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Abstract

A Mathematical interpretation is given to the notion of a data type.
The main novelty is in the generality of the mathematical treatment
which allows procedural data -types and circularly defined data types.
What is meant by data type is pretty close to what any computer
scientist would understand by this term or by data structure, type,
mode, cluster, class. The mathematical treatment is the conjunction
of the ideas of D, Scott on the solution of domain equations (Scott
(71), (72) and (76)) and the initiality property noticed by the

ADJ group (ADJ (75), ADJ (77)). The presenf work adds operations

to the data types proposed by Scott and generalizes the data types

of ADJ to procedural types and arbitrary circular type definitionms,

The advantages of a mathematical interpretation of data types are
those of mathematical semantics ir general : throwing light on some
ill-understood constructs in high-level programming languages, easing
the task of writing correct programs and making possible proofs of

correctness for programs or implementations.
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l. Introduction

All programming languages have basic data types, some have many,
some have few, some have only one basic data type. The most
commonly used are :‘booleans, integers, reals, procedures,
labéls, atoms, lists. They generally come equipped with some
operations : logical operations for booleans, arithmetical
operations for integers and reals, composition, evealuation and
abstraction for procedures, a definiﬁg facility for labels, and

list=-manipulation primitives for lists.

In most data types the user has the facility to denote mnew objects
by the use of expressions combining old objects by operations,

A1l these facilities are easy to understand. The first non-
trivial fact about data types is that, in certain data-types and

in certain programming languages, objects can be defined implicitly;
they are defined by expressions that contéin their own denotation,
This is the facility which is generally referred to as "recursive
definition" but which we prefer to call "circular definition",

This facility is generally offered for procedural data types only.

In the most advanced languages (called extensible) the user may
define new data types from old ones by the use of constructors. In

ALGOL 68, for example, these constructors are struct, proc, ref,

row, union. New operations on data ‘types may also be defined by

defining new procedures,



In some languages, like ALGOL 68, new data types may also be
defined circularly. The following two definitions are examples
of such circular definitions in ALGOL 68:

mode tree = struct ( int label, ref tree left, ref tree right )

proc ( fun ) fun

mode fun

All languages known to the authors that allow such circular
definitions of data types put stringent restrictions on the
generality of such a facility. Lehmann (77) showed that many
circular definitions not allowed in ALGOL 68 are meaningful and

very useful,

The question of the mathematical meaning of circular definitions
inside procedural data types was first answered, independently, by

H. Bekic, D. Park and D. Scott, who noticed that the functions
defined were least fixpoints of monotone functionals., The fact that
mode-constructors are functors was mentioned in Scott (72), in a
remark attributed to Lawvere, and later made explicit by Reynolds

and Wand (74)., Circular definitions of sets and languages had

been known to algebraists for a certain time when, in 1969, Scott
gave a precise meaning to circular definitions involving the function-
space constructor (his arrow, the ALGOL 68 proc). A general method
to solve domain equations, implicit in Scott (72), was made explicit
by Reynolds. The categorical nature of this wnified construction,
only hinted at by Scott, was emphasized by Wand (74). The main idea
behind the present work is that the problems involved in defining
data types can best be handled by an exact generalization of the

well-understood methods used in studying definitions of objects



within a data type. This involves generalizing from posets to
categories, from monotone functions to functors, and from least
fixpoints of continuous functions to initial fixpoints of continuous
functors, The ADJ group concentrated on the problem of defining
functions on data types and insisted that data types do not consist
only of a set of elements, structured in some way (generally a partial
order) but consist also of certain functions. They understood the
importance of initiality and noticed that certain data types were
initial algebras (or initial many-sorted algebras) but were unable

to include procedural data types in their treatment and did not see
the link with initial fixpoint of continuous functors, The relation
between our work and the authors just mentioned can be summarized

as follows, We provide a categorical version of Scott's domain
constructions that is simpler than Wand's, At the same time, we

take full account of the ideas of ADJ, while avoiding the limitations
to equationally defined, non=procedural data types which their approach
entails., As to the mathematical results in the paper, most of these
are fairly obvious - once one has grasped the idea of systematically
generalizing from posets to categories, The main purpose of the
work is, however, not to present detailed results, but to show that

a clear and rigorous basis for the theory and practice of data types
can best be provided by the concepts of w-categories, w—continuous

functors, and initial fixpoints,

be



2, Mathematics

This section will introduce the basic notions and notations to
be used in the sequel.

Definition 1: A (similarity) type T is a ranked alphabet,

The rank of a symbol is called its arity.
A type is a set of symbols (intended to represent functions);
to each symbol is attached a natural number (intended to be the
number of arguments taken by the function represented), the arity
of the symbol, If T is a type Tng T 1is the set of all symbols
of rank n. |

Definition 2: A (universal) algebra of type T is a set S (called

the carrier of the algebra) and for each n € N a

. gn
function ¢n: Tn > 8% .,

¢n @gsociates with each symbol of arity n a function : s > s

of the corresponding number of arguments,

The following notions of category theory will be assumed to be known:
category, object, arrow, domain, codomain, identity, composition,

small categories, limits, colimits, products, coproducts, equalizers,
coequalizers, monics, epis, isomorphisms, initial and terminal objects,
zero object, functors, coseparators, well powered categories. The

reader is referred to MacLane (71) and Herrlich~Strecker (73).



Definition 3 : w is the category whose objects are the natural

numbers : { 0, 1, 25 ees 1y eeo } and the arrows
all couples (i,j) of natural numbers such that
i < J, with the obvious identities and composition,

Definition 4 : C is an w-category iff C has an initial object and

all colimits of w=diagrams.,

Definition 5 : A functor F : A+ B is an w=functor iff F preserves

all existing colimits of w-diagrams,

Definition 6 : If T : C + C is an endo~functor a T-algebra is an

arrow (of C) of the form ¢ : Te»ec
A similarity type T', as in definition 1, can be coﬂsidered as a
functor T in the category Set. An example will show this better
than a formal definition,
Let T' ={ 0, S } with rank (0) = 0, rank (S) = 1
T would be the functor defined by TA =1+ A and Tf = I1 + £,
Then a T-algebra would be a function ¢ : 1+ S +S8 and would
correspond uniquely with a set (S) equipped with one constant and
one unary operation, The reader will easily see how to generalize
the above example to arbitrary similarity types (even infinite ones),

Definition 7 : If T : C+ C is an endo-functor the category of

T-algebras is the category whose objects are the
T-algebras and whose arrows, from ¢ : Tc + ¢ +to
¥ ¢ Td »d are those arrows a : c+d of C such

that a¢ = yTa.

c 2 Te
a ¥ + Ta
d “ Td
v



If T corresponds to a similarity type T' the arrows of the category

of T-algebras are the homorphisms of the universal algebras of

type T'.

A word of caution is necessary here to warn the reader that our
definition of a T-algebra, though seemingly only an extension of
the one found in Mac-Lane (71) where T is always supposed to be a
monad, has in fact a different purpose. The functor T that we make
to correspond to a similarity type T' is not the one Mac-Lane would
consider (the one building the carrier of the free algebra), Our
notion of an algebra is identical to what Arbib and Manes (7u)
called a T-dynamics. We are interested only in the case where T is

an w—-functor and C an w-category,

Theorem 1 : Let C be an w-category and T : C + C be an w=functor,
then the category of T-algebras is an w-category,

Proof ¢ The proof of this theorem is more-or-less routine
arrow-chasing. As the existence of w-colimits will not
be used in the sequel its proof will be left to the
reader, The existence of an initial T-algebra will be
proved in detail.

Let L be the initial object of C (its existence is ensured because C

is an w-category) and let L. be the unique arrow : L =+ c,



The following w-diagram has a co~limit (C is an w-category)

LI'.L T'LT.L T LT.L

Let My T+ a be a colimiting cone.
Tui : Tl+1l + Ta is a colimiting cone because T is an w=functor.
Then there is a unique a ¢ Ta -+ a such that aQTui= Hipqe We claim
that o is the initial T-algebra.
Suppose B : Tc + ¢ 1s a T-algebra,
Define v, =L, and Vigg © B °Tvi.
Violy = Lc = v and by induction on 1 :
‘ = T Ti+1 = geT =
Vipr® Ty =8 2 T Cvge Toug ) = Belv; 13 v s
and +the cone V. commutes,
Suppose Y : a > ¢ is an arrow of T-algebras
a 1 c
a 4 + 8
Ta -+ Tc
Ty
Y el = YoLa = lc = Y, and by induction
= v = = = T =
Yous o = yoeuoTu, = BoTyeTu, B°T(Y°ui) BeTv, = v: 4
and y has to be the unique arrow such that Y, = Voo

On the other hand, by the universality of e there is such a v,

youoTH, = You. = BoTv. = BeTYoTU.
1 1+ 1 1

1 7 Vi

By universality of Tui: Yea = BoTy and vy is an arrow of T~algebras, U



Remark : From Theorem 1 we shall only use the existence of
initial T~algebras and the careful reader may have noticed

that we did not prove the most general possible results, Initial
algebras may be proved to exist even in categories in which not
all w-diagrams have a colimit; it is enough to suppose that all
w-diagrams in a specified subcategory have colimits (in the

large category), that the initial element is in the subcategory
and is initial in the subcategory and that the subcategory is
closed under T. These results may be of use when studying certain
categories which are not w-categories, but the simple version
restricted to w-categories is adequate for the purposes of this

paper.

Theorem 2 : Let T be an endo-functor on C. If a:Ta»a 1s an

initial T-algebra then o is an isomorphism.

Proof : a 2 Ta
g ¥ TB
Ta <« T2a
Ta

Initiality of o implies the existence of 8 : a»Ta
such that Bea = TaeTB

But oaoBoa = aoT(aoB)

ao8 ¥ +  T(a°B)

a <« Ta
a

which, by initiality of a implies a°8 = I

Then Boa = T(aoB) = T(Ia) = ITa

a and B are inverse isomorphisms, O



We want now to proceed in giving examples of the application of
the above theorems. Our claim is that data types can always be
considered to be objects in an appropriate w=-category, such that

each data -type constructor is an w-endo~functor of this category,

Example 1 : Set and universal algebras

Set is cocomplete (and also complete) and so is an w=category,

x i SetxSet+Set is an w-functor because it is a product and
finitelimits preserve directed co-limits in Set (see Mac Lane

1971 Theorem 1 p. 211).

+ ¢ SetxSet*Set is an w-functor because it is a coproduct, and so
has a right adjoint and preserves all colimits, Obviously constant
functors are w-functors, composition of w~functors is an w~functorp
and a bi~functor is an w-functor iff it is an w~-functor separately

in each argument.

Theorem 3 : Let T be a similarity type, then the associated functor
T : Set+Set is an w=fumctor,

The proof is obvious. Theorem 1 and 2 then imply the existence of

initial algebras of any type and the fact that the initial algebra,

as a function, is an isomorphism, One knows that, in Set, not

only initial algebras but also arbitrary free algebras exist and also

arbitrary free algebra in equational classes of algebras, but this

is of no interest to us. The existence of initial algebras was

known long before the term initial had been coined and we claim no

10.



credit for the above theorem, The framework of universal algebras
is too restricted for data types and, as noticed by ADJ, many=-sorted

algebras seem more suited.

Example 2 : Set” and n-sorted algebras,

Set”™ = SetxSetx...xSet

n times

Set” is obviously cocomplete (and also complete) and so is an w~category.
If T : Set® » Set" the T-algebras are a generalization of what is
called in the literature many-sorted algebras? heterogenous algebras
or algebras with a scheme of operators. Theorem 2 implies the
Proposition 2.1 of ADJ (77). Many sorted algebras are closer than
algebras to what one understands data-types should be, nevertheless
the problems of circular definition of objects inside a data~-type
cannot be tackled in Set” for lack of an order structure on the
objects (which are n-tuples of unordered sets). Burge (75) is
probably the best, though somewhat informal, account of what can be

done with sets.

Examplie 3 : w-CPO* and continuous algebras,

Tc remedy the absence of order structure on the objects ADJ (77)

have proposed to use many=sorted algebras whose carriers are w=complete
partial orders with least element and whose operations are w-continuous
functions. Our objection to this is that the problem of circularly
defined data-types whose definition involves the arrow (or the

ALGOL 68 proc constuctor) is not solved, simply because the arrow is

11.



not a bi=functor in the ahove category : it is contravariant in
the first argument., We shall nevertheless show that our results
allow a very simple proof of ADJ (77)'s main technical result :
the existence of initial continuous algebras. Let w—CPOi= be the
category the objects of which are the w-complete posets (every

w-diagram a ca 5..ais.;. has a l.u.b.) with least elements and the

1
arrows of which are the strict (bottom preserving) wwcontinuous
functions, Markowsky (74) showed that the full subcategory of
w~CPO* which consists of all chain=complete posets (which he calls
CPC*) is complete and cocomplete, We shall briefly pause here to
prove this result for w-CPO*; the method used here is a definite
improvement on Markowsky's, Nevertheless these results will not be
used in the sequel both because we do not think that w-CPO* is a
good candidate for the category of data types and because, by using
the remark after Theorem 1, the existence of an initial T-algebra

in w-CPO* can be proved for all functors T which preserve a special

class of monics for which it can be shown that all w-diagrams (of

13
special arrows) have a co=limit (in w=CPO ),

*
Co-completeness Theorem ¢ w = CPO is complete and co-complete,

Froof : To prove completeness it is enough to prove the existence
of products and equalizers of pairs (MacLane (71) p,109).
Products in w—CPO* are just like in Sets; it is a trivial
task to check that the product of w~complete partial orders
is an w—-complete partial order, that the projections are
strict continuous functions, that the unique mediating arrow

from a cone of continuous functions is continuous and

12,



Lemma a :

Proof

Lemma b

Proof

that the unique mediating arrow from a cone of strict
functions is strict, Equalizers of pairs in w=CPO
are just like in Set,

£

The equalizer of A 3B is h : A' > A where
g

A' = { a | aeA, f(a)=zg(a) } with the ordering induced by
the one on A and h is the injection. A' is an

w=complete CPO because f and g are strict which implies
leA' and f and g are w—=continuous, h 1is obviously
strict and continuous. Now to prove co-completeness,

by Herrlich and Strecker (73) (23, 14 p. 163) it is enough
to prove that w-CPO* is well-poweréd, and has a co=
separator. m-CPO* is easily seen to be Well=powered,

Let 2 = { 1,7 } be the two=points w-CPO order by 1 C T,

If f: A-> B is a monic in m-CPO* then it is one-to=one.
Suppose f(ai) z f(aQ) for f monic, Let h.: 2+A be
defined for i = 1,2 by hi(i) = 1 and hi(T) = ag.

For i = 1,2, h is a strict w—-continuous function and

1

h, of = h20f = h

= = =
1 h2 a a

1 1 2

2 is a co-generator in u=CPO”,

Suppose f,g are two different arrows : A + B,
Then 3 a €A such that f(ao) ¥ g(ao) and by symmetry we
may suppose f(ao) t gla ).

Lifb C g(ao)

T else

Let h : B +2 be defined by h(b) =

learly h is monotone and continuous,

But hf(a ) = 1 and hg(ao) =T and hf # hg, O

13.



Our Theorem 1 then implies the existence of an initial Z-algebra

for any ranked alphabet E; which is the main result of ADJ (77).
Obviously the same holds for many-sorted continuous algebras,

which are w-functors in ( w-CPO*)n. Categories slightly

different from w—CPO*, for example that of w-complete cpo'’s and
strict A-complete cpo's and strict A-continuous maps are, by

similar proofs, seen to be w-categories and the many initiality
results of ADJ (77) can be obtained in a unified way, if one

thinks these are interesting. The category whose objects are
countably based algebraic posets with least elements and whose

arrows are strict w-continuous maps which preserve finite elements,
inspired from Courcelle and Nivat (78) is also cocomplete ( and
complete) and hence an w—category, This last result can be proved
either by the method used above or by noticing that the category

is equivalent to that of partial orders and Strict monotone functions
which is very easily studied, In all preceding examples the
construction of Adamek (74) ensures the existence of arbitrary free
T-algebras over any object. Our insistence that T be an w~functor
guarantees that the free T-algebras are obtained as colimits of
w-diagrams. ADJ noticed that expressions with variables represented
objects in such free T-algebras and made totally clear the way such
objects yield maps from the environment to the obvious domain., In
the sequel we shall admit without further formalities that expressions
built out of constants, variables and (continuous) functions yield

(continuous) functions or more generally (continuous) functionals,

14,



Example 4 :CPO%  and circularly defined data -types.

Let cPO® (a stands for adjunction) be the category the ohjects
of which are the w-complete partial orders (the same objects

as those of w—CPO*) and the arrows of which f : A + B are the
pairs of w-continuous maps f = (fL,fR) fL : A= B and fR: B+ A

such that fRéfL = IA

The following lemmas prove that cP0?  is indeed a category. The
proofs are trivial and left to the readers,

Lemtma 1 ¢ £ ¢ A > A defined by £ = (IA,IA) is an arrow of CPO°,

Lemma 2 : If £ : A+ Band g : B + C are arrows in cP0® then

h = (gLAofL, fRogR) is an arrow : A » C,
The arrows of CPO? are the pairs of projections of Scott (72), the
embeddings of Smyth (76). Wand (74) seems to have been the first
to state that the full subcategory of cpo® consisting of complete
lattices is an w-category. Plotkin (76) and the authors noticed
that +, x and the function space constructor (+) were w~functors
in CPOa, so simplifying Wand's (74) treatment which uses a non-
standard notion of continuity. Lehmann (76) proves a more general
statement from which the fact that CPO® is an w-category and X, +, >
are w—-functors are instant corollaries, Certain full subcategories
of CPO% : the category SFP-R of Plotkin, the category of algebraic
consistently complete cpo's, that of effectively given algebraic
consistently complete cpo's have been shown to be w-categories
themselves by Plotkin and Smyth. They also are closed under x, +
and -+ . SFP-R is also closed under the power domain constructor P

of Plotkin (76); the others are closed only under Smyth's Po (Smyth (76b)).

15,



Smyth (76a) has defined a subcategory of cpo? containing as
objects only the effectively given continuous consistently
complete cpo's which is closed under x, +, + and Po, and certain
w=colimits, Unlike all previous examples cP0? does not possess
products or coproducts and Adamek's (74) result about free algebras
is inapplicable, Yet by Theorem 2 initial T-algebras exist for
arbitrary w~functors T. Now some obvious lemmas will be stated
with only hints of proof or without proof.
_ L fR . . a ‘

Lemma 3 : If f = (£7,f) is an arrow in CPO°, then any one of

L fR . .

£~ or uniquely determines the other,

Suppose (fL, flR) and (fL,fQR) are arrows in CPO® then

Proof :
£ R f Rfo R L f R and symmetrically,
1 2 1 = 72
Lemma 4 : If f = (fL,fR) is an arrow in cP0% : A + B then
L _ -
(L, = 1 and fR(LB) = 1y
Lemma 5 : I, the one=point partial order is initial in cP0?,

L

Lemma 6 : If £~ : A+ B and fR ¢t B> A are monotone functions

such that fR is w=continuous, fRofL = IA and fLofR E IB

then fL is w~continuous,
The foilowing lemmas precise the facts about co=~limits in CPOa.
The first lemma is a concrete proposition about CPO but all following
lemmas ﬁay be proved in the abstract framework of order-enriched
categories and applied directly to other categoriesy in particular

sub~categories of CP02,

16.



fo fl fi
. T . - = .
Lemma 7 : Let H AO g A1 ad A2 - +Ai > Ai+1 > soe be an

. . a . .
w-diagram in CPO", There exists a commuting cone

L R L R

. C ous .
i u1.---'“1+1 M

u: I'+A  such that for any ieN 141

17 "a
R
19141

}

Proof : Let A = {< a sa

soee@.ee0 > | VieN a.eA, and a,=f
1 1 11 1

ordered by componentwise ordering. A is an w-complete partial order
by Lemma 4 and because the f? are w-continuous.,. The w-1lub's in
A_ are componentwise., Let P; A~ Ai be the ith projection :

P; (<a_, eedss oo >) = a; o P; is w—~continuous because lub's

o

in A_ are componentwise. Let q; ¢ Ai + A_ be defined by

R R Q L L
- 3 - - . - - - - il - oo > ]
i7i o fi—i 8i ’fl-ial’ 3y flal’ fi fl 83

Clearly 4 is well-defined, monotone and VieN 9 = 94,4 °F

= C
Furthermore P, o, IAi and q; °Ps __IA N so that by Lemmas 3 and 6,

U o= (qi, pi) defines a commuting cone [+ A_ in cpo?,

4., P, = q o fL o fB o P. C q oD
i i 7 e i i itd = *i+e i+1”

] . C - i
E (qi ° Pi) C I, because qg; op; I, , vien

(-] (=]

Vel pj o ( % q; ° pi):g pj o qj ° Pj = pj which implies that

p. o ( % q; ° pi) < 3 see0s ai..°> = aj and ( g q

3 ° pi) =1 . O

A

1 - -]

in the next lemmas all w-sequences of functions for which l.u.b's are

used can be easily checked to be ascending.

17.



Lemma 8 : Let I (as in Lemma 7) be an w-diagram in CPoa.

If the cone v : T » B is a colimiting cone (in cpPo?)

then U v? v% =1
{ 11 B
Proof : Let y : T » A, be the cone defined in Lemma 7. There

exists a unique h : B » A such that hovi = Mo

Then uP = hLovP and ug = vgohR.
i i i i
I, = hRonl = R e I r uIi’ ufi{ ) oh® = [th°“i°“ oh™
= hRo nl ovP o v?o hRo hL = U v? o vg .
i 1 i ‘ i 1 1

Lemma 8 : Let I' be an w-diagram in CPOa and u : T >A be a

commuting cone such that [} uPug =1 then u% is
I i1 A i

oo

%
a colimiting cone in w=CPO for PL.

Proof : Clearly u? commutes. Suppose a: ' + B is a
% %
commuting cone in w=CPO and h is an arrow : A~ B in w-CPO such

. L _ - _ L Ry _ L R _ R
that hous = a; then h = h°IA = he(l MM ) = Q huiui = % A

1
™ i
which proves unicity,

For existence let h = U aiui . Then h°u§ = Lo o.u.us =
i >

R L L L
] +HLsUL. T, oo.f- = .f. oo.f[-' = . = . O
%}jalulul i=1 3] gzjal 1-1 ] ? ¢ aj

Lemma 10: With the same hypotheses as in Lemma 9, u? is a limiting
Op ..
cone for the w “=diagram I' .,
Proof : This is the dual of Lemma 9 (reverse the arrows but not

the ordering on arrows),

18,



Lemma 11 : Let I be an w~diagram in CPO° and y : ' - A_ be a
commuting cone such that uL is a colimiting cone in

%
w~CPQ" for T" then ¥ is a colimiting cone (in CPO%).

Proof : Suppose v : [ > B is a commuting cone in cPO*. Then
%
vL : PL + B 1is a commuting cone in w~CPO and there exists a unique

h : A - B such that hquL = V? . By Lemma 3 this proves unicity,

To prove existence it is enough to find a right-adjoint to h.

Cu u% Vi) em o u% = U LWl > PR IR I,
i1 125 © 1] j {171 o
L R L R . L R
- = .:
h o ( g My Vs ) E h g vy E vy vy __IB
(h, I u? v? ) is an arrow in cP0® ., O
i

Lemma 12 : Let T be an w-diagram in CPOa and u : ' > A_ be a
commuting cone such that uR is a limiting cone for PR
in waPO*, then u is a colimiting cone (in cP0?).
Proof ¢ Dual of Lemma 11,
Definition : Let EL be the covariant embedding of cPo® in m-CPO*
which sends each pair of functions to its left part and
ER be the contravariant embedding of cpo? in w-CPo* which
sends each pair of functions to its right part. Clearly
EL and ER are the identities on objects,
Theorem 4 : 1) CPO% is an w—~category
2) EL preserves and reflects w~co=limits
3) Ex transforms w-co=limits into w P-limits and reflects
wP-1imits into w-co-limits,

"Proof : 1) by Lemmas 5, 7, 9 and 11.

2) by Lemmas 8 and 9 and Lemma 11,

3) by Lemmas 8 and 10 and Lemma 12,
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The next Theorem will be used to prove that functors (or bi=functors)
in cP0? are w-functors,
Theorem 5 : If T is an endo-functor on CPO% (a bi-functor

cPo® x cPo® - CPOa), T preserves w-colimits iIf for

every sequence f:; fl; c f;"_ fli CeooC fi‘ f}i Coeeee
L _ _ L R _
Lilfif];_I)[iJ(Tfi) (r£)% = 1,

Proof ¢ By Lemmas 8, 9 and 1ll.

CPOa, can be considered as a (non-full) subcategory of w—CPO*; if
T! :apCPO* +w-CPO* preserves adjunctions its restriction to cpo?
is a functor T : CPO® + cP0%, The following theorem shows that
the initial T-algebra is also an initial T'-algebra, It is useful
to draw more radical initiality properties for the data types
circularly defined by definitions involving only + and x (at the

exception of =), as those considered in ADJ (75).

s &
Theorem 6 : Let T : CPOZ + CPO® be a functor and T' : w-CPO + w=CPO

an w—~functor such that E.T = T'E then T is an

L L

w-functor and if ¢ is the initial T-algebra then
EL¢ is the initial T'-algebra.

Proof : T!' is an w~functor by hypothesis and E. is an w-functor

L

by Theorem 4 => T'EL = BLT is an w-functor. But by Theorem 4

EL reflects w-colimits and then T is an w~functor. Theorem 1
asserts the existence of ¢ : TA + A the initial T-algebra., The
proof of Theorem 1 shows that ¢ is the unique arrow in cP0® such that
$ ° Tﬁi = ﬁi+1 for ﬁ : T > A the colimiting cone for T
I L.IEL TL > ssee Til';il Ti+11

TL
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By Theorem 4, BL preserves w—colimits and ELu : ELF + A is a
colimiting cone, Because the initial object in cpo? is also

% %
initial in «-CPO , ELP is the following diagram in w=CPO :

1 1+l >

e sse

2
ET:1 =+ T > TVi=..i00>7"7 >
L LTtL T LTQL Tlll .
The proof of Theorem 1 shows that the (up to isomorphism) initial
%
Tt=algebra is the unique arrow ¢ : T'A + A of w-CPO such that

VieV ¢ ° T'E_u, = E

Mi T it

- . - 1
But ELui+1 = EL % o EL T ui = EL ¢ oT ELui

Remark : Markowsky's (74) result on the cocompleteness of CPC* is
not used. Circularly defined data types the definition of which
involves + {union), x (struct) and -+ (proc) can be seen to be
initial algebras in CPOa, as will be explained in the sequel (see
Lehmann (77) for a preview oriented towards ALGOL 68). Scott's
original (72) solution to domain equations consisted of considering
the subcategory of cP0? whose objects are continuous lattices and

whose arrows are pairs of A-continuous projections. It can be

easily checked that this subcategory 1is closed under w—colimits,

Scott (76) proposes another definition of data types and reduces the
solution of domain equations to least upper bounds., Plotkin and

Smyth have recently shown that these l.,u.b's are w-colimits in a
suitable category of adjunctions which is equivalent to the subcategory

of CPO® considered originally by Scott (72).
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Example 5 : Dom and a more general notion of a data=type.

Lehmann (76) defined a category Dom the objects of which are
w—categories and the arrows of which are adjunctions with identity
unit. Dom is an w-category and X, +, + and P can be defined to

be w-functors. cpo? is a full subcategory of Dom closed ﬁnder
w=co-limits, x, +, and = ., The correspondents of Theorems 4

and 5 hold and relate Dom and w-Cat, the category of w-categories

and strict w-functors, Dom provides a more general notion of a

data type, useful when the powerset constructor, or non-deterministic

Procedural types are allowed,

We shall now proceed to give a number of examples showing how
circular type definitions do indeed define initial algebras, The
algebraic aspects will be stressed : a circular type definition does

not only define a partially ordered set but also some functions on

this set.

Example 6 : The natural numbers.

The natural numbers, or even the integers, are generally thought

to be a basic data type. We shall now demonstrate how they can be
circularly defined. Our treatment is equivalent to Lawvere's (64),

as reported in MacLane-Birkhoff (67) (pp. 67-70).

Let our underlying category be Set, 1 be the one-point set
(it is a terminal object in Set and also a generator) , L the

unique element of 7, + be the co-product (disjoint wnion) and
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let T be the functor defined by :
if e 1is a set Te : 1 + e

if £ : e1+ e2 is a function Tf : Tei+ Te2

is the function defined by (Tf)(a) = = 1f 3 € e,

1 if g5 € 1

In category theoretic notation Tf = 11 + f

Clearly T 1is a functor : Set - Set, It is indeed the functor
associated with the similarity type T' = { 0,S } rank (0) = O,
rank (s) = 1 described after Definition 6. T is an w=functor,
as all functors associlated with similarity types, as explained

in Example 1. By Theorem 1 there is an initial T-algebra,

¢ + 1 +A > A, The initiality property of ¢ characterizes, up to
isomorphism, the function O + suc : 1 + N = ¥ which sends i€l to

zero and nelV to n + 1 = suc(n).

Lemma 1 : O + suc : 71+ N >N is the initial T-algebra.
Proof : Suppose ¢ :I1 + B> B

Suppcse a : N - B,

If (1) a o (O + suc) = ¢ o (Il+ o) then

(2) a (0) = Caoe (0O +suc)) (L) =( ¢ o(I1+ a)) (1) = ¢ (1)

(3 a(m+1) =Ca (0 + suc))n) =( ¢ °(IJ+ a)(n) = ¢(aln))
Conversely if o verifies (2) and (3)

a (o) =¢ (1)

& #(0 + suc)(L)

a °(0 + suc)i(n) = a (n + 1) = ¢(aln)) and

a °{0 + suc) = ¢ °(IJ+ a).
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By the induction rule for the natural numbers there exists exactly one
function a : N + B verifying (2) and (3) and this proves the initiality

of O +suc ¢t I + N>V,

The point we want to make here is that the type N can be circularly

defined by : N = 1 + N or in ALGOL 68 notation mode natural =

union (void, natural). The initial fixpoint involves not only the

set N but also the constant O and the functlon successor. The induction
rule for natural numbers which is vital for proving properties of programs
manipulating natural nﬁmbers is nothing else than an initiality property.
In other words the fact that the unique a : ¥ =+ B impliéd by Theorem 1

is a total function is the main tool in proving that certain functions

are total, in contradistinction with the more general partial functions
which may be defined circularly inside [N » B] by means of arbitrary

continuous functionals : [N - Bl =[N - B}.

For other circularly defined data types the initiality property may often
be used directly in place of an induction principle. In other cases it is
the main tool in proving the correctness of an induction prineciple. The
question of the exact relation between initiality and induction will be
treated in Section 5.

A1l useful functions on natural numbers may be defined from O + suc

with the help of Lemma 1. The usual definition of addition for example
r2v be readily transformed to fit this framework.

) _n if m=0
n+ms

suc(n + m') if m = suc(m')

may be obtained the following way.
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Let T = Af (IJ + f) and ¢ : T((N-+W¥]) + [N+Nlbe defined

by : ¥ Iy +Af (suc o f£),

Then there is a unique d : N - ¥+¥] making the following diagram commute.

y S¥c
i a ! Il+ a

[vm ¥ 1+ [

The commutation of the above diagram is equivalent to :

a(0) = IN and a(suc n)

a(0)(m) = m and a(suc n)(m)

suc ° a(n)

suc (a(n)(m)),

a is the addition,

More generally any function defined by a primitive recursive scheme
is the unique arrow making a similar diagram commute., Certain such

diagrams, however, define functions which are not primitive recursive.

Theorem 2 asserts that O + suc is an isomorphism,its inverse is obviously
nuii + pred : ¥ + 1 + N defined by (null + pred) (0) = 1 and
(null + pred) (n+1) = n

The proof of Theorem 2 shows how to define pred in terms of suc.

As a further example we shall show that even the equality predicate on

¥ may be defined as the unique arrow from an initial algebra,
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Let TS =1 + N + N + S. The initial T-algebra is
6 + 1+ N +N +NxN = (I+N)(I#N) - N x N defined by ¢ = (o+suc) x(otsuc).
Let B = {true, false} and ¢ : 1+ N + N + B » B be defined by

(L) = true, ¢(n1) = ¢(m

2) = false and ¢(b) = b,

(o+suc)x(otsuc)

L I+N+N+xN
1 [
i [
o . '11+ IN+ IN+ o
L <
B 5 I+N+N+B

a is the unique arrow : N X ¥ - B such that:
a(0,0) = true, a(n+1,0) = a(O,m+1) = false and a(n+l,m+l) = a(n,m).

a is the equality predicate.

Example 7 : Context-free languages,

A1l least fixpoints methods previously used in Computer Science are
special cases of the more general category-theoretic initial fixpoints
presented here, In particular the characterization of context free
languages as least solutions of a set of equations can be carried through,
Let £ be an alphabet (not necessarily finite), then P(Z*), the set of all
languages over L, ordered by inclusion, is a complete lattice and, by
standard methods, an w—category, Let VN be an alphabet of non-terminals
(not necessarily finite) and p be a function : Vy > E where E is the set
al’ expressions built from VN’ L, concatenation and union, On P(X*)

concatenation and union are additive (they preserve arbitrary l.u.b's)
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and so they certainly are w— functors p clearly defines an w-functor :
2 V N V

«w o

T : P(Z )! | + P(L )] vl and the initial T-algebra TA ¢ A is the least

|V |-uple A of subsets of P(I') such that TA ¢ A. By theorem 2 TA = A.

Example 8 : Context—free grammars,

A much more interesting example concerns context—free grammars (as
opposed to languages), A context-free grammar with n non=terminals
can be viewed as an w-endo-functor T : Set” - Setn, in a manner similar
to example 7 above, but when U (of subsets of Z*) is replaced by +
(disjoint union) and . (concatenation of subsets‘of Z*) by x (product).
For example the context-free grammar : S + alaSalaSSa| can be looked
at as the functor : T : AS. {a} + {a} x S x {a} + {a} x S x S x {a}

The initial T-algebra ¢ : TA + A consists of a set A isomorphic to

{a} + {a} x A x {a} + {a} x A x A x {a}, verifying the initiality
property. A is isomorphic to the set of all parse trees, ¢ constructs
parse trees and ¢-1 decomposes parse trees, Note here that the
function frontier : fr : A + Z* which assigns to each parse tree the

% -
word generated is not one-to-one and for wel : |fr 1(w)l is the

multiplicity of w.
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3. Data types as algebras

We now want to make our thesis precise: a data type is an object in
a suitable category of domains (cP0® will do for all applications here
but Dom or other categories could be considered) equipped with certain

operations.

Definition 1: A type t consists of a natural number n>o and n pairs

of funectors (S,,T.), S.,T. : cpo? » CPOa, i=l,..e5m
i*7i i1

Definition 2: A data type D of type t:(n,Si,Ti) consists of an

w=-CPO D (with light notational ambiguity) and n (w-continuous)

functions ¢i : SiD > TiD'

In practical applications the functors S:.L and Ti used are always
"polynomial" (they are built from products and sums only) and indeed

a data type is a domain equipped with a finite number of functions.

Definition 3: A homomorphism from D, to D, of type t is a function

1 2
f: D, » D, such that the following diagram commute:
1
i
SiDl -— TiDl
S.f l l T.f
i i

5%, =3 Y
%5

Homomorphisms will be used in Section 6 to study implementations,
For the moment just notice that we have defined a category of

data types of type t.
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Basic data types

There is no real problem in defining the basic data types of usual

programming languages as objects in cpo? equipped with certain operations.

The data type boolean for example would well be understood as the
CPO Bool represented below:

true false

"~
1

Bool
equipped with the constant true, the unary operation ~
(~true=false, ~false=true, , 1=1) and the binary operation Vv
(Lvi=ivtrue=truevi=falsevi=ivfalse=j, truevtrue=truevfalse=falsevtrue=true,
falsevfalsezfalse).
All other connectives: A,»,+ etc;.. can be defined from the above three.
The question could be raised whether we should not define Lvtrue to
be true (instead of 1). This latter proposal is conceivable but would
contradict the operational meaning that some want to give to L

{a non-terminating computation),

Because of the generality of circular definitions of data types and the
extended facilities available to define functions on data types we think
that it is possible (though we in no way suggest that it should be the
case in programming languages) to use only a very few basic data types:

I the one point domain, and 2 the two points domain for example.

T
ol { ieT
*L
1 2
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Type-constructors

As explained in Section 3 a type~constructor is an w-endo-functor in
the category of domains, we shall list below some of the most interesting

ones.

® CPOaxCPOa+CPOa, corresponds to the dategoriéal product in w7CPO*
(ELo®=Ho(ELXEL) if I is the categorical product in w—CPO* )o If A and B
are cpo's ABB consists of all pairs of objects, the first one in A, the
second one in B ordered componentwise., If f:A+A' and g:B+B!' are arrows
in CPO? then ﬁ@g:(fLHgL, fRHgR) for (allb)(x,y)=(ax,by). That ® is an
w-functor is easily checked with the help of Theorem 5, and so the
w-continuity of all functors to be defined now. There are some obvious
arrowé attached to ®: Pl:A3B+A, P2£m§B+B. A slightly different product

will be needed for defining stacks and lists.

dede
X 3 CPOaXCPOa->CPQa corresponds to the categorical product in -CPO

(the arrows are very strict w-continuous functions, those functions which
send to bottom only the bottom element). If A and B are cpo's than AxB

consists of only those couples (a,b) with acA and beB such that a#lA and

b#lB or azL, and ble. It is easily seen to be a cpo. If fi:A+A' and

g:b*B' are arrows in cpo? then fxg is the restriction of f®g to AxB.
This non-standard product has already been used by M+ Gordon in his

thesis. The obvious arrows p,:AxB+A and pz:AXBaB may be defined.

A ‘ . ‘ %
+ CPOaXCPOa+CPOa‘c0rresponds to the categorical sum in w-CPO , and

3
in w-CPO ., A+B is the coalesced sum of A and B. Arrows il:A+A+B,

i2:B+A+B and d:A+B»Bool may be defined.
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@: cPoxcPo?> cPo? is the separated sum, i and 4 may be defined as above,

l’i2

+: CP0%xcP0®» CPO? is the Ffunctor space functor. +(A,B) is [A»B] in our notation.
App: [A-BI®A>B, Abst: [AxB~>CI+[A+[B+C]] and Y: [A+AJ>A may be defined..

As was mentioned above a power constructor P, or more precisely a number of

such constructors have been studied; they will not be used in the present work.

The next paragraph exemplifies circular definitions of data types. For example

it will be shown how, given a data type A, it is possible to define the data

type Stacks of A (StackA). It is only in the next section that it will be shown

how these definitions amount to making Stack a type constructor,

Circularly defined data types

This paragraph, and the next one, proceed uniquely by examples. Their purpose

is to show that many usual data types are indeed defined circularly, and that
circular definitions define not only a certain domain but also certain operations
on it.

1) Simple data types

Those are the data types built from basic data types by type constructors
and circular definitions.

Natural numbers

In the preceding section the natural numbers were defined circularly as an
initial T-algebra for a functor T on Set. For computer science purposes it

seens preferable to define them as an initial T-algebra for a functor T on

cPo°, By analogy with the case of Set one could think of using T'= 71 + I Poa.
This does not give a satisfactory solution: the initial T'-algebra is I %remember
vhat + is the coalesced sum). Scott has proposed, for the natural numbers,

what amounts to the initial T-algebra for T= 2+ICPoa. one may easily verify

that the initial T-algebra n: 2+Nl4Nl‘isAsuch that*Nl: {L403152500esNgenet

with 1L n and nC n for any neNl, those being the only ordered pairs. Pictorially:
o 1l 2 ...n ... T 0 1 2 601 o0
1 i

N
1 2+NJ.



And n..is such that n(1)=1, n(T)=o and n(n)= n+l. By Theorem 2 n is an isomorphism
and the data type natural numbers comes equipped with two arrows: n: 2+Nl->N_L

-] . - [ .
and n ": Nl+2+Nl. To convince the reader that n and n lare sufficient to define

all usual arithmetic functions, just notice that o: 2—>N.-L may be defined by

. . -1
o= nei, s suc: leNl by suc= nei, null: Nl+Bool by null= den s Dred: Nl-bN_L

by pred(n)= if d(n—l(n)) then o else n—l(n). All useful arithmetical functions
may then be defined by circular definitions. In particular a primitive recursive
definition: £(o,n)= h(n), f(m+l ,n)= g(m,n,f(m,n)) may be translated by:

f(myn)= if null(m) then h(n) else g(m,n,f(m,n)). It must be noticed that both
functions n and nfl must be given; n alone does not allow the definition of null
and pred, in the absence of the equality predicate which we have no reason to
suppose given or even computable., once pred and null are given, equality may be
defined either by the usual primitive recursive definition or by:

eq(m,n)= if null(m) then null(n) else if null(n) then false else eq(pre(m),pred(n)),

In N_L the least solution of the equation x= suc{x) is L. Another candidate for the
data type natural numbers is the initial T'-algebra for T'= IQI 5 » using the

CPO
separated sum. This initial algebra n': T' N'»N' looks the following way:

'Luc
n .
\ . 1
/J'n /
2 .
\\\\ Ve 0
1\\\\ //12 \‘ ) .
0 . lO
N 1 \ /
19 1
A N

with niL)= L n(.)= o , n(Ln)= L4l s n(n)= n+l s nlu =1 .

The first version N_L we proposed is simpler but the second one K' shows how infinite

objects such as L _may enter the initial algebra.
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Fun = proc(fun) fun

The data type defined by the equation X = [X+X], corresponding to the
ALGOL 68 definition of the title is the initial T-algebra for T= -,
It is 1, the one-point domain, the arrow being the identity, This
example is given, not because of its usefulness, but because it is
one of the circular definitions which could not be understood in the

framework set by the ADJ group. .
Stacks

The data type Stack A, whenever A is a data type, is the initial

T-algebra for T = 2+AxI a®
CPO

Note that we use the coalesced sums and products. It is easy to check
that the initial T-algebra, cs : 2+AxS+S is the following,

S is the set of all finite sequences of elements of A different from lA
ordered coordinatewise and one bottom element 1.

cs is defined by: cs(1)=1, cs(T)=() the empty sequence, cs{a,s)=(a,s)

the concatenation of a and s, if sti,and cs(a,L)=1.

Clearly A = cs(T) for non-empty s pop(s) p2°cs-l(s)

1]
1

cseol " top(s) plocs_l(s)

push 5
1

empty = do cs
It does not bother us that pop and top are only partial functions:
everything may be done in terms of csri. The above way of defining
Stacks may be compared with ADJ (75) where stacks are defined as initial
equational algebras. Our approach answers three criticisms that could
be made on ADJ's : it deals with partial orders and not only sets, there
is no need to introduce some special object of type A to be top{A), and

most important the equations laid down by ADJ may be justified and shown

to be sufficient to characterize stacks. On this third point the reader
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should notice, as will be explained in section 6, that in most
implementations of stacks pop(push(d,s)) differs from s. Our approach
is also much closer to what programming languages do allow: circular
mode definitions are allowed in ALGOL 68 whereas no programming language

allows the definition of an initial equational algebra obviously many

9
equational specifications do not make any sense for programming and

functional data types are not definable equationally.

The use of the coalesced product (x) instead of the usual one (®) enables
us to avoid the introduction of infinite stacks; a similar equation with x
instead of ® defines a data type which contains infinite stacks. This
data type has been found useful by some and seems even implementable

(see Friedman and Wise (76) and Henderson and Morris (76)). The two

data types should be clearly distinguished.

The intuition suggests:
List A = A + Stack(List A)
It is only in the next section that it will be shown that Stack is a mode-

constructor and that the above definition will be given its strict meaning.

Lisp-lists

Lists in LISP may be informally defined by: a list is either empty
or the concatenation of a head and a tail, the head being either an atom
or a list, the tail being always a list. This suggests the following
definition: LispA=2+(A+LispA)xLispA. Let T be the functor: Ax.(2+(A+x)xx)

and ¢ % TL~L the initial T-algebra.
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LispA does indeed, as the reader may care to check, consist of what one
could expect: one bottom element and all finite non-empty binary trees

the right leaves of which are unlabelled (they represent empty lists) and
the left leaves of which are either unlabelled or labelled by a non-bottom
element of A, If the tree consists of only one leaf it has to be considered

a right leaf.

Examples: . () the empty list
. (a)

. (N

. (a.(b)) = (a,b)

o

/\

/\ ;\ (a).(b)) = ((a), b)
a. . bg L]

c¢l: 2+(A+LispA)xLispA-LispA is such that:

cl(Li=L 4 cl(m)=() , cl(a,2)=(a.L)

2+(A+LispA)xLispA=2+(AxLispA+LispAxLispA)=(2+AxLispA)+LispAxLispA

which is obviously desirable,

Binary trees

Labelled binary trees suggest the following definition:
Btreeh = A+AXBtreeAXxBtreeA,
The reader may care to check that the initial algebra consists of
aii finite binary trees all the nodes of which are labelled by non-bottom
elements of A, and one bottom element. The arrows obtained construct
(cb : A+AxBtreeAxBtreeA~BtreeA) and decompose (cb_l:BtreeA*A+AXBtreeAXBtreeA)

trees.
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Had we chosen to solve T = A+A®T®T we would have defined an initial algebra

on a domain containing finite and infinite labelled binary trees.

Trees and Forests

A labelled tree consists eithér of a single labelled node or of a labelled
node and a forest. A forest is either empty or consists of a tree and a
forest. Trees and forests are defined by the pair of equations:

T~ A+AxF

= 2+4TxF

It will be shown in Section 4 that forests could equivalently be defined as
stacks of trees , after having defined trees as either a single labelled
node or a labelled node and a stack of trees. In other words T and F may be
defined by: T~ A+A Stack(T)

F= Stack(T)
Where the mutually ecircular definition has been eliminated.,

2} Composite data types

Miny data types are not simply built up from basic data types with the help

of type constructors and circular definitions but defined, somewhat indirectly,
by first defining a simple data type and then some new functions on this data
type and possibly forgetting some of the old functions. The carrier of 4
composite data type will be the same as that of the simple data type from
which it is built but the operations will be different. Two examples will

De analysed here: Queues and Arrays.

Quees

Gueuses are of the same type as Stacks but the push and pop procedures interact
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in a different way in the sense that the element popped will be the one
which has been pushed on first (and not the last one as in Stacks). Queues
are a very useful and interesting data type which seems to have escaped the
attention of previous researchers. The obvious idea is to define Queues from
Stacks by defining new pop and top functions and then forgetting about the
0ld ones. Stacks of A were defined as two inverse functions:

cs: 2+AxStackA+StackA the initial algebra and

cs_l: StackA+2+AxStackA  the empty+top*pop arrow.
We may define dq: StackA+2+AxStackA by:

dq(s)= if empty(s) or empty(pop(s)) then cs—l(s) else <pl(dq(pop(s))),

push(top(s), p2(dq(p0p(s)))ﬁ

The above definition simply translates the idea that the new top and pop
operations operate at the end of the stack. It would also have been possible
to leave top and pop unchanged and define a new push operation, Our formalism
enables us to prove the equivalence of these two ways of defining queues
but we shall not attempt to do that here. The data type Queues then consists
of a domain QueueA= StackA and two functions:

cs: 2+AXQueueA™QueueA

dq: QueueAs>Z+AxQueueA
cs and dq are not inverses but properties may be proved about them as will
be seen in Section 5 when a characterization of Queues as an initial algebra
in a certain equational class will be proved. Let us define:

top': QueueA-A by top'(s)= pl(dq(s)) for nonempty s and

pop': QueueAsQueueA by pop'(s)s= p2(dq(s)) for nonempty s.
Arrays
Infinite one-dimensional arrays of A may be defined from the data type
[NL+A] of functions from the natural numbers to A. Arrays must be equipped
with two functions: access: ArrxN- A and update: ArrxNxA» Arr., The function
access may easily be seen to be the function eval. The function update

is defined by Currying and use of abstraction by:
37.



update(g,n,a)= Am. if m=n then a else eval(g,m)

It is now obvious that: access(update(g,n,a),m)= if m=n then a else access(g,m).
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L, The initial fixpoint operator

In this section we will show that the transformation which sends an
i -functor to its initial fixpoint can itself be defined as an w~-functor.
This will in turn be used to show that other important constructs,
notably data-types with parameters, are (~functors. As another application,
we show that the well-known "reduction of simultaneous recursion to
iterated recursion" (de Bakker 71) generalizes to w-categories. This
provides a useful technique for demonstrating the equivalence of data
types, as we shall see in Section 6.

We begin with some considerations on functor c;tegories. The following
notation is adopted: C is an (u-category, while A,B are arbitrary categories.
[B-C] is the category with objects the w-functors from A to C and arrows
the natural transformations (with "vertical" composition) between such
functors. For composition of natural transformations we follow the notation
of Herrlich and Strecker: ° for the vertical, % for the horizontal

composition.

Lemma 1. [A—C] is an w-category.

Sketch of proof. The initial object of [A—>C] 1is the constant functor
A and colimits
with value lb. C" is an w-category in which limits,are computed pointwise

(Maclane Ch.V,3). We seek to show that, if T = FO:‘-'PF“E‘-) ees 1is an W=-chain
in [A—C], then the colimit $:T9F of T in ¢ is also the colimit in
[A=C]; in other words, that F is w=-continuous. To see this, let

T = AO—§9?A1~—>... be any w-chain in A, with colimit /A:TL?Aw. and let

5 be the infinite two-dimensional diagram with rows FiT“(i=0,1.... ) and
with vertical arrows (Ti)Aj:FiAj—»Fi+1Aj. D commutes by naturality of the Ti.
Taking the colimit of D first by rows an%ﬁ%% columns we find that 54“ is the

colimit of E«ﬂ"°
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A more detailed proof of this lemma may be found in Lehmann ( 76).

We will define the initial fixpoint operator, Y:[C—C]=C, in terms
of the colimit functor Qig:cq—+0. We recall (MacLane Ch.IV,2) that Eig
may be defined as the left adjoint of the diagonal functor A:C-C¥,
(Strictly speaking, this is not a proper definition, since adjoints are
not uniquely determined. We have to suppose that a particular adjunction

is chosen once and for all.)

Lemma 2. For any w-functor F:C—C, let S(F) be the iw-diagram
luj;Fl-fg;F%Lrﬁ +ee o For any natural transformation T:F-G (G an w=functor)
let S(r‘)n (for n=0,1,...) be Tn:FQL—§G¥L_, where t" is the n-fold
composition T*¢r*...*r. Then S is a functor from [C-C] to Cw .

Proof. To show that S(T) is a natural transformation, we must show

that the diagram (note:':f means (T‘lzL )

L ggv%Fl Ff;-;F%b———q

(1) J/ -{-LJ/ r:i ceve
2

G
1—B s g 8 ;69—

commutes. The Oth(leftmost) square of (1) commutes trivially. Suppose that
the nth square commutes. Then

n
FPU—TF0f | ppntd)

et | ety

I
PG —TE 8 gty

TGnJ_ ‘é TGn+ ‘L-

n v
aaRL 8678 et

commutes - the upper half by applying F to the nth square, the lower half

since T is natural. But this means that the n+1° square of (1) commutes,
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since T’fﬁ1 = TGk£oFTf (k=n,n+1). Thus (1) commutes. That S preserves

identities is trivial, and that it preserves composition is an immediate

consequence of the interchange law,

/

T, T
= 9. ¢ . Fr__0 '
Lemma 3. Suppose that T = FO ~§FH—+“1 T* = Fo ‘——9F1 ~¥.. are

¢d =chains in [C—C], with colimit cones ¢ :T—FE,, a*:T'—mg; « Then the

L ]
To

(o~chain T*' = FiF, To, FiF,—5... has the colimit c'*:T''>F.F,

Qo e

where ¢&'' = g '¥g47
n_ %n 0.

Proof. Consider the infinite diagram

1)
Fo'r1 1;‘06-
F'F — '——ﬁ . /’—n\‘r'
00 e o-FOFnooo OF’“J
Flc tagw
F’;T‘l /___‘Yn\
¢ t
- cse 00F1F eee F1Fy

Since the Fﬁ are (3 -continuous, the colimits of the rows are as indicated.
The colimit of the right-hand column is constituted by the arrows

C'AEW :“géy->ﬁ;(n y n1=0,%7,.4. « Hence the colimit of the diagonal,

computed by rows, is constituted by the arrows (cggp)O(FAah) = cé‘c;.
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Definition 1. Y:{C—>CJ=C is yigcs, where S is as defined in Lemma 1.

Theorem 1. Y is an w-functor.

Proof, QEE, as a left adjoint, preserves all colimits. The rest of

the proof is concerned with showing that S is w-continuous. Let

@>= FO.Eb9F1—i1+ eee Dbe an w=chain in [C—CJ with colimit ¢ :¢—F, .

The translation of ¢ by S is the following infinite diagram:

¥

L > i— -
‘ ! \ %
; I ¢!
fO{ 113 13 | f
( n )..L\ .r_'. . (T.\z >J. - //_\ ;,
FO'L ,zﬂl, Y eee rk.u..v. Fod
, 7.£ 3 %
2 G70 F.i, fkfk’ R
v S )
s @ n (@) : Tyla '
1l J.oo o, 4 Jn
Fo i Ne | Fif | gt
o’o| Fatq Tk Fata,
H { i(

¢ ‘

By Lemma %, together with the fact tnat colimits in [C—C] are computed
~o mtwise, trne colimits of the rows are as indicated in the diagram. Let

s n i . .
us L that the arrows Iyf, mediate between the successive cones,

O

[

v

. Z.adicated. In tne first pliace, fa,(the unique arrow from 4 to Fgpd )

0

=

I

meciztes trivially. Now, for any n > 1, k > O, the following diagram

commutes:



{
n, |
F
Fof, l Fof "y

Since ]."2:,’(¢7’R)J_o(C'kn)F N =(c~2+1)_L. it follows that E:,lfw mediates, as stated,
k

This shows that (2) is a colimiting diagram for S&.

The following lemma gives a characterization of the action of Y on

arrows which is often more convenient to work with than Definition 13

Lemma 4. Suppose that T :F-F' is a natural transformation, where
F,F'e [C—C]. Then Yr is the unique arrow from the initial F-algebra N

to the F-algebra qF,a'C

YF* *
Proof. Let A be the chain .L-I—éF——zg-) esey with colimiting cone

M A —=¥F: and similarly for A"I"" Define the cone Vv :FA —YF' by:

o n+1 o
Vy =P aeiTL + We shall prove that YT, and )4, T

LTy «F(YT) are equal

YF*

by showing that each is the mediating arrow from Ff‘ to vV, For Yrvr]F
this is immediate. For "F'OTYF'“F(YT)' consider the commuting diagram

(for each n> 0):
FFY ..,ﬂ..ﬂin_.) F(YF)
|

F(T))] F(Y1)

N

N
L]
Frt — FPn  F(YFY)

TFan TYF!

v ' A
prrely Fn pe(yre)

Pre1 N\ Tpo
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f) = I’n+1, the perimeter of this diagram gives the

By i
desired result.
The next lemma introduces an abstraction operator for functors.

Lemma 5. Define Abst:[A x B>C]-»[A—[B~>G] on objects (i.e. functors

F:A x B-C) by:

Abst(F)(X) F(X,=) , for x€A
Abst(F)(ﬁ)Y = FGK,IY) , for W:A—A' ;
and on arrows (natural transformations) by:
(Abst(T) )y = T,
Then Abst is’an isomorphism.
- For the proof we refer to Herrlich and Strecker( 73),Theorem 15.9;
it is routine to check that various functors which appear in the proof

are y~-continuous, so that the change in the meaning of [...'*...] does

not materiaily affect the proof.

At last we are in a position to understand data type definitions with
parar:.ers. A parameterized data type, in our view, is simply an w-functor
{(from a category thought of as the parameter category into a data type category).
{ne of the commonest situations is the following: an w-functor F:A x C—=C

- 2145 the parameterized data type Yeo(Abst(F)):A-C,

LoEmoie. Stack (Sec.3) must ve regarded as a parasmeterized data type,

" we are 1o make sense of the suggested circular definition

ey ListA = A + Stack(Lista).

dere, Stack is an W-lunctor, and (2a) defines List as Yo(Abst(F)), where
Fis 'K<A,C>.A + StackC, It may be asked, what is the exact relation between
List and Lisp (as defined in Sec.3)? We will find that such questions can

be answered by the help of Theorem 2.
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Theorem 2 deals with the reduction of simultaneous recursion to
iterated recursion. It says , in effect, that a pair of simultaneous

"equations"

e

X F(X,2)

Z

G(X,2)
can be solved by first solving for Z in terms of X from the second equation,

then substituting in the first equation.

Notation. F,G:C x C=C are w-functors. <F,G>:C x C=>C x C:V=<FV,GV>,
G is X2.6(X,2) (i.e. G(X,-)). Z_ is the functor . Yo(AbstG); thus we
write Zx’ Ze (where 8:X-X'), etc. F is AX.F(X,ZX), X is Y(F), and

z is 2= .
X

Theorem 2. <11§, 4G2> is initial for <F,G>.
Proof. Note first that, by Lemma &, Z_ may be chasgcterized as follows.

zZ is Y(Gx); if f:X>X', then Zy is determined by

1a
. %x ¢ X Gx(Zx) = G(X,Zx)
3 : :
Zei ;Gx(ZG) = G(Ix.ZG)
v v
Zx'<’7G‘x'0G(e.sz.)GX(ZX') = G(X%,2.,)

Now, suppose that p:F(X',2')—>X', q:G(X',2')-2', so that <p,q> is
an <F,G>-algebra, We will prove that there is at most one arrow from

<V]§,qGﬁ> to <p,9”. Suppose, then, that <1,ﬁ> is such an arrow, i.e.

= Na.
ié—J—F(i,Z) 7z —%—a(X,2)
) a) ‘ b)
o F((,B) £ G(tyf)
X'é-——;———-F(X',Z') Z'———:;———-G(X',Z')
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T:' { G
Let S be the arrow from qu' to the <

{3), tae following commutes:
4]
iG=

2 ¢——E3G=(Z)
X X

§

~
\n
—~

v qG ' v

. X
Z —2 G ,(2,)

X

< ’ G (Q
' Vo
Z'g-——““sz.(Z')

(4)b) and (5) give, respectively:

7n

4——————————- G (2) and

[anh }

(6)
A

\l

‘G(Iioﬂ) = G)—((F)

DN S

cL_..____._G (Z')

Q'U‘P&,L )

7
By initiality of '], . /$= {ezy, o
X

Next, (k)a) gives

2¢ F(X) =
(7) ! §
o« | R (e
é i (=)
Xt FX") =

I, D

i
; X
26(} G ’IZX|

= G(le ’é)

,~algebra q:Gxi(Z‘)—>Z'.

)0G(I=,2) = G{™,2,)
X

= F(u,zu)

F(X

’Z 1)
X

Sy initiality of ’]f, & is uniquely determined; hence/g is also.

Using

Cn the other hand, we see that if we start by defining x as being

giver by (7), and put /Q = {éZ , then all diagrams (4)-(7) commute, and

b ¢

ia periiculsar QNH£> is an arrow from <’]§,'7Gx> to <p,5>.
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Corollary 1. For any w-functor F:C x C-C,
Y(AXJY(CAZF(X,2)) 2 YOAXF(X,X)).
Proof. Consider the two ways (orders) of solving the pair
X = 2
Z F(X,2)

Theorem 2 assures us that the "naive'" solutions are correct. In detail:

G, is here F(X,=), Z_is Y(AZ.F(X,2), F is AXY(AZJF(X,2)), and <X,Z > =
<Y(AX.Y(AZ.F(X,Z))).Z§ > is the carrier {(codomain) of an initial solution.
Then, interchanging the roles of X,Z, we have (iqé notation symmetrical to
that used previously, whose interpretation should be clear): Fz is AX.Z,
X, is 2, G* is AZ.F(%,2), and <X*,2*> = <Y(A\2.F(2,2),Y(A2.F(Z,2)> is the

carrier of an initia 1 solution. Since all initial algebras for <F,G> are

isomorphic, the result follows.

Corollary 2. BtreeA = ForaA .

Proof. Apply Corollary 1, with F(X,2) as 2 + A x X x 2.

The mere existence of an isomorphism between BtreeA and ForA is not in
itself a very interesting result. However, as we shall see in Section 6, a
closer inspection reveals much more than this: it gives us the 'representation

of forests by binary trees'. Likewise for:

Corollary 3. ListA = A + LispA.
Proof. Similar to Corollary 2, starting with the equations

X A+ 4

e

Z 2+ X x Z,
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5. Metnods of definition and proof

Within the framework established in this paper, we have a number of
methods available for defining data types, data structures (elements of
data types) and functions over data types, and for proving properties of
defined entities. Some of these methods are brought together in the
present section. The short subsection on definitions is little more than
a summary of points made in scattered form elsewhere in the paper.
Subsection B is concerned with induction versus initiality as a method
of proof. Subsection C takes up the question of how we might prove that

our definitions of particular data types yield the "right" properties.

A, Definitions. For definitions of data types we can make a fourfold

classification. First, we have the ad hoc definition of some basic data
types, Secondly, we can apply a functor -~ either one of the standard
functors or a '"parameteriged data type'" to an already defined type.
Thirdly, a data type can be introduced as the initiail fixpoint of a functor.
Finally, we can define ''composite™ data types, in which the carrier is
taken to be given to ve given by one of the preceding three methods, but
new defined operations are introduced. Examples of all these methods
were provided in Section 3.

Turning to the question of specifying (defining) an element of a
given data type, the only point worthy of special comment is that arbitrary
recursive specifications are admissible. For procedural data types this
is cuumonplace. For a non-procedural data type, an example was suggested
in Sec. 3 . Admitiedaly, the example is not impressive; the
method only becomes really useful when data types which admit infinite

structures (say, infinite trees) are studied.
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The basic type-constructors have, in view of their categorical
definition, certain functions associated with them: projections and
injections associated with product and sum, evaluation and abstraction
maps associgted with the function space, and so on. And, of course,
every functor gives us the means to introduce functions: if a function
£:X—Z and functor F have been defined, then we have also the function
Ff:FX~FZ. So, for example, functions defined on the natural numbers
extend at once to arrays and stacks of numbers. APL is probably the
best-known example of a programming language that makes systematic use
of this possibility.

Initiality provides yet another way of defining functions. The most
important example is the definition of the inverse isomorphism ’];1 for
an initial F-algebra qF:FXO~+XO Once the inverse is available,
further uses of initiality for defining functions can be eliminated in
favour of recursive definitions. In detail: suppose we have a definition
of a function f:Xd—>X by initiality, namely as the unique function
satisfying

(1) fe)p = gFf
where g:FX—-X is defined previously. Then (1) can be rewritten
() £ = gFre);
and thnis has the form £ = Gf for a continuous functional G. Thus f
may alternatively be introduced as the (least) solution of (2), construed
as a recursive definition.

What we lose by this reduction is the unicity of the solution of (2) -
an aspect that may be of great importance in proving properties of f, or
of the domains X

O,X. Indeed, it is as a principle of proof, rather than

of definition, that initiality is most significant,
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B, Initialitv and induction. Examples of the use of initiality in

be
proofs are to éound throughout the paper. A very interesting question
suggests itself: do we need any principles of proof about data types that
cannot be reduced to initiality? One may think, for example, of structural

induction. For StackA, this might be formulated as:

LES AES. x€S = Va€A.push(a,x)€ES

(3)
Stack < S

Can (3) be derived from initiality? At first it may seem as though it can.
A set will naturally be construed as a map from StackA into Bool (or perhaps

into 2), and thus we reduce (3) to, say:

) flr)=L £A)=tt f(x)=tt =& Va€A.f(push(a,x))=tt
(4

f =t

where t:StackABool 1is the strict map which sends every non-i stack to tt.

L) can indeed Dbe derived from initiality, with a bit of effort (it is

—~

1ot quite trivial). But, of course, the "reduction' of (3) to (4) is faulty,
{%) is foraulated for arbitrary predicates(=sets), (4) only for continuous
predicates. For the usual applications, (4) is insufficient. For example,
structural induction is often used to prove statements of the form
(5) Vx.f(x) = g(x) .

Sar ecusllty is not, in general, a continuous pfedicate.

{3) can indeed be proved quite easily by going back to the explicit
conairuciion of StackA as tne colimit of a certain w-chain ?q. The proof
zoez oy way of showing that every element of StackA is already "in'" one of

~ Y . - ~ .
cerms ¢f ( § or, more precisely, that for every xEStackA there exists n

e

[

. R
such that ugdn(x) = X, where u:rL+StackA is the colimiting cone. This

shows that every stack is either L or A or can be obtained from A by
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a finite number of pushes, which is:essentially (3). A similar argument
applies in the case of any data type defined as the initial fixpoint of

a "polynomial' functor: that is, a functor built up by composition (and
transposition of variables) from +, x, constant and identity functors.

We will not prove this result here, or even stat7it precisely. This is
partly because we are not satisfied that the result is of the right level

of generality (though it certainly covers all the usual cases of structural
induction). But the major reason why we do not trouble to make it precise

is that we do not, after all, need structural induction.

We should admit at this point that the argumentvdeveloped so far in this
section is not quite satisfactory. We have argued, in effect, that (3) (say)
cannot be derived directly from initiality, while it can be obtained indirectly
via a particular construction of an initial algebra for 2 + A x -, What is
unsatisfactory is that we are unable to say exactly what a "direct" derivation
is. Despite this, it seems clear that the guestion whether in proofs about
data types we can work just with the abstract characterization by initiality,
or must go via the concrete construction, has some methodological significance.
At the least, proofs using initiality generalize more readily than proofs
using structural induction. For example, where polynomial functors and their
initial algebras are concerned, a proof by initiality typically does not
make use of the detailed properties of + and x, and will work equally well
if & and é§ are used instead; this, of course, does not hold for structural

inductione
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In earlier versions of this paper sevefél of the results, particularly
in Section 6, were proved by means of structural induction. However, it
turned out that the inductions could be eliminated in every case, and that
pure initiality arguments were sufficient. One can see how induction might
be replaced by initiality, in a simple case, by looking at (5). To prove
a statement of this form by initiality, we would try to show that each
of f,g is an arrow from A to B, where (for suitable F) A and B are
Fealgebras, with A initial.

The elimination of induction . is not always as straight-
Torward as this, even if it can always be achieved (something about which
we are not yet in a position to make any general claims). In the discussion
of implementation by isomorphism in Section 6, the effort to remove
ind.ction led to a substantial improvement in the results and their
prcof. A comparatively simple example of the replacement of induction

Ly initiality appears in the discussion of the third topic of this

szcvion (below).

Finally, we remark that some uses of ordinary mathematical induction
remain in Section 6. These are ‘“harmless'’, since the predicates involved
are in each case continuous (recall from Section 2 that equality is
continuous ir the case of N), so that a direct reduction to initiality

is fegsible.
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C, Correctness of data type definitions. 1In the discussion of

particular data types in Section 3, no attempt was made to show that
our proposed definitions were ''correct'". But the definitions were
supposed to be precise expiications of the informal notions current
in computer science, and it seems reasonable to demand some demonstration
that our data types have the properties usually required.

In trying to make sense of this somewhat vague demand, we may
borrow an idea from ADJ, We can try to write down a list of the '"usual"
properties of the data type in question, and then show that the type we
have defined is initial in the class of algebras sétisfying those
properties; this would surely be convincing evidence.

It happens that this can be done fairly easily for most of data
types introduced in Section 3. We will discuss the (not so easy) example
of queues in some detail. The example is interesting because the
type in questioﬁ is composite, and because it does not seem to have
an accepted algebraic definition.

We do not know of any published list of properties intended to
characterize the standard operations on queues. The following list was

suggested by D.Park (private communication):

pop{pushi{a,s)) if empty(s) then A else push(a,pop(s))

it

(6) top{pushia,s)) if empty(s) then 3 else top(s)

empty(A) = tt empty(push(a,s)) = ff
Here, top and pop should probably be regarded as partial operations. To
avoid this difficulty - and aisc the introduction of terminology relating
to many-sorted algebras, which would be needed for the accurate handling
of (6) - we can use the approach suggested in Section 3. Top and pop are

amalgamated into a map q:Q—TQ (= 2 + A x Q), where

53.



-
2' if S:A

| <top{s},pop(s)> else

Similariy, push, empty and A are replaced by u:TQ—Q, where

ul(T)

N

u({<a,s>) push(a,s).
Park's equations may now be written as follows:

geul7) = T
(7)

()

q{s)=7 then <a,ulT)> else <p10q(s).r(a,p2oq(s))>
(These eguations may be made more readable by writing empty(s) instead of
q(s)=7T, and A instead of u{T).) It will oe convenient to have (7) in

diagrammatic form. Indeed, (7) is equivalent to the commuting of

Q . u T;Q
1
o i ]
Y G %Tq
N .. v

TQe—3___TIg =2+ Ax (2+AxQ

where d is defined by:

g (7) = 7

o
“w

d« (<aﬂ'>) = a

)

IS

A <a,<o,s>>) <o,ul<a,s>).

u

it

In the case that Q is StackA and u is csA,>this just says that g is

vedd

: . : / CS4 d
¢ operztion dg of the data type Queueh \S%ackAf——*--TStackAé——3-StackA;

[¢9)

i, ~ A

= . : 5 . P
e SuC.os B3 1S easi.y veriiiad, -nus WeUE
A% B

3

certainly satiafies (8).
T d - - u‘A oY X = P . : : g
Let D* = Q*é:g;:;TQ‘ be any algebra satisfying (8). We want to show that

. . . , A .- L ,
toere Lo a unigue arrow from Jueue Lo D*, This means that we must show that

the ars w & Irom the Twalgebra cs, to u* (given by initiality of CSA) also
4 4
saticiies
{(9) Tuedg = g*Q
\ Qq - q
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Consider the following diagram, in which S,d;d* abbreviate StackA;dcé ;du‘
A

Csp

L~

TQH ———T1Q*

The two end squares and the top rectangle commute by definition. One can

check that the bottom rectangle commutes; the main case is:

T a d(<a,<b,s>>) by cs,(<a,s>)>
= <b, u*(<a, a(s)>)>

= d"‘(<a, <b, a(5)>>)

H

da* IT c(<a, <b,s>>).
Since the back square and the bottom rectangie commute, T dq is an arrow
from s, to d*. Since the front square and top rectangle commute, g* @ is

an arrow from cs, to d*. By initiality of cs these arrows are equal; the

A

result is proved.
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&, Implementation of data types.

Sometimes one wants to be able to prove that certain operations on data
type D' enable him to simulate, represent or implement those of a data type D.
Typisally, D will have been gefined "abstractly", say by a circular definition,
wnile D'is more '"concrete'" (more like what is usually available in programming
languages). The representation of stacks and queues by arrays may be cited as
examples. An interesting example that does not quite fit this pattern is that
of the representation of forests by binary trees. Here the representation
involves, as it were, a reduction of star-height': in the definition of the
data type Forests there occurs already a parameterized data type, while Btrees
is defined via a purely polynomial functor (see Sec.3, or end of Sec.4).

These examples are well-known, and an elementary treatment may be found
in Knuth(69). Our purpose is to give an exact definition of "implementation™
wnich will cover these and other examples, and to exhibit some techniques for
proving that proposec implementations are correct. As a preiiminary, let us
indicate why we are not satisfied with the equational approach of ADJ.
Consicer the implementation of stacks by arrays. Suppose the operations on
arrays which correspond to pop,push are pop',push'. Then it is not true
that we have:

pop'(push'(a,H)) = H
. fact, tae "useful" parts of H and pop'(push'(a,H)) will be the same, but
.ne contents of the first free location will, in general, have been changed
.oy the sequence of operations: push'(a,-),pop' ). This situation is quite

typicai of representations which are not one-one.

The idea berind our definition is very simple. Whnen it is said that data
type D' implements data type D, this means, first, that D' and D are of the

same type (the operations of D' and D are in one-one correspondence); secondly,
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that the elements of D' are taken as representing elements of D, and this

consistently with the operations of D,D'. Thus:

Definition 1. An implementation of D by D', where D and D' are data

types, is a homomorphism (of data types, see Sec. 3) r:D'=D,

Remark. As already noted, r need not be one-one. Moreover, r need not
be onto: the most one can say (in general) is that every element of D that
is definable by means of the operations of D has a representative in DY,
Examples would be provided by implementations of the reals, or of procedural

data types.

In all the examples to be discussed here, the map r is onto; this is

a consequence of

Lemma 1. If D is a data type with carrier A which contains as one of its
operations an initial T-algebra @:TA—>A, then any impliementation r:D'-D
is onto.

Proof. Consider

Ae—2
a | T
¥ , iy
Ate—2 Ta
rl | Tr

© v
A¢¢——F—TA

By initiality, rea = I hence r is onto,

A ¥
We continue with a detailed treatment of the examples mentioned in the
ovening paragraph of this section.

-

Exarnle 7. Representation of stacks and queues by arrays.

-1
(i) Stacks. Let D be StackA ¢SA  T(StackA) A _ StackA, where T is

2+ AX=. Let Z be the set of pairs <H,n>, where H is an infinite array
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0. A and n is a natural number, with the obvious ordering; more precisely,
7 ‘= trne coalesced sum of ccuniably many copies of ArrA, Let D' be

22 77¢8 7, where

p(7) = <H,,0> (HO an arbitrarily chosen array)
pla,<d,n>) = <upd(H,n,a),n+1>
q(H,n) = if n=0 then T else <acc(H,n-1),<H,n-1>>.

Define r:Z2-+StackA recursively by:

r(H,m) = if m=0 then A else push{acc(H,m-1),r(H,m-1)).

We shall need an elementary property of r which we state as

Lemma 2. For 11 H,a,m,k, we nave:
{1) r{upd(H,m+k,a),m) = r(H,m)
Proof., By induction on m. The basis m=0 is trivial. Suppose that (1)
holds for all H,a,k, with m=n. Then

r{upd(H,n+1+k,a),n+1) = push{acc(upd(H,n+k+1,a),n),r{upa(H,n+k+1,a),n))

= pash{acc{H,n),r{H,n)
= r{d,n+1).

Ye have to shcw that roep = csAoT(r). But rep(T) = csAfT(T) triviaily, and

ropla,<H,n>) riupd{i,n,al),n+1)

il

= push(acc(upd(H,n,a),n),r(upd(H,yn,a),n))
= push(a,r(H,n)) using Lemma 2

Y N
csﬁomar)(a.<H,n>;.

i

-1

An equally easy verification shows that T(r)eq = cs,

or ; thus D' is an
Luolerentation of D. Note that in this implementation the functions p,q are

LUt iaverse 1o each other.
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(ii) Queues. We represent a queue by an array H together with two indices
m,n, such tnat the items of the queue are (from head to tail) H(m+n-1),...,H(m).
d

Formally, D is StackA(—SEA—-T(StackA)G—Jl-StackA. Z is the coalesced sum of

a double sequence of copies of ArrA, and D' is ZG—E——TZ€—3——Z, where

p(T) = <H,,0,0> (HO arbitrary)
pla,<H,m,n>) = <upd(H,m+n,a),m,n+1>
q(Hymyn) = if n=0 then T else <acc(H,m),<H,m+1,n-1 3> °,

Define r:Z—->StackA by

r(H,myn) = if n=0 then A else push (acc(H,m+n-1),r(H,myn=1))

Corresponding to Lemma 2, we have: r(upd(H,m+n+k,a),m¢n) = r(Hd,myn). Then
rop = csAoT(r) is proved just as before. To complete the proof that D'

implements D, we need

Lemma 3. With pop' and top' defined as in Sec.3, we have for n 2 1:
top'or(H,myn) = acc(H,m)
pop'sr(Hymyn) = r(H,m+1,n-1).
Proof. By induction on n. For n=1 the proof is trivial in each case.
For the induction step we have:

top'o r(H,m,n+1) top's push(acc(H,m+n),r(H,m,n))

1}

l .. = top'er(H,m,n)
= acc(Hym)

pop'e push(acc(H,m+n) ,r (Hym,n))

pop'e r{H,m,n+1)
= push(acc(H,m+n),pop' r{H,m,n))
= push(acc(H,m+n),r(H,m+1,n-1))

= r(H,m+1,n).

Using this lemma, it is immediate that T(r)oq = dger,
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Our second main example is the representation of forests by binary trees.

, pointed out in Sec.4(Corollary 2J, BtreeA = ForA. This is not sufficient

o
Oy

for the representation(:implementation). since it does not indicate how the
operations of ForA .re to be implemented. The deficiency can be repaired with

the aid of the followinf easy lemma:

-1
Lemma 4. Let D = Z¢ @ 72¢2 7 bea simple data type, r:Z2'—Z an

-1
- 1 t
isomorphism., Put @' =r 1’®°Fr. Then the data type D' = Z2'¢ D pzre VA
is isomorphic to D.

Proof. Obvious.

This lemma shows that there is indeed an (isbmorphic) implementation
of forests by binary trees (more precisely, by a data type with carrier the
binary trees). However, direct application of the lemma does not yield the
implezentation in a very convenient form. More manageable expressions can be
exiracted from the proof of Theorem 2 (Sec.4). To see this, we will extend
the notation of that theorem in order to handle the solution '"in the other
order' of the pair

X

e

F(X,2)
(2)

Z G(X,2)

(Some of this notation was already introduced in Corollary 1 of Sec.,k.)
Namely, F_ is AX.F(X,2), X_is Yo(AbstF), G* is A2.G(X_,2), 2% is Y(G*),

PR, ' T 4
ol X¥ ds X L.

Thus <7p o Ng.> 1is initial for <F,G>. Define £ as in

Z‘

the proc’ of the theorem, with X*,2* in place of X',2' (and T 2 fg» in
z#

=lace of pyqlt

oy *
%X' Gxtgé t)
RN o :
S! N [
(3) i o . G(I_,G)
z* G_ (2%
X
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Then diagram (7) becomes

X¢ F(X,2) = FX)
i
) a i FKQ,%J)
x Tp o F(I ..Q)F(X“Zx*> = FIx*)

o is, of course, an isomorphism. This fits the pattern of Lemma 4, with

¥ as ﬂf.-, r as 0.-1. and ©' as qG‘oF(Ix*’é)'

Example 2. Representation of forests by binary trees. As in Corollary 2
(Sec.4), we take F(X,Z) as Z, G(X,2) as 2 + A x X x 4, We find that

X = ForA, 2 = Stack(A x ForA), X* = 2% = BtreeA, Zx' = Stack(A x Btreed),
F is Stack(A x =), Gx is 2+ Ax X x -, and Qiﬁ QG,, 7Gx" sz‘ are

cfyy Cbt,s ©S; o Bireen? IBtré} respectively. (3) becomes

CSA x Btreek
tack(A x BtreeAd) ¢ + A x BtreeA x Stack(A x BtreeA)

e
‘ i ! :
] i i €
J cbt J, ! v
Btreel < 2 + A x BtreeA x Btreed

Thus the recursive definition of ’é reads

@(s) = if empty(s) then NIL else cbtA(p10hd(s),pzohd(s),ﬁotl(s)),

where NIV is cbt,(T). Note that 7Fz: F(I_aiC) = { « From (4) we have

cf
A hnl
ForA ¢——————Stack{A x ForA)
I T
i

r Stack(IA X r)

i
Btreed 6———¥§—————Stack(A x BtreeA)

in which every arrow is an isomorphism. This yields the recursive definition

of the representation function r:
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r(x) = if empty(x) then A else cf*(root(x),rolt(x),rort(x))

wiere cf*:A x ForA x ForA—> ForA is defined by:

’ -1
¥ —_ {
cf (a,f1,f2) = cfjocs, x ForA\<<a,f1>,cfA (f2)>).

We conclude this section with a remark about the appropriateness of
Definition 1. Suppose that we have a program T written in a high-level
ianguage using "abstract data types', and that we can prove that T computes
a function f:X—Z, Suppose, further, that we have an implementation of the
language (a translation into a lower-level language) and, in particular, of
the data types used in 1. What does it mean to say that the franslated
program, m', is still correct with respect to f? The answer must, it seems,
be as follows., Let 7' compute ':X'>2', where X',Z' are the implementations
of X,% respectiveiy. Then for any x'€X', if x' represents x€X, £'(x')

5

represents f(x). This just says that the diagram

commutes. It is at least plausible (we do not have a precise result as yet)
that, to ensure that this result holds for every T,f, we will need just the

-

cordition laid down in Definition 4.
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7. Advice to language designers.

We think there are some practical conclusions to be drawn from our
investigation. The fact that the definition of data types has such a simple
and clear mathematical semantics does speak in favor of a mathematical
definition of programming languages, rather than an operational definition.
The main advantage of a mathematical definition is clarity: it is much easier
for the user to think in terms of abstract data types, for example initial
fixpoints of functors, than in terms of their representations - as he is forced
to do if the definition of the language has an operational flavor and stresses

representations, in the manner of the ALGOL 68 Report (van Wijngaarden et al(75)).

Quite often a language is difficult to learn not because of what is in
the language but because of what is left out; the restrictions, when they are
not solidly justified on semantic grounds, are most difficult to memorize.
Our second piece of advice would then be to remove all restrictions on the
use of circular definitions for specifying data types; again - as with nearly
all the points to be made in this section - ALGOL 68 provides an illustration
of wnat needs to be improved upon. Apart from easing the learning of the
language, the introduction of arbitrary circular type definitions would allow
the programmer to define data types such as lists and trees without having
to introduce references (or pointers) explicitly. This would greatly facilitate
proofs of correctness. Inaeed, proofs of correctness are intractable when
snaring of values (sometimes called aliasing) occurs. One can try to exclude
aliasing by means of syntactic restrictions on programs; but this does not

seem o be possible when references are permitted.

The greatest care should be taken in the design of a programming language
to provide the necessary facilities to denote useful basic data types, such

as 1 and 2, and useful type constructors, such as sums and products, In
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particular, the distinctions between x and @p, + and (9, should be emphasized.

union should be clearly recopgnized as being a discriminated union,

The facility for circular definitions of data types should provide a
canonical way of defining the functions defined. More precisely, a circular
definition X = TX should enable the user to give a name to 7;1:X TX and to
QT:TX X the initial T-algebra. '7;1 is obviously necessary,but one could

question the necessity of 7T and propose to make it an implicit "coercion'.

Our last piece of advice is that a language should allow the user to
specify abstract data types on one hand and the waj he intends his abstract
data types to be implemented (by way of a homomorphism of déta types) on the
other hand. The responsibility for checking that the proposed implementation
is indeed a homomorphism could be either left to the user or the compiler

could be asked to check a proof of that fact given by the user.

8, Conclusion.

‘The category-theoretic method enables us to present the semantics of
daka types as a precise generalization of the usual partial order semanticse.
This is of great value heuristically in formulating the basic definitions and
results of the theory. More specifically, it helps explain the fundamental
role of initiality, by showing that this is just (the generalization of) the

c»ast fixpoint property,.

Wnile we are sure of the solidity of the mathematical foundations, large

5 ramain in our treatment of the zpplications. Implementations of data

tyras vred to be investigated in far greater variety than we have attempted
in Se.cion O. And 1T will no doubt be pointed out that specific design

proposals are needed, not just general advice to language designers.
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