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Abstract: In this paper how a pure denotative (nonprocedural) language based on
the lambda calculus can be provided with purely denotative analogs of
the various constructs - such as while loops, blocks, case statements
and the like - of conventional imperative structured programming
languages. They can be simulated quite adequately using only two
simple tools: phrases, which are compound expressions not unlike blocks,
and pronouns, special variables not unlike keywords between which certain

relationships are 'understood' to hold.
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0. Introduction

A denotative (or nonprocedural) programming language is a language based on

some mathematical formal system, such as the A-calculus or predicate logic. 4
program in such a language is a term or formula in the formal system, rather than
a sequence of commands to be executed, and its meaning is the value of the expres-
sion or the solution(s) of the formula, rather than the result of obeying the com-
mands. The great advantage of denotative languages is that the transformation or
inference rules of the formal system can be applied directly to programs, and are .

‘powerful rules for program verification or massage.

The merits of the denotative approach have been well understood for at least
a dozen years now (see the discussion following Landin's "The next 700 programming
languages™, Landin [3]), but at present few computer scientists would consider them
to be serious alternatives to conventional imperative languages. This is in part
due to some simple misunderstandings (for example, the widespread belief that com-
fputation is inherently a sequential activity); but there are also more serious ob-
jections to denotative languages, in matters both of form (syntax) and meaning

(semantics).

The main objection on semantic grounds is that programmers using a denotative
language have no control over the behaviour (as opposed to the meaning) of their
programs, ie they cannot make anything happen the way they want. The conclusion:

that denotative programming is inherently inefficient. .

And the main objection on syntactic grounds (the one with which this paper is
concerned) is that denotative languages are too impoverished of expression,lacking
as they do the rich variety of constructs - blocks, for loops, case statements and
so on - found in imperative languages. The conclusion: that denotative languages
are inherently clumsy. It is apparent that this objection is closely related to
‘the former - the various constructs of imperative languages are operationally mot;
‘ivated (so it seems), ie designed to bring about desired activity. Therefore (so

it seems) they cannot have denotative analogs.

Now it is certainly true that the definition of the semantics of denotative
languages are purely mathematical in that they describe only the denotations of
programs and parts of programs. But there is no reason why such a languge (or sub-

set thereof) cannot have an alternate, operational semantics which describes the

'meaning of programs in terms of activity they give rise to. As long as the oper-
‘ational semantics is equivalent to the mathematical one the programmer may use

either (or both) as a programming guide. Moreover, if the implementation is based
on the operational semantics, the programmer can use his knowledge of it to bring

about desired efficient behaviour by varying the form of his program.
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Consider, for example, the case of blocks and procedure (ie. function) declar-
ations. Most Algol programmers have a very operational understanding of these

constructs, one in which blocks are entered and exited, storage is allocated and

deallocated, and threaded stacks bob up and down. Now Landin in the paper cited

described a pure nonprocedural language ISWIM which allows both block structures

and function definitions in a very natural (and very simple) way. Yet neither the
syntactic rules of the language, nor the formal semantics, nor the rules of infer-
ence, make any reference to stacks, pointers, return links and so on. Indeed no
notion of 'storage' is required. Of course, there is nothing to stop a programmer
from imagining an ISWIM block being 'entered', or a function being called, but it
is not necessary to think operationally like that. Even the implementor might want
to avoid the classical Algol view of execution, perhaps by using the copy rule for

functions and by translating blocks into parts of a data flow network.

Similarly, there is no reason why imperative languages should have a monopoly
of conditional, case, and switch statements and the like. It is very easy to dev-
ise a simple denotative case expression, and the usual operational view involving

"testing" and "jumping" might or might not be helpful to the user. Even repetitive

-constructs (for loops, while statements and so on) fit in to this framework if we

use Lucid's denotative approach to iteration.

In this paper we give details of the denotative constructs just mentioned.
What is especially unusual about our approach is that it does not require adding
any new syntactic constructions. Instead, the effect can be achieved using only
special 'keyword' variables calleq pronouns among which certain implicit relation-

ships (in the form of equations) are assumed to hold.
1. Phrases

In this paper the formal system on which we base our programming language is
the A-calculus. Now it is certainly true that the pure A-calculus by itself must,
on syntactic grounds alone, be rejected as a practical programming language. All
but the simplest A-expressions are (when presented in full) almost unreadable (even
if infix notation and other minor sugarings are allowed). This unreadability is
often blamed on the tendency of A-expressions to be deeply nested; but a more ser-
ious problem is the frequently large textual distance between variables and the

expressions to which they are bound. For example, even in the expression
{xx Ay x2+y2}(a—b)(a+b)

the connection between the variable "y" and the expression "a+b" does not leap to

the eye.

' Of course, if we are interested in the A-calculus only as a formal system, ie.



if ﬁé éﬁé intefésted only in reasoning about A-expressions, then these observa-
tions are of no consequence. But if we are interested in adapting the notation in
a programming language, ie if we are interested in actually reading and writing
A-expressions, then problems of form like the one just discussed are very import-

ant.

Fortunately, there is a very simple solution to the problem. It involves
adding a class of special expressions (which we call phrases) which include equa-
tions defining variables; a variable and the expression to which it is bound are
‘brought together across an "=" symbol. Phrases were first formalized by Landin
(in [3]), although (as he points out) mathematicians have been using them inform-

ally for a long time. Here are two examples of the above A-expression in phrase

form:
let x = at+b in
let y = a-b in <
2 2
X ty
'and
x2+y2 where x = atb
and y = a-b.

The semantics of phrases can be given by a straightforward translation. For

example, if v 1is a variable and M and N are expressions, then

i
H

let v =N in M
is defined to be
{AVM}N.

Of course the fact that phrases can be translated into A-expressions does not
in itself justify the claim that the enlarged language is denotative; because in'
general translations are defined in terms of the form of expressions. What is more
persuasive is the fact that there exist rules of inference for transforming phrases
so that it is possible to reason about such expressions without reference to their
translations. Furthermore, it is also possible to define the denotation of such
expressions in a given environment in a straightforward way, also without consid-

ering translations.

So powerful are these simple constructs, that if we add them to an applied
version of the A-calculus (ie one which has additional symbols such as "+" together
with an interpretation of these symbols); and if we allow infix operators and the

like; we have a perfectly usable (and very expressive) programming language.



2. The pronoun ''result"

All the phrases mentioned so far have, syntactically speaking, two parts: a
list of definitions, and an expression to which the definitions are to be applied.
As our first example of the use of pronouns we define @ syntactically simpler

phrase which consists solely of a list of definitionms.

The phrase we are describing might be called the "applicative valof". A
phrase of this type consists of a set of equations enclosed by the 'brackets'

"valof" and "end". Each equation is of the form
variable = expression

and no variable may occur as the left hand side of two different equations in the
same valof. The variables appearing on the left hand side of equations in a valof
are called the locals of the valof; and among these must be the special variable

"result".

‘

<

The following is a typical valof phrase

valof

X = car A

Y = cdr B

C = cons(Y,B)
result = cons(X,C)
end.

The following are not legal valof phrases.

valof valof
X=A-B Q=A+B
Y=X+1 R=A-B
Y=Y +1 Z=Q R

result = x end

end

the first because the variable "Y" has two definitions, and the second because the

special variable "result" is not defined.

The meaning of a valof phrase is, informally at least, clear enough: it is the
value of "result" in the environment defined by the body (recursive definitions are
allowed). It is possible to make this definition precise by giving a rule for
translating valof expressions into pure A-expressions, but we have already remarked
that the existence of translations does not necessarily justify the use of the ad-
jective "applicative". Instead, we give a direct semantics and mention some rules

for transforming valof's.

Let us assume that we already have in mind some structure, ie some domain of
possible values together with interpretations of constant symbols like "+" or
"cons" over the domain. Then given any environment ¢ (ie any function which maps

variables into elements of the domain) we define the meaning of the phrase



iih
2 2
v =EL
n n
end

{to be o'("result") where o' is the least defined environment such that
(i) o' agrees with o except pdssibly on the values assigned to
the locals vl,v2, N vn;
(ii) o' makes wvalid all the equations in the body of the valof, ie

o'(vi) is, for each i, the value of Ei in o'.

Two of the most important rules which can be derived from the semantics just

given are the substitution rule and the renaming rule. The first says that if a

- phrase contains the equation v = E then E may be substituted for any occurr-
ence of v which is free for E in any expression which is the right hand side
‘of an equation in the phrase. This rule is related to the B-rule of the A-calcul-
us, and it justifies the use of the symbol '"="., The second rule, the renaming

. rule, allows us to replace all free occurrences of a local v by a variable v!

~-provided (i) v' does not occur free in any equation in the phrase; (ii) all-
free occurrences of v are free for v'; and (iii) v is not the variable
"pesult”. This last restriction extends to all the pronouns to be introduced, and
brings out clearly the difference between them and ordinary local variables. Pro-
nouns may not be renamed because they have particular, predefined roles to play -

in the case of '"result", to define the value or output of the phrase.

3. Case statements

The introduction of phrases does not remove the only source of unwieldly and
unreadable expressions. Some of the worst examples occur (and not just in denot-
ative languages) when if-then-else expressions are deeply nested. A good ex~
ample appears in the following recursive definition of a function comp which

tests S-expressions for equality:

comp = Ax Ay if atom(x) then if atom(y) then eq(x,y)
else false else if atom(y) then false
else if comp(car x, car y) then comp(ecdr x, cdr y)

else false.

Of course writing such an expression is simply not good style. A far better way
is to rewrite the big expression as a phrase with locals defined as tests and cor-
responding results. Pronouns allow us to do this in a systematic way and at the

same time simulate a kind of logical case statement.



" Therefore we add to our list of unrenameable special variables those in the

‘three sequences

; testO, testl, test2, ...
resO , resl., res2 , ...

condl, cond2, ...

‘We expand the class of valid phrases by allowing variables from the first two (but
not the third) list to be defined in phrase bodies; and by allowing, for each i,
the ith cond variable to be used provided the phrase has definitions of every test

variable up to the i-lth and every res variable up to the ith

. The following
‘relationship between these variables is understood to hold: the value of condi
is, for each i, the value of resj for the least j less than i for which

‘testj is true; and if all are false, condi 1is resi. Our definition of comp

can now be rewritten:

comp = Ax Ay valof

result = cond3
test0 = atom(x) A atom(y)
resO = eq(x,y)
testl = atom(x) V atom(y)
resl = false
test2 = comp(car x, car y)
res2 = comp(cdr x, cdr y)
res3 = false

end

When we say that the above relations are "understood" to hold we can make this

’precise in two ways: syntactically, as meaning that the equations defining condi

(such as

cond3 = if testO then resO else if testl then resl
else if test2 then res2 else res3 )
are considered as automatically included in the body of every phrase; or semantice
ally, as meaning that we consider only those environments which make such equa-
tions true. Note that there are two types of pronouns: independent pronouns like
"result" which can be defined by the programmer, and dependent pronouns like \
"cond3" which cannot be defined but may be used provided there exist definitions

for those other pronouns upon which the dependent pronoun is understood to depend.

The pronouns and relationships just described give us the effect of a kind of
logical case statement. It is easy to devise other pronouns and relationships which
give us the effect of an integer case statement. We add as independent pronouns

those in the list
case(0, casel, case2, ...

plus the variable '"default". And we add as dependent pronouns those in the list



switchonO, switchonl, switchon2, ...

representing functions of one integer argument. The understood relationship be-

tween these pronouns is that
Y

switchoni = n if n eq O then case0 else if n eq 1 then casel
.+ else default.

The pronoun switchoni may therefore be used provided the phrase has a definition

of casej for every J less than i.

Here is a typical phrase using these pronouns:

valof
result = switchon3(opcode)
case0 = A + B
casel = A * B
case2 = - A
default = err(8)
end <

Sequences of pronouns (like the "case" sequence) could be replaced by single
functlon pronouns of a natural number argument although this means that some eval-
uation must be performed just to check whether or not a phrase is well formed. One
way to make sure that this is always possible is to require that the arguments be
constants (eg "case(2)"); but it is also sufficient to require that the arguments
depend only on variables defined equal to constants in some enclosing phrase. This

last approach would allow

valof
plus = 0
times = 1
minus = 2
valof
result = switchon3(opcode)
case(plus) = A + B
case(times) = A - B
case(minus) = - A
default = err(8)
end
end

and gives us the effect of the "manifest" constants of imperative languages.
Clearly other extensions, such as simultaneous switches on two or more expressions,

are easily formulated.

g, LooEs

Many of the constructs of imperative languages are (like the classic Algol
for statement) loop-related constructs: they are used by programmers to bring about

and control repetition. Now strictly speaking a programmer using a denotative
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1énguagéﬂcannot 'bring about' repetition or any other kind of operationally de-
fined activity; but by using the approach of the language Lucid (see Ashcroft and
Wadge [11) it is possible to write denotative programs which may be understood in
terms of iteration. Pronouns are a valuable addition to the Lucid approach be-

cause, as we will see, they allow us to simulate the imperative loop constructs.

Lucid achieves its effect by having variables and expressions denote time se-
quences of data so that time dependent functions such as first and next can be
- defined denotatively. The unary functions first and next (or the binary
‘function fby ("followed by")) are used to give inductive definitions, and the
binary function asa ("as soon as ") extracts values from time sequences, Lucid
itself is defined in terms of clauses (compound assertions), but we will use an
obvious analogous phrase oriented version. Here is a simple program to compute

the integer square root of the constant N:

valof 3
I=0fby I +1
J=0fbyJ+2 «I+1
result = (I-1) asa J>N

end

Lucid iterations never terminate; they are (conceptually) infinite comput-
ations from which values are extracted using asa. Explicit use of asa is not
always convenient (especially in proofs), and so we show how pronouns can be used
to simulate the more conventional while construct. We use an independent pronoun

"halt" and a dependent function pronoun "last" of which it is understood
last = Ax x asa halt.

The above loop can be rewritten as

valof
I=0fbyI+1
J=0fbyJ+2 I +1
halt = J>N
result = last(I) - 1
end .

These pronouns are especially useful when it is necessary to refer to the last

value of more than one expression,eg
if last(X)<M then last(Y) else last(Y)+l
would be somewhat less clear if written in terms of asa.

We can also simulate the classic for-loop with pronouns. We add an independ-
ent pronoun '"range" and two dependent pronouns, "index" and "final" of which it is
understood:

index = car(range) fby index + 1
final = Ax x asa index eq cdr(range)



téé”éfe éséuming a step size of one). Here is a simulated for-loop which computes
the vector dot product of a(l), a(2), ... , a(N) and b(1l), b(2) , ... , b(N):

(we are using "," to denote a pair constructor)

valof
range = (1,N)
I = index
sum = a(l)-b(1l) fby sum + next a(I)-b(I)
result = final(sum)
end

A very important property of loops like the one above is that they are guaranteed.

to terminate (provided N is defined).

A frequent criticism of the classical for- and while- constructs is that in
reach case the loop can terminate in only one way; whereas in 'real life' there are
iterative algorithms which seem to allow several different ways of terminating,
each giving different results. A classic example is searching a table for an item
which may not be present (two exits), and another is comparing two sequenc;s to
determine their relationship in the lexicographic ordering (three exits). Whether

coded as for- or while- loops or even in Lucid with last, the resulting programs

.. are very inelegant because of the need to find out, after the loop has terminated,

exactly how it was terminated. Some authors (eg Knuth in [3]) have used these
examples to argue that the goto statement might have a place in structured pro-
gramming. Fortunately pronouns provide a simple (and, needless to say, goto-less)

solution. We add the sequence
haltl, halt2, halt3, ...

of independent pronouns and the dependent function pronoun "exits" of which it is

understood

exits(i) = (if haltl then resl else if halt? then res2 else
... resi) asa haltl Vv halt 2 v ... v halti .’

Here is the table search program

valof
result = exits(2)
I =1 thy I+l
haltl = tab(I) eq key
resl = I
halt2 = T eq N
res2 = nil
end

which returns i if key is at position i in tab, otherwise nil. And here is

the comparison program

10



. Then we have the following rule of inference

valof

result = exits(3)
I =1 fby I+l
haltl = a(I)<b(I)
resl = 1t
halt2 = a(Ij>b(I)
res? = gt
halt3 = I eq N
resd = egql
end

which returns 1t, eql or gt according to the lexicographic ordering of the se-
'quences consisting of the first N values of a and b respectively. These
. pronouns and equations give the programmer more or less the effect of Zahn's

- "event indicators" (see Zahn [4]) without the cumbersome syntax

;5. Reasoning about programs

In verifying or massaging programs which use pronouns there is of course no

"need to first translate the program into a pronoun free form; one can work direct-

ly on the original text using rules such as

last(X+Y) = last(X) + last(Y)

which involve pronouns.

It is possible to verify programs using transformation rules alone, but it is

almost always helpful to be able to use, in addition, inference rules which allow

"us to deduce assertions about variables. This involves either using clauses as

vopposed to phrases, or else making precise the notion of making assertions about

the locals of a phrase. 1In either case we find that there are very natural and

suggestive rules of inference involving pronouns. Some involve pronouns which are

~used in proofs only, and not in programs. For example, let us introduce the de-

'pendent pronoun "termination" with the implicit definition

termination = eventually(halt).

first P, PA'lhalt + next P, termination ¥ last(PAhalt)
which is the analog of Hoare's while rule.
6. Extensions

It should be apparent that a great variety of constructs can be simulated
using the pronoun method. One great advantage of the method is that the semantics
of these constructs can be specified absolutely precisely by an equation or two,
without resort to the intricacies of context free grammars, the Vienna Definition

Language, or the Scott-Strachey method. A second advantage is that in many cases

PR
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the pronoun forms are actually easier to use because the arguments are specified
by an unordered set of 'keyword' equations, rather than being specified position-
ally by plugging expressions in the pigeonholes of some grammatical template. An
obvious possibility is to combine the two approaches, eg to define a for loop in
which the index value and the range are specified positionally, but in which the
final result and error exits are defined with pronouns. Another is to define
different phrases within which different equations are assumed to hold; and a
third is to allow the user to provide his own implicit equations. This last pos-
sibility must not be undertaken lightly, for it amounts to permitting a form of

dynamic binding.

References

1. Ashcroft, E.A., and Wadge, W.W., Lucid, a nonprocedural language with
iteration, CACM 20, 7 (July 1977), 519-526.

2. Knuth, D.E., Structured programming with goto statements, Comp.Surv. 6,
4 (1974), 261-301.

3. Landin, P.J., The next 700 programming languages, CACM 9, 3 (1966), 157-16u.

L, Zahn, C.T., A control statement for natural top down structured programming,
Proceedings of the Symposium on Programming Languages, Paris (1974).

12



