,July 197?);m.

Knuth, ?.E., Structuned p::og:rarnming with goto statements, Comp.Sunv. 6,
4 (1974), 261-301.

Landin, P.J.r rhe next zoQ prre"a*in , cAcM 9, g (1966), 15?-164.

Zahn, C.T., A control statement fon natunal top down structuned pnognamming,
Proceedings -

12

