
http://wrap.warwick.ac.uk/

Original citation:
Lehmann, D. J. and Smyth, M. B. (1977) Data types. Coventry, UK: Department of
Computer Science. (Theory of Computation Report). CS-RR-019

Permanent WRAP url:
http://wrap.warwick.ac.uk/46317

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46317
mailto:publications@warwick.ac.uk

The Univensity of Warwick

THEORY OF COMPUTATION

REPORT NO.19

TI ATA TVPES

BY

JInTIEL.J,LEHMANN AND 11 TcHAEL B,St',t yrH

Departrnent of Computen Science
Unjversity of Wanwick
COVENTRY CV4 7AL
ENGLAND.

DATA,TYPES

Daniel ,J. Lehman#and Michaef B. Smlrth

Department of Computen Science
University of War.wick
Coventry, West Midlands,
CV4 7AL
Great Britain

Adoress from September L977: Department of Mathematics, University of

Southern Cal-ifornia, Univensity Pa::k, Los Angeles, California, 90007

by

Abstract

-A Mathematical interpnetation is given to the notion of a data .tJrpe.

Ttre main noveltSr is in the genenality of the nathematical treattnent

which allows procedural data't5pes and cincular"ry defined data tlpes.

What is rneant by data type is p:rettxr close to what any corputen

scientist would r:ndenstand by this terrn or by data stnuctune, tJlpe,

mode, clustenr cl-ass. The mathennatical trreatment is the conjunction

of the ideas of D. Scott on the solution of domain equations (Scott

(71), (72) and (76)) and the initiality properry noticed by the

ADJ gnoup (ADI (75), ADJ (77')). The present wonk adds openations

to the data types pnoposed by Scott and generalizes the data tlpes

of ADrl to procedur,al types and anbitrary ci:rcurar tJpe definitions,

The advantages of a mathematical interp:retation of data tjrpes are

those of mathematical semantics i:: genenal : throwing]ight on sore

iIl-rndenstood constnucts in h-iglr-leveI pnognarrning languages, easing

the task of wr.iting conr€ct pnograms and naking possible pr"oofs of

cornectness fon pnograns on inplernentations"

'l

I" Introduction

Ali pr"ogramming languages have basic data types, some have many,

some have few, sorne have only one basic data'type. The most

comrnnly used ane : booleans, integers, r:ea1s, procedures,

Iabe1s, atomso lists. They generally come equipped with sorne

openations : logical openations fon booleans, a::ithmetical

operations fon intege:rs and reaIs, compositionn evealuation and

abstnaction for" pnocedunes, a defining facility fon labels, and

list-rnanipulation pnimitives fon iists.

fn most data..qpes the user. has the facitity to denote new objects

by the use of expnessions combining o1d objects by openationso

Ai-l these facilities are easy to undenstand. The fi::st non-

tr"ivial fact about data. B(pes is that, in ce::tain data types and

in centain prograrming languagesn objects can be defined implicitly;

they ane defined by e:pnessions that contain thein own denotation"

This is the facility which is gener"ally ::efe::ned to as |tnecu::sive

definitionf' but which we prefen to cail "circu.l-ar definitiont'.

This facility is generally offened for pnoceduna.l- data types only.

ln the most advanced ianguages (caIled extensible) the user may

define new data ty-pes fnom old ones by the use of eonstnuctol"s. In

ALGOL 68, for example, these

row, fp$. New ope::ations

defi.ning new procedures.

constnuctors are gq]}g!, !!!!r ref 3

on data'Wpes may also be defined by

z.

In some languages, like ALGOL 68, new data types may also be

defined cir"cula::Iy" The following two definitions a::e examples

of such cincula:: definitions in ALGOL 68:

mo.g g = gg! (iE Iabel, nef t.ree. 1eft, € lgeg ::ight)

moi.e fun = puoc (frn) firn

-A11 languages known to the authors that al-Iow such circulan

definitions of data types put stringent ::estrictions on the

genenality of such a facility. Lehmann (77) showed that many

circul-a:: definitions not allowed in ALGOL 68 are meaningful and

ve::y useful.

The question of the mathematical meaning of cincula:r definitions

inside pr.ocedural data types was finst answened, independently, by

H. Bekic, D. Pank and D. Scott, who noticed that the funetions

defined wene least fi>ooints of rpnotone functionals. The fact that

mode-constructons ane functors was mentioned in Scott (ZZ), in a

nemank attributed to Lawvere, and later made explicit by Reynolds

and Wand (74). Cir^cular. definitions of sets and languages had

been known to algebraists for" a certain time when, in 1969, Scott

gave a pnecise neaning to ci::cuLar definitions involving the function-

space constructor (his arnow, the ALGOL 68 Bggg). A general method

to solve dornain equationso irplicit in Scott (72), was rnade e>glicit

by Relmolds. The categorical natune of this rnified construction,

only hinted at by Scott, was emphasized by Wand (74). The main idea

behind the pnesent wor:k is that the pnoblems involved in defining

oata rypes can best be handled by an exact generalization of the

well-understood methods used in studying definitions of objects

within a data tjpe. This involves genenalizing fuom posets to

categorieso fnom monotone functions to frr::rctons, and fuom least

fixpoints of continuols functions to initial fi>rpoints of continuous

frnctors. The ADJ gnoup concentrated on the p::oblem of defining

frnctions on data types and insisted that data types do not consist

only of a set of elements, st:3uctur"ed in some way (generally a partial

onden) but consist also of centain frstctions. They understood the

impontance of initiality and noticed that certain data t5rpes wene

initial algebras (on initial rnany-sonted algebnas) but wene unable

to include procedr::na1 data types in thei:r tl:eatment and did not see

the link with initiaL fi:<point of continuous functonse The nelation

between our" wonk and the authots just mentioned can be surunanized

as fo11ows" We pnovide a categonical vension of Scottrs domain

constnuctions that is sinrplen than Wandts. At the same time, we

take fuII account of the ideas of ADJ, while avoiding the limitations

to equationally defined, non-procedunal data types which thein approach

entails. As to the mathematical resuLts in the paPerr most of these

ar e fai::Iy obvious - once one has gnasped the idea of systematically

generalizing fr:om posets to categories. The main purpose of the

wonk is, howevenr not to Present detailed nesults, but to show that

a clean and ::igor"ous basis for the theory and pnactice of data tyPes

can best be pr.ovided by the concepts of o-categories, ut-continuous

functors, and initial fixpoints,

4.

2" Mathematics

This section wilL intnoduce the basic notions and notations to

be used in the sequel.

Definition 1: A Gimilanity) type T is a ranked alphabet.

The nank of a synbol is calLed its anity.

A type is a set of symbols (intended to nepresent firnctions);

to each symbol is attached a natunal number: (intended to be the

numben of anguments taken by the fi:nction nepresented), the anity

of the s]rmbol. If T is a type TrrS T is the set of aII symbols

of nank n.

lgIigi$l3: A (universal) algebna of type T is a set S (called

the eanrien of the algebr.a) and fon each n € N a

fi.rnctiond:T *S#.'n n

O- :.ssociate:r with each synbol of anity n a function : Sn + S'n

of the cornesponoing nunber of anguments"

The fol-lowing notions of category lheony will be assumed to be known:

category, object, arrow, domain, codomain, icientity, composition,

snalr categonies, limits, colirnits, products, copnoductsn equalizers,

coequaLizens, monics, episo isomorphisns, initial and tenninar objectsn

zeno object, functors, coseparators, well powened categories. The

readen is :refer.:red to Maclane (71) and Henr:lich-Stnecker (2e1"

Definition 5

Definition 6

Definition 3 ar is the categot:y whose objects ane the natu:ral

nunber-s : { O, lr 2r oo; i' .." } and the annows

all couples (irj) of natunal nunbers such that
i < j o with the obvious identities and composition.

C is an rrr-category iff C has an initial object and

all colirnits of ardiagnams.

A fi:nctor F : A -r B is an ar-fi:ncton iff F presenves

aIL existing colimits of ar-diagnams.

If T : C + C is an endo-fr:ncton a T-algebna is an

annow (of C) of the forrn g : Ts + g

Definition 4

A similanity type Tt, as in definition 1, can be considened as a
futcton T in the category Set. An example will show this betten
than a fonnal definition.

LetT' ={ o, S } withrank (0) =0, nank (S) = 1 l

T would be th-e firncto:r defined by TA = 1 1 6 and Tf = Ia + f.
Then aT-algebnawouldbeafr:nction 0:1 r S+S andwoufd

cornesPond uniquely with a set (S) equipped with one constant and

one unary openationo The neaden will easily see how to gener.alize

the above example to ar:bitnary similanity t5rpes (even infinite ones).

Definition 7: IfT: C+C is anendo_functorthe categoryof
T-algebnas is the categorSr whose objects a!€ the

T-algebnas and whose ar.t3ows, fr^on $: Tc + c to
r/l : Td + d ane those arnows a : c+d of C such

that o{ = rfTo.

o* +Td
tn

0+

<.

rl,

6.

If T connesponds to a similar.ity qrpe Tr the ar"rows of the categorlr

of T-algebnas ane th-e tr"omonphisrns of tir-e univensal algebnas of

t3rpe T I .

A wond of caution is necessarlr hene to warn the ::eader that our

definition of a T-algebna, though seemingly only an extension of

the one found in Mac-Lane (71) whene T is al-ways supposed to be a

monad, has in fact a diffenent purpose. The fr:nctor T that we make

to conrespond to a similanity type Tr is not the one Mac-Lane woul-d

conside:: (the one building the caz':nien of the fuee algebra). Our

notion of an algebra is identical to what Arbib and Manes (74)

ealled a T-d5rnarrics" We ane interested onJ-y in the case whene T is

an ar-frncton and C an co-category.

Tlreoryjn 3 : Let C be an o.r-categony and T : C + C be an arfirncton,

then the category of T-algebr"as is an o-category"

Pnoof : The proof of this theorem is more-or-less noutine

ar':row-chasing" As th-e existence of arcolimits will not

be used in the sequel its proof will be left to the

reader. The existence of an initial T-algebra will be

proved in detail.

Let r be the initial object of C (its existence is ensur:ed because C

is an al-categor5r) and Iet r^ be the r:nique arrow I I + c.

The following ar-diagrarn has a co-Iimit (C is an &r-categony)

r
-+

Tr --l "t2 t V T3r -+ ...
tr rfor r-\r

Let u.: T-r + a be a ooLimiting cone..I

i,r-.tTlr, : Tt'*g + Ta is a colimiting cone because T is an apfuncton.
I

Then thene is a r:nique c : Ta + a such that oqTri= !i+1. We claim

that o is the initial T-algebna.

Suppose B : Tc + c is a T-aLgebra.

Define uo = !" and ui*1 = B oTvi.

uiorTr= l" = 'o
and bY induction on i :

i +'t
ui+1o T rO, = B o T (uio f''rTJ_) = BoTui-1= vi,

and the cone ,i commnufes.

Suppose y : a +'c is an ar?row of T-algebras

a+c
ot +8

Ta -) Tc
Ty

youo= ynta = I. = Yo and bY induction

yoli+1 = y,oo"Si BoTYoT[i = goT(yogi) = B.bi = vi+1

and y has to be the unique arrow such that ynli = vi.

0n the other hand, by the unj,versality of y- thene is such a Y.

"foopTlr. = yoli+1 = ui*1 = goTvi = 9ofi"Tli

By r:nivensality of TU.: Yod = SoTy and y is an arr:ow of T-algebnas. El

8.

Rema::k : Fnom Theonem 1 we shall only use the existence of

initial T-algebras and the careful ::eade:: may have noticed

that we did not pnove the most genenal possible nesults. InitiaL

algebras may be pnoved to exist even in categories in which not

all or-diagrams have a colilnit; it is enough to suppose that all

a.r-diagrams in a specified subcategory have colimits (in the

large category), that the initiaL element is in the subcategory

and is initial in the subcategory and that the subcategor:f is

closed under T. These nesults may be of use when studying certain

categories wtr-ich a::e not or-categories, but the sfunple version

nestnicted to ar-categonies is adequate for. the purposes of this

Paper.

Theonem 2 : Let T be an endo-frnctor on C. lf a:Ta+a is an

initial T-algebna then a is an isomo4rhism.

Pnoof:agTa

B+ + TB

Ta + T2a
To

Initiality of o implies the existence of g : a+Ta

such that B,co : TcroTB

But cropoo = doT(a"$)

o.e'+Ta

ac$ T + T(a.g)

a6ra

whichl, by initiality of c implies ooB = I=

Then I oc = T(cog) = T(I=) = r__
Icl

a and g are invense isomorph-isms. El

We want now to pnoceed in giving examples of the application of
the above theonems. Our clairn is that data 13rpgs can always be

considened to be objects in an appnopniate &r-catego4rr such that
each data.tjfpe constnuctor is an ai-endo-furctor of this category.

Example 1 : Set and univensal algebnas

Set is eocomplete (and also complete) an6 so is an ar-categerlfe

1 ! SetxSet+Set is an al-fi-urcton because it is a pr.oduct and

finitelimits preserve dinected co-lirnits in set (see Mac Lane

1971 Theonem 1 p" 211)"

+ : SetxSet+Set is an al-fu:cton because it is a copnoduct, and so

has a night adjoint and pneser"ves all colimits. Obviously constant
functors a::e ar-functo::s, composition of ar-functors is an arfuncto:r
and a bi-functon is an ar-functor iff it is an a.r-fi:ncton sepanately

in each angument.

Theonem 3 : Let T be a similarity typer then the associated f,ncton
T : Set+Set is an crfurcton.

The pnoof is obvious. Theorem 1 and 2 then imply the existence of
initial algebras of any type and the fact that the initiar argebna,

as a furnction, is an isomorphism. One knows that, in set, not
only initial algebnas but also ar"bitrar..y fr"ee algebnas exist and also
ar"bitnany f':nee algebra in equational classes of algebnas, but this
is of no inter:est to use The existence of initiar. argebnas was

known long befone the terrn initial had been coined and we cLaim no

J.U.

credit for the above theoren. The fnamewor.k of r:nivensal algebras

is too restr-icted for data types and, as noticed by AD.], rnany-sorted

algebnas seem mone suited.

Examp]e 2 : Setn and n-souted, algebnas,

Setn = SetxSetx.. oxSet

n times

Setn is obviously cocomplete Cand al-so eomplete) and so is an &r-categoty"

rf T : setn + setn the T-algebnas ar€ a genenalization of what is
called in the litenatune nanrso:rted a1gebnas, heterogenous argebnas

or" algebnas with a scheme of openatons. Theonem 2 implies the

Pr"oposition 2"1 of ADI (77). Many sorted algebnas ar€ closen than

algebnas to what one r:ndenstands data-ty?es should be, neventheLess

the p:roblems of ci::curan definition of objects inside a data-t]rpe

cannot be tackled in setn fo:: Lack of an o:rden structune on the

objects (which ar€ n-tuples of unonde:red. sets). Burge (25) is
pnobably the besto though somewhat informar, account of what can be

done with sets.

Example 3 : o-€PO" and continuous al_gebras.

To remedy the absence of onden stnucture on the objects AD] (77)

have proposed to use man]psorted a-Lgebnas whose canniens ane arcomplete

pantial ordens with least element and whose oper€tions are a.r-continuous

functions" Oun objection to this is that the pnoblem of circularly
defined data-tJpes nrtrose definition involves the arrow (or: the

ALGOI 68 pg constuctor) is not solve<i, simply because the anrrcw is

IL.

not a bi-fr:nctor in the ahove category : it is contravariant in

the finst argunent. We shall- neventh-eless show that oun nesults

aIl-ow a verlr sfurple proof of ADJ (77)rs main technical nesult :

rt
the existence of initial continuous algebnas. Let arCPO be the

categorlr the objects of wtrich are the ar-conplete posets (eveny

c.rtiagran aoSars..Er.',.Soo. has a I.uob.) witfr. least elernents and the

arrrcws of which ane the str.ict (bottom pneserving) co-continuous

fr:nctions. Markowsky C7a) showed that the fuII sr:bcategony of

arCPO which consists of all chain-complete posets (which he caLls

CPC) is complete and cocompleteo We shall briefly pause hene to
?t

prove this result fo:r r.r-CPO ; the method used hene is a definite

impnovement on Mankowskyrs. Neventheless these nesults will not be

used in the sequel both because we d,o not think that apCPO* i" "
good candidate fon the category of data t5pes and because, by using

the nemark after Theonem 1, the existence of an initial T-al-gebna

*in al-CPO ean be pnoved fon all functons T which pneserve a special

class of monics fon which it can be shown that all ar-diagnams (of

special annows) have a co-limit (in orCPO*)"

,t
Co:SemLleleneE_s I'heonem : r.r - CPO is complete and cecomplete"

-

rroof : To prove completeness it is enough to pnove the existence

of products and equalizers of pains (Maclane (Zt) p.tOS).

Pnoducts in ro-,CPO* ane just Like in Sets; it is a brivial

task to check that the prrcduct of c,rcompJ-ete partial ondens

is an ar-compiete partial onden, that the pnojections are

strict eontinuous fi:nctions, that the r:nique nediating arrow

f':rom a cone of continuous frrrctions is continuous and

L2.

Lemma a

Pr"oof

Lemma b

Pnoof

that the u::ique mediating arrow from a cone of strict

functions is st:rict. Equalize:rs of pairs in r,r-CPO'l

are just like in Set.-
I

Theeqr:alizenof AiB is h:Ar+A where
g

t.A' = { a I aeA, f(a)=g(a) } witn the ondening induced by

the one on A and h is the injection. Ar is an

urcomplete CPO because f and g are str"ict which implies

reAr and f and g are o-continuous. h is obviously

stnict and continuou.se Now to pnove co-completeness,

by Her:nlich and Stnecken (73) (23. I+ p. 163) it is enough

to prove that ur-CPO* is well-powened, and has a co-

separaton. o-CPO* is easily seen to be well-powened.

Let 2 = { rrr } be the two-points r.r-CPO onder by t f l.

If f : A + B is a monic in 61-gp6'l then it is one-to-one.

Suppose f(a,) =- f(a^) for f monic" Let h.: 2+A beT2-I

defined fon i = 7)2 by h"(r) = -L and h.(r) = uio

For i = !r2, n, t" a stnict ur-continuous function and

h,of = h^of * h. = h^ * E, = d^IZlZLz

2 is a co-genenator in orCPO".

Suppose fng are tffo diffenent arnows : A + !.

Then 3 aoeA sueh that f(ao) + g(ao) and by symmetry we

may suppose f(ao) .f e(ao).

Let h t B +2 be defined by h(b)
(, i€ r-

={*
t^ -

f, ur""
! s(ao)

CJ-ean1y h is monotone and continuous.

But hf(ao) = r and he(ao) = T and hf * i1g. tr

13.

0u:: Theonem 1 then i,qBlies the existence of an initial x-algebna

fon any nanked alphabet E, which is the main nesult of ADI (27).

Obvior:sly the same hoLds for manrsonted continuou^s argebnas,

which ar:e ur^functons in (ar-CpO*)n. Categonies sligirtly
diffenent fnom al-cPo", foo example that of ar-complete cpors and

stnict A-complete cpots and stnict A-continuous maps anen by

sirnilan pnoofs, seen to be ar-categories and the rnspy initiality
results of ADI (77) can be obtained in a rnified way, if one

thinks these ane intenesting. ?he categony whose objects ane

sountably based algebnaic posets with least elements and r+hose

amows are stnict ru-continuous maps which preserve finite erements,

inspined fnom councerle and Nivat (za) is also cocornplete (and

complete) and hence an ar-categorSrc This last nesuft can be proved

either" by the method used above or by noticing that the category

is equivalent to that of pa::tial ordens and stnict monotone functions

which is veny easily studied" rn all preceding examples the

construetion of Adanrek C?4) ens'::es the existence of anbitr:ary fnee

T-algebnas over any object. 0r::: insistence that T be an o-fi:ncton
guanantees that the fnee T-algebnas ane obtained as colimits of
ar-diagrams. ADJ noticed that expnessions with vaniabl-es nepnesented

objects in such finee T-algebnas and made totally clean the way such

objects yield maps from the envirrcnnent to the obvious domain. rn
the sequel we shalI admit without funthen fornalities that expnessions

ouiLt out of constants, vaniables and. (continuous) frnctions yieJ.d

[continuor-r.s) fr:nctions on more genenally (continuor.r^s) frrnctionals.

14.

Example 4 :CP0o and, ci:rculanly defined data'tJpes.

Let CPOa Ca stands for adjunction) be the category the objects

of rdrich are the or-complete pantial onder:s (the same objects

as those of ar-CPO*) and the arnows of which f : A + B ane the

pains of rrr-continuousmaps r = lrlrrRl *: e+BandfR: B+A
l-L -L-R--Such that t ot = tA and f ol ! IB.

CPO. is indeed a categoryo The

the readens.

f = (rorro) is an anrow of cPoa.

: B + C ane anrows in CPOa then

the following lemrnas pro\re

pnoofs are tnivial and ieft

Lenuna 1: f: A+A defined

that

to

by

Lemma2:If f:A+Band g

ir = (gL."*, S.gR) is an Elrnow : A + C.

The anrows of CPOa are the pains of pr"ojections of Scott (ZZ), ttre

embeddings of Su5rth (75). Wand (74) seems to have been the finst

to state that the fuII subcategor5r of CPOa consisting of complete

lattices is an ar-category" Plotkin (20) and the authons noticed

that +r x and the function space constnuctor" (+) were a;-fwctons

in CPO-, so sirnplifying Wandts (7a) tneatnent which uses a non-

standard notion of contjauity. Lehmann (76) pnoves a mone general

statement fnom wtr-ich the fact that CPoa is an ar-category and x, +, +

ane ar-functors at:e instant conoll-anies. Centain full subcategonies

of CPOa : the category SFP-R of Pl-otkin, the category of algeb:raic

consistently conplete cporsn that of effectively given algeb:raic

consistently cornplete cpors have been shown to be al-categonies

themselves by Plotkin and Smjrth. They also ane closed rmden x r *

and '+ . SFP-R is aLso cLosed under. the powe:: donain const:ructon P

of Plotkin (76); the othens ane closed only unden Snrytht" Po (Snryth (76b)).

Itr

Smyth (76a) has defined a subcategoqr of CpOa containing ."
objects onl]r the effectively given continuous consistently

complete cpors v,rhich i-s closed unden xr *, + and por and centain

ar-col-imits. Unlike all pr"evious examples CpOa 66"" not possess

prrcducts on copnoducts and Adarnekrs (Z+; o."*t about fr,ee algebnas

is inapplicable. Yet by Theonern 2 initial T-algebnas exist for

arbitnary arfunctorei T. Now some obvious lemmas will be stated

with only hints of prrcof on without pnoof.

Lemma 3 : rf r = (fLrS) i" an annow in cpoa, then any one of
fL o" S ur,iquely detenmines the other,"

P::oof : Suppose C*, rrR) and (flrfr*) u"" ar:rows in CpOa then

f R _ € R€Lf R r. c F-I - -2 - -t
=

.2 and s5nrrnetr:icalIy.

!@ t rf r = (*rd) is an arxnow in cPoa : A + B then

tLt, 'r Pr trA) = tB and Et(ra) = ro.

Lemma 5 : J, the ons-point partial onder is initial in cpoa.

Lgrmna 6: rf fL: A+Band d, B+A ar"emonotonefi.rnctions

such that d i= ,r-continuous, J"* = ro and *orR c r,

then fL is ur-continuous.

The following lemmas pnecise the facts about co-rirnits in cpoa.

The finst lernma is a concrete pnoposition about CpOa but aII following
ien-rinas may be proved in the abstract fnamework of or.der-enniched

categonies and applieci dinectry to othen categonies, in particuJ_an

sub-categonies of CPOa"

16.

f f- f.
Lemga 7 : Let t, od' oo, *t o, * *0, *tor*, * oo. be an

r.r-diagnam in CPOa. Thene exists a commuting cone

u : t * A- such that fon any :rer ,l ,l ! ul*, ul*,
LRanc U U-. U-_ : tn .

ilrd_

Pnoof : tet A- = { (ron.1eoo.d.e..) | viefi
"i.Ai and a.=flui*r }

ordened by componentr^r-ise ordening. A- is an ar-complete pantial onden

by Lenrma 4 and because the { ane &r-continuous. The arlubrs in

A- are componentwise" Let pi A- * Ai be the ith pnoSection :

P1 ((ao, orElir .. >) =.i o pi is ol-continuous because lubts

in A- ane componentwise. Let qi : A, + A_ be defined by

P D N .L J.Lgiui = < fo fi-t "i' 'ff_r.i, ai, ti"i, { ti ai,"o.) o

Clean1y e, is well-definedr rrnnotone and, Vieff q = gi+1"{ ,

Furrtherrnor.e Pi4i = tO, and eiopi. tO
_

so that by Lenrnas 3 and 6,

u - {gio pi) defines a commuting cone [r + A_ in CpOa.

q,i' Pi = 9i+1 . fl " { . nr-*, 5 qinr o pi+1.

! ,n, . pi) 5 re_ because 9i o pi g re* , yieN

Vje// pj ",!n, "nr)!n, o9j opj =pj whichirnpriesthat

pi "(Uq.t oPi)a.orerordi..o)=di and (!g, op;):Io oBJ 1 ! ! v r J i -L -L A_

in the next lemmas all &Fsequences of firnctions fon which I.u.bts are

used can be easiJ_y checked to be ascending.

17.

Lemmgr 8 : Let f (as in Lemma 7) be an trr-diagnam in CPOa.

If the cone v : | + B is a coliniting cone (in CpOa)

then '|r L R

luiui=tn
Pnoof : Let y : | * A- be the cone defined in Lemma 7. Thene

exists a r:nique h : B + A_ such that hou. = Ui"
L .L t R R.Rrnen xi = n ov. and lri = Vloh .

. _.R_.L_.R r P tt, L R. ,L ,,,R L R.LI, =h"ol" =h" o IA_oh"=h"o (
lpiu,) "tr" = ljh'toUi"ul"n,

.R .L
= r-t h-'o n- .ul . ,i" hRo hL = U ul . ul .ilar

LeUnlg 9 : Let I be an ur-diagram in CPO. and u : I * A be a

conrnuting cone such 1' L R L:nat u uiui = tA_ then ui rs

a colimiting cone in ur-CPO* for fL.

Proof : Cl-eanty p! commutes. Suppose c: | .+ B is a

r!*
commuting cone in rrl-CPO and h is an anrow t 4_* B in o-CPO such

tnath.ul=di then h=horA=ho([jufuR)=U'LR ' R

i r- inuiui= loiui
which proves unicity.

Fon existence tet h = d oiul . rhen h"uf = !=ioiufu! =

I R L_L -L ,, _L J
f>ioiuiui?r'"'tj- = !=ioiti-r'"'T = !=joj = oj o

Lemma 10: With the same hypotheses as in Lerma gr rl is a limiting

cone fon the uroP-diagnam rR .

P::oqf : This is the dual of Lenrna 9 (neve::se the anrows but not

the order.ing on annows) "

19.

Lemma II : Let f be an ar-diagnan in CpOo and u : | + A_ be a

conrmuting cone such- that uL is a colimiting cone in
&-,! t.

o-CPO fon f" then p is a colimiting cone (in cp0a).

Pnnnf . e"nn,

uL , rL * B is a cormuting cone in to-cpo* and thene exists a unique

h : A- + B such that heyl = vf . By Lermra 3 this proves rrnicity.
To pnove existence it is enough to find a night-adjoint to h"

TDLT.Rr.r.l.p(uul v-:') o h o ul = il uivluf = uf > (i.rui vf) o h = r^i'r t 'l
i>3 'r r_ I 'l - i "i -i - -A_

h o (f 'l,l) =u n ul'l = !"1 uf cr,

IA L R(n, ! ui "i) is an amow in cpoa . D

Lenma 12 : Let I be an ardiag:ram in CpOa and U : | + A_ be a

comnuting cone such that irR is a limiting cone fon IR

in ar-CPo*r then u is a colimlting eone (in cpoa).

E_::oof : Dual of Lemma lI.

Definition : Let E, be the covariant enbedding of cpoa in ur-cpo*

which sends each pain of functions to its left par:t and

E* be the contravaniant embedding of CpOa in r,l-Cpo* which

sends each pain of fr:nctions to its niglrt pant. cleanly

E, and E* ane the identities on objects.

Theorem 4 : l) CPOa is an 0r-qatsg6rSr

2) E, pnesenves and ::eflects ar-co-Ifunits

3) E* t::ansforms or-co-limits into aroP-linits and neflects

,oP-lirnits into ar-co-1imits.

Pnoof : 1) by Lemrnas 5, ?, 9 and IL.

2) by Lernrns 8 and 9 and Lernma lL.
3) by Lernnas 8 and 10 and Leruaa 12.

19.

The next Theonem wilI be used to plove that frnctons (on bi-functor.s)

in CPOa ane o;-functor6.

Theonem 5 : If T is a.n endo-functor on CpOa Ca bi-fr.mctor

CPOa x CPOa + cPoa) o T presenves a,-colimits . if fon

every sequence * J c * J - -'L'8 -= ^o 'o I':_ *1
=""3'i 'i l: ""

H
rl { = r } U (r ri) L (r r.;R = 1.

: By Lemmas 8, 9 and 11.

e*
CPO-, can be considened as a Cnon-full) subcategory of o-CPO ; if

**Tr : rrr'-CPO" +16CPO pnesenves adjunctions its restniction to CPOa

is a fr.rrcton T : CPOa + CPOa. The following theonem shows that

the initial T-algebna is also an initial Tr-algeb:ra. It is useful

to d,raw mone r.adical initiatity pnopenties fon the data epes

ci:nculanIy defined by definitions involving only + and x (at the

exception of +), as ttrose eonsidered in ADJ (75).

Proof

Theonem 6

Pnoof

: Let T : CPOa + CPOa be a fi.rrcton and Tr : ar-CPo?t+ ar-CPO*

an a.r-fi:ncton such that ErT = TrE, then T is an

ar-frmcton and if 6 is the initial T-algebra then

El,0 is the initial Tr-algebna.

: T t is an 4v*fplsfoD by hypothesi.s and E, is an arfi:ncton

by Theonem 4 =) TtE, = ELT is an ar-fi:ncton. But by Theonen 4

E, r.eflects ercslimits and then T is an r^r-firrctor" Theonem I

assents the existence of g : TA + A the initial T-algebna. The

pnoof of Theorem 1 shows that { is the r:nique arnow in cpoa sueh t}rat

d o Tti = pi*1 fon p : i + A the col_imiting cone fon I

r 3 r? Tt+;oo. *Tir*.. Ti+1rtTr tttrr.

20.

By Theonem 4, E, pnesenves arcolimits and Ei,!

colimiting cone. Because the initial object in

initial in ar-cPO'!, E,t is the following diagnam

Erf i r ,* Ttrh..r? l'', * * t'i : -.-TtL t *TtL lrtrrr,

:Erf+A isa

cPOa is also
*in aJ-CPO :

,ri+1 * "...

The pnoof of Theor"em 1 shows that the (up to isomonphism) initial

Tr-algebna is the r:nique arrow 0 : TtA + A of ar-CPO* such that

Vie/[{ o TtELIi = Etui*:.

But Elui+t = EL 0 o E, T u. = EL 0 o TfEru.

and ,t=Et0.
tr

*
Remank : Ma::kowskyts (7+) r'esu1t on the cocompleteness of CPC is

not used. Cinculanly defineo data.types the definition of which

invol-ves + (r:nion), " (E;ggg) and * (9,) can be seen to be

initial algebras in CPOao as will be expiained in the sequel (see

Lehmann tZZ) for a preview oriented towards ALGOL 68). Scottts

original (ZZ) solution to domain equations consisted of considening

the subcategory of CPOa whose objects a:re continuous lattices and

whose arrows are pains of A-continuous pr.ojections. It can be

easily checked that this subcategory is cLosed under o-col-imits.

Scott (ZO) proposes anoth-en definition of data tlpes and neduces the

solution of comain equations to least upper bornds. Plotkin and

Snryth have necently shown that these l.u.brs al.e r,r-col-inits in a

suitable category of adjr:nctions which is equivalent to the subcategory

of CPOa considened oniginalJ.y by Scott (72)"

21.

Ex€inple 5 : Dom and a mone genenal notion of a data-t54pe.

Lehmann (76) defined a catego.r'y Don the objects of wh-ich ane

orcategories and the arnows of which a:re adjr.rnctions with identiry
nnit. Dan Ls an ar-category and X, *, + and p can be defined to
be ar-frtrctor.s. cPoa is a furl subcategony of Dom closed unden

a.rco-lirnits, X, tr and + . The eornespondents of rheonerns 4

and 5 hold and nelate Dorn and, ar-Cat, the category of ar-categonies

and stnict ar-functons. bm provLdes a more genenal notion of a

data typen useful when the powerset constnuctor, ou non-deterministic

pnocedu:raI Qpes are allowed.

we shall now proceed to give a nurnben of examples showing how

ci::cu1a:r type definitions do indeed define initial algebras. The

algebnaic aspects will be stnessed : a cincular t5rpe definition does

not only define a pantiari-y ondened set but also sorne fi:nctions on

this set.

Exanrpfe 6 : Ttre natr:ral numbers.

T'l:e naturel numbens, or even the integens, are generally thought

to be a basic data'tJpe. I{e shall now demonstrate how they can be

cir"culanly defined" our treatment is equivarent to Lawverers (64),

as reponted in Maclane-Binkhoff (62) (pp. 62-70).

Let oul: r:nder.lying category be Set, I be the one-point set

(it is a terminal object in Set and aLso a generaton) , r the

.;nique eiement of J, + be the co-pnoduct (disjoint urion) and

22.

iet T be the functor defined by :

if e isaset Te:J+e

if f : "1* "2 is a function Tf : Tea+ Te,

is the fu:action defined hy (Tf)(u) =
ft if a e ea

r if aeJ

In category theonetic notation Tf = I, 1 5

Clea::Iy T is a fr.:nctots : Set + Set. It is indeed the firrcton

associated with the simiLanity type Tt = { OrS } nank (O) = O,

nank (s) = 1 descnibed afte:: Definition 6" T is an orfuncton,

as all firnctons associated with sinilanity tlrpes, as explained

in E><ample 1. By Theonern 1 ther.e is an initial T-algeb::a,

g : 1 + A + A. The initiality property of g cha::acterizes, up to

isoroo4>hism, the fr:nction O + suc z 1+ N + N which gsnds, lef to

zeno anci ne/l/ to n + 1 = suc(n).

Lemma 1 : 0 + suc : 1 + N + N is the initial T-algebra.

Proof :Suppose {:J+B+B

Suppose q, : y'/ + B.

If (f) o " (O + suc) = 0 o (Ir+ cr) then

(z) a (o) = (o o (0 + suc)) (r) = (0 "(tr+ a)) (r) = 6 (r)

(S) o (n + 1) = (o o(O + suc))(n) = (O .(rr+ a)(n) = {(o(n))
Conversely if o ve::ifies (Z) and (3)

c o(O + suc)(r) = c (o) = 6 (r)

u o(,O + suc)(n) = cr (n + 1) = 0(cr(n)) and

u o(0 + suc) = 0 o(Ir+ c).

23.

By the induction nule fon the natuml nr-unbens thene exists exactly one

frnction a : il + B ver:ifying (2) and (3) and this pnoves the initiatity

ofO+suc:L+N+fl.

The point we want to make hene is tiut the tlpe /[can- be ci:ncularly

defined by : tr = 1 + N or in ALGOL 68 notation mode natrr:ral =

union (t"fr, natunal). The initial ffurpoint involves not only the

set fl but also the constant 0 and the function successor" The induction

::ule fon natural nunbens which is vital" fon pr:oving ptopenties of prog:rams

manipulating natural numbens is nothing else than an initial-iry propenty.

fn other wo::ds the fact that the rnique o : // + B inplied by Theor"em 1

is a total fturction is the main tool in prrcving that centain fi:nctions

are total-, in contr"adistinction with the more general pantial fi:nctions

which may be defined cincularly inside [/il + B] by means of arbitnar:y

continuous rirnctionals : [ff + BI +:[/t/ + B]
"

Fo:: othen cincurarly defined data types the initiality pnopenty may often

be used Cirectly in place of an ihclrlction principle. fn othen cases it is

the main tool in pnoving the connectness of an induction principle. The

question of the exact relation between initielity and induction will be

tro:f pd in Soni-r'nn q

A-1 useful fr:nctions on natu::a1 nr.unbens may be defined f::om 0 + suc

with the help of Lemma 1. The usual definition of addition for example

r:.'' be neadil-y transfonrned to fit this fr^amework.

n+m=r if m=0

suc(n + mr) if m = suc(mr)

may be obtained the following way.

24.

Let T = trf cr: * f) and u: T(Iffdlll).+ [N+N]be defined

by : ,lt = TN + lf (suc o f).

Then thene is a unique u : d *t il+ryl :naking the foll-owing diagnam comnste.

N t$t J.+N

i " ! rr*or.,.'[,
[ff*fl] S L+[N+Nl

The commutation of the above diag::am is equivalent to :

a(O) = If and a(suc n) = Suc o cCn)

a(O)(m) = m and c(suc n)(m) = Suc (a(n)(m)).

o is the addition"

More genenally any function defjned by a pnimitive necunsive scheme

is the unique annor{ rnaking a sfunilan diag::arn commute" Ce::tain such

diagnams, howeven, define functions which a::e not pnimitive necursive"

Theonem 2 assents that 0 + suc is an {g.omonphismrits invense is obviously

nuii*pr"ed: N+7tN defineciby (nutt+pned) (O) =rand
hull- + pned) (n+1) : n

The p::oof of fheorem 2 shows how to define pned in terms of suc.

As a further example we shaII show that even the equal_ity pnedicate on

.v may be defined as the rnique anrow f:rom an initiar algebna.

25.

Let TS = I + I/ + fl + S. The initial T-algebra is

0 : f + N + N + N x /y' = (J.+N)(I+W1 + d x lV defined by d = Co+suc) r(olsuc).

Let 3= {tr:ue, false} andrl,: J +N+ /[+B+Bbe definedby

0(r) = tnue, $(nr) = OCnZ) : false and 4(b) = b"

(o+suc)xCo*suc)
7+N+N+NxN

I

II Ir+ Irr+ I,,+ c
lrwtv
lL

L+N+N+B

a is the r:nique ar.tsow : I x il + B such that:

o(OrO) = tnue, c(n+1rO): c(0rm+1) = false and c(n+1rm+1) = c(nrm).

a is the equality pr.edicate.

Examole 7 : Context-fnee languages.

All- l-east fi:points methods previously rr^sed in Computen Science ane

special cases of the mone gene::al category-theo::etic initial fixpoints

presented hereo In partieular the charaetenization of context free

languages as least solutions of a set of equations can be ca:rried th:rough.

Let) be an alphabet (not necessarily finite), then P(x*), ttrc set of aII

languages oven X, ondened by inelusion, is a complete lattice and, by

standand methods, an 0r-categor..yo Let V* be an alphabet of non-terrninals

(not necessanily finite) and p be a fi:nction : V* -r E where E is the set

a-:. expr"essions built fnorn V*, f,, concatenation and uniono 0n P(ft')

concatenation and i:nion ar"e additive Cthey pneserve arbiilrany 1.u.bts)

NxN
I

I

I

+
b

zo.

and so they ce::tainly ar?e &r-. fr:nctors p clear"ry defines an al-fwrctor :

,', lVu I rt lVnt IT : P(f")' "l * Pcf,")r N' and the initial T-algebra TA c A is the 1east
i,, r - -. rt-
lv*l-ulle A of subsets of PCI) such that TA c A. By theonem 2 TA = d.

Exarnple 8 : Context-fnee g?ammars.

A much mone intenesting example concerfns context-free grarmars (as

opposed to languages). A context-fnee granman with n non-terminals

can be viewed as an rrr-endo-furcton T : setn + Setn, in a manne:: similar:

to example T above, but when u (of sr$sets of r't) i" nepLaced by +

(aisjoint union) and . (concatenation of subsets of x't) by r (pnoduct).

Fo:: example the context-fnee gramrnar : s + alasafassal can be]-ooked

at as the functon : T :),S. {a} + ta} x S x' {a} +' {a} x S x S r' {a}

The initial T-algebna g : TA + A consists of a set A isomorphic to

{a} + ta} * A x' {a} +' {a} x A x e x' {a}, venifying the initiality
property. A is isomorphic to the set of all parse treeso $ constructs

panse tnees and 0-1 decomposes parse trees. Note her.e that the

fuaction fnontier : fr. : A * f,* which assigns to each parse tnee the

wond generated is not one-to-one and fo:r wexft : lrr-1{w)l is the

multiplicity of w.

27.

3. Data types as aLgebnas

we now want to make our thesis pnecise: a data type is an object in

a suitable category of domains (CpOa wil-l- do for alL applications hene

but Dom or othen categonies could be considened) equipped with centain

operations.

Def.initionJ: A type t consists of a natural numben n>o and n pai::s

of functons (SirT.), SirTi , CPOa + CpOa, i=lr...rn

Definition 2: A data type D of type t:(nrS. rT.) consists of an

or-CPO D (with light notational ambiguity) and n (6-continuous)

fr:nctions d. : S.D + T.D.'l- l_ t_

rn practicat applications the functors s. and r. used are always

"polynomial'r (ttrey are built f:rom pnoducts and sums onry) and indeed

a data type is a domain equipped with a finite numben of functions.

Definijion 3: A homonorphism from D, to D, of type t is a fr.nction

f : Dl * D2 such that the following diagr.am commute:

o-.1
S,D. -+ T.D-tl- l_l_

s.r J i r.r11

I i,"i"2 . 2 'i"2
9i

Homomorphisms wirl be used in section 6 to study inplernentations.

For the moment just notice that we have defined a categony of

.iata types of type t.

28.

?asic Sata_jg>gs

The::e is no neal pnobrem in defining the basic data types of usual

pnog::amming languages as objects in CPOa equipped lr-ith cer:tain openations.

The data t]pe boorean for example wouLd werl be rrrde:rstood as the

CPO Bool repnesented below:

ffue false
^u, /

Bool

equipped with the constant tnue, the unary openation

(-true=faIse, -g"1se=tnue, ;I=I) and the binary ope:ration v

(rv.L=1v1pue=truevl-=falsevl=lvfalse=I, ttueVtrue=tr:uevfalse=falsevtrue=true,

falsevfalse=false).

A11 othe:: connectives: Ar+r$ etc..e cED be defined from the above thnee"

Tha nrrac+-lnn ^nr1ld be'aised whether we shourd not define rvtnue tou !s I qfesu nrls Lr.cl. wq: DlrLrulq ItuL (lgJ.J.lle IvIrue

De rrue i:-nsteaci of r). This latten pnoposal is conceivable but would

contraci-ct the operational meaning that some want to give to J_

i a non-terminating computation).

Seeause of the general-ity of cincuia:: definitions of data types and the

extended facilities available to define functions on data types we think

that it is possibre (though we in no way suggest that it should be the

case in pnognamming languages) to use only a very few basic data qpes:

7 the one point domain, and 2 the two points domain for: exanpre.

.T
I rgr
.I

2

.I

29.

Type-constnuctors

As explained

the catego::y

ones.

Section 3 a Qqpe-constnucton is an ar-endo-fi:nctor in

domains' we shalI list below some of the most interesting

@ : cPOaxcPOa+cPOa, cornesponds to the categorical pnoduct in ur:cpo't

(E- oQ=1o(ErxEr) if II is the categonical product in or-cpor'). If A and B

ane cpots AEB consists of all pains of objectso the fir"st one in A, the

second one in B ondened componentwise. If f:A+Ar and g:&+Bt are arrolrs

in cpoa then f6g=(rlngl, fnt*l for (aIIb)(xry)=(ax,by). That @ is an

o-functon is easily checked with the herp of Theonem Sr,and so the

o-continuity of all fr:nctons to be defined now. There ane sone obvious

arrows attached to @: P],@B*A, P2:A6B+B. A srightly differ:ent pnoduet

will- be needed for^ defining stacks and 1ists.

x : cPoarcPOa*cPoa conresponds to the catego::icaI product in ur-cpo**

(the anr"ows are very stnict o-continuous frnctions, those functions which

send to bottom only the bottom element). If A and B are cpors then AxB

consists of only those couples (arb) with aeA and beB such that u*tA arrd

b*r, oo a=IO anci b=rB It is easily seen to be a cpo. If f:A+A? and

g:b'tBt are annows in CPOa then fxg is the nestniction of fgg to AxB.

This non-standand pr"oduct has al-neady been used by M. Gondon in his

thesis. The obvious anrows pa:AxB+A and pr:AxB+B nay be defined.

+ : cPoaxcPoa->cPOa. conresponds to the categonicar sum in rrr-cpo*, and
J.r.

in i,r-cPO . A+B is the coalesced sum of A and B. Arrows ir:A+A+B,

ir:B+A+B and d:A+B+Bool_ may be defined.

1n

of

an

Q: cPOaxcPOa+ cPoa is the separated sum. itri2 and d may be defined as above.

+: CPOaxcPOa+ cPOa is the fi:ncton space functo::. +(AnB) is [A-+B] in oun notation.

App: [A-+B]QA+B, Abst: [AxB+C]-+[fi+[l+f]l and Y: [a*A]+A may be defined.

/ts was mentioned above a power constnuctor P, or more precisely a number" of

such constnuctor.s have been studied; they will not be used in the pnesent work.

The nexl pa::agnaph exemplifies cincula:: definitions of data types. Fon example

it will be sho'nrn how, given a data type A, it is possible to define the data

type Stacks of A (StackA). It is only in the next section that it will be shown

how these definitions amount to rnaking Stack a t5ape constructor.

C!ncu1a.r1y defined data tfpes

Thi.s panagnaph, and the next one, pnoceed uniguely by examples. Their purpose

is to show that many usual data types ane indeed defined circularly, and that

cinculan definitions define not only a centain domain but also centain operations

on it.

i) Simple data types

Those are the data types built f::om basic data types by type constnuctons

anci cinculan definitions.

Natunal numbens

In the preceCing section the natunal numbers were defined circula::Iy as an

initial T-algebna for" a fr:nctor T on Set. For computen science purposes it

see-.is pnefenable to define them as an initial T-a1gebr"a for- a functor T on

CFOa. By analory with the case of Set one coul<i think of using Tt= f + I
CPOO

This does not give a satisfactory solution: the initial Tr-algebra is I (nemember

ri:at r is the coalesced sum). Scott has pnoposed, fon the natural numbers,

,^Ihat amounts to the initial T-algebra fon t= r*t.onu. on€ may easily verify

that the initial T-algeb::a n: z+l.Ir+Nr'is. such that'N-= {rrgrI121...1n1...}

with 'E n and nf, n foo any neNr, those being the only or.dered pains. Pictor"ially:

o I 2 ... n ... T o I 2 ... n ,..

T

N

I

Z+Nr?l

Anci n-is such that n(r)=r, n(r)=o and n(n)= n*1. By Theonem 2 n is an isomorphism

and the data type natunal number"s comes equipped with two annows: n: 2+Na+N,

-tand n *: Nr+215r. To convince the r"eader that n and n-'tare sufficient to define
ail usual anithmetic functions, just notice that o: 2+N_ may be defined by

o= ri oi., r suc: N,+N. by si1c,= tl oio , nu1l: N,+BooI by null= don-l . pred: N +Nl.-J.I2.!_--__Jg!|.'I..1-

by pred(n)= if a(n-I(n)) ttren o else n-I(r,). A1I useful anithmetical fr.urctions

may then be defined by circular definitions. In particulan a pninitive r:ecunsive

definition: f(orn)= h(n) o f(n+j- ,n)= g(monrf(mrn)) may be t::ansrated by:

f(mrn)= if null(m) then h(n) else g(mrnrf(mrn)). tt must be noticed that both

functions 11 and r1-1 must be givenl 11 alone does not allow the definition of null
and pned, in the absence of the equality pnedicate which we harre no neason to

suppose given on even computable. once pned and nulI ane given; equality may be

defined eithen by the usual pnimitive rrecunsive definition on by:

eq(mrn)= if null-(m) then null(n) else if nuIl(n) then false else eq(pne(n)rpred(n)).

tt *. the l-east solution of the equation x= suc(x) is !. Anothe:: candidate for the

data type natur"al- numbens is the initial- Tf-algebna fo:: Tf: JQI = , using the
cP0*

separated sum. This initial algebra nf: Tr Nt+Nt looks the foilowing wayl

\..
I

0

\
. 'r/
\ /'-0t'

lqtr '

,, \,,.
-

\ //'2
\,,/t

-0
-.Nt

itith n(r)= ro r n(.)= o r n(.t-rr)= rrr+r , n(n)= ntl

Tne fir"st version N, we proposed is simpler but the

objects such as J-6 may enter the initial algebr:a.

r n(l-)=

second

o

one Nr shows how

I
@

32.

infinite

Fun = pnoc(fun) fun

The data type defined by the equation X = [x+x], conresponding to the
ALGOL 68 definition of the titl_e is the initial T-algebna fon T: -+.

It is J, the one-point domainr the annow being the identity. This

example is given, not because of its usefurness, but because it is
one of the circula:: dgfinitions which could not be undenstood in the

fi:amewonk set by the ADJ group:.

Stacks

The data t5pe stack A, wheneven A is a data type, is the initia:_
T-algebnafonT=Z+Axf

CPOA

Note that we use the coalesced sums and pnoducts. rt is easy to check

that the initial T-algebna, cs : z+Axs+s is the following.

s is the set of ai-I finite sequences of elements of A different fr.om ta

o::dened coondinatewise and one bottom element t.
cs is defined by: cs(1):1, cs(r)=O the empty sequenee, cs(ars)=(ars)

the concatenation of a and s, if s*t,and cs(art)=t.
cieanly A = cs(t) for^ non-empty s pop(s, = pco""-I(")

push : csoi, ,' top(s) = n],""-t{")
emPty = do cs-l

rt does not bother us that pop and top are only parrtial functions:

everSrthing may be done in terms of "sa. The above way of defining
stacks may be companed with ADJ (75) where stacks ane defined as initial
equat,,onai algeb::as. Our appr.oach answetrs three cniticisrns that couLd

be mad.e on ADJrs : it dears with partiar ord,ers and not onry sets, there
is no need to intnod.uce some special object of tjpe A to be top(rt), and

most impontant the eguations laid dor+n by ADJ may be justified and shown

to be sufficient to chanactenize stacks. On this third point the neaden

shourd notice, as will be explained in section 6, that in most

implementations of stacks pop(push(drs;) diffens from s. Oun appnoach

is also much closer to what pnog::amming languages do al-l-ow: circul-an

mode definitions ane allowed in ALGOL 68 whe::eas no prognanrning }anguage

allows the definition of an initial- equational algebna , obviously many

equationar specifications do not make any sense fon prognanming and

functional data types are not definable equationally.

The use of the coalesced pnoduct (x) instead of the usual one (E) enables

us to avoid the intnoduction of infinite stacks; a similar equation with x

instead of E defines a data type which contains infinite stacks" This

data type has been fornd useful by sons and seems even implernentable

(see Friedman and Wise (76) and Hendenson and Mor:ris (26)). The two

data types should be cl-ea::Iy distinguished.

Lists:

The i.ntui-cion suggests:

ListA=A+Stack(ListA)

It is only in the next section that it wiII be shown that Stack is a mod.e-

constr:uctor and that the above definition wiU be given its stnict meaning.

T.i cn-'l r'e +c!-eP r+e (-e

Lists in LISP rnay be inforrnally defined by: a 1ist is either: empty

cr the concatenation of a head and a tail, the head being either an atom

cr a list, the tail being arways a list. This suggests the folrowing

jefinition: LispA=2+(A+LispA)xtispA. Let T be the functor": tx.(2+(A+x)"x)

ani c I TL-+L the initial T-algebna.

34.

LispA does indeed, as the r^eaden may cane to check, consist of what one

sould e>pect: one bottom element and atl finite non-empty binary tnees

the night leaves of which ane uniabetled (they nepr"esent empty iists) and

the lef-t leaves of which are eithen r:rrlabelled or. label1ed by a non-bottom

element of A. If the tnee consists of only one 1eaf it has to be considered

a r ight leaf.

ExampJ-es: . () the empty list
. (a)

- /\q.

. (o)
./l

' (a' (b)) = (a'b)

- /\o' i,
b.':

/\/\
it /.'\ (a).(b)) = ((a), l)

a";'

ci: 2+(A+LispA)xlispA+LispA is such that:

cl(r)=.r_ , cl(r)=O, ci(a,,Q,)=(a.4)

2+(A+LispA) xl,ispA=2+ (Rx1,1stA+LispAxLispA) =(2+AxlispA)rLispAxlispA

which is obviously desinable.

9ina:rv tgees

Labei-ied binary trees suggest the following definition:

BtreeA = A+AxBtreeAxBtneeA.

The ::eader may car:e to check that the initial- algebra consists of

aii flnite binary trees a1l- the nodes of which ane iabelled by non-bottom

el-ements of A, and one bottom element. The annows obtained construct

(cb : A+AxBtreeAx!13s.A'+BtneeA) and decompose ("b-1:Bt::eeA+A+AxBtrreeAxBtreeA)

tnees.

Had we chosen to solve T = A+AgIdI we would. have defined. an initiat algeb::a

on a domain containing finite and infinite taberled binary tnees.

Tr"e.e-s and_E€stF

A iabell-ed tree consists eithen of a single labelled node on of a labelled

node and a fonest. A for:est is eithen empty or" consists of a tnee and a

fo:est. ?rees ancj forests are defined by the pair: of equations:

T= A+AxF

I= z+TxF

It will be shown in Section 4 that forests could equivalently be defined as

stacks of tnees , after having defined tr€es as either a single labelled

node or a labelled node and a stack of t::ees. In other wonds T and F may be

defineo by: E A+A Stack(T)

F= Stack(T)

whene the mUtUallrr nr'n^,r'i2n rt-€inition haS been eliminated.

2 'r Composite- data twes

v ,i.y data types are not simply built up f::om basic data Wpes with the help

of t5pe constructons and ci::cular definitions but defined, somewhat indir:ectly,

by -'irst defining a sirnple data type and then some new fgrrctions on this data

type and possiSly for^getting some of the oid finctions. The canr.ier of a

composite data t5pe will be the sane as that of the simple data type from

which it is built but the operations will be diffenent. T\uo examples will

be analysed he::e: Queues and Ar::ays.

Qqerres-

Qr,o,res a:re of the same type as Stacks but the push and pop pnocedunes intenactStacks but the push and pop pnocedunes intenact

36.

in a diffe::ent way in the sense that the erement popped witt be the one

which has been pushed on fi::st (and not the last one as in Stacks). Queues

alre a ve::y useful and intenesting data t5rpe which seems to have escaped the

attention of p::evious nesearchers. The obvious idea is to define Queues firom

Stacks by defining new pop and top fr:nctions and then forgetting about the

old ones. Stacks of A wene defined as two inrrense functions:

cs: 2+AxStackA+StackA the initial algebna and

cs-f: StackA-+Z+AxStackA the empty+topxpop arnow.

We may define dq: StackA+2+AxStackA by:

dq(s): if empty(s) or empty(pop(s)) ttren ""-f(") er-se (1, (dq(pop(s))),

push(top(s), p2(dq(pop(s)))))

The above definition simply translates the i<iea that the new top and pop

openations oper"ate at the end of the stack. ft would also have been possible

to leave top and pop unchanged and define a new push operation. Our formaLism

enables us to puove the equivalence of these two ways of defining queues

but we shail- not attempt to do that here. The data type Queues then consists

of a domain QueueA: StackA and two functions:

cs : 2+A xQueueA+QueueA

dq. : QusueA-)ZtAxQueueA

cs and dq ane not inverses but proper.ties may be pnoved about then as will
be seen in Section 5 when a charactenization of Queues as an initial algebna

in a centain equational class wi1l be pr:oved. Let us define:

topr: QueueA+A by top'(s)= er(dq(s1) for nonempty s and

popr: QueueA+QueueA by popt(s)= pr(de(s)) for nonempty s.

A::na../s

rnfi::ite one-dirnensional arnays of A may be defined fnom the data type

Nr*Ol of functions fnom the natur€l nunbers to A. Arrays must be equipped

with two fr:rrctions: accbss: ArrxN+ A and update: AnnxNxd* Anr. The frnction

access may easily be seen to be the frrnction eval. The frrrction update

is defined by Cr:rrying and use of abstraction by:

37.

update(grnra)= l,p. if m=n then a else eval(grm)

It is now obvious that: access(update(grnrd)rm)= if m=n then a else access(grm).

4. The initial fixPoint oPerator

In this section ue will show that the transfornation which sends an

t, -functor to its initial fixpoint can itself be defined as an {^J-functor.

This will in turn be used to sbow that other inportant constructst

notably data-types with paraneter6r are |lfunctors. As another applicationi

we show that the well-known rrreduction of sinultaneous recursion to

iterated recursion" (de Balcker "71) Seneralizes to a'i-categories' This

provides a useful technique for denonstrating the equivalence of data

typesr a6 we shall see in Section 5.

rJe begin with sone considerations on functor categories. The following

notation is adopted: C is an 1,^.r-category, uhile ArB are arbitrary categories'

tBgC] is the category with objects the aFfunctors fron A to C anrd arrovs

the natural transformations (with 'rverticaltr conposition) betueen such

functors. For conposition of natural transfornations ue follow the notation

of Herrlich and Strecker: o for the vertical, I for the horizontal

corrposition.

Lemrna 'l . [A'-t C] is an tet -category.

Sketch of proof. The initial object of tn-lCl -i".lh" constant functor

with va1u" !c. cA i" an t^r-catesory in uhich t"fflr::liltJirou,.d pointwise

(Maclane Ch.Vr]). We seek to shou thatr if T = F.,5F{Ii... is an td-chain
UI

in [A-+C], then the colimit Q:T+f of T in CA is also the colinit in

iA+C]; in other words, that F is d-continuous. To see thist let

-i-'=
^A,^

8or An1 ... bs any ar-chain in A, with colinit yzl->A.rr and let
()1

'i
be the infinite two-diroensional diagran with rows F'l- (i=orl"") and

with vertical arrows (7.)^.:F.Ar-rF +1Aj. D corunutes by naturality of the (r'
r ,.j t

an"r,
Taking the colimit of D first by rows anAiE'i colunns we find that {4{ is the

colimit of F-f.
?Q

A more detailed proof of this lemma may be found in Lehrnann (?5).

we wilr define the initial fixpoint operator, r:[c-+c]+c, in terns

of the colinit functor Lin:C9-)C. We recaLl (Maclane Ch.IVre) that Limf - '

rnay be defined as the left adjoint of the diagonal functor A:c +cd.

(strictty speaking, this is not a proper definition, since adjoints are

not unique)-y deternined. We have to suppose that a particular 6djunction

is chosen once and for aIl.)

Lenma 2. For any D-functor F:C'C, let S(F) be the ardiagran

-3zu F1FLj... . For any natural transfornation f :F+G (G an u.r-functor).

let s(r)- (for n=or1r...) be rn:r'nr+GL, yhere rn is the n-foIdn

conposition rtT*....7. Then S is a functor from LC+C] to Co.
Froof. To show trrat S(r) is a natural transformation, we must shou

that the diagram (note: 1j nean6 Ca
tL

)

(r)
r *-I-r ry-Ilj rt-r| ',1 ',1 ""
l*---'***-,'lt---,

commutes" The oth(t"tt*ost) square of (1) comnutes

the nth square comnutes. Then

trivially. Suppose that

,rq FFnf
, rFn+.!rlt

"{ | l"'"j'
frnr_ rul+ #*t,rl-

'Grr j icon*L
S"t -s9ls--q cln* L

commutes - the upper half by applying F to the nth
"qo""", the rower harf

since r is natural. But this neans that the n+1th square or (1) connutes,

40.

. _k+1 .? - ksince T*' = fck "F{ (k=nnn+1). Thus (1) commutes. That S preserves

identities is trivial, and that it preserves composition is an immediate

consequence of the interchange law.

!@.. Suppose that T = FO-lo+ f1-+-.., T t

aJ -chains in [C-tC] r with colimit cones r:T*+{, ,

r.r-chain Tr t = 16ro --c-d]ro, F.iF,,--+ ... has the

where o,
|.,. = o-ri * cri .

Proof. Consider the infinite diagran

7t

= Pr --'9-yFr--+-.. are- -o "1
d zTt.+F) . Then thc

colinit trr t :T t 't{JL,

r6Fo"
Fdro F6rr

Idrr-* ..16r".465
Fi-; i"t

"';'rr'-rio,
6rr

rir,'rirl-----+

i1
Since the Fl are 6 -continuousr thc colimits of the rows are as indicated.n

The coiimit of the right-hand column is constituted by thc arrous

, iF,, :FtF -++jt , n=Or'lr... . Hence the coliarit of the diagonal,

conput,ed by rows, is constituted by the arrous (rrif)"(Fio-rr) = rj.fo.

I
I

ItiFo'
I\r

,,

l!1

Definition 1. Y:[C+C]+C i.s Lj-nnoSr where S is as defj-ned in Lemna 1'

Tireorem 1. Y is an 0-functor.

Proof. Lin, as a left adjoint, preserves ali col"imits. Tlie rest of

the proof i.s concerneo with showing that S is d-continuous. Let

f^- Tag = FO-j9"F1-:l-r ... be an t^>chain in [C-+C] wrth col-imit r:Q-rF, .

Tne translation of cr by s is the following infinite diagram:

r*_______) i_r

,'l! | i"! - ",-1 ,vv

i nn+
'rt'?ut'L,
v

t

nnr I

KKI
!v

!'n€ I Fnf
'^'^i ' 4'4UUI rl

i

i

l
t

d?
KK'

v

1*_
ittr

Jrv*
oi.l '\" !t/,

t-qni F:- ('TLi... rirr;-=-\ij-

By Leruma Tr together with the fact ihat colimits in [C-tC] are computed

^::.::tra:.;e j t,r're coiimits of the rows are as indicated in the diagran. Let

usiove ihal- the arrows q;{" mediate between the successive conest

:is :.:dicr,.teo. In tre iirst piace, L ithe uniilue arrow from -l to Fri-)

rnecj-a;es triviaii-y. Nos, for any n) 1' k Z O' the foilowing <iiagran

ccrniliutes;

42.

rlr -9fu-+ ,&'-
!--l

'l'n j j{'-
f*l

,y'- k'l ;rk'For

since Strnlotc*n)r,, =Gl*tL, it follows that *U nediates, as stated.
K

This shows that (Z) is a colimiting diagran for S0.

The following lemna gives a characterization of the action of Y on

arrows which is often more convenient to work with than Definition 1l

@_5.. Suppose that F:F4F! is a natural transformation, uhere

FrFr€ [C+C]. Then Ir is the unique arow from the initial F-algebra i1,

to the F-algebra /'lprof13, .

Proof. Lct A be the chain tlF Ff),..r uith colirniting conc

I :A -+YF; and similarly for 4r r pr. Define the cone v :FA -+YF I by:

. ..-n+1 -L-rrVr, = l i*dfi
" . We shaIl prove that Yr.,lf and tJ F,,?yf ,' F(Yr) are equal

by showing that each is the mediating arrow fron Fp to V. For Yr",lF

this is immediate. For tlFr"fy',"f(Yr), consider the commuting diagran

(for each nZ o):

rrnr __ F/h l F(rr)
llilr(rl)i

lr(Yr)
,i,r, . ,fi , .c{o, I

Ili-rr,'rl ltrr
r,*,nr F',{'i)r,1rr l

t I

J
n''

TTI

Fn+1

43.

q n'*n -'4
Sii-:ce Ij,r. F(i;) = J'.-', tne perimeter of

desired result.

this dLagrarn gives the

The next lemma introduces an abstraction operator for functors.

Lenna 5. Define Abst:'[A x BeC]+[A-tB+q] on objects (i.c. functors

F:A x B9C) by:

Abst(f)(X) = F(Xr-) , for x€A

ni:st(F) ({)y = F(o(,Iy) , for rX:A-}A' ;

anci on arrows (natural transfornations) Uy:

(nust(r)x)y = r<trr> .

Then Abst is an isomorphisn.

- For the proof we refer to Herrlich and Strecker(J)) rlheoren 15.9i

j.t ia routinc to check that various functors which appear in the proof

ale rr-continuous, so that the change in the meaning of [...4...] does

no: ;rateriaiiy affect the proof.

Ar last we are in a position to understand data type definitions with

p&.f&ti;:-crsr A parameterized data typer i.n our view, is sinply an 0-functor

(.from a caregory thought of as the parameter category into a riaia type category).

C,.:e of the comrnonest situations is the following: an UJ-functor F:A x C+C

. ,:*d:r lhe parameter:.zed data type Y" (Rbst(l')) :A-lC.

;"j+mlie.Staca(sec.J)mustberegardedasa.EI.@,9'datatype'
:,iB lre ;o makr: sense of the suggested ci-rcular definition

rt:) Lj-stA i A+Stact<(i,istA).

:.e,^e, Siack;s a.:.ul-i;nctcrj era (Za) aelines Lrst as Yo(lUst(p))1 where

I is ,\<ArC>.t + StackC. tt may be asked, what is the exact reiation between

List and Lisp (as defined in Sec.J)? hle wiII find that such questions can

be answereci by the help of Theorem 2.

44.

Theorem 2 deals with the reduction of simultaneous recursion to

iterated recursion. It says r in effectr that a pair of sinultaneous

rrcquationstl

x = tr'(xf z)

z = c(Xrz)

can be solved by first solving for Z in terms of X from the second equation'

then substituting in the first equation.

Notation. FrG:C x C-+C are o-functors. 4rG):C x C+C x C:Vr+Cl/rCV>.

G-- is \z.o(xrz) (i.c. G(xr-)). 'z is the functor, r"(lustG); thus uex

write z*, zo (where g:X+Xr), etc. F ir lx.F(xrz*), i is y(F), and

-7, i" Z-. .x

Theoren 2. < 4it 4,"_) is initial for <"G>..r 'r,rf

Proof. Note first that, by Lemna 4, 7,- may be charscterizcd as follows.

_- is Y(G--); if S:X)X', then Zo is determined byxxv

(t)

(4) a)
to(l
I

J

4n
- 'uv+--- -' Gx' x

ix't4^_liGCO-,lT
'9x ox,

(z) =x
I

lc*(2,)

v
(z .) =x'

ir,-,u
) o)

F

c(xrzx)

= G(Txtzg

G(XrZx,)

Z^
E

an

<1

Now, suppose that p:F(X'rZ')-?X', q:G(Xt tzt)4Zrr 60 that (prq) is

{rG)-algebra. Uc will prove that there is at nost one arrou fror

Fr,lCX> to (prg). Suppose, then, that arf, is such an arrou, i.e.
11 n| \J-

Z I * c(f,Z)
tttlI lc(*,f)JJ
Z'-- G(X'rZ')

q
* ' *-J-- F(X' ,Z ')

45.

\)) n

i be the arrow from ,'lr,

tce foiicwing commutes:

r!^
| \r-

(n\

l:.;' itlat"iiry cf 'lF, o(is

C-': ';ne oiher handt we

gJ.r,,*.r: ;y (?), and put (l =

ii -,:a-'i:ici:iiar a-r,n is art

x I
to the G* r -aI8ebra Q tG*, (z') +z | . using

'lc-
Z (* G-(Z)

zi. e--3-,. c{z)
(5) : trt I ; G(o(rI7 .)"G(I;'Z) = G(o.rz.r)txli4^1"*'AV '9-.r V

Zx,(-LGx,(zx,)
tt<l lo*'(()=c(t*"()e.t
zt(q ,Gx,(Zt)

(4)b) and (5) glve' resPectivelYi

''ls-
=xL+ Gi(z)(6) i 'i

B i lc(r;,p) =',.1, | ^

z"!.0,;7 Gi(z')

By initiaiJ-ty of 'l,' -, 6 = ('rn'\:i I -

Next, (4)a) g;ives

and

G-(6)xl

x
I
j

i^r- ,) - t
iu\I;, \"zcl
\Y

I
i
t

&zl" ,rl
I
It

r

z't:crqlcr(z')

F(X, Zi)

= F(drZoc)

= F(X I rzxr)

uniquely determined; hence 13 is aIso.

see that if we start by defining 0(as being

{'rnr then all diagrans (4)-(7) conmute, and

arror* f,rom a'lF' 'lni to (prq).

o{

r ttr,, =
U
It-
i F(o.)
v

F(x')xl

46.

Corollary 1. For any lo-functor F:C x C+Ct
y(tr x.y('h z.F(x,r')) = y(,\ x.n(x,x)).

Proof. Consider the two ways (orders) of solving the pair
x =zz : r(xrz)

Theorem 2 assures us that the rrnaivetrsolutions are correct. ln detail:

c is here F(x,-) , z-, is Y(Az.F(xrz), F is ,\x.y(,\2.tr'(xrz)), ed 4,rZ > =xx
<y(,\X.Y(iZ.f(XrZ)))rz,^> is the carrier (codomain) of an initial solution.

Then, interchanging the roles of XrZ, we trave (inp notation syrametrical to

that used previously, whose interpretation should be clear): F, is AX.?,,

X" is Z, G' is),2.t(zrz)r Eurd 4:tz'> = d()z.F(7.&)rl(,\z.r(z&)> is the

caryier of an initia 1 solution. Since all initial algebras for 4.1G) 4'e

isomorphic, the result follows.

Corollary 2. BtreeA i ForA .

;|. Apply Corollary 1, with F(X'Z) as 2 + A xX x Z.

The mere existence of an isomorphism between BtreeA and ForA is not in

itseif a ver)r interesting result. However, as we shall see in Section 5, a

closer inspecti.on reveals much more than this: it gives us the "representation

of forests by binary tree6rr. Likewise for:

Corollary<. ListA i A+LispA.

b€. Similar to Corollary 2, starting with the equations

X 7 A+Z

Z a 2+XxZ.

47,

,. -";er.,cds ci *ef-ri;io,"r ard.oroof

Within the franework estabh.shed in this paper, we have a nunber of

:'ne:nods available for defi.ning data types, data structures (elenents of

oata types) and functions over data types, and for proving properties of

defined entities. Sorne of these nethods are brought together in the

present section. The short subsection on definitions is 1ittle nore than

a sumnnary of points nade in scattered forn eLsewhere in the paper.

Subsection B is concerned with inductj.on versus initiality as a nethod

of proof. Subsection C takes up the question of how we nigtrt prove that

our definitions of particular data types yield the rrrightrr properties.

A. Definitions. For definitions of data types we ca:r nake c fourfold

classification. First, we have the ad hoc definition of sone basic data

r,ypes. Secondly, we can apply a functor - either one of the standard

furicrors or a rrpafameterized data typett to an al,ready defined type.

Thirdiy, a data type can be iri'Lroduced as the initiai fixpoint of a functor.

Finaily, we can definerrconposite't data types, in which the cqrrrier is

taken to be giver, to be given by one of the preceding three methods, but

new defined operations are introduced. Exanples of aII these nethods

were provided j-r, Section J.

Turnir:g to tiie quesiion oi specifying (defining) an elenent of a

gi.ven data typet the only point worthy of special comment is that arbitrary

rrr'.-,"s:ve spec;fications are adnissibie. For procedural data types this

is r;;rsonplace. For a non-procedural data type, a:r exanple was suggested

L-. 'cw- _) . *urnittedly, the exanpLe is not impressive; the

method only becones really useful when data types which adnit infinite

strr,rctures (say, infinite trees) are studied.

49.

The basic type-constructors have, in view of their categorical

definj.tion, certaj,n functions associated wi-th then: projections and

injections associated with product and sunr :eval-uation and abstraction

naps associ2ted with the function 6pace, and so on. Andt of coursel

every frrnctor gives us the neans to introduce functions: if a function

f zXlZ and functor F have been defined, then we have also the function

Ff:FX+FZ. So, for exanple, functions defined on the natural nunbers

extend at once to urays and stacks of numbers. APL is probably the

best-known exanple of a progranniing Ianguage that makes systematic use

of this possibilitY.

Initiality provides yet another way of defining functions. The most

inportant example is the definition of the inverse isonorphisn '? i1 fot

an initial F-algebra ,lt:FXO-+XO Once the inverse is availablet

further uses of initiality for defining functions c'n be elininated in

favour of recursive definitions. In detail; supPose we have a definition

of a function f :XOIX by initiality, namely as the unique function

satisfylng

\ r., f"lr = SoFf

where g:rx-+x is defined previously. Then (1) can be rewritten

f - 8,Ffo1-1

and tiiis has the form f = Gf for a continuous functional G. lhus f

nay alternatively be introduced as the (Ieast) sol,ution of (2), construed

as a recursive definition.

What we J.ose by this reduction is the unicity of the solution of (2) -

an aspect ihat may be of great innportance in proving properties of ft or

of the donains XOrX. Indeed, it is as a principle of proofr rather than

of definition, that initiality is nost significant.

(a)

49.

B. iniii_a-l-it:r anc ineiuction. Exanples of the use of initiality in
be/

proofs are to'found throughout the paper. A very interesting question

suggests itself,: do we need any principles of proof about data types that

cannotbereducedtoinitia3.ity?onemaythj.nk,forexanpIe'ofsl@

inCilction. For StackA' this nJ-ght be fornulated as:

l.€s A€s- x€S=) Va€A.push(arx)eS

Stack c S

Can (3) be derived from initiality? At first it may seen as though it can.

A set wii.l naturally be construed as a map fron StackA into BooI (or perhaps

into 2), and thus we reduce (1) to, say:

f'(r)= r f (A)=tt 1(1)=tt * Va€A. f (push(arx))=t,t

f=t

whe;'e t:StackAJtsool is the strict map which sends every non-a stack to tt.

(ti) can inceed be derived fron initialityr with a bit of effort (it is

::lot quitc trivial). tsut, of course,the rrreducticnfr of (]) to (4) is faulty.

il) :.r forEulated for arbitrary predicates(=sets), (4) only for continuous

pr*cl.Lcates. For the usuaL applications, (A) is insuificient. For exernple,

structural- induction is often used to prove statements of the forn
g ^/ \ / \
Y X.r \XJ - g\X/ .

/zl

(4)

\))
:-.li r*,iu;.i^ty is niitr in gerienal, a continuous predicate.

iJ) can indeed be proved quite easily by going back to the explicit

coil6iji'r:c::rion of StackA as f,he colimit oi a certain t0-chain i-. The proof

:.joe. oy way of showing that every rlersent of StackA is already trin" one of

':l::r u€rfis ci ,-i or, nflc:r€ llj'scioeiy, ihat ior every x€StackA there exists n

.Rsucn that Uprr(x) = xr when" 1.1:l'-lStackA is the coliniting cone. This

shows that every stack is either I or A or can be obtained fron A by

\n

a finite nunber of pushes, which is-essentiaffy (9)'

applies in the case of any data type defined as the

a rrpol;monialr' functor: that is, a functor built up

transposition of variables) fror *r xr constant and

A sinilar arguient

initial fixpoint of

by conposition (and

identity functors.

satisfied that the result is of the right level

certainly covers all the usual cases of structural

reason why we do not trouble to nake it precise

a1I, need structural- induction.

ll/e will not prove this result here' or even statgit precisely. This is

partly because tte are not

of genera)-ity (though it

induction). But the najor

is that we do nott after

lr/e should admit at this point that the argument developed so far in this

section 1s not quite satisfactory. We have argued' in effect, that (]) (say)

cannot be derived directly from initiality, while it can be obtained indirectly

via a particular construction of an init|al algebra for 2 + A x -' t'rlhat is

unsatisfactory is that we are unable to say exactly what a 'rdirect'r derivation

is. Despite this, it seents cLear that the question whether in proofs about

oata types we can work just with the abstract characterization by initialityt

or nust go via the concrete construction, has some methodological signi'ficance.

At the least, proofs using initiality generalize more readily than proofs

using structural inductiel. For exanplel where polynomial functors and their

initiaL algebras are concerned, a proof by initiality typically does not

make use of the detailed properties of + and xr and will work equally well

if O and 6$ are used instead; this, of course, does not hold for structural

i. nduc ti on.

In ea:'lier versiolis of, this paper several of the resultst particularly

j.n Secrion 6, were proved by neans of stnuctural i-nduction" Howevert it

turned out that the inductions could be elininated in every cassl and that

pure initi.ality arguments were sufficient. One can see how induction night

be replaced by initiaiityr in a siupJ,e cES€' by looking at (5). To prove

a statenent of this forn; by initiality, we would try to show that each

of frg is an arrow fron A to B, where (for suitable F) A and B are

F-algebras' with A initial.

fhe eiimination of induction io not always as straight-

icrwand as thisl even if it can always be achieved (sonething about which

we are not yet in a position to rnake any general clains). In the discussion

of innplementation by isonorphisn in Section 5, the effort to renove

in;""itj.on led io a substantial inprovenaent in the results and their

prcof. A couparat.iveiy simpJ-e exanple of the repJ,acement of induction

by rnitiai-ity appears in the dj.scussion of the thir<i topic of this

j-: ::'; .: i on (be.l" ow) .

FinaLtyo we i.emark that some uses of ordinary mathematical inciuction

reirain in Section 5. These arerfharmlesstr, since the predicates j.nvolved

ai.e in each case continuous (reCa11 from Section 2 that equality is

;cr.iiru;ous ii: --;e case of li)* so that a direct reduction to initiality

is r'easib:e.

qt

C" Correctness ol data type definitions. In the discussion of

particular data types in Section j, no attempt was made to show that

our proposed definitions were trcorrect'f. But the definitions were

supposed to be precise expiications of the informal notj.ons current

in conputer scj.ence! and it seens reasonable to denand sone demonstration

that our data types have the properties usualJ-y required.

In trying to lake sense of this sonewhat vague demand, we nay

borrow an idea fron ADI. We can try to write down a list of the rrusualtl

properties of the data type in question, and then show that the type we

have defined is initiat in the class of algebras satisfying those

properties; this would surely be convincing evidence.

It happens that this can be done fairly easily for nost of data

types introduced in Section J. hJe witl discuss the (not so easy) exarple

of queues in some detail. The exanpLe is interesting because the

type in question is coaposite, and because it does not seen to have

an accepted algebraic definiti.on.

We do not know of any published list of properties intended to

characterize the standard operati.ons on queues. The following list was

suggested by D.Park (private conmunication):

pop(push(ars)) = if empty(s) then A else push(arpop(s))

(6i top(pushia,s)) = j.f empty(s) then 2 else top(s)

ernpty(A) = tt empty(push(ars)) = ff

Heree top and pop shoulci probably be regarded as partiai- operations. To

avoi<l this iiifficulty - ar:d also tire introduction of terminology relating

to nany-sorred algebras, wirich woul-d be needed for the accurate hanCling

of (6) - we c3r1 use the approach suggested in Section J. Top and pop are

amaS-gamated into a map q:Q+TQ (= 2 + A x Q), where

Jt j'r s=n
q\61 = i

i{top(s) opop(s)) erse

Si,nliariyr pushl empty and A are replaced by u:TQ+Qr wirere

u(f)=/\

u((aos)) = Pusit(aos).

Parkts equatrons may now be written as foilows:

q"u(f) = {
t7)

qou((aus)) = ii q(s)=-i then (auu(l)) el-se <p-" q(s) rr(arna" t(s))>

(These equations may be made rnore iead.abLe by writing empty(s) instead of

g(s)=t-, and A instead of u(f).) lt wiii be convenient to have (7) in

ciagrammatic fonrn. Indeed, (7) is equivaient to ihe commu.ting of

um
q. t-=- rq

I

Qi r14

\t .*,, v
TQe-51--tTQ = 2 + *. x (2 + A x Q)

whe:'* {i"s defined bY:

. -\d \rl = I';

d* ((avr)) = a

d ((ar(eos))) = (bru((aos)).
u

In tne case that Q is StackA ano u is csOr this just says that q is
CSr ri*

..jid -rperi;iorr ciq of :he da-i:a i;rpe QueueA i$taci<A+TStaclcA#-Stack'A;

.o:e ir-;c*1), ;is j-s eas:.,. j' v{-nr*fi*ii. Thi;s Q.ieuo:A certedniy satiafies (8).
,,- {

Let i)o = Q,*6:#*:r?Q' be a;:y;rigen:'a saiiafying (8). We want to show that'
\

i.. ii:e :1..- a ;r,i,:,i€ &i-;.cw fro,,-i rl"ueug^to t*" This neans t,llat we must show 'uhat

the .ar:: w fi, :-rcE th* T-a:-ge'nra cs to ;" (giver. -oy i-n:-iiaij.ty of cs,) also

^-,-.- - ,rl ^^bqt-:-l.jLgb

(g) &,"dq = Q*'o

\Ir

consider the foilowing diagram, in which srdldr abbreviiite StackArd"uoidu*

The two end squares and the top rectangle commute by defJ-nition. One can

check that the bottom rectangle commutes; the main case is:

I o d((ar<br*>) = (bro cs^(<ars>))

- (b, r.(1", a(s)>)>

ci'((ar (b, o(s)>>)

= d. TI c((a, <brg>).

Since the back square and the bottom rectan,qie commute, h, dq is an arrow

from cso to d*. since the front square and top rectangre commute, e* o is
arl affow from cso to d{. By initiality of cso these arrows are equal; the

resul-t is proved.

5" Inpiernentation of crata types'

sornetlmes one wants t,o be abie to prove that certa:.i: openations on data

iype DN enabLe him to sj-rnulater represent or implemer't those of a data type D'

Typioally, D will have been defined'eabstractlyrr, say by a circular defj'nit'ion'

while D,is morerrconcretet'(rnore like what is usually availabl-e in prograrnming

Ianguages). The:.epresentation of stacks and queues by arrays may be cited as

exanples. An int,eresting exanple that does not quite fit this pattern is that

of the representation of forests by binary trees. Here the representation

involves, as it were' a reduction of rrstar-height't: in the definition of the

data type Forests there occurs already a paraneterized data type' while Btrees

is sefined via a purely polynonial functor (see Sec.3t ot end of Sec'4)'

These exanples are weli-known, an<i an elenentary treatnent nay be found

j.n Knuth(69). Our purpose is to give an exact definition of "inplementationrr

wnich will cover these an<i other exanples, and to exhibit sone techniques for

pt:oviig ti?at proilose; i.rnplementa'ci-ons are coffect. As a preiininaryt let us

indicate why we are not satisfied with the ecluational approach of ADJ'

Consider the .ruplernertation of stacks by arrays. Suppose tha operations on

arr"ays whj-ch correspcnd to pcprpush are poprrpushr. Then it is not true

that we have:

PoP'(Push'(arH)) = H

. fact* i;,1e "ugeiul" parts of H and popt(push'(arH)) will be the same, but

-:r* conten'rs of the frrst free location wj"l-i, in general , have been changed

i;;J til* "ijequence of operations: pu6r1 r(ar-)rFoP'). This situation is quite

i.1,rpica ' of representations whicir are not one-one.

?he j.oea benind our ctefinj.t:ot:

type Dr inpiernents data type D' this

sanne type (the operations of Dr and

is very simpie. kiherr it is said that data

neansr first, that Dr and D are of the

D are in one-one correspondence); secondlyt

56.

that the elenents of Dr are taken as representing elements of Dr and this

consistentiy with the operations of DrDr. Thus:

Definition t. Ar -!.@ of D by Dr, where D and Dr are data

types, is a honomorphisrn (of data types, see Sec. J) r:DriD'

Remark. As already noted, r need not be one-orl€. Moreover, r nee<i not

be onto; the nost one can say (in general) is that every elenent of D that

is definable by neans of the operations of D has a representative in Dr.

Exanples would be provided by implementations of the reals, or of procedural

data types.

In all the exanples to be discussed here, the map r is onto; this is

a consequence of

@!.. If D is a data type with carrier A which contains as one of its

operations an initial T-algebra 9:TAJA, then any implenentation r:Df +D

is onto.

Proof. Consider

a 6----9-- 96sl lbV n^ I 'i,'
a r 1-Y-- f{ t

rl lr'9s*A+TA

By ini-riaJ-ity, ; hence r is onto.

We continue with a detailed treatment of the exanples nentioned in the

opening paragraph of this section.

Exanpl"e i. Representation of stacks and queues by ar3ys.

(i) stacts. Let D be StackA(""A T(StackA)+ ""A StackA, where T is

2 + A X - r Let z be the set of pairs (Hrn), where H is an infinite aryay

yrCl, = iO

J/.

o- .& ancl n is a natural nunberr with the obvious ordering; more preciselyt

1;:'liie coal-esced sum of ccuniably nany copies of ArrA. Let Dr be

z <? rz{-9-2, where

p(;) = <iiorO> (ir. an arbitrarily chosen amay)

p(ar(i{rn)) = (upd(Hrnra) rn+1)

q(itrn) = if n=o @ i else (acc(Hrn-1),(i{rn-'i)'

Deiine r:ZtStackA recursivelY bY:

r(trrun) = if n=o then A else push(acc(H'm-1) rr(Hrrn-1)) -

We shall ileed an el,ementary property of r which we state as

Leruna 2. For sii iirarnrk, we have:

(t) r(upd(Hrm+kra)rm) = r(Hrn)

ry;. By induction on n. The basis n=O is triviaL. Suppose rnat (1)

hol-ds for aLl Hrark, with ra=n. Then

r(r.rpd(Hrn+1+k ra) ,n+1) = push(acc(upd(iirn+k+1 ,a) ,n) ,r(upd(Hrn+k+1 ,a) rn))

= push(acg (Htn) rr(Hrn)

- r"(H'rn+''l) .

'rye hav* to shcw that rop = cs^oT(r). But aop(T) = csA"T(r) trlviaiiy, anri

r'p(ar(iirn)) = r(upci(iirnoa) rn+i)

= push(acc(upd(Hrnra) rn) rr(upd(Hrnra) rn))

= push(arr(iirn)) using Lenna 2

- cs*stiri(at{itn>)'

An equa-r3-y easy verification si:ows that T(r)"q = csilo r ; thus Dr is an

-';rier',a;:iation oi D. Iote that in tnis ir*plementation the functions prq are

;-;. -;"'i'.'se ;o siiCh othe:'.

qa

(ii) qreues. We represent a queue by an array H together with two indices

r1rrro such that the itens of the queue are (from head to tail) H(n+n-1)r...rH(n).

Formally, D is StackA (csA T(Stact<A) (dq StackA, Z is the coalesced sum of

a double sequence of copies of ArrA, and Dr is Z(p T]z+3-2, where

p(r) = (Hororo) (HOarbitrarY)

p(arCIrnrn)) = (upd(Hrm+nra)rnrn+1)

q(Hrnrn) = if n=O then T else <acc(Hrm)r*Irm+1in-1 P ',

Define rzZ+ StackA bY

r(Hrnrn) = if n=o l@ A else push(acc(Hrn+n-1) rr(ttrnrn-1))

Corresponding to Lenma 2, we have: r(upd(Hrn+n+kra)1n1tr) = r(Hrnrn). then

Fop = csOoT(r) is proved just as before. To complete the proof that Dl

implernents Dt we need

$gga}.. With popr and topt defined as in Sec.3, Ya have for n) 1:

topror(Hrnrn) = acc(Hrn)

popto r(Hrrnrn) = 3(Hrn+1rn-'1).

Flroof. By induction on 1. For n=1 the p::oof is trivial i.n each casc.

For the induction step we have:

t'op so r(Hrmrn+1) = top fo push(acc(Hrm+n) rr(Hrnrn))

. = top ro r(Hrmrn)

_ acc(Hrm)

popro r(tirmrn+1) = popro push(acc(Hrm+n) rr(Hrn.*n))

= push(acc(Hrm+n) rpopr r(Hrnrn))

push(acc(Hrm+n) rr(H rn+1 rn-1))

= r(Hrm+1rn).

using tiris lemna, it is immediate that T(r)oq - dqor.

G;1 second main example is the representation of forests by binqry trees.

As poirrteri out in Sec.+(Corol-lary 2), BtreeA: ForA. This is not suificient

for .ihre representpi!es(=irnplementation)o si,nce it does not indicate how the

operations of ForA -,re to be implemented. The deficiency can be repaired with

."ne aici ci the foLlowinf easy lemma:

-1
Lemma 4. Let D = 2.9 Fz tQ Z be a simple data type, rzZt-Z an

isonorphism. Rrt et = r-1ogoFr. fhen the data type Dt = Z'e-9j- p1' (Q'-1 7'

is isonorphic to D.

Proof. Obvious.

This lemma shows that there is indeed an (isomorphic) iraplementation

of forests by binary trees (more precisely, by a data type wi'th carrier the

binary trees). However, direct application of the lemma does not yield the

implenentation in a very convenient form. More manageable expressions can be

extracted from the proof of Theorem 2 (Sec.4). To see this, we will extend

the i:.:tation of tha"t theorem in order to handle the solution rrin the other

orderf' of ti;e pair

: F(XrZ)

= c(x,z)

(Some of this notation was already introduced in Corollary 1 of Sec.4.)

.\;"ornely' F, Ls .\x.F(xfl), x_ is yo(nustF), G* is \7.G(xrrz), z' is Y(Gt),

i.',:'}l*].-sX,*.Thus<\F,.,,1G*)i.sinitia1for<tr.'G>.Define<

tne pi'ocl of the threorein, with X'.,2' ln place of Xt rZt (and lF .t /lcr in
''z'

r-i-;ici: ff p,q):

{G*.
G*.(z*.)

j G(Ix., <)

*.(z')

\1: l

X

Z

\t/

t7

lx'
n:ai
n
z.

rl
lG.

Then diagran (7) becomes

4-
f ('F r(r,Z) = F'(f)

I
rto,zol

v

?%lFl5;6ltr'(x"z**)

is, of course, an isonorphisn. This fits the pattern of Lemma 4t with

as 47, , as o-1, and gt as rig*'F(I** r().

Exanrple2.Representationofforestsbybinarytrees.AsinCorollary

(Sec.4), we take F(X1Z) as Z, G(X'Z) as 2+ AxXxZ' We find that

i - ForA, Z = Stack(A x ForA), X* ='Za = BtreeAl Z*. = Stack(A x BtrecA),

F'i, Stack(Ax -), G* is 2+ A xXx-, and lV'1A*,'/Gx*rIFr, are

cfor cbt^, csA x BtreeAt rnt""ll respectively. (J) becomes

\+/

I

o!
.i,
xf = F(x.)

p

""A * BtreeA 2+AxBtreeA
I

.,7
ir

i
+

+ A x BtreeA

Stack(A x BtreeA)

,)

BtreeA

Stack(A x BtreeA)

BtreeA

,f\

'l

I
I

t1
I
I

r,iu

2

Thus the necursive definition of { reads :

2t \
b r.E/ = if enpty(s) tnen *r, "ttu cbto(n.,ohd(s)'p2ohd(s)r('tI(s)),

whei.e Nf- is cuto(T). Note that 1f I f(I*.rl) - (. From (4) we have
'' z'

cf.
ForA #-Stack(A x ForA)

j

I Stack(I. x r)JA

This yiel-ds the i'ecursive definition

l*l
BtreeA e-----l- Stack(A x BtreeA)

j.n which every arrcw is an isomorphism.

of the representation function r:

ol.

r(x) = j.f ernpty(x) then A erse cf *(root(x) rro1t(x) rrort(x))

where cf *:A x !'orA x l-orA -* ForA is defined by:

cfr(a, f ,,f ,) = cfoocso x Forl((arfr)rcli1(f2)>).

We conclude this section with a remark about the appropriateness of

Definitj-on 1. Suppose that we have a prograrn 1T written in a high-1evel

ia-rrguage usingrrabstract data types'r, and that we can prove that n conputes

a iunctj.on f :X+2. Suppose, further, that we have an implementati.on of the

j-anguage (a translation into a lower-Ievel language) and, in particular, of

the data types used in TT. What does i.t mean to say that the translated

programr Trf r is still conect with respect to f? the answer must, it seens,

be as forlows. Let TTr compute f r:Xr)2,, where xt rz, are the imprementations

of xrZ respectively. Then for any xt€Xr, if xr represents xex, fr(xr)
represents f(x), This just says that the diagram

t ,,
4

I
]F
lL o
lzJ
i

rr i| ' >zl

comrnutes. It is at least plausibie (we oo not have a precise result as yet)

thatn to ensure that this resuit holds for every tTrf, we will need just the

i:..."iition iaiC down in Definition .i.

X

7" Advice to LanguaAe desif;ners.

lde think there are some practical conciusions to be d.rawn from our

investigation. The fact that the definition of d.atii types has such a sinple

and clear mathernatical semantics does speak in favor of a nathernatical

defj-nition of prograrnming languages, rather than an operational definition.
The main advantage of a mathenatical definition is ciarity: it is much easier

for the user to think in terms of abstract data types, for example initial
fixpoints of functorsr than in terns of their representations - as he is forced

to do if the definition of the language has an operational flavor and. stresses

representations-, in the manner of the ALGOL 58 Report (van Wijngaarden et aI(?5)) .

Quite often a language is difficult to learn not because of what is in
the language but because of what is left out; the restrictions, when they are

not solidly justified on senantic grounds, are most difficult to memorize.

Our second piece of advice woul,ci then be to remove al-l restrictions on the

'-ise of ci-:"cuiar defj.nitions for specii'ying data typesl again - as with nearly

al] the points to be made j.n thj,s section - A-GOL 58 provicies an illustration
of what need; to be improveo upon. Apart, from easing the J-earning of the

Ianguage, the introduction of arbitrary circular type definitions woul-d allow

the progrannmer to defins cata types such as lists and trees without having

to introduce references (or pointers) explicitl-y. This would greatly facilitate
pri:ois of correctness. Inueeo, proofs of correctness are intractabl_e when

sr'ari::g of vaiues (sometimes caileri aliasing) occurs. One can try to excLude

aij-asing by rneans of syntactic restrictions on programs; but this does not

;eem tc be possibl-e when references are permitted.

The greatest cpre shoulti be taken in the design of a programming J-anguage

provide the necessary facilities to denote useful basic data types, such

1 and 21 and usefur type constructors, such as sums and products. rn

to

pa.rticuLar, the distinctions between x and (!r + and @, should be emphasized.

uriion shouid be clearl"y reco;inizeci as being a discrimi-naied union.

Ti'ie iacility for circuiar <iefinitions of oata types should

canonicaL way of defining the func'uions defined. More precisely,

definition X: TX should enabl-e the user to gi-ve a name to'ii'

rlg:TX X the initial T-algebra . \;' is obviously neces"""y,'or.i

question the necessity of f, and propose to make it an implicit

provlde a

a circular

:X TX and to

one could

tlcoercionrr.

Our last piece of advice is that a language should allow the user to

specify abstract data types on one hand and the way he intends his abstract

data types to be implernented (by way of a homomorphism of data types) on the

otner hand. fhe responsibility for checking that the proposed i-mplementation

is indeed a hornomorphism could be ej.ther left to the user or the compiler

couici be asked to check a proof of that fact given by the user.

8. Conclusion.

'l'he cate5lory-theoretic method enabies us to pr.esent the semantics ol

data ;ypes as a precise genei^alization of the usual partial order semantics"

This:s of g.':eat vaiue heuristically in formulating the basic definitions and

results oi the theory. More specifically, it helps explain the fundamental

:'cl-e of initiaii'iX, by showing that this is just (the generalization of) the

' cst fixpoint propertlrc

idniie we are sure of the solicJ-ty of the mathematicaL foundations, Iarge

,tr-':]]li:-{rrr'lin in o':rr i.realment of the sppfications. Implernentations of data

t'r:es - ''ed t": be :-nvestigatea j-r:. far greater vari.ety tnan we have attempted

in ic.:isn 5" Ar:o rr wi:l- no rioubt be poinrec oii. that specific design

proposals are needed, not jr:st general advice to lan6uage designers.

64.

Acknowl-edgements

L{--", h^^n]^ n^+ all of them mentioned in the text of this paper, have piayedfiolry PsvP!s t rrv L

an important role in the genesis of the ideas and techniques used in this paper.

We benefited. fi:om direct conve::sations with the theory group at V'la::wick Univensity

and especially D. Par"k and w. wadge, and also with D. Scott, G. Plotkin and

J. Reynolds. Dur-ing the elabor-ation of this wo:rk both authors were supponted

bv the Science Research Council grant B/RG 31948 to D' Park and M' Paterson'

Refenences

Adarnek ,
j.

-(igz+) F:ree algebr:as and automata ::ealizations in the language of

categories.Commentati.onesmathematicaeuniversitatiscaroiinae.

PP.589-602'

ADJ: Goguen J.A., Thatcher J'W'o Wagne:: E'G" Wright j'B'

-(igZS) Abst:ract data tl4)es as initiai aigebras and tlrc correctness

of data representations. P::oc. Confe:rence on Computer^ Graphics,

Pattern Recognition and Data Structu::es'

*(tgll)Initialalgeb::asemanticsandcontinuousalgebras'Journal

of the ACM VoI.24rNo'l PP'68-95'

A::bib, M.A. and Maneso E'G'

-(rgz+) A categoristts view of automata and systems' category theory

appiieotocomputationandcontrolnsp::ingerLectureNotesinComputer

Science, Vol'25'

oe Bi"icker, J.

-(fgf+) P.ecu::sive procedr'itresr Math' Centrum' Amsterdam'

Bu::ge, W. H.

-(: gZS) Recursive programming techniques' Addison Wesiey'

i-ou::celle , 3. ai:d Nivat , i{ '

-(tgrA) Alge:::aic famiiies of interpretations'

Fr"iedman, D.P. and Wise, D'S'
rrt

-iigfA) COi'lS sho':id not evaluate its arguments' Pnoc' of :-- Coll'

c:' .r'.u-cc;1a-t;, iili:,3uages a:iti Programrni:ig' Edi:tbu::gh'

iorc.on, i'l.

-Ph- D. :--hesis' Ec:-nburgh Un-iversity'

I'i: ' --.c]]E P. and i{crr'is, J' J::'

*(is:o) A lazy evaluator' 3=d ACt{ Synposium on Principies of Programming

Languages. PP'g5-103'

ob.

Hernl-ich, H. and Strecken, G.E.

-(fgf S) Categony theor-y. Allyn and Bacon.

r\rluLrrtg.

-(1969) ltre art of computer progr.amming. VoI.1. Addison Westey

Lawveneo F.W.

-(1964) An elementary theor"y of the categony of sets. Proc. National

Academy cf Sciences Vol.52 pp.1506-1510.

Lehmann, D.J.

-(fgZO) Categories for fi>point semantics. Theory of Cornputation

Report no. 15r Department of Computer Science, IJniversity of Waruick.

See also Pnoc. 17th Annual Symposium on Foundations of Computer: Science.

TNFT
r.!a!a!a

-(1SZZ) Modes in AIGOL Y. Theony of Computation Repo::t no. 17,

Depalttnent of Computer Science, Univensity of Warwick. See aLso

P:roc. sth Annrral I.I.l. Confenence.

Maclane" S.

-(fgZi) Categories fon the wo:rking mathematician. Spninge::.

Maclane, S. and Binkhoff, G.

-(f907) Aigebra. Macrnil"lan.

Ma:rkowsky, G.

-(fgzt+) Categonies of chain-complete posets. IBM research Techn.

Report RC5100. To appear in Tlreoretical Computer Science.

Plotkin, G.D.

-(fgZ0) A power.doroain constnuction. SIAM Jou::nal on Computing

Vol. 5 No. 3 pD.452-487 .

67.

''rL) :r.'r"

-(,197i) llhe iattice of flow diagrams. Semantics of Aigorithmic

Languages (E" Er'geie-n, ed.) Springen Lecture Notes in Mathematics,

Voi. i8B p;o. 3Ii- 36 B.

-(tglZ) Continuous iattices. Toposes, Algebraic Geome-rry and

Logic (f"W. Lawver:er €d.) Springen Lectune Notes in Mathematics

'ioL.27+ rp"97-136.

-(:,SZO) Data types as iattj-ces. SIAI1 Journal on Ccnputing Vol.5 No.3

pp .522-587 .

Sinyth, M"ts.

-(1976a) Effectively given domains. Theory of Cornputation Report no.9

Dep. of Conputer Sciencer Univ. of Wanwick. To appear in Theoretical

Comptlter Science
"

-(igZ0l) Powerdonains. Theory of Computation Report no.12, Dep" of

Con:iter, Scielce, Univ" of lianwick. See also Matheiiai:ical Foundations

of Cor;.'. ^;er Science, 3pr;;ger Lectune ;\iotes in Computer Science

lio.45 pp.537-543.

-(i'3:+) Cn ti:.e recur"si',ze specification of oata types. Cai:egory theory

appiied to Computation a;:c Controi, Springer Lecture Notes in Cornputer

Science Vol.25.

'j;ngaarden, A-; llai*ioux, B.J"; Peck, J.E.L. I Kosten, C.H.A.; Sintzoff , M.;

. ^ i. iuiee: eirs, L.G.L.T. anc Fisken, R.G.

-(iSZS) Re'rise,- r€port on the Aigorithmic Language Algol 68. Acta Infor.matica

;. nn -
-O?A.J JP

'

